| /* | 
 |  * efi.c - EFI subsystem | 
 |  * | 
 |  * Copyright (C) 2001,2003,2004 Dell <Matt_Domsch@dell.com> | 
 |  * Copyright (C) 2004 Intel Corporation <matthew.e.tolentino@intel.com> | 
 |  * Copyright (C) 2013 Tom Gundersen <teg@jklm.no> | 
 |  * | 
 |  * This code registers /sys/firmware/efi{,/efivars} when EFI is supported, | 
 |  * allowing the efivarfs to be mounted or the efivars module to be loaded. | 
 |  * The existance of /sys/firmware/efi may also be used by userspace to | 
 |  * determine that the system supports EFI. | 
 |  * | 
 |  * This file is released under the GPLv2. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 |  | 
 | #include <linux/kobject.h> | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/device.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_fdt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/random.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/ucs2_string.h> | 
 | #include <linux/memblock.h> | 
 |  | 
 | #include <asm/early_ioremap.h> | 
 |  | 
 | struct efi __read_mostly efi = { | 
 | 	.mps			= EFI_INVALID_TABLE_ADDR, | 
 | 	.acpi			= EFI_INVALID_TABLE_ADDR, | 
 | 	.acpi20			= EFI_INVALID_TABLE_ADDR, | 
 | 	.smbios			= EFI_INVALID_TABLE_ADDR, | 
 | 	.smbios3		= EFI_INVALID_TABLE_ADDR, | 
 | 	.sal_systab		= EFI_INVALID_TABLE_ADDR, | 
 | 	.boot_info		= EFI_INVALID_TABLE_ADDR, | 
 | 	.hcdp			= EFI_INVALID_TABLE_ADDR, | 
 | 	.uga			= EFI_INVALID_TABLE_ADDR, | 
 | 	.uv_systab		= EFI_INVALID_TABLE_ADDR, | 
 | 	.fw_vendor		= EFI_INVALID_TABLE_ADDR, | 
 | 	.runtime		= EFI_INVALID_TABLE_ADDR, | 
 | 	.config_table		= EFI_INVALID_TABLE_ADDR, | 
 | 	.esrt			= EFI_INVALID_TABLE_ADDR, | 
 | 	.properties_table	= EFI_INVALID_TABLE_ADDR, | 
 | 	.mem_attr_table		= EFI_INVALID_TABLE_ADDR, | 
 | 	.rng_seed		= EFI_INVALID_TABLE_ADDR, | 
 | 	.tpm_log		= EFI_INVALID_TABLE_ADDR | 
 | }; | 
 | EXPORT_SYMBOL(efi); | 
 |  | 
 | static unsigned long *efi_tables[] = { | 
 | 	&efi.mps, | 
 | 	&efi.acpi, | 
 | 	&efi.acpi20, | 
 | 	&efi.smbios, | 
 | 	&efi.smbios3, | 
 | 	&efi.sal_systab, | 
 | 	&efi.boot_info, | 
 | 	&efi.hcdp, | 
 | 	&efi.uga, | 
 | 	&efi.uv_systab, | 
 | 	&efi.fw_vendor, | 
 | 	&efi.runtime, | 
 | 	&efi.config_table, | 
 | 	&efi.esrt, | 
 | 	&efi.properties_table, | 
 | 	&efi.mem_attr_table, | 
 | }; | 
 |  | 
 | struct mm_struct efi_mm = { | 
 | 	.mm_rb			= RB_ROOT, | 
 | 	.mm_users		= ATOMIC_INIT(2), | 
 | 	.mm_count		= ATOMIC_INIT(1), | 
 | 	.mmap_sem		= __RWSEM_INITIALIZER(efi_mm.mmap_sem), | 
 | 	.page_table_lock	= __SPIN_LOCK_UNLOCKED(efi_mm.page_table_lock), | 
 | 	.mmlist			= LIST_HEAD_INIT(efi_mm.mmlist), | 
 | 	.cpu_bitmap		= { [BITS_TO_LONGS(NR_CPUS)] = 0}, | 
 | }; | 
 |  | 
 | struct workqueue_struct *efi_rts_wq; | 
 |  | 
 | static bool disable_runtime; | 
 | static int __init setup_noefi(char *arg) | 
 | { | 
 | 	disable_runtime = true; | 
 | 	return 0; | 
 | } | 
 | early_param("noefi", setup_noefi); | 
 |  | 
 | bool efi_runtime_disabled(void) | 
 | { | 
 | 	return disable_runtime; | 
 | } | 
 |  | 
 | static int __init parse_efi_cmdline(char *str) | 
 | { | 
 | 	if (!str) { | 
 | 		pr_warn("need at least one option\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (parse_option_str(str, "debug")) | 
 | 		set_bit(EFI_DBG, &efi.flags); | 
 |  | 
 | 	if (parse_option_str(str, "noruntime")) | 
 | 		disable_runtime = true; | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("efi", parse_efi_cmdline); | 
 |  | 
 | struct kobject *efi_kobj; | 
 |  | 
 | /* | 
 |  * Let's not leave out systab information that snuck into | 
 |  * the efivars driver | 
 |  * Note, do not add more fields in systab sysfs file as it breaks sysfs | 
 |  * one value per file rule! | 
 |  */ | 
 | static ssize_t systab_show(struct kobject *kobj, | 
 | 			   struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	char *str = buf; | 
 |  | 
 | 	if (!kobj || !buf) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (efi.mps != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "MPS=0x%lx\n", efi.mps); | 
 | 	if (efi.acpi20 != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "ACPI20=0x%lx\n", efi.acpi20); | 
 | 	if (efi.acpi != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "ACPI=0x%lx\n", efi.acpi); | 
 | 	/* | 
 | 	 * If both SMBIOS and SMBIOS3 entry points are implemented, the | 
 | 	 * SMBIOS3 entry point shall be preferred, so we list it first to | 
 | 	 * let applications stop parsing after the first match. | 
 | 	 */ | 
 | 	if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "SMBIOS3=0x%lx\n", efi.smbios3); | 
 | 	if (efi.smbios != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "SMBIOS=0x%lx\n", efi.smbios); | 
 | 	if (efi.hcdp != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "HCDP=0x%lx\n", efi.hcdp); | 
 | 	if (efi.boot_info != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "BOOTINFO=0x%lx\n", efi.boot_info); | 
 | 	if (efi.uga != EFI_INVALID_TABLE_ADDR) | 
 | 		str += sprintf(str, "UGA=0x%lx\n", efi.uga); | 
 |  | 
 | 	return str - buf; | 
 | } | 
 |  | 
 | static struct kobj_attribute efi_attr_systab = __ATTR_RO_MODE(systab, 0400); | 
 |  | 
 | #define EFI_FIELD(var) efi.var | 
 |  | 
 | #define EFI_ATTR_SHOW(name) \ | 
 | static ssize_t name##_show(struct kobject *kobj, \ | 
 | 				struct kobj_attribute *attr, char *buf) \ | 
 | { \ | 
 | 	return sprintf(buf, "0x%lx\n", EFI_FIELD(name)); \ | 
 | } | 
 |  | 
 | EFI_ATTR_SHOW(fw_vendor); | 
 | EFI_ATTR_SHOW(runtime); | 
 | EFI_ATTR_SHOW(config_table); | 
 |  | 
 | static ssize_t fw_platform_size_show(struct kobject *kobj, | 
 | 				     struct kobj_attribute *attr, char *buf) | 
 | { | 
 | 	return sprintf(buf, "%d\n", efi_enabled(EFI_64BIT) ? 64 : 32); | 
 | } | 
 |  | 
 | static struct kobj_attribute efi_attr_fw_vendor = __ATTR_RO(fw_vendor); | 
 | static struct kobj_attribute efi_attr_runtime = __ATTR_RO(runtime); | 
 | static struct kobj_attribute efi_attr_config_table = __ATTR_RO(config_table); | 
 | static struct kobj_attribute efi_attr_fw_platform_size = | 
 | 	__ATTR_RO(fw_platform_size); | 
 |  | 
 | static struct attribute *efi_subsys_attrs[] = { | 
 | 	&efi_attr_systab.attr, | 
 | 	&efi_attr_fw_vendor.attr, | 
 | 	&efi_attr_runtime.attr, | 
 | 	&efi_attr_config_table.attr, | 
 | 	&efi_attr_fw_platform_size.attr, | 
 | 	NULL, | 
 | }; | 
 |  | 
 | static umode_t efi_attr_is_visible(struct kobject *kobj, | 
 | 				   struct attribute *attr, int n) | 
 | { | 
 | 	if (attr == &efi_attr_fw_vendor.attr) { | 
 | 		if (efi_enabled(EFI_PARAVIRT) || | 
 | 				efi.fw_vendor == EFI_INVALID_TABLE_ADDR) | 
 | 			return 0; | 
 | 	} else if (attr == &efi_attr_runtime.attr) { | 
 | 		if (efi.runtime == EFI_INVALID_TABLE_ADDR) | 
 | 			return 0; | 
 | 	} else if (attr == &efi_attr_config_table.attr) { | 
 | 		if (efi.config_table == EFI_INVALID_TABLE_ADDR) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return attr->mode; | 
 | } | 
 |  | 
 | static const struct attribute_group efi_subsys_attr_group = { | 
 | 	.attrs = efi_subsys_attrs, | 
 | 	.is_visible = efi_attr_is_visible, | 
 | }; | 
 |  | 
 | static struct efivars generic_efivars; | 
 | static struct efivar_operations generic_ops; | 
 |  | 
 | static int generic_ops_register(void) | 
 | { | 
 | 	generic_ops.get_variable = efi.get_variable; | 
 | 	generic_ops.set_variable = efi.set_variable; | 
 | 	generic_ops.set_variable_nonblocking = efi.set_variable_nonblocking; | 
 | 	generic_ops.get_next_variable = efi.get_next_variable; | 
 | 	generic_ops.query_variable_store = efi_query_variable_store; | 
 |  | 
 | 	return efivars_register(&generic_efivars, &generic_ops, efi_kobj); | 
 | } | 
 |  | 
 | static void generic_ops_unregister(void) | 
 | { | 
 | 	efivars_unregister(&generic_efivars); | 
 | } | 
 |  | 
 | #if IS_ENABLED(CONFIG_ACPI) | 
 | #define EFIVAR_SSDT_NAME_MAX	16 | 
 | static char efivar_ssdt[EFIVAR_SSDT_NAME_MAX] __initdata; | 
 | static int __init efivar_ssdt_setup(char *str) | 
 | { | 
 | 	if (strlen(str) < sizeof(efivar_ssdt)) | 
 | 		memcpy(efivar_ssdt, str, strlen(str)); | 
 | 	else | 
 | 		pr_warn("efivar_ssdt: name too long: %s\n", str); | 
 | 	return 0; | 
 | } | 
 | __setup("efivar_ssdt=", efivar_ssdt_setup); | 
 |  | 
 | static __init int efivar_ssdt_iter(efi_char16_t *name, efi_guid_t vendor, | 
 | 				   unsigned long name_size, void *data) | 
 | { | 
 | 	struct efivar_entry *entry; | 
 | 	struct list_head *list = data; | 
 | 	char utf8_name[EFIVAR_SSDT_NAME_MAX]; | 
 | 	int limit = min_t(unsigned long, EFIVAR_SSDT_NAME_MAX, name_size); | 
 |  | 
 | 	ucs2_as_utf8(utf8_name, name, limit - 1); | 
 | 	if (strncmp(utf8_name, efivar_ssdt, limit) != 0) | 
 | 		return 0; | 
 |  | 
 | 	entry = kmalloc(sizeof(*entry), GFP_KERNEL); | 
 | 	if (!entry) | 
 | 		return 0; | 
 |  | 
 | 	memcpy(entry->var.VariableName, name, name_size); | 
 | 	memcpy(&entry->var.VendorGuid, &vendor, sizeof(efi_guid_t)); | 
 |  | 
 | 	efivar_entry_add(entry, list); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int efivar_ssdt_load(void) | 
 | { | 
 | 	LIST_HEAD(entries); | 
 | 	struct efivar_entry *entry, *aux; | 
 | 	unsigned long size; | 
 | 	void *data; | 
 | 	int ret; | 
 |  | 
 | 	if (!efivar_ssdt[0]) | 
 | 		return 0; | 
 |  | 
 | 	ret = efivar_init(efivar_ssdt_iter, &entries, true, &entries); | 
 |  | 
 | 	list_for_each_entry_safe(entry, aux, &entries, list) { | 
 | 		pr_info("loading SSDT from variable %s-%pUl\n", efivar_ssdt, | 
 | 			&entry->var.VendorGuid); | 
 |  | 
 | 		list_del(&entry->list); | 
 |  | 
 | 		ret = efivar_entry_size(entry, &size); | 
 | 		if (ret) { | 
 | 			pr_err("failed to get var size\n"); | 
 | 			goto free_entry; | 
 | 		} | 
 |  | 
 | 		data = kmalloc(size, GFP_KERNEL); | 
 | 		if (!data) { | 
 | 			ret = -ENOMEM; | 
 | 			goto free_entry; | 
 | 		} | 
 |  | 
 | 		ret = efivar_entry_get(entry, NULL, &size, data); | 
 | 		if (ret) { | 
 | 			pr_err("failed to get var data\n"); | 
 | 			goto free_data; | 
 | 		} | 
 |  | 
 | 		ret = acpi_load_table(data); | 
 | 		if (ret) { | 
 | 			pr_err("failed to load table: %d\n", ret); | 
 | 			goto free_data; | 
 | 		} | 
 |  | 
 | 		goto free_entry; | 
 |  | 
 | free_data: | 
 | 		kfree(data); | 
 |  | 
 | free_entry: | 
 | 		kfree(entry); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | #else | 
 | static inline int efivar_ssdt_load(void) { return 0; } | 
 | #endif | 
 |  | 
 | /* | 
 |  * We register the efi subsystem with the firmware subsystem and the | 
 |  * efivars subsystem with the efi subsystem, if the system was booted with | 
 |  * EFI. | 
 |  */ | 
 | static int __init efisubsys_init(void) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	if (!efi_enabled(EFI_BOOT)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Since we process only one efi_runtime_service() at a time, an | 
 | 	 * ordered workqueue (which creates only one execution context) | 
 | 	 * should suffice all our needs. | 
 | 	 */ | 
 | 	efi_rts_wq = alloc_ordered_workqueue("efi_rts_wq", 0); | 
 | 	if (!efi_rts_wq) { | 
 | 		pr_err("Creating efi_rts_wq failed, EFI runtime services disabled.\n"); | 
 | 		clear_bit(EFI_RUNTIME_SERVICES, &efi.flags); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* We register the efi directory at /sys/firmware/efi */ | 
 | 	efi_kobj = kobject_create_and_add("efi", firmware_kobj); | 
 | 	if (!efi_kobj) { | 
 | 		pr_err("efi: Firmware registration failed.\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	error = generic_ops_register(); | 
 | 	if (error) | 
 | 		goto err_put; | 
 |  | 
 | 	if (efi_enabled(EFI_RUNTIME_SERVICES)) | 
 | 		efivar_ssdt_load(); | 
 |  | 
 | 	error = sysfs_create_group(efi_kobj, &efi_subsys_attr_group); | 
 | 	if (error) { | 
 | 		pr_err("efi: Sysfs attribute export failed with error %d.\n", | 
 | 		       error); | 
 | 		goto err_unregister; | 
 | 	} | 
 |  | 
 | 	error = efi_runtime_map_init(efi_kobj); | 
 | 	if (error) | 
 | 		goto err_remove_group; | 
 |  | 
 | 	/* and the standard mountpoint for efivarfs */ | 
 | 	error = sysfs_create_mount_point(efi_kobj, "efivars"); | 
 | 	if (error) { | 
 | 		pr_err("efivars: Subsystem registration failed.\n"); | 
 | 		goto err_remove_group; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_remove_group: | 
 | 	sysfs_remove_group(efi_kobj, &efi_subsys_attr_group); | 
 | err_unregister: | 
 | 	generic_ops_unregister(); | 
 | err_put: | 
 | 	kobject_put(efi_kobj); | 
 | 	return error; | 
 | } | 
 |  | 
 | subsys_initcall(efisubsys_init); | 
 |  | 
 | /* | 
 |  * Find the efi memory descriptor for a given physical address.  Given a | 
 |  * physical address, determine if it exists within an EFI Memory Map entry, | 
 |  * and if so, populate the supplied memory descriptor with the appropriate | 
 |  * data. | 
 |  */ | 
 | int efi_mem_desc_lookup(u64 phys_addr, efi_memory_desc_t *out_md) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 |  | 
 | 	if (!efi_enabled(EFI_MEMMAP)) { | 
 | 		pr_err_once("EFI_MEMMAP is not enabled.\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!out_md) { | 
 | 		pr_err_once("out_md is null.\n"); | 
 | 		return -EINVAL; | 
 |         } | 
 |  | 
 | 	for_each_efi_memory_desc(md) { | 
 | 		u64 size; | 
 | 		u64 end; | 
 |  | 
 | 		size = md->num_pages << EFI_PAGE_SHIFT; | 
 | 		end = md->phys_addr + size; | 
 | 		if (phys_addr >= md->phys_addr && phys_addr < end) { | 
 | 			memcpy(out_md, md, sizeof(*out_md)); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 | 	return -ENOENT; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate the highest address of an efi memory descriptor. | 
 |  */ | 
 | u64 __init efi_mem_desc_end(efi_memory_desc_t *md) | 
 | { | 
 | 	u64 size = md->num_pages << EFI_PAGE_SHIFT; | 
 | 	u64 end = md->phys_addr + size; | 
 | 	return end; | 
 | } | 
 |  | 
 | void __init __weak efi_arch_mem_reserve(phys_addr_t addr, u64 size) {} | 
 |  | 
 | /** | 
 |  * efi_mem_reserve - Reserve an EFI memory region | 
 |  * @addr: Physical address to reserve | 
 |  * @size: Size of reservation | 
 |  * | 
 |  * Mark a region as reserved from general kernel allocation and | 
 |  * prevent it being released by efi_free_boot_services(). | 
 |  * | 
 |  * This function should be called drivers once they've parsed EFI | 
 |  * configuration tables to figure out where their data lives, e.g. | 
 |  * efi_esrt_init(). | 
 |  */ | 
 | void __init efi_mem_reserve(phys_addr_t addr, u64 size) | 
 | { | 
 | 	if (!memblock_is_region_reserved(addr, size)) | 
 | 		memblock_reserve(addr, size); | 
 |  | 
 | 	/* | 
 | 	 * Some architectures (x86) reserve all boot services ranges | 
 | 	 * until efi_free_boot_services() because of buggy firmware | 
 | 	 * implementations. This means the above memblock_reserve() is | 
 | 	 * superfluous on x86 and instead what it needs to do is | 
 | 	 * ensure the @start, @size is not freed. | 
 | 	 */ | 
 | 	efi_arch_mem_reserve(addr, size); | 
 | } | 
 |  | 
 | static __initdata efi_config_table_type_t common_tables[] = { | 
 | 	{ACPI_20_TABLE_GUID, "ACPI 2.0", &efi.acpi20}, | 
 | 	{ACPI_TABLE_GUID, "ACPI", &efi.acpi}, | 
 | 	{HCDP_TABLE_GUID, "HCDP", &efi.hcdp}, | 
 | 	{MPS_TABLE_GUID, "MPS", &efi.mps}, | 
 | 	{SAL_SYSTEM_TABLE_GUID, "SALsystab", &efi.sal_systab}, | 
 | 	{SMBIOS_TABLE_GUID, "SMBIOS", &efi.smbios}, | 
 | 	{SMBIOS3_TABLE_GUID, "SMBIOS 3.0", &efi.smbios3}, | 
 | 	{UGA_IO_PROTOCOL_GUID, "UGA", &efi.uga}, | 
 | 	{EFI_SYSTEM_RESOURCE_TABLE_GUID, "ESRT", &efi.esrt}, | 
 | 	{EFI_PROPERTIES_TABLE_GUID, "PROP", &efi.properties_table}, | 
 | 	{EFI_MEMORY_ATTRIBUTES_TABLE_GUID, "MEMATTR", &efi.mem_attr_table}, | 
 | 	{LINUX_EFI_RANDOM_SEED_TABLE_GUID, "RNG", &efi.rng_seed}, | 
 | 	{LINUX_EFI_TPM_EVENT_LOG_GUID, "TPMEventLog", &efi.tpm_log}, | 
 | 	{NULL_GUID, NULL, NULL}, | 
 | }; | 
 |  | 
 | static __init int match_config_table(efi_guid_t *guid, | 
 | 				     unsigned long table, | 
 | 				     efi_config_table_type_t *table_types) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (table_types) { | 
 | 		for (i = 0; efi_guidcmp(table_types[i].guid, NULL_GUID); i++) { | 
 | 			if (!efi_guidcmp(*guid, table_types[i].guid)) { | 
 | 				*(table_types[i].ptr) = table; | 
 | 				if (table_types[i].name) | 
 | 					pr_cont(" %s=0x%lx ", | 
 | 						table_types[i].name, table); | 
 | 				return 1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init efi_config_parse_tables(void *config_tables, int count, int sz, | 
 | 				   efi_config_table_type_t *arch_tables) | 
 | { | 
 | 	void *tablep; | 
 | 	int i; | 
 |  | 
 | 	tablep = config_tables; | 
 | 	pr_info(""); | 
 | 	for (i = 0; i < count; i++) { | 
 | 		efi_guid_t guid; | 
 | 		unsigned long table; | 
 |  | 
 | 		if (efi_enabled(EFI_64BIT)) { | 
 | 			u64 table64; | 
 | 			guid = ((efi_config_table_64_t *)tablep)->guid; | 
 | 			table64 = ((efi_config_table_64_t *)tablep)->table; | 
 | 			table = table64; | 
 | #ifndef CONFIG_64BIT | 
 | 			if (table64 >> 32) { | 
 | 				pr_cont("\n"); | 
 | 				pr_err("Table located above 4GB, disabling EFI.\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | #endif | 
 | 		} else { | 
 | 			guid = ((efi_config_table_32_t *)tablep)->guid; | 
 | 			table = ((efi_config_table_32_t *)tablep)->table; | 
 | 		} | 
 |  | 
 | 		if (!match_config_table(&guid, table, common_tables)) | 
 | 			match_config_table(&guid, table, arch_tables); | 
 |  | 
 | 		tablep += sz; | 
 | 	} | 
 | 	pr_cont("\n"); | 
 | 	set_bit(EFI_CONFIG_TABLES, &efi.flags); | 
 |  | 
 | 	if (efi.rng_seed != EFI_INVALID_TABLE_ADDR) { | 
 | 		struct linux_efi_random_seed *seed; | 
 | 		u32 size = 0; | 
 |  | 
 | 		seed = early_memremap(efi.rng_seed, sizeof(*seed)); | 
 | 		if (seed != NULL) { | 
 | 			size = seed->size; | 
 | 			early_memunmap(seed, sizeof(*seed)); | 
 | 		} else { | 
 | 			pr_err("Could not map UEFI random seed!\n"); | 
 | 		} | 
 | 		if (size > 0) { | 
 | 			seed = early_memremap(efi.rng_seed, | 
 | 					      sizeof(*seed) + size); | 
 | 			if (seed != NULL) { | 
 | 				pr_notice("seeding entropy pool\n"); | 
 | 				add_device_randomness(seed->bits, seed->size); | 
 | 				early_memunmap(seed, sizeof(*seed) + size); | 
 | 			} else { | 
 | 				pr_err("Could not map UEFI random seed!\n"); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (efi_enabled(EFI_MEMMAP)) | 
 | 		efi_memattr_init(); | 
 |  | 
 | 	efi_tpm_eventlog_init(); | 
 |  | 
 | 	/* Parse the EFI Properties table if it exists */ | 
 | 	if (efi.properties_table != EFI_INVALID_TABLE_ADDR) { | 
 | 		efi_properties_table_t *tbl; | 
 |  | 
 | 		tbl = early_memremap(efi.properties_table, sizeof(*tbl)); | 
 | 		if (tbl == NULL) { | 
 | 			pr_err("Could not map Properties table!\n"); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		if (tbl->memory_protection_attribute & | 
 | 		    EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA) | 
 | 			set_bit(EFI_NX_PE_DATA, &efi.flags); | 
 |  | 
 | 		early_memunmap(tbl, sizeof(*tbl)); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init efi_config_init(efi_config_table_type_t *arch_tables) | 
 | { | 
 | 	void *config_tables; | 
 | 	int sz, ret; | 
 |  | 
 | 	if (efi_enabled(EFI_64BIT)) | 
 | 		sz = sizeof(efi_config_table_64_t); | 
 | 	else | 
 | 		sz = sizeof(efi_config_table_32_t); | 
 |  | 
 | 	/* | 
 | 	 * Let's see what config tables the firmware passed to us. | 
 | 	 */ | 
 | 	config_tables = early_memremap(efi.systab->tables, | 
 | 				       efi.systab->nr_tables * sz); | 
 | 	if (config_tables == NULL) { | 
 | 		pr_err("Could not map Configuration table!\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	ret = efi_config_parse_tables(config_tables, efi.systab->nr_tables, sz, | 
 | 				      arch_tables); | 
 |  | 
 | 	early_memunmap(config_tables, efi.systab->nr_tables * sz); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #ifdef CONFIG_EFI_VARS_MODULE | 
 | static int __init efi_load_efivars(void) | 
 | { | 
 | 	struct platform_device *pdev; | 
 |  | 
 | 	if (!efi_enabled(EFI_RUNTIME_SERVICES)) | 
 | 		return 0; | 
 |  | 
 | 	pdev = platform_device_register_simple("efivars", 0, NULL, 0); | 
 | 	return PTR_ERR_OR_ZERO(pdev); | 
 | } | 
 | device_initcall(efi_load_efivars); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_EFI_PARAMS_FROM_FDT | 
 |  | 
 | #define UEFI_PARAM(name, prop, field)			   \ | 
 | 	{						   \ | 
 | 		{ name },				   \ | 
 | 		{ prop },				   \ | 
 | 		offsetof(struct efi_fdt_params, field),    \ | 
 | 		FIELD_SIZEOF(struct efi_fdt_params, field) \ | 
 | 	} | 
 |  | 
 | struct params { | 
 | 	const char name[32]; | 
 | 	const char propname[32]; | 
 | 	int offset; | 
 | 	int size; | 
 | }; | 
 |  | 
 | static __initdata struct params fdt_params[] = { | 
 | 	UEFI_PARAM("System Table", "linux,uefi-system-table", system_table), | 
 | 	UEFI_PARAM("MemMap Address", "linux,uefi-mmap-start", mmap), | 
 | 	UEFI_PARAM("MemMap Size", "linux,uefi-mmap-size", mmap_size), | 
 | 	UEFI_PARAM("MemMap Desc. Size", "linux,uefi-mmap-desc-size", desc_size), | 
 | 	UEFI_PARAM("MemMap Desc. Version", "linux,uefi-mmap-desc-ver", desc_ver) | 
 | }; | 
 |  | 
 | static __initdata struct params xen_fdt_params[] = { | 
 | 	UEFI_PARAM("System Table", "xen,uefi-system-table", system_table), | 
 | 	UEFI_PARAM("MemMap Address", "xen,uefi-mmap-start", mmap), | 
 | 	UEFI_PARAM("MemMap Size", "xen,uefi-mmap-size", mmap_size), | 
 | 	UEFI_PARAM("MemMap Desc. Size", "xen,uefi-mmap-desc-size", desc_size), | 
 | 	UEFI_PARAM("MemMap Desc. Version", "xen,uefi-mmap-desc-ver", desc_ver) | 
 | }; | 
 |  | 
 | #define EFI_FDT_PARAMS_SIZE	ARRAY_SIZE(fdt_params) | 
 |  | 
 | static __initdata struct { | 
 | 	const char *uname; | 
 | 	const char *subnode; | 
 | 	struct params *params; | 
 | } dt_params[] = { | 
 | 	{ "hypervisor", "uefi", xen_fdt_params }, | 
 | 	{ "chosen", NULL, fdt_params }, | 
 | }; | 
 |  | 
 | struct param_info { | 
 | 	int found; | 
 | 	void *params; | 
 | 	const char *missing; | 
 | }; | 
 |  | 
 | static int __init __find_uefi_params(unsigned long node, | 
 | 				     struct param_info *info, | 
 | 				     struct params *params) | 
 | { | 
 | 	const void *prop; | 
 | 	void *dest; | 
 | 	u64 val; | 
 | 	int i, len; | 
 |  | 
 | 	for (i = 0; i < EFI_FDT_PARAMS_SIZE; i++) { | 
 | 		prop = of_get_flat_dt_prop(node, params[i].propname, &len); | 
 | 		if (!prop) { | 
 | 			info->missing = params[i].name; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		dest = info->params + params[i].offset; | 
 | 		info->found++; | 
 |  | 
 | 		val = of_read_number(prop, len / sizeof(u32)); | 
 |  | 
 | 		if (params[i].size == sizeof(u32)) | 
 | 			*(u32 *)dest = val; | 
 | 		else | 
 | 			*(u64 *)dest = val; | 
 |  | 
 | 		if (efi_enabled(EFI_DBG)) | 
 | 			pr_info("  %s: 0x%0*llx\n", params[i].name, | 
 | 				params[i].size * 2, val); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __init fdt_find_uefi_params(unsigned long node, const char *uname, | 
 | 				       int depth, void *data) | 
 | { | 
 | 	struct param_info *info = data; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(dt_params); i++) { | 
 | 		const char *subnode = dt_params[i].subnode; | 
 |  | 
 | 		if (depth != 1 || strcmp(uname, dt_params[i].uname) != 0) { | 
 | 			info->missing = dt_params[i].params[0].name; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (subnode) { | 
 | 			int err = of_get_flat_dt_subnode_by_name(node, subnode); | 
 |  | 
 | 			if (err < 0) | 
 | 				return 0; | 
 |  | 
 | 			node = err; | 
 | 		} | 
 |  | 
 | 		return __find_uefi_params(node, info, dt_params[i].params); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init efi_get_fdt_params(struct efi_fdt_params *params) | 
 | { | 
 | 	struct param_info info; | 
 | 	int ret; | 
 |  | 
 | 	pr_info("Getting EFI parameters from FDT:\n"); | 
 |  | 
 | 	info.found = 0; | 
 | 	info.params = params; | 
 |  | 
 | 	ret = of_scan_flat_dt(fdt_find_uefi_params, &info); | 
 | 	if (!info.found) | 
 | 		pr_info("UEFI not found.\n"); | 
 | 	else if (!ret) | 
 | 		pr_err("Can't find '%s' in device tree!\n", | 
 | 		       info.missing); | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif /* CONFIG_EFI_PARAMS_FROM_FDT */ | 
 |  | 
 | static __initdata char memory_type_name[][20] = { | 
 | 	"Reserved", | 
 | 	"Loader Code", | 
 | 	"Loader Data", | 
 | 	"Boot Code", | 
 | 	"Boot Data", | 
 | 	"Runtime Code", | 
 | 	"Runtime Data", | 
 | 	"Conventional Memory", | 
 | 	"Unusable Memory", | 
 | 	"ACPI Reclaim Memory", | 
 | 	"ACPI Memory NVS", | 
 | 	"Memory Mapped I/O", | 
 | 	"MMIO Port Space", | 
 | 	"PAL Code", | 
 | 	"Persistent Memory", | 
 | }; | 
 |  | 
 | char * __init efi_md_typeattr_format(char *buf, size_t size, | 
 | 				     const efi_memory_desc_t *md) | 
 | { | 
 | 	char *pos; | 
 | 	int type_len; | 
 | 	u64 attr; | 
 |  | 
 | 	pos = buf; | 
 | 	if (md->type >= ARRAY_SIZE(memory_type_name)) | 
 | 		type_len = snprintf(pos, size, "[type=%u", md->type); | 
 | 	else | 
 | 		type_len = snprintf(pos, size, "[%-*s", | 
 | 				    (int)(sizeof(memory_type_name[0]) - 1), | 
 | 				    memory_type_name[md->type]); | 
 | 	if (type_len >= size) | 
 | 		return buf; | 
 |  | 
 | 	pos += type_len; | 
 | 	size -= type_len; | 
 |  | 
 | 	attr = md->attribute; | 
 | 	if (attr & ~(EFI_MEMORY_UC | EFI_MEMORY_WC | EFI_MEMORY_WT | | 
 | 		     EFI_MEMORY_WB | EFI_MEMORY_UCE | EFI_MEMORY_RO | | 
 | 		     EFI_MEMORY_WP | EFI_MEMORY_RP | EFI_MEMORY_XP | | 
 | 		     EFI_MEMORY_NV | | 
 | 		     EFI_MEMORY_RUNTIME | EFI_MEMORY_MORE_RELIABLE)) | 
 | 		snprintf(pos, size, "|attr=0x%016llx]", | 
 | 			 (unsigned long long)attr); | 
 | 	else | 
 | 		snprintf(pos, size, | 
 | 			 "|%3s|%2s|%2s|%2s|%2s|%2s|%2s|%3s|%2s|%2s|%2s|%2s]", | 
 | 			 attr & EFI_MEMORY_RUNTIME ? "RUN" : "", | 
 | 			 attr & EFI_MEMORY_MORE_RELIABLE ? "MR" : "", | 
 | 			 attr & EFI_MEMORY_NV      ? "NV"  : "", | 
 | 			 attr & EFI_MEMORY_XP      ? "XP"  : "", | 
 | 			 attr & EFI_MEMORY_RP      ? "RP"  : "", | 
 | 			 attr & EFI_MEMORY_WP      ? "WP"  : "", | 
 | 			 attr & EFI_MEMORY_RO      ? "RO"  : "", | 
 | 			 attr & EFI_MEMORY_UCE     ? "UCE" : "", | 
 | 			 attr & EFI_MEMORY_WB      ? "WB"  : "", | 
 | 			 attr & EFI_MEMORY_WT      ? "WT"  : "", | 
 | 			 attr & EFI_MEMORY_WC      ? "WC"  : "", | 
 | 			 attr & EFI_MEMORY_UC      ? "UC"  : ""); | 
 | 	return buf; | 
 | } | 
 |  | 
 | /* | 
 |  * IA64 has a funky EFI memory map that doesn't work the same way as | 
 |  * other architectures. | 
 |  */ | 
 | #ifndef CONFIG_IA64 | 
 | /* | 
 |  * efi_mem_attributes - lookup memmap attributes for physical address | 
 |  * @phys_addr: the physical address to lookup | 
 |  * | 
 |  * Search in the EFI memory map for the region covering | 
 |  * @phys_addr. Returns the EFI memory attributes if the region | 
 |  * was found in the memory map, 0 otherwise. | 
 |  */ | 
 | u64 efi_mem_attributes(unsigned long phys_addr) | 
 | { | 
 | 	efi_memory_desc_t *md; | 
 |  | 
 | 	if (!efi_enabled(EFI_MEMMAP)) | 
 | 		return 0; | 
 |  | 
 | 	for_each_efi_memory_desc(md) { | 
 | 		if ((md->phys_addr <= phys_addr) && | 
 | 		    (phys_addr < (md->phys_addr + | 
 | 		    (md->num_pages << EFI_PAGE_SHIFT)))) | 
 | 			return md->attribute; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * efi_mem_type - lookup memmap type for physical address | 
 |  * @phys_addr: the physical address to lookup | 
 |  * | 
 |  * Search in the EFI memory map for the region covering @phys_addr. | 
 |  * Returns the EFI memory type if the region was found in the memory | 
 |  * map, EFI_RESERVED_TYPE (zero) otherwise. | 
 |  */ | 
 | int efi_mem_type(unsigned long phys_addr) | 
 | { | 
 | 	const efi_memory_desc_t *md; | 
 |  | 
 | 	if (!efi_enabled(EFI_MEMMAP)) | 
 | 		return -ENOTSUPP; | 
 |  | 
 | 	for_each_efi_memory_desc(md) { | 
 | 		if ((md->phys_addr <= phys_addr) && | 
 | 		    (phys_addr < (md->phys_addr + | 
 | 				  (md->num_pages << EFI_PAGE_SHIFT)))) | 
 | 			return md->type; | 
 | 	} | 
 | 	return -EINVAL; | 
 | } | 
 | #endif | 
 |  | 
 | int efi_status_to_err(efi_status_t status) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	switch (status) { | 
 | 	case EFI_SUCCESS: | 
 | 		err = 0; | 
 | 		break; | 
 | 	case EFI_INVALID_PARAMETER: | 
 | 		err = -EINVAL; | 
 | 		break; | 
 | 	case EFI_OUT_OF_RESOURCES: | 
 | 		err = -ENOSPC; | 
 | 		break; | 
 | 	case EFI_DEVICE_ERROR: | 
 | 		err = -EIO; | 
 | 		break; | 
 | 	case EFI_WRITE_PROTECTED: | 
 | 		err = -EROFS; | 
 | 		break; | 
 | 	case EFI_SECURITY_VIOLATION: | 
 | 		err = -EACCES; | 
 | 		break; | 
 | 	case EFI_NOT_FOUND: | 
 | 		err = -ENOENT; | 
 | 		break; | 
 | 	case EFI_ABORTED: | 
 | 		err = -EINTR; | 
 | 		break; | 
 | 	default: | 
 | 		err = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | bool efi_is_table_address(unsigned long phys_addr) | 
 | { | 
 | 	unsigned int i; | 
 |  | 
 | 	if (phys_addr == EFI_INVALID_TABLE_ADDR) | 
 | 		return false; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(efi_tables); i++) | 
 | 		if (*(efi_tables[i]) == phys_addr) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | #ifdef CONFIG_KEXEC | 
 | static int update_efi_random_seed(struct notifier_block *nb, | 
 | 				  unsigned long code, void *unused) | 
 | { | 
 | 	struct linux_efi_random_seed *seed; | 
 | 	u32 size = 0; | 
 |  | 
 | 	if (!kexec_in_progress) | 
 | 		return NOTIFY_DONE; | 
 |  | 
 | 	seed = memremap(efi.rng_seed, sizeof(*seed), MEMREMAP_WB); | 
 | 	if (seed != NULL) { | 
 | 		size = min(seed->size, EFI_RANDOM_SEED_SIZE); | 
 | 		memunmap(seed); | 
 | 	} else { | 
 | 		pr_err("Could not map UEFI random seed!\n"); | 
 | 	} | 
 | 	if (size > 0) { | 
 | 		seed = memremap(efi.rng_seed, sizeof(*seed) + size, | 
 | 				MEMREMAP_WB); | 
 | 		if (seed != NULL) { | 
 | 			seed->size = size; | 
 | 			get_random_bytes(seed->bits, seed->size); | 
 | 			memunmap(seed); | 
 | 		} else { | 
 | 			pr_err("Could not map UEFI random seed!\n"); | 
 | 		} | 
 | 	} | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | static struct notifier_block efi_random_seed_nb = { | 
 | 	.notifier_call = update_efi_random_seed, | 
 | }; | 
 |  | 
 | static int register_update_efi_random_seed(void) | 
 | { | 
 | 	if (efi.rng_seed == EFI_INVALID_TABLE_ADDR) | 
 | 		return 0; | 
 | 	return register_reboot_notifier(&efi_random_seed_nb); | 
 | } | 
 | late_initcall(register_update_efi_random_seed); | 
 | #endif |