| /* | 
 |  * 842 Software Compression | 
 |  * | 
 |  * Copyright (C) 2015 Dan Streetman, IBM Corp | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * See 842.h for details of the 842 compressed format. | 
 |  */ | 
 |  | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | #define MODULE_NAME "842_compress" | 
 |  | 
 | #include <linux/hashtable.h> | 
 |  | 
 | #include "842.h" | 
 | #include "842_debugfs.h" | 
 |  | 
 | #define SW842_HASHTABLE8_BITS	(10) | 
 | #define SW842_HASHTABLE4_BITS	(11) | 
 | #define SW842_HASHTABLE2_BITS	(10) | 
 |  | 
 | /* By default, we allow compressing input buffers of any length, but we must | 
 |  * use the non-standard "short data" template so the decompressor can correctly | 
 |  * reproduce the uncompressed data buffer at the right length.  However the | 
 |  * hardware 842 compressor will not recognize the "short data" template, and | 
 |  * will fail to decompress any compressed buffer containing it (I have no idea | 
 |  * why anyone would want to use software to compress and hardware to decompress | 
 |  * but that's beside the point).  This parameter forces the compression | 
 |  * function to simply reject any input buffer that isn't a multiple of 8 bytes | 
 |  * long, instead of using the "short data" template, so that all compressed | 
 |  * buffers produced by this function will be decompressable by the 842 hardware | 
 |  * decompressor.  Unless you have a specific need for that, leave this disabled | 
 |  * so that any length buffer can be compressed. | 
 |  */ | 
 | static bool sw842_strict; | 
 | module_param_named(strict, sw842_strict, bool, 0644); | 
 |  | 
 | static u8 comp_ops[OPS_MAX][5] = { /* params size in bits */ | 
 | 	{ I8, N0, N0, N0, 0x19 }, /* 8 */ | 
 | 	{ I4, I4, N0, N0, 0x18 }, /* 18 */ | 
 | 	{ I4, I2, I2, N0, 0x17 }, /* 25 */ | 
 | 	{ I2, I2, I4, N0, 0x13 }, /* 25 */ | 
 | 	{ I2, I2, I2, I2, 0x12 }, /* 32 */ | 
 | 	{ I4, I2, D2, N0, 0x16 }, /* 33 */ | 
 | 	{ I4, D2, I2, N0, 0x15 }, /* 33 */ | 
 | 	{ I2, D2, I4, N0, 0x0e }, /* 33 */ | 
 | 	{ D2, I2, I4, N0, 0x09 }, /* 33 */ | 
 | 	{ I2, I2, I2, D2, 0x11 }, /* 40 */ | 
 | 	{ I2, I2, D2, I2, 0x10 }, /* 40 */ | 
 | 	{ I2, D2, I2, I2, 0x0d }, /* 40 */ | 
 | 	{ D2, I2, I2, I2, 0x08 }, /* 40 */ | 
 | 	{ I4, D4, N0, N0, 0x14 }, /* 41 */ | 
 | 	{ D4, I4, N0, N0, 0x04 }, /* 41 */ | 
 | 	{ I2, I2, D4, N0, 0x0f }, /* 48 */ | 
 | 	{ I2, D2, I2, D2, 0x0c }, /* 48 */ | 
 | 	{ I2, D4, I2, N0, 0x0b }, /* 48 */ | 
 | 	{ D2, I2, I2, D2, 0x07 }, /* 48 */ | 
 | 	{ D2, I2, D2, I2, 0x06 }, /* 48 */ | 
 | 	{ D4, I2, I2, N0, 0x03 }, /* 48 */ | 
 | 	{ I2, D2, D4, N0, 0x0a }, /* 56 */ | 
 | 	{ D2, I2, D4, N0, 0x05 }, /* 56 */ | 
 | 	{ D4, I2, D2, N0, 0x02 }, /* 56 */ | 
 | 	{ D4, D2, I2, N0, 0x01 }, /* 56 */ | 
 | 	{ D8, N0, N0, N0, 0x00 }, /* 64 */ | 
 | }; | 
 |  | 
 | struct sw842_hlist_node8 { | 
 | 	struct hlist_node node; | 
 | 	u64 data; | 
 | 	u8 index; | 
 | }; | 
 |  | 
 | struct sw842_hlist_node4 { | 
 | 	struct hlist_node node; | 
 | 	u32 data; | 
 | 	u16 index; | 
 | }; | 
 |  | 
 | struct sw842_hlist_node2 { | 
 | 	struct hlist_node node; | 
 | 	u16 data; | 
 | 	u8 index; | 
 | }; | 
 |  | 
 | #define INDEX_NOT_FOUND		(-1) | 
 | #define INDEX_NOT_CHECKED	(-2) | 
 |  | 
 | struct sw842_param { | 
 | 	u8 *in; | 
 | 	u8 *instart; | 
 | 	u64 ilen; | 
 | 	u8 *out; | 
 | 	u64 olen; | 
 | 	u8 bit; | 
 | 	u64 data8[1]; | 
 | 	u32 data4[2]; | 
 | 	u16 data2[4]; | 
 | 	int index8[1]; | 
 | 	int index4[2]; | 
 | 	int index2[4]; | 
 | 	DECLARE_HASHTABLE(htable8, SW842_HASHTABLE8_BITS); | 
 | 	DECLARE_HASHTABLE(htable4, SW842_HASHTABLE4_BITS); | 
 | 	DECLARE_HASHTABLE(htable2, SW842_HASHTABLE2_BITS); | 
 | 	struct sw842_hlist_node8 node8[1 << I8_BITS]; | 
 | 	struct sw842_hlist_node4 node4[1 << I4_BITS]; | 
 | 	struct sw842_hlist_node2 node2[1 << I2_BITS]; | 
 | }; | 
 |  | 
 | #define get_input_data(p, o, b)						\ | 
 | 	be##b##_to_cpu(get_unaligned((__be##b *)((p)->in + (o)))) | 
 |  | 
 | #define init_hashtable_nodes(p, b)	do {			\ | 
 | 	int _i;							\ | 
 | 	hash_init((p)->htable##b);				\ | 
 | 	for (_i = 0; _i < ARRAY_SIZE((p)->node##b); _i++) {	\ | 
 | 		(p)->node##b[_i].index = _i;			\ | 
 | 		(p)->node##b[_i].data = 0;			\ | 
 | 		INIT_HLIST_NODE(&(p)->node##b[_i].node);	\ | 
 | 	}							\ | 
 | } while (0) | 
 |  | 
 | #define find_index(p, b, n)	({					\ | 
 | 	struct sw842_hlist_node##b *_n;					\ | 
 | 	p->index##b[n] = INDEX_NOT_FOUND;				\ | 
 | 	hash_for_each_possible(p->htable##b, _n, node, p->data##b[n]) {	\ | 
 | 		if (p->data##b[n] == _n->data) {			\ | 
 | 			p->index##b[n] = _n->index;			\ | 
 | 			break;						\ | 
 | 		}							\ | 
 | 	}								\ | 
 | 	p->index##b[n] >= 0;						\ | 
 | }) | 
 |  | 
 | #define check_index(p, b, n)			\ | 
 | 	((p)->index##b[n] == INDEX_NOT_CHECKED	\ | 
 | 	 ? find_index(p, b, n)			\ | 
 | 	 : (p)->index##b[n] >= 0) | 
 |  | 
 | #define replace_hash(p, b, i, d)	do {				\ | 
 | 	struct sw842_hlist_node##b *_n = &(p)->node##b[(i)+(d)];	\ | 
 | 	hash_del(&_n->node);						\ | 
 | 	_n->data = (p)->data##b[d];					\ | 
 | 	pr_debug("add hash index%x %x pos %x data %lx\n", b,		\ | 
 | 		 (unsigned int)_n->index,				\ | 
 | 		 (unsigned int)((p)->in - (p)->instart),		\ | 
 | 		 (unsigned long)_n->data);				\ | 
 | 	hash_add((p)->htable##b, &_n->node, _n->data);			\ | 
 | } while (0) | 
 |  | 
 | static u8 bmask[8] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe }; | 
 |  | 
 | static int add_bits(struct sw842_param *p, u64 d, u8 n); | 
 |  | 
 | static int __split_add_bits(struct sw842_param *p, u64 d, u8 n, u8 s) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (n <= s) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = add_bits(p, d >> s, n - s); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	return add_bits(p, d & GENMASK_ULL(s - 1, 0), s); | 
 | } | 
 |  | 
 | static int add_bits(struct sw842_param *p, u64 d, u8 n) | 
 | { | 
 | 	int b = p->bit, bits = b + n, s = round_up(bits, 8) - bits; | 
 | 	u64 o; | 
 | 	u8 *out = p->out; | 
 |  | 
 | 	pr_debug("add %u bits %lx\n", (unsigned char)n, (unsigned long)d); | 
 |  | 
 | 	if (n > 64) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* split this up if writing to > 8 bytes (i.e. n == 64 && p->bit > 0), | 
 | 	 * or if we're at the end of the output buffer and would write past end | 
 | 	 */ | 
 | 	if (bits > 64) | 
 | 		return __split_add_bits(p, d, n, 32); | 
 | 	else if (p->olen < 8 && bits > 32 && bits <= 56) | 
 | 		return __split_add_bits(p, d, n, 16); | 
 | 	else if (p->olen < 4 && bits > 16 && bits <= 24) | 
 | 		return __split_add_bits(p, d, n, 8); | 
 |  | 
 | 	if (DIV_ROUND_UP(bits, 8) > p->olen) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	o = *out & bmask[b]; | 
 | 	d <<= s; | 
 |  | 
 | 	if (bits <= 8) | 
 | 		*out = o | d; | 
 | 	else if (bits <= 16) | 
 | 		put_unaligned(cpu_to_be16(o << 8 | d), (__be16 *)out); | 
 | 	else if (bits <= 24) | 
 | 		put_unaligned(cpu_to_be32(o << 24 | d << 8), (__be32 *)out); | 
 | 	else if (bits <= 32) | 
 | 		put_unaligned(cpu_to_be32(o << 24 | d), (__be32 *)out); | 
 | 	else if (bits <= 40) | 
 | 		put_unaligned(cpu_to_be64(o << 56 | d << 24), (__be64 *)out); | 
 | 	else if (bits <= 48) | 
 | 		put_unaligned(cpu_to_be64(o << 56 | d << 16), (__be64 *)out); | 
 | 	else if (bits <= 56) | 
 | 		put_unaligned(cpu_to_be64(o << 56 | d << 8), (__be64 *)out); | 
 | 	else | 
 | 		put_unaligned(cpu_to_be64(o << 56 | d), (__be64 *)out); | 
 |  | 
 | 	p->bit += n; | 
 |  | 
 | 	if (p->bit > 7) { | 
 | 		p->out += p->bit / 8; | 
 | 		p->olen -= p->bit / 8; | 
 | 		p->bit %= 8; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int add_template(struct sw842_param *p, u8 c) | 
 | { | 
 | 	int ret, i, b = 0; | 
 | 	u8 *t = comp_ops[c]; | 
 | 	bool inv = false; | 
 |  | 
 | 	if (c >= OPS_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	pr_debug("template %x\n", t[4]); | 
 |  | 
 | 	ret = add_bits(p, t[4], OP_BITS); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		pr_debug("op %x\n", t[i]); | 
 |  | 
 | 		switch (t[i] & OP_AMOUNT) { | 
 | 		case OP_AMOUNT_8: | 
 | 			if (b) | 
 | 				inv = true; | 
 | 			else if (t[i] & OP_ACTION_INDEX) | 
 | 				ret = add_bits(p, p->index8[0], I8_BITS); | 
 | 			else if (t[i] & OP_ACTION_DATA) | 
 | 				ret = add_bits(p, p->data8[0], 64); | 
 | 			else | 
 | 				inv = true; | 
 | 			break; | 
 | 		case OP_AMOUNT_4: | 
 | 			if (b == 2 && t[i] & OP_ACTION_DATA) | 
 | 				ret = add_bits(p, get_input_data(p, 2, 32), 32); | 
 | 			else if (b != 0 && b != 4) | 
 | 				inv = true; | 
 | 			else if (t[i] & OP_ACTION_INDEX) | 
 | 				ret = add_bits(p, p->index4[b >> 2], I4_BITS); | 
 | 			else if (t[i] & OP_ACTION_DATA) | 
 | 				ret = add_bits(p, p->data4[b >> 2], 32); | 
 | 			else | 
 | 				inv = true; | 
 | 			break; | 
 | 		case OP_AMOUNT_2: | 
 | 			if (b != 0 && b != 2 && b != 4 && b != 6) | 
 | 				inv = true; | 
 | 			if (t[i] & OP_ACTION_INDEX) | 
 | 				ret = add_bits(p, p->index2[b >> 1], I2_BITS); | 
 | 			else if (t[i] & OP_ACTION_DATA) | 
 | 				ret = add_bits(p, p->data2[b >> 1], 16); | 
 | 			else | 
 | 				inv = true; | 
 | 			break; | 
 | 		case OP_AMOUNT_0: | 
 | 			inv = (b != 8) || !(t[i] & OP_ACTION_NOOP); | 
 | 			break; | 
 | 		default: | 
 | 			inv = true; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		if (inv) { | 
 | 			pr_err("Invalid templ %x op %d : %x %x %x %x\n", | 
 | 			       c, i, t[0], t[1], t[2], t[3]); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		b += t[i] & OP_AMOUNT; | 
 | 	} | 
 |  | 
 | 	if (b != 8) { | 
 | 		pr_err("Invalid template %x len %x : %x %x %x %x\n", | 
 | 		       c, b, t[0], t[1], t[2], t[3]); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (sw842_template_counts) | 
 | 		atomic_inc(&template_count[t[4]]); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int add_repeat_template(struct sw842_param *p, u8 r) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	/* repeat param is 0-based */ | 
 | 	if (!r || --r > REPEAT_BITS_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = add_bits(p, OP_REPEAT, OP_BITS); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = add_bits(p, r, REPEAT_BITS); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (sw842_template_counts) | 
 | 		atomic_inc(&template_repeat_count); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int add_short_data_template(struct sw842_param *p, u8 b) | 
 | { | 
 | 	int ret, i; | 
 |  | 
 | 	if (!b || b > SHORT_DATA_BITS_MAX) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ret = add_bits(p, OP_SHORT_DATA, OP_BITS); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = add_bits(p, b, SHORT_DATA_BITS); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	for (i = 0; i < b; i++) { | 
 | 		ret = add_bits(p, p->in[i], 8); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (sw842_template_counts) | 
 | 		atomic_inc(&template_short_data_count); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int add_zeros_template(struct sw842_param *p) | 
 | { | 
 | 	int ret = add_bits(p, OP_ZEROS, OP_BITS); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (sw842_template_counts) | 
 | 		atomic_inc(&template_zeros_count); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int add_end_template(struct sw842_param *p) | 
 | { | 
 | 	int ret = add_bits(p, OP_END, OP_BITS); | 
 |  | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (sw842_template_counts) | 
 | 		atomic_inc(&template_end_count); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool check_template(struct sw842_param *p, u8 c) | 
 | { | 
 | 	u8 *t = comp_ops[c]; | 
 | 	int i, match, b = 0; | 
 |  | 
 | 	if (c >= OPS_MAX) | 
 | 		return false; | 
 |  | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		if (t[i] & OP_ACTION_INDEX) { | 
 | 			if (t[i] & OP_AMOUNT_2) | 
 | 				match = check_index(p, 2, b >> 1); | 
 | 			else if (t[i] & OP_AMOUNT_4) | 
 | 				match = check_index(p, 4, b >> 2); | 
 | 			else if (t[i] & OP_AMOUNT_8) | 
 | 				match = check_index(p, 8, 0); | 
 | 			else | 
 | 				return false; | 
 | 			if (!match) | 
 | 				return false; | 
 | 		} | 
 |  | 
 | 		b += t[i] & OP_AMOUNT; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void get_next_data(struct sw842_param *p) | 
 | { | 
 | 	p->data8[0] = get_input_data(p, 0, 64); | 
 | 	p->data4[0] = get_input_data(p, 0, 32); | 
 | 	p->data4[1] = get_input_data(p, 4, 32); | 
 | 	p->data2[0] = get_input_data(p, 0, 16); | 
 | 	p->data2[1] = get_input_data(p, 2, 16); | 
 | 	p->data2[2] = get_input_data(p, 4, 16); | 
 | 	p->data2[3] = get_input_data(p, 6, 16); | 
 | } | 
 |  | 
 | /* update the hashtable entries. | 
 |  * only call this after finding/adding the current template | 
 |  * the dataN fields for the current 8 byte block must be already updated | 
 |  */ | 
 | static void update_hashtables(struct sw842_param *p) | 
 | { | 
 | 	u64 pos = p->in - p->instart; | 
 | 	u64 n8 = (pos >> 3) % (1 << I8_BITS); | 
 | 	u64 n4 = (pos >> 2) % (1 << I4_BITS); | 
 | 	u64 n2 = (pos >> 1) % (1 << I2_BITS); | 
 |  | 
 | 	replace_hash(p, 8, n8, 0); | 
 | 	replace_hash(p, 4, n4, 0); | 
 | 	replace_hash(p, 4, n4, 1); | 
 | 	replace_hash(p, 2, n2, 0); | 
 | 	replace_hash(p, 2, n2, 1); | 
 | 	replace_hash(p, 2, n2, 2); | 
 | 	replace_hash(p, 2, n2, 3); | 
 | } | 
 |  | 
 | /* find the next template to use, and add it | 
 |  * the p->dataN fields must already be set for the current 8 byte block | 
 |  */ | 
 | static int process_next(struct sw842_param *p) | 
 | { | 
 | 	int ret, i; | 
 |  | 
 | 	p->index8[0] = INDEX_NOT_CHECKED; | 
 | 	p->index4[0] = INDEX_NOT_CHECKED; | 
 | 	p->index4[1] = INDEX_NOT_CHECKED; | 
 | 	p->index2[0] = INDEX_NOT_CHECKED; | 
 | 	p->index2[1] = INDEX_NOT_CHECKED; | 
 | 	p->index2[2] = INDEX_NOT_CHECKED; | 
 | 	p->index2[3] = INDEX_NOT_CHECKED; | 
 |  | 
 | 	/* check up to OPS_MAX - 1; last op is our fallback */ | 
 | 	for (i = 0; i < OPS_MAX - 1; i++) { | 
 | 		if (check_template(p, i)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	ret = add_template(p, i); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * sw842_compress | 
 |  * | 
 |  * Compress the uncompressed buffer of length @ilen at @in to the output buffer | 
 |  * @out, using no more than @olen bytes, using the 842 compression format. | 
 |  * | 
 |  * Returns: 0 on success, error on failure.  The @olen parameter | 
 |  * will contain the number of output bytes written on success, or | 
 |  * 0 on error. | 
 |  */ | 
 | int sw842_compress(const u8 *in, unsigned int ilen, | 
 | 		   u8 *out, unsigned int *olen, void *wmem) | 
 | { | 
 | 	struct sw842_param *p = (struct sw842_param *)wmem; | 
 | 	int ret; | 
 | 	u64 last, next, pad, total; | 
 | 	u8 repeat_count = 0; | 
 | 	u32 crc; | 
 |  | 
 | 	BUILD_BUG_ON(sizeof(*p) > SW842_MEM_COMPRESS); | 
 |  | 
 | 	init_hashtable_nodes(p, 8); | 
 | 	init_hashtable_nodes(p, 4); | 
 | 	init_hashtable_nodes(p, 2); | 
 |  | 
 | 	p->in = (u8 *)in; | 
 | 	p->instart = p->in; | 
 | 	p->ilen = ilen; | 
 | 	p->out = out; | 
 | 	p->olen = *olen; | 
 | 	p->bit = 0; | 
 |  | 
 | 	total = p->olen; | 
 |  | 
 | 	*olen = 0; | 
 |  | 
 | 	/* if using strict mode, we can only compress a multiple of 8 */ | 
 | 	if (sw842_strict && (ilen % 8)) { | 
 | 		pr_err("Using strict mode, can't compress len %d\n", ilen); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* let's compress at least 8 bytes, mkay? */ | 
 | 	if (unlikely(ilen < 8)) | 
 | 		goto skip_comp; | 
 |  | 
 | 	/* make initial 'last' different so we don't match the first time */ | 
 | 	last = ~get_unaligned((u64 *)p->in); | 
 |  | 
 | 	while (p->ilen > 7) { | 
 | 		next = get_unaligned((u64 *)p->in); | 
 |  | 
 | 		/* must get the next data, as we need to update the hashtable | 
 | 		 * entries with the new data every time | 
 | 		 */ | 
 | 		get_next_data(p); | 
 |  | 
 | 		/* we don't care about endianness in last or next; | 
 | 		 * we're just comparing 8 bytes to another 8 bytes, | 
 | 		 * they're both the same endianness | 
 | 		 */ | 
 | 		if (next == last) { | 
 | 			/* repeat count bits are 0-based, so we stop at +1 */ | 
 | 			if (++repeat_count <= REPEAT_BITS_MAX) | 
 | 				goto repeat; | 
 | 		} | 
 | 		if (repeat_count) { | 
 | 			ret = add_repeat_template(p, repeat_count); | 
 | 			repeat_count = 0; | 
 | 			if (next == last) /* reached max repeat bits */ | 
 | 				goto repeat; | 
 | 		} | 
 |  | 
 | 		if (next == 0) | 
 | 			ret = add_zeros_template(p); | 
 | 		else | 
 | 			ret = process_next(p); | 
 |  | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | repeat: | 
 | 		last = next; | 
 | 		update_hashtables(p); | 
 | 		p->in += 8; | 
 | 		p->ilen -= 8; | 
 | 	} | 
 |  | 
 | 	if (repeat_count) { | 
 | 		ret = add_repeat_template(p, repeat_count); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | skip_comp: | 
 | 	if (p->ilen > 0) { | 
 | 		ret = add_short_data_template(p, p->ilen); | 
 | 		if (ret) | 
 | 			return ret; | 
 |  | 
 | 		p->in += p->ilen; | 
 | 		p->ilen = 0; | 
 | 	} | 
 |  | 
 | 	ret = add_end_template(p); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * crc(0:31) is appended to target data starting with the next | 
 | 	 * bit after End of stream template. | 
 | 	 * nx842 calculates CRC for data in big-endian format. So doing | 
 | 	 * same here so that sw842 decompression can be used for both | 
 | 	 * compressed data. | 
 | 	 */ | 
 | 	crc = crc32_be(0, in, ilen); | 
 | 	ret = add_bits(p, crc, CRC_BITS); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (p->bit) { | 
 | 		p->out++; | 
 | 		p->olen--; | 
 | 		p->bit = 0; | 
 | 	} | 
 |  | 
 | 	/* pad compressed length to multiple of 8 */ | 
 | 	pad = (8 - ((total - p->olen) % 8)) % 8; | 
 | 	if (pad) { | 
 | 		if (pad > p->olen) /* we were so close! */ | 
 | 			return -ENOSPC; | 
 | 		memset(p->out, 0, pad); | 
 | 		p->out += pad; | 
 | 		p->olen -= pad; | 
 | 	} | 
 |  | 
 | 	if (unlikely((total - p->olen) > UINT_MAX)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	*olen = total - p->olen; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(sw842_compress); | 
 |  | 
 | static int __init sw842_init(void) | 
 | { | 
 | 	if (sw842_template_counts) | 
 | 		sw842_debugfs_create(); | 
 |  | 
 | 	return 0; | 
 | } | 
 | module_init(sw842_init); | 
 |  | 
 | static void __exit sw842_exit(void) | 
 | { | 
 | 	if (sw842_template_counts) | 
 | 		sw842_debugfs_remove(); | 
 | } | 
 | module_exit(sw842_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_DESCRIPTION("Software 842 Compressor"); | 
 | MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>"); |