| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2015 Broadcom Corporation | 
 |  */ | 
 |  | 
 | #include <linux/interrupt.h> | 
 | #include <linux/irqchip/chained_irq.h> | 
 | #include <linux/irqdomain.h> | 
 | #include <linux/msi.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/of_pci.h> | 
 | #include <linux/pci.h> | 
 |  | 
 | #include "pcie-iproc.h" | 
 |  | 
 | #define IPROC_MSI_INTR_EN_SHIFT        11 | 
 | #define IPROC_MSI_INTR_EN              BIT(IPROC_MSI_INTR_EN_SHIFT) | 
 | #define IPROC_MSI_INT_N_EVENT_SHIFT    1 | 
 | #define IPROC_MSI_INT_N_EVENT          BIT(IPROC_MSI_INT_N_EVENT_SHIFT) | 
 | #define IPROC_MSI_EQ_EN_SHIFT          0 | 
 | #define IPROC_MSI_EQ_EN                BIT(IPROC_MSI_EQ_EN_SHIFT) | 
 |  | 
 | #define IPROC_MSI_EQ_MASK              0x3f | 
 |  | 
 | /* Max number of GIC interrupts */ | 
 | #define NR_HW_IRQS                     6 | 
 |  | 
 | /* Number of entries in each event queue */ | 
 | #define EQ_LEN                         64 | 
 |  | 
 | /* Size of each event queue memory region */ | 
 | #define EQ_MEM_REGION_SIZE             SZ_4K | 
 |  | 
 | /* Size of each MSI address region */ | 
 | #define MSI_MEM_REGION_SIZE            SZ_4K | 
 |  | 
 | enum iproc_msi_reg { | 
 | 	IPROC_MSI_EQ_PAGE = 0, | 
 | 	IPROC_MSI_EQ_PAGE_UPPER, | 
 | 	IPROC_MSI_PAGE, | 
 | 	IPROC_MSI_PAGE_UPPER, | 
 | 	IPROC_MSI_CTRL, | 
 | 	IPROC_MSI_EQ_HEAD, | 
 | 	IPROC_MSI_EQ_TAIL, | 
 | 	IPROC_MSI_INTS_EN, | 
 | 	IPROC_MSI_REG_SIZE, | 
 | }; | 
 |  | 
 | struct iproc_msi; | 
 |  | 
 | /** | 
 |  * iProc MSI group | 
 |  * | 
 |  * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI | 
 |  * event queue. | 
 |  * | 
 |  * @msi: pointer to iProc MSI data | 
 |  * @gic_irq: GIC interrupt | 
 |  * @eq: Event queue number | 
 |  */ | 
 | struct iproc_msi_grp { | 
 | 	struct iproc_msi *msi; | 
 | 	int gic_irq; | 
 | 	unsigned int eq; | 
 | }; | 
 |  | 
 | /** | 
 |  * iProc event queue based MSI | 
 |  * | 
 |  * Only meant to be used on platforms without MSI support integrated into the | 
 |  * GIC. | 
 |  * | 
 |  * @pcie: pointer to iProc PCIe data | 
 |  * @reg_offsets: MSI register offsets | 
 |  * @grps: MSI groups | 
 |  * @nr_irqs: number of total interrupts connected to GIC | 
 |  * @nr_cpus: number of toal CPUs | 
 |  * @has_inten_reg: indicates the MSI interrupt enable register needs to be | 
 |  * set explicitly (required for some legacy platforms) | 
 |  * @bitmap: MSI vector bitmap | 
 |  * @bitmap_lock: lock to protect access to the MSI bitmap | 
 |  * @nr_msi_vecs: total number of MSI vectors | 
 |  * @inner_domain: inner IRQ domain | 
 |  * @msi_domain: MSI IRQ domain | 
 |  * @nr_eq_region: required number of 4K aligned memory region for MSI event | 
 |  * queues | 
 |  * @nr_msi_region: required number of 4K aligned address region for MSI posted | 
 |  * writes | 
 |  * @eq_cpu: pointer to allocated memory region for MSI event queues | 
 |  * @eq_dma: DMA address of MSI event queues | 
 |  * @msi_addr: MSI address | 
 |  */ | 
 | struct iproc_msi { | 
 | 	struct iproc_pcie *pcie; | 
 | 	const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE]; | 
 | 	struct iproc_msi_grp *grps; | 
 | 	int nr_irqs; | 
 | 	int nr_cpus; | 
 | 	bool has_inten_reg; | 
 | 	unsigned long *bitmap; | 
 | 	struct mutex bitmap_lock; | 
 | 	unsigned int nr_msi_vecs; | 
 | 	struct irq_domain *inner_domain; | 
 | 	struct irq_domain *msi_domain; | 
 | 	unsigned int nr_eq_region; | 
 | 	unsigned int nr_msi_region; | 
 | 	void *eq_cpu; | 
 | 	dma_addr_t eq_dma; | 
 | 	phys_addr_t msi_addr; | 
 | }; | 
 |  | 
 | static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { | 
 | 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 }, | 
 | 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 }, | 
 | 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 }, | 
 | 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 }, | 
 | 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 }, | 
 | 	{ 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 }, | 
 | }; | 
 |  | 
 | static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { | 
 | 	{ 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 }, | 
 | 	{ 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 }, | 
 | 	{ 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 }, | 
 | 	{ 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c }, | 
 | }; | 
 |  | 
 | static inline u32 iproc_msi_read_reg(struct iproc_msi *msi, | 
 | 				     enum iproc_msi_reg reg, | 
 | 				     unsigned int eq) | 
 | { | 
 | 	struct iproc_pcie *pcie = msi->pcie; | 
 |  | 
 | 	return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]); | 
 | } | 
 |  | 
 | static inline void iproc_msi_write_reg(struct iproc_msi *msi, | 
 | 				       enum iproc_msi_reg reg, | 
 | 				       int eq, u32 val) | 
 | { | 
 | 	struct iproc_pcie *pcie = msi->pcie; | 
 |  | 
 | 	writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]); | 
 | } | 
 |  | 
 | static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq) | 
 | { | 
 | 	return (hwirq % msi->nr_irqs); | 
 | } | 
 |  | 
 | static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi, | 
 | 						 unsigned long hwirq) | 
 | { | 
 | 	if (msi->nr_msi_region > 1) | 
 | 		return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE; | 
 | 	else | 
 | 		return hwirq_to_group(msi, hwirq) * sizeof(u32); | 
 | } | 
 |  | 
 | static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq) | 
 | { | 
 | 	if (msi->nr_eq_region > 1) | 
 | 		return eq * EQ_MEM_REGION_SIZE; | 
 | 	else | 
 | 		return eq * EQ_LEN * sizeof(u32); | 
 | } | 
 |  | 
 | static struct irq_chip iproc_msi_irq_chip = { | 
 | 	.name = "iProc-MSI", | 
 | }; | 
 |  | 
 | static struct msi_domain_info iproc_msi_domain_info = { | 
 | 	.flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | | 
 | 		MSI_FLAG_MULTI_PCI_MSI | MSI_FLAG_PCI_MSIX, | 
 | 	.chip = &iproc_msi_irq_chip, | 
 | }; | 
 |  | 
 | /* | 
 |  * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a | 
 |  * dedicated event queue.  Each MSI group can support up to 64 MSI vectors. | 
 |  * | 
 |  * The number of MSI groups varies between different iProc SoCs.  The total | 
 |  * number of CPU cores also varies.  To support MSI IRQ affinity, we | 
 |  * distribute GIC interrupts across all available CPUs.  MSI vector is moved | 
 |  * from one GIC interrupt to another to steer to the target CPU. | 
 |  * | 
 |  * Assuming: | 
 |  * - the number of MSI groups is M | 
 |  * - the number of CPU cores is N | 
 |  * - M is always a multiple of N | 
 |  * | 
 |  * Total number of raw MSI vectors = M * 64 | 
 |  * Total number of supported MSI vectors = (M * 64) / N | 
 |  */ | 
 | static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq) | 
 | { | 
 | 	return (hwirq % msi->nr_cpus); | 
 | } | 
 |  | 
 | static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi, | 
 | 						     unsigned long hwirq) | 
 | { | 
 | 	return (hwirq - hwirq_to_cpu(msi, hwirq)); | 
 | } | 
 |  | 
 | static int iproc_msi_irq_set_affinity(struct irq_data *data, | 
 | 				      const struct cpumask *mask, bool force) | 
 | { | 
 | 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data); | 
 | 	int target_cpu = cpumask_first(mask); | 
 | 	int curr_cpu; | 
 |  | 
 | 	curr_cpu = hwirq_to_cpu(msi, data->hwirq); | 
 | 	if (curr_cpu == target_cpu) | 
 | 		return IRQ_SET_MASK_OK_DONE; | 
 |  | 
 | 	/* steer MSI to the target CPU */ | 
 | 	data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu; | 
 |  | 
 | 	return IRQ_SET_MASK_OK; | 
 | } | 
 |  | 
 | static void iproc_msi_irq_compose_msi_msg(struct irq_data *data, | 
 | 					  struct msi_msg *msg) | 
 | { | 
 | 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data); | 
 | 	dma_addr_t addr; | 
 |  | 
 | 	addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq); | 
 | 	msg->address_lo = lower_32_bits(addr); | 
 | 	msg->address_hi = upper_32_bits(addr); | 
 | 	msg->data = data->hwirq << 5; | 
 | } | 
 |  | 
 | static struct irq_chip iproc_msi_bottom_irq_chip = { | 
 | 	.name = "MSI", | 
 | 	.irq_set_affinity = iproc_msi_irq_set_affinity, | 
 | 	.irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg, | 
 | }; | 
 |  | 
 | static int iproc_msi_irq_domain_alloc(struct irq_domain *domain, | 
 | 				      unsigned int virq, unsigned int nr_irqs, | 
 | 				      void *args) | 
 | { | 
 | 	struct iproc_msi *msi = domain->host_data; | 
 | 	int hwirq, i; | 
 |  | 
 | 	mutex_lock(&msi->bitmap_lock); | 
 |  | 
 | 	/* Allocate 'nr_cpus' number of MSI vectors each time */ | 
 | 	hwirq = bitmap_find_next_zero_area(msi->bitmap, msi->nr_msi_vecs, 0, | 
 | 					   msi->nr_cpus, 0); | 
 | 	if (hwirq < msi->nr_msi_vecs) { | 
 | 		bitmap_set(msi->bitmap, hwirq, msi->nr_cpus); | 
 | 	} else { | 
 | 		mutex_unlock(&msi->bitmap_lock); | 
 | 		return -ENOSPC; | 
 | 	} | 
 |  | 
 | 	mutex_unlock(&msi->bitmap_lock); | 
 |  | 
 | 	for (i = 0; i < nr_irqs; i++) { | 
 | 		irq_domain_set_info(domain, virq + i, hwirq + i, | 
 | 				    &iproc_msi_bottom_irq_chip, | 
 | 				    domain->host_data, handle_simple_irq, | 
 | 				    NULL, NULL); | 
 | 	} | 
 |  | 
 | 	return hwirq; | 
 | } | 
 |  | 
 | static void iproc_msi_irq_domain_free(struct irq_domain *domain, | 
 | 				      unsigned int virq, unsigned int nr_irqs) | 
 | { | 
 | 	struct irq_data *data = irq_domain_get_irq_data(domain, virq); | 
 | 	struct iproc_msi *msi = irq_data_get_irq_chip_data(data); | 
 | 	unsigned int hwirq; | 
 |  | 
 | 	mutex_lock(&msi->bitmap_lock); | 
 |  | 
 | 	hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq); | 
 | 	bitmap_clear(msi->bitmap, hwirq, msi->nr_cpus); | 
 |  | 
 | 	mutex_unlock(&msi->bitmap_lock); | 
 |  | 
 | 	irq_domain_free_irqs_parent(domain, virq, nr_irqs); | 
 | } | 
 |  | 
 | static const struct irq_domain_ops msi_domain_ops = { | 
 | 	.alloc = iproc_msi_irq_domain_alloc, | 
 | 	.free = iproc_msi_irq_domain_free, | 
 | }; | 
 |  | 
 | static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head) | 
 | { | 
 | 	u32 *msg, hwirq; | 
 | 	unsigned int offs; | 
 |  | 
 | 	offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32); | 
 | 	msg = (u32 *)(msi->eq_cpu + offs); | 
 | 	hwirq = readl(msg); | 
 | 	hwirq = (hwirq >> 5) + (hwirq & 0x1f); | 
 |  | 
 | 	/* | 
 | 	 * Since we have multiple hwirq mapped to a single MSI vector, | 
 | 	 * now we need to derive the hwirq at CPU0.  It can then be used to | 
 | 	 * mapped back to virq. | 
 | 	 */ | 
 | 	return hwirq_to_canonical_hwirq(msi, hwirq); | 
 | } | 
 |  | 
 | static void iproc_msi_handler(struct irq_desc *desc) | 
 | { | 
 | 	struct irq_chip *chip = irq_desc_get_chip(desc); | 
 | 	struct iproc_msi_grp *grp; | 
 | 	struct iproc_msi *msi; | 
 | 	u32 eq, head, tail, nr_events; | 
 | 	unsigned long hwirq; | 
 | 	int virq; | 
 |  | 
 | 	chained_irq_enter(chip, desc); | 
 |  | 
 | 	grp = irq_desc_get_handler_data(desc); | 
 | 	msi = grp->msi; | 
 | 	eq = grp->eq; | 
 |  | 
 | 	/* | 
 | 	 * iProc MSI event queue is tracked by head and tail pointers.  Head | 
 | 	 * pointer indicates the next entry (MSI data) to be consumed by SW in | 
 | 	 * the queue and needs to be updated by SW.  iProc MSI core uses the | 
 | 	 * tail pointer as the next data insertion point. | 
 | 	 * | 
 | 	 * Entries between head and tail pointers contain valid MSI data.  MSI | 
 | 	 * data is guaranteed to be in the event queue memory before the tail | 
 | 	 * pointer is updated by the iProc MSI core. | 
 | 	 */ | 
 | 	head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD, | 
 | 				  eq) & IPROC_MSI_EQ_MASK; | 
 | 	do { | 
 | 		tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL, | 
 | 					  eq) & IPROC_MSI_EQ_MASK; | 
 |  | 
 | 		/* | 
 | 		 * Figure out total number of events (MSI data) to be | 
 | 		 * processed. | 
 | 		 */ | 
 | 		nr_events = (tail < head) ? | 
 | 			(EQ_LEN - (head - tail)) : (tail - head); | 
 | 		if (!nr_events) | 
 | 			break; | 
 |  | 
 | 		/* process all outstanding events */ | 
 | 		while (nr_events--) { | 
 | 			hwirq = decode_msi_hwirq(msi, eq, head); | 
 | 			virq = irq_find_mapping(msi->inner_domain, hwirq); | 
 | 			generic_handle_irq(virq); | 
 |  | 
 | 			head++; | 
 | 			head %= EQ_LEN; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Now all outstanding events have been processed.  Update the | 
 | 		 * head pointer. | 
 | 		 */ | 
 | 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head); | 
 |  | 
 | 		/* | 
 | 		 * Now go read the tail pointer again to see if there are new | 
 | 		 * oustanding events that came in during the above window. | 
 | 		 */ | 
 | 	} while (true); | 
 |  | 
 | 	chained_irq_exit(chip, desc); | 
 | } | 
 |  | 
 | static void iproc_msi_enable(struct iproc_msi *msi) | 
 | { | 
 | 	int i, eq; | 
 | 	u32 val; | 
 |  | 
 | 	/* Program memory region for each event queue */ | 
 | 	for (i = 0; i < msi->nr_eq_region; i++) { | 
 | 		dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE); | 
 |  | 
 | 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i, | 
 | 				    lower_32_bits(addr)); | 
 | 		iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i, | 
 | 				    upper_32_bits(addr)); | 
 | 	} | 
 |  | 
 | 	/* Program address region for MSI posted writes */ | 
 | 	for (i = 0; i < msi->nr_msi_region; i++) { | 
 | 		phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE); | 
 |  | 
 | 		iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i, | 
 | 				    lower_32_bits(addr)); | 
 | 		iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i, | 
 | 				    upper_32_bits(addr)); | 
 | 	} | 
 |  | 
 | 	for (eq = 0; eq < msi->nr_irqs; eq++) { | 
 | 		/* Enable MSI event queue */ | 
 | 		val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | | 
 | 			IPROC_MSI_EQ_EN; | 
 | 		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); | 
 |  | 
 | 		/* | 
 | 		 * Some legacy platforms require the MSI interrupt enable | 
 | 		 * register to be set explicitly. | 
 | 		 */ | 
 | 		if (msi->has_inten_reg) { | 
 | 			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); | 
 | 			val |= BIT(eq); | 
 | 			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void iproc_msi_disable(struct iproc_msi *msi) | 
 | { | 
 | 	u32 eq, val; | 
 |  | 
 | 	for (eq = 0; eq < msi->nr_irqs; eq++) { | 
 | 		if (msi->has_inten_reg) { | 
 | 			val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); | 
 | 			val &= ~BIT(eq); | 
 | 			iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); | 
 | 		} | 
 |  | 
 | 		val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq); | 
 | 		val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | | 
 | 			 IPROC_MSI_EQ_EN); | 
 | 		iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); | 
 | 	} | 
 | } | 
 |  | 
 | static int iproc_msi_alloc_domains(struct device_node *node, | 
 | 				   struct iproc_msi *msi) | 
 | { | 
 | 	msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs, | 
 | 						  &msi_domain_ops, msi); | 
 | 	if (!msi->inner_domain) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node), | 
 | 						    &iproc_msi_domain_info, | 
 | 						    msi->inner_domain); | 
 | 	if (!msi->msi_domain) { | 
 | 		irq_domain_remove(msi->inner_domain); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void iproc_msi_free_domains(struct iproc_msi *msi) | 
 | { | 
 | 	if (msi->msi_domain) | 
 | 		irq_domain_remove(msi->msi_domain); | 
 |  | 
 | 	if (msi->inner_domain) | 
 | 		irq_domain_remove(msi->inner_domain); | 
 | } | 
 |  | 
 | static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { | 
 | 		irq_set_chained_handler_and_data(msi->grps[i].gic_irq, | 
 | 						 NULL, NULL); | 
 | 	} | 
 | } | 
 |  | 
 | static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu) | 
 | { | 
 | 	int i, ret; | 
 | 	cpumask_var_t mask; | 
 | 	struct iproc_pcie *pcie = msi->pcie; | 
 |  | 
 | 	for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { | 
 | 		irq_set_chained_handler_and_data(msi->grps[i].gic_irq, | 
 | 						 iproc_msi_handler, | 
 | 						 &msi->grps[i]); | 
 | 		/* Dedicate GIC interrupt to each CPU core */ | 
 | 		if (alloc_cpumask_var(&mask, GFP_KERNEL)) { | 
 | 			cpumask_clear(mask); | 
 | 			cpumask_set_cpu(cpu, mask); | 
 | 			ret = irq_set_affinity(msi->grps[i].gic_irq, mask); | 
 | 			if (ret) | 
 | 				dev_err(pcie->dev, | 
 | 					"failed to set affinity for IRQ%d\n", | 
 | 					msi->grps[i].gic_irq); | 
 | 			free_cpumask_var(mask); | 
 | 		} else { | 
 | 			dev_err(pcie->dev, "failed to alloc CPU mask\n"); | 
 | 			ret = -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (ret) { | 
 | 			/* Free all configured/unconfigured IRQs */ | 
 | 			iproc_msi_irq_free(msi, cpu); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node) | 
 | { | 
 | 	struct iproc_msi *msi; | 
 | 	int i, ret; | 
 | 	unsigned int cpu; | 
 |  | 
 | 	if (!of_device_is_compatible(node, "brcm,iproc-msi")) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (!of_find_property(node, "msi-controller", NULL)) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (pcie->msi) | 
 | 		return -EBUSY; | 
 |  | 
 | 	msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL); | 
 | 	if (!msi) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	msi->pcie = pcie; | 
 | 	pcie->msi = msi; | 
 | 	msi->msi_addr = pcie->base_addr; | 
 | 	mutex_init(&msi->bitmap_lock); | 
 | 	msi->nr_cpus = num_possible_cpus(); | 
 |  | 
 | 	msi->nr_irqs = of_irq_count(node); | 
 | 	if (!msi->nr_irqs) { | 
 | 		dev_err(pcie->dev, "found no MSI GIC interrupt\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (msi->nr_irqs > NR_HW_IRQS) { | 
 | 		dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n", | 
 | 			 msi->nr_irqs); | 
 | 		msi->nr_irqs = NR_HW_IRQS; | 
 | 	} | 
 |  | 
 | 	if (msi->nr_irqs < msi->nr_cpus) { | 
 | 		dev_err(pcie->dev, | 
 | 			"not enough GIC interrupts for MSI affinity\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (msi->nr_irqs % msi->nr_cpus != 0) { | 
 | 		msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus; | 
 | 		dev_warn(pcie->dev, "Reducing number of interrupts to %d\n", | 
 | 			 msi->nr_irqs); | 
 | 	} | 
 |  | 
 | 	switch (pcie->type) { | 
 | 	case IPROC_PCIE_PAXB_BCMA: | 
 | 	case IPROC_PCIE_PAXB: | 
 | 		msi->reg_offsets = iproc_msi_reg_paxb; | 
 | 		msi->nr_eq_region = 1; | 
 | 		msi->nr_msi_region = 1; | 
 | 		break; | 
 | 	case IPROC_PCIE_PAXC: | 
 | 		msi->reg_offsets = iproc_msi_reg_paxc; | 
 | 		msi->nr_eq_region = msi->nr_irqs; | 
 | 		msi->nr_msi_region = msi->nr_irqs; | 
 | 		break; | 
 | 	default: | 
 | 		dev_err(pcie->dev, "incompatible iProc PCIe interface\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (of_find_property(node, "brcm,pcie-msi-inten", NULL)) | 
 | 		msi->has_inten_reg = true; | 
 |  | 
 | 	msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN; | 
 | 	msi->bitmap = devm_kcalloc(pcie->dev, BITS_TO_LONGS(msi->nr_msi_vecs), | 
 | 				   sizeof(*msi->bitmap), GFP_KERNEL); | 
 | 	if (!msi->bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps), | 
 | 				 GFP_KERNEL); | 
 | 	if (!msi->grps) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < msi->nr_irqs; i++) { | 
 | 		unsigned int irq = irq_of_parse_and_map(node, i); | 
 |  | 
 | 		if (!irq) { | 
 | 			dev_err(pcie->dev, "unable to parse/map interrupt\n"); | 
 | 			ret = -ENODEV; | 
 | 			goto free_irqs; | 
 | 		} | 
 | 		msi->grps[i].gic_irq = irq; | 
 | 		msi->grps[i].msi = msi; | 
 | 		msi->grps[i].eq = i; | 
 | 	} | 
 |  | 
 | 	/* Reserve memory for event queue and make sure memories are zeroed */ | 
 | 	msi->eq_cpu = dma_zalloc_coherent(pcie->dev, | 
 | 					  msi->nr_eq_region * EQ_MEM_REGION_SIZE, | 
 | 					  &msi->eq_dma, GFP_KERNEL); | 
 | 	if (!msi->eq_cpu) { | 
 | 		ret = -ENOMEM; | 
 | 		goto free_irqs; | 
 | 	} | 
 |  | 
 | 	ret = iproc_msi_alloc_domains(node, msi); | 
 | 	if (ret) { | 
 | 		dev_err(pcie->dev, "failed to create MSI domains\n"); | 
 | 		goto free_eq_dma; | 
 | 	} | 
 |  | 
 | 	for_each_online_cpu(cpu) { | 
 | 		ret = iproc_msi_irq_setup(msi, cpu); | 
 | 		if (ret) | 
 | 			goto free_msi_irq; | 
 | 	} | 
 |  | 
 | 	iproc_msi_enable(msi); | 
 |  | 
 | 	return 0; | 
 |  | 
 | free_msi_irq: | 
 | 	for_each_online_cpu(cpu) | 
 | 		iproc_msi_irq_free(msi, cpu); | 
 | 	iproc_msi_free_domains(msi); | 
 |  | 
 | free_eq_dma: | 
 | 	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, | 
 | 			  msi->eq_cpu, msi->eq_dma); | 
 |  | 
 | free_irqs: | 
 | 	for (i = 0; i < msi->nr_irqs; i++) { | 
 | 		if (msi->grps[i].gic_irq) | 
 | 			irq_dispose_mapping(msi->grps[i].gic_irq); | 
 | 	} | 
 | 	pcie->msi = NULL; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(iproc_msi_init); | 
 |  | 
 | void iproc_msi_exit(struct iproc_pcie *pcie) | 
 | { | 
 | 	struct iproc_msi *msi = pcie->msi; | 
 | 	unsigned int i, cpu; | 
 |  | 
 | 	if (!msi) | 
 | 		return; | 
 |  | 
 | 	iproc_msi_disable(msi); | 
 |  | 
 | 	for_each_online_cpu(cpu) | 
 | 		iproc_msi_irq_free(msi, cpu); | 
 |  | 
 | 	iproc_msi_free_domains(msi); | 
 |  | 
 | 	dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, | 
 | 			  msi->eq_cpu, msi->eq_dma); | 
 |  | 
 | 	for (i = 0; i < msi->nr_irqs; i++) { | 
 | 		if (msi->grps[i].gic_irq) | 
 | 			irq_dispose_mapping(msi->grps[i].gic_irq); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(iproc_msi_exit); |