| /* | 
 |  *  linux/arch/arm/mm/mmu.c | 
 |  * | 
 |  *  Copyright (C) 1995-2005 Russell King | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/sizes.h> | 
 |  | 
 | #include <asm/cp15.h> | 
 | #include <asm/cputype.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/cachetype.h> | 
 | #include <asm/fixmap.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/smp_plat.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/highmem.h> | 
 | #include <asm/system_info.h> | 
 | #include <asm/traps.h> | 
 | #include <asm/procinfo.h> | 
 | #include <asm/memory.h> | 
 |  | 
 | #include <asm/mach/arch.h> | 
 | #include <asm/mach/map.h> | 
 | #include <asm/mach/pci.h> | 
 | #include <asm/fixmap.h> | 
 |  | 
 | #include "fault.h" | 
 | #include "mm.h" | 
 | #include "tcm.h" | 
 |  | 
 | /* | 
 |  * empty_zero_page is a special page that is used for | 
 |  * zero-initialized data and COW. | 
 |  */ | 
 | struct page *empty_zero_page; | 
 | EXPORT_SYMBOL(empty_zero_page); | 
 |  | 
 | /* | 
 |  * The pmd table for the upper-most set of pages. | 
 |  */ | 
 | pmd_t *top_pmd; | 
 |  | 
 | pmdval_t user_pmd_table = _PAGE_USER_TABLE; | 
 |  | 
 | #define CPOLICY_UNCACHED	0 | 
 | #define CPOLICY_BUFFERED	1 | 
 | #define CPOLICY_WRITETHROUGH	2 | 
 | #define CPOLICY_WRITEBACK	3 | 
 | #define CPOLICY_WRITEALLOC	4 | 
 |  | 
 | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; | 
 | static unsigned int ecc_mask __initdata = 0; | 
 | pgprot_t pgprot_user; | 
 | pgprot_t pgprot_kernel; | 
 | pgprot_t pgprot_hyp_device; | 
 | pgprot_t pgprot_s2; | 
 | pgprot_t pgprot_s2_device; | 
 |  | 
 | EXPORT_SYMBOL(pgprot_user); | 
 | EXPORT_SYMBOL(pgprot_kernel); | 
 |  | 
 | struct cachepolicy { | 
 | 	const char	policy[16]; | 
 | 	unsigned int	cr_mask; | 
 | 	pmdval_t	pmd; | 
 | 	pteval_t	pte; | 
 | 	pteval_t	pte_s2; | 
 | }; | 
 |  | 
 | #ifdef CONFIG_ARM_LPAE | 
 | #define s2_policy(policy)	policy | 
 | #else | 
 | #define s2_policy(policy)	0 | 
 | #endif | 
 |  | 
 | unsigned long kimage_voffset __ro_after_init; | 
 |  | 
 | static struct cachepolicy cache_policies[] __initdata = { | 
 | 	{ | 
 | 		.policy		= "uncached", | 
 | 		.cr_mask	= CR_W|CR_C, | 
 | 		.pmd		= PMD_SECT_UNCACHED, | 
 | 		.pte		= L_PTE_MT_UNCACHED, | 
 | 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED), | 
 | 	}, { | 
 | 		.policy		= "buffered", | 
 | 		.cr_mask	= CR_C, | 
 | 		.pmd		= PMD_SECT_BUFFERED, | 
 | 		.pte		= L_PTE_MT_BUFFERABLE, | 
 | 		.pte_s2		= s2_policy(L_PTE_S2_MT_UNCACHED), | 
 | 	}, { | 
 | 		.policy		= "writethrough", | 
 | 		.cr_mask	= 0, | 
 | 		.pmd		= PMD_SECT_WT, | 
 | 		.pte		= L_PTE_MT_WRITETHROUGH, | 
 | 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITETHROUGH), | 
 | 	}, { | 
 | 		.policy		= "writeback", | 
 | 		.cr_mask	= 0, | 
 | 		.pmd		= PMD_SECT_WB, | 
 | 		.pte		= L_PTE_MT_WRITEBACK, | 
 | 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK), | 
 | 	}, { | 
 | 		.policy		= "writealloc", | 
 | 		.cr_mask	= 0, | 
 | 		.pmd		= PMD_SECT_WBWA, | 
 | 		.pte		= L_PTE_MT_WRITEALLOC, | 
 | 		.pte_s2		= s2_policy(L_PTE_S2_MT_WRITEBACK), | 
 | 	} | 
 | }; | 
 |  | 
 | #ifdef CONFIG_CPU_CP15 | 
 | static unsigned long initial_pmd_value __initdata = 0; | 
 |  | 
 | /* | 
 |  * Initialise the cache_policy variable with the initial state specified | 
 |  * via the "pmd" value.  This is used to ensure that on ARMv6 and later, | 
 |  * the C code sets the page tables up with the same policy as the head | 
 |  * assembly code, which avoids an illegal state where the TLBs can get | 
 |  * confused.  See comments in early_cachepolicy() for more information. | 
 |  */ | 
 | void __init init_default_cache_policy(unsigned long pmd) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	initial_pmd_value = pmd; | 
 |  | 
 | 	pmd &= PMD_SECT_CACHE_MASK; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) | 
 | 		if (cache_policies[i].pmd == pmd) { | 
 | 			cachepolicy = i; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	if (i == ARRAY_SIZE(cache_policies)) | 
 | 		pr_err("ERROR: could not find cache policy\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * These are useful for identifying cache coherency problems by allowing | 
 |  * the cache or the cache and writebuffer to be turned off.  (Note: the | 
 |  * write buffer should not be on and the cache off). | 
 |  */ | 
 | static int __init early_cachepolicy(char *p) | 
 | { | 
 | 	int i, selected = -1; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { | 
 | 		int len = strlen(cache_policies[i].policy); | 
 |  | 
 | 		if (memcmp(p, cache_policies[i].policy, len) == 0) { | 
 | 			selected = i; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (selected == -1) | 
 | 		pr_err("ERROR: unknown or unsupported cache policy\n"); | 
 |  | 
 | 	/* | 
 | 	 * This restriction is partly to do with the way we boot; it is | 
 | 	 * unpredictable to have memory mapped using two different sets of | 
 | 	 * memory attributes (shared, type, and cache attribs).  We can not | 
 | 	 * change these attributes once the initial assembly has setup the | 
 | 	 * page tables. | 
 | 	 */ | 
 | 	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) { | 
 | 		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n", | 
 | 			cache_policies[cachepolicy].policy); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (selected != cachepolicy) { | 
 | 		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask); | 
 | 		cachepolicy = selected; | 
 | 		flush_cache_all(); | 
 | 		set_cr(cr); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | early_param("cachepolicy", early_cachepolicy); | 
 |  | 
 | static int __init early_nocache(char *__unused) | 
 | { | 
 | 	char *p = "buffered"; | 
 | 	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p); | 
 | 	early_cachepolicy(p); | 
 | 	return 0; | 
 | } | 
 | early_param("nocache", early_nocache); | 
 |  | 
 | static int __init early_nowrite(char *__unused) | 
 | { | 
 | 	char *p = "uncached"; | 
 | 	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p); | 
 | 	early_cachepolicy(p); | 
 | 	return 0; | 
 | } | 
 | early_param("nowb", early_nowrite); | 
 |  | 
 | #ifndef CONFIG_ARM_LPAE | 
 | static int __init early_ecc(char *p) | 
 | { | 
 | 	if (memcmp(p, "on", 2) == 0) | 
 | 		ecc_mask = PMD_PROTECTION; | 
 | 	else if (memcmp(p, "off", 3) == 0) | 
 | 		ecc_mask = 0; | 
 | 	return 0; | 
 | } | 
 | early_param("ecc", early_ecc); | 
 | #endif | 
 |  | 
 | #else /* ifdef CONFIG_CPU_CP15 */ | 
 |  | 
 | static int __init early_cachepolicy(char *p) | 
 | { | 
 | 	pr_warn("cachepolicy kernel parameter not supported without cp15\n"); | 
 | } | 
 | early_param("cachepolicy", early_cachepolicy); | 
 |  | 
 | static int __init noalign_setup(char *__unused) | 
 | { | 
 | 	pr_warn("noalign kernel parameter not supported without cp15\n"); | 
 | } | 
 | __setup("noalign", noalign_setup); | 
 |  | 
 | #endif /* ifdef CONFIG_CPU_CP15 / else */ | 
 |  | 
 | #define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN | 
 | #define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE | 
 | #define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE | 
 |  | 
 | static struct mem_type mem_types[] __ro_after_init = { | 
 | 	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */ | 
 | 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED | | 
 | 				  L_PTE_SHARED, | 
 | 		.prot_pte_s2	= s2_policy(PROT_PTE_S2_DEVICE) | | 
 | 				  s2_policy(L_PTE_S2_MT_DEV_SHARED) | | 
 | 				  L_PTE_SHARED, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */ | 
 | 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PROT_SECT_DEVICE, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_DEVICE_CACHED] = {	  /* ioremap_cached */ | 
 | 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_DEVICE_WC] = {	/* ioremap_wc */ | 
 | 		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PROT_SECT_DEVICE, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_UNCACHED] = { | 
 | 		.prot_pte	= PROT_PTE_DEVICE, | 
 | 		.prot_l1	= PMD_TYPE_TABLE, | 
 | 		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN, | 
 | 		.domain		= DOMAIN_IO, | 
 | 	}, | 
 | 	[MT_CACHECLEAN] = { | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | #ifndef CONFIG_ARM_LPAE | 
 | 	[MT_MINICLEAN] = { | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | #endif | 
 | 	[MT_LOW_VECTORS] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 				L_PTE_RDONLY, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.domain    = DOMAIN_VECTORS, | 
 | 	}, | 
 | 	[MT_HIGH_VECTORS] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 				L_PTE_USER | L_PTE_RDONLY, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.domain    = DOMAIN_VECTORS, | 
 | 	}, | 
 | 	[MT_MEMORY_RWX] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_MEMORY_RW] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 			     L_PTE_XN, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_ROM] = { | 
 | 		.prot_sect = PMD_TYPE_SECT, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_MEMORY_RWX_NONCACHED] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 				L_PTE_MT_BUFFERABLE, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_MEMORY_RW_DTCM] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 				L_PTE_XN, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_MEMORY_RWX_ITCM] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_MEMORY_RW_SO] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 				L_PTE_MT_UNCACHED | L_PTE_XN, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S | | 
 | 				PMD_SECT_UNCACHED | PMD_SECT_XN, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | 	[MT_MEMORY_DMA_READY] = { | 
 | 		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
 | 				L_PTE_XN, | 
 | 		.prot_l1   = PMD_TYPE_TABLE, | 
 | 		.domain    = DOMAIN_KERNEL, | 
 | 	}, | 
 | }; | 
 |  | 
 | const struct mem_type *get_mem_type(unsigned int type) | 
 | { | 
 | 	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL; | 
 | } | 
 | EXPORT_SYMBOL(get_mem_type); | 
 |  | 
 | static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr); | 
 |  | 
 | static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS] | 
 | 	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata; | 
 |  | 
 | static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr) | 
 | { | 
 | 	return &bm_pte[pte_index(addr)]; | 
 | } | 
 |  | 
 | static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr) | 
 | { | 
 | 	return pte_offset_kernel(dir, addr); | 
 | } | 
 |  | 
 | static inline pmd_t * __init fixmap_pmd(unsigned long addr) | 
 | { | 
 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 	pud_t *pud = pud_offset(pgd, addr); | 
 | 	pmd_t *pmd = pmd_offset(pud, addr); | 
 |  | 
 | 	return pmd; | 
 | } | 
 |  | 
 | void __init early_fixmap_init(void) | 
 | { | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	/* | 
 | 	 * The early fixmap range spans multiple pmds, for which | 
 | 	 * we are not prepared: | 
 | 	 */ | 
 | 	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT) | 
 | 		     != FIXADDR_TOP >> PMD_SHIFT); | 
 |  | 
 | 	pmd = fixmap_pmd(FIXADDR_TOP); | 
 | 	pmd_populate_kernel(&init_mm, pmd, bm_pte); | 
 |  | 
 | 	pte_offset_fixmap = pte_offset_early_fixmap; | 
 | } | 
 |  | 
 | /* | 
 |  * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range(). | 
 |  * As a result, this can only be called with preemption disabled, as under | 
 |  * stop_machine(). | 
 |  */ | 
 | void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot) | 
 | { | 
 | 	unsigned long vaddr = __fix_to_virt(idx); | 
 | 	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr); | 
 |  | 
 | 	/* Make sure fixmap region does not exceed available allocation. */ | 
 | 	BUILD_BUG_ON(FIXADDR_START + (__end_of_fixed_addresses * PAGE_SIZE) > | 
 | 		     FIXADDR_END); | 
 | 	BUG_ON(idx >= __end_of_fixed_addresses); | 
 |  | 
 | 	/* we only support device mappings until pgprot_kernel has been set */ | 
 | 	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) && | 
 | 		    pgprot_val(pgprot_kernel) == 0)) | 
 | 		return; | 
 |  | 
 | 	if (pgprot_val(prot)) | 
 | 		set_pte_at(NULL, vaddr, pte, | 
 | 			pfn_pte(phys >> PAGE_SHIFT, prot)); | 
 | 	else | 
 | 		pte_clear(NULL, vaddr, pte); | 
 | 	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE); | 
 | } | 
 |  | 
 | /* | 
 |  * Adjust the PMD section entries according to the CPU in use. | 
 |  */ | 
 | static void __init build_mem_type_table(void) | 
 | { | 
 | 	struct cachepolicy *cp; | 
 | 	unsigned int cr = get_cr(); | 
 | 	pteval_t user_pgprot, kern_pgprot, vecs_pgprot; | 
 | 	pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot; | 
 | 	int cpu_arch = cpu_architecture(); | 
 | 	int i; | 
 |  | 
 | 	if (cpu_arch < CPU_ARCH_ARMv6) { | 
 | #if defined(CONFIG_CPU_DCACHE_DISABLE) | 
 | 		if (cachepolicy > CPOLICY_BUFFERED) | 
 | 			cachepolicy = CPOLICY_BUFFERED; | 
 | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) | 
 | 		if (cachepolicy > CPOLICY_WRITETHROUGH) | 
 | 			cachepolicy = CPOLICY_WRITETHROUGH; | 
 | #endif | 
 | 	} | 
 | 	if (cpu_arch < CPU_ARCH_ARMv5) { | 
 | 		if (cachepolicy >= CPOLICY_WRITEALLOC) | 
 | 			cachepolicy = CPOLICY_WRITEBACK; | 
 | 		ecc_mask = 0; | 
 | 	} | 
 |  | 
 | 	if (is_smp()) { | 
 | 		if (cachepolicy != CPOLICY_WRITEALLOC) { | 
 | 			pr_warn("Forcing write-allocate cache policy for SMP\n"); | 
 | 			cachepolicy = CPOLICY_WRITEALLOC; | 
 | 		} | 
 | 		if (!(initial_pmd_value & PMD_SECT_S)) { | 
 | 			pr_warn("Forcing shared mappings for SMP\n"); | 
 | 			initial_pmd_value |= PMD_SECT_S; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Strip out features not present on earlier architectures. | 
 | 	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those | 
 | 	 * without extended page tables don't have the 'Shared' bit. | 
 | 	 */ | 
 | 	if (cpu_arch < CPU_ARCH_ARMv5) | 
 | 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
 | 			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7); | 
 | 	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3()) | 
 | 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
 | 			mem_types[i].prot_sect &= ~PMD_SECT_S; | 
 |  | 
 | 	/* | 
 | 	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache | 
 | 	 * "update-able on write" bit on ARM610).  However, Xscale and | 
 | 	 * Xscale3 require this bit to be cleared. | 
 | 	 */ | 
 | 	if (cpu_is_xscale_family()) { | 
 | 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
 | 			mem_types[i].prot_sect &= ~PMD_BIT4; | 
 | 			mem_types[i].prot_l1 &= ~PMD_BIT4; | 
 | 		} | 
 | 	} else if (cpu_arch < CPU_ARCH_ARMv6) { | 
 | 		for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
 | 			if (mem_types[i].prot_l1) | 
 | 				mem_types[i].prot_l1 |= PMD_BIT4; | 
 | 			if (mem_types[i].prot_sect) | 
 | 				mem_types[i].prot_sect |= PMD_BIT4; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Mark the device areas according to the CPU/architecture. | 
 | 	 */ | 
 | 	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) { | 
 | 		if (!cpu_is_xsc3()) { | 
 | 			/* | 
 | 			 * Mark device regions on ARMv6+ as execute-never | 
 | 			 * to prevent speculative instruction fetches. | 
 | 			 */ | 
 | 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN; | 
 | 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN; | 
 | 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN; | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN; | 
 |  | 
 | 			/* Also setup NX memory mapping */ | 
 | 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN; | 
 | 		} | 
 | 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
 | 			/* | 
 | 			 * For ARMv7 with TEX remapping, | 
 | 			 * - shared device is SXCB=1100 | 
 | 			 * - nonshared device is SXCB=0100 | 
 | 			 * - write combine device mem is SXCB=0001 | 
 | 			 * (Uncached Normal memory) | 
 | 			 */ | 
 | 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1); | 
 | 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1); | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
 | 		} else if (cpu_is_xsc3()) { | 
 | 			/* | 
 | 			 * For Xscale3, | 
 | 			 * - shared device is TEXCB=00101 | 
 | 			 * - nonshared device is TEXCB=01000 | 
 | 			 * - write combine device mem is TEXCB=00100 | 
 | 			 * (Inner/Outer Uncacheable in xsc3 parlance) | 
 | 			 */ | 
 | 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED; | 
 | 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
 | 		} else { | 
 | 			/* | 
 | 			 * For ARMv6 and ARMv7 without TEX remapping, | 
 | 			 * - shared device is TEXCB=00001 | 
 | 			 * - nonshared device is TEXCB=01000 | 
 | 			 * - write combine device mem is TEXCB=00100 | 
 | 			 * (Uncached Normal in ARMv6 parlance). | 
 | 			 */ | 
 | 			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; | 
 | 			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2); | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1); | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * On others, write combining is "Uncached/Buffered" | 
 | 		 */ | 
 | 		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now deal with the memory-type mappings | 
 | 	 */ | 
 | 	cp = &cache_policies[cachepolicy]; | 
 | 	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte; | 
 | 	s2_pgprot = cp->pte_s2; | 
 | 	hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte; | 
 | 	s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2; | 
 |  | 
 | #ifndef CONFIG_ARM_LPAE | 
 | 	/* | 
 | 	 * We don't use domains on ARMv6 (since this causes problems with | 
 | 	 * v6/v7 kernels), so we must use a separate memory type for user | 
 | 	 * r/o, kernel r/w to map the vectors page. | 
 | 	 */ | 
 | 	if (cpu_arch == CPU_ARCH_ARMv6) | 
 | 		vecs_pgprot |= L_PTE_MT_VECTORS; | 
 |  | 
 | 	/* | 
 | 	 * Check is it with support for the PXN bit | 
 | 	 * in the Short-descriptor translation table format descriptors. | 
 | 	 */ | 
 | 	if (cpu_arch == CPU_ARCH_ARMv7 && | 
 | 		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) { | 
 | 		user_pmd_table |= PMD_PXNTABLE; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * ARMv6 and above have extended page tables. | 
 | 	 */ | 
 | 	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { | 
 | #ifndef CONFIG_ARM_LPAE | 
 | 		/* | 
 | 		 * Mark cache clean areas and XIP ROM read only | 
 | 		 * from SVC mode and no access from userspace. | 
 | 		 */ | 
 | 		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
 | 		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
 | 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
 | #endif | 
 |  | 
 | 		/* | 
 | 		 * If the initial page tables were created with the S bit | 
 | 		 * set, then we need to do the same here for the same | 
 | 		 * reasons given in early_cachepolicy(). | 
 | 		 */ | 
 | 		if (initial_pmd_value & PMD_SECT_S) { | 
 | 			user_pgprot |= L_PTE_SHARED; | 
 | 			kern_pgprot |= L_PTE_SHARED; | 
 | 			vecs_pgprot |= L_PTE_SHARED; | 
 | 			s2_pgprot |= L_PTE_SHARED; | 
 | 			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S; | 
 | 			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED; | 
 | 			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S; | 
 | 			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED; | 
 | 			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S; | 
 | 			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED; | 
 | 			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S; | 
 | 			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED; | 
 | 			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED; | 
 | 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S; | 
 | 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Non-cacheable Normal - intended for memory areas that must | 
 | 	 * not cause dirty cache line writebacks when used | 
 | 	 */ | 
 | 	if (cpu_arch >= CPU_ARCH_ARMv6) { | 
 | 		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) { | 
 | 			/* Non-cacheable Normal is XCB = 001 */ | 
 | 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= | 
 | 				PMD_SECT_BUFFERED; | 
 | 		} else { | 
 | 			/* For both ARMv6 and non-TEX-remapping ARMv7 */ | 
 | 			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= | 
 | 				PMD_SECT_TEX(1); | 
 | 		} | 
 | 	} else { | 
 | 		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_ARM_LPAE | 
 | 	/* | 
 | 	 * Do not generate access flag faults for the kernel mappings. | 
 | 	 */ | 
 | 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
 | 		mem_types[i].prot_pte |= PTE_EXT_AF; | 
 | 		if (mem_types[i].prot_sect) | 
 | 			mem_types[i].prot_sect |= PMD_SECT_AF; | 
 | 	} | 
 | 	kern_pgprot |= PTE_EXT_AF; | 
 | 	vecs_pgprot |= PTE_EXT_AF; | 
 |  | 
 | 	/* | 
 | 	 * Set PXN for user mappings | 
 | 	 */ | 
 | 	user_pgprot |= PTE_EXT_PXN; | 
 | #endif | 
 |  | 
 | 	for (i = 0; i < 16; i++) { | 
 | 		pteval_t v = pgprot_val(protection_map[i]); | 
 | 		protection_map[i] = __pgprot(v | user_pgprot); | 
 | 	} | 
 |  | 
 | 	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot; | 
 | 	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot; | 
 |  | 
 | 	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot); | 
 | 	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | | 
 | 				 L_PTE_DIRTY | kern_pgprot); | 
 | 	pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot); | 
 | 	pgprot_s2_device  = __pgprot(s2_device_pgprot); | 
 | 	pgprot_hyp_device  = __pgprot(hyp_device_pgprot); | 
 |  | 
 | 	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; | 
 | 	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; | 
 | 	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd; | 
 | 	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot; | 
 | 	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd; | 
 | 	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot; | 
 | 	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot; | 
 | 	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask; | 
 | 	mem_types[MT_ROM].prot_sect |= cp->pmd; | 
 |  | 
 | 	switch (cp->pmd) { | 
 | 	case PMD_SECT_WT: | 
 | 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; | 
 | 		break; | 
 | 	case PMD_SECT_WB: | 
 | 	case PMD_SECT_WBWA: | 
 | 		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; | 
 | 		break; | 
 | 	} | 
 | 	pr_info("Memory policy: %sData cache %s\n", | 
 | 		ecc_mask ? "ECC enabled, " : "", cp->policy); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(mem_types); i++) { | 
 | 		struct mem_type *t = &mem_types[i]; | 
 | 		if (t->prot_l1) | 
 | 			t->prot_l1 |= PMD_DOMAIN(t->domain); | 
 | 		if (t->prot_sect) | 
 | 			t->prot_sect |= PMD_DOMAIN(t->domain); | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE | 
 | pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, | 
 | 			      unsigned long size, pgprot_t vma_prot) | 
 | { | 
 | 	if (!pfn_valid(pfn)) | 
 | 		return pgprot_noncached(vma_prot); | 
 | 	else if (file->f_flags & O_SYNC) | 
 | 		return pgprot_writecombine(vma_prot); | 
 | 	return vma_prot; | 
 | } | 
 | EXPORT_SYMBOL(phys_mem_access_prot); | 
 | #endif | 
 |  | 
 | #define vectors_base()	(vectors_high() ? 0xffff0000 : 0) | 
 |  | 
 | static void __init *early_alloc_aligned(unsigned long sz, unsigned long align) | 
 | { | 
 | 	void *ptr = __va(memblock_alloc(sz, align)); | 
 | 	memset(ptr, 0, sz); | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static void __init *early_alloc(unsigned long sz) | 
 | { | 
 | 	return early_alloc_aligned(sz, sz); | 
 | } | 
 |  | 
 | static void *__init late_alloc(unsigned long sz) | 
 | { | 
 | 	void *ptr = (void *)__get_free_pages(PGALLOC_GFP, get_order(sz)); | 
 |  | 
 | 	if (!ptr || !pgtable_page_ctor(virt_to_page(ptr))) | 
 | 		BUG(); | 
 | 	return ptr; | 
 | } | 
 |  | 
 | static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr, | 
 | 				unsigned long prot, | 
 | 				void *(*alloc)(unsigned long sz)) | 
 | { | 
 | 	if (pmd_none(*pmd)) { | 
 | 		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE); | 
 | 		__pmd_populate(pmd, __pa(pte), prot); | 
 | 	} | 
 | 	BUG_ON(pmd_bad(*pmd)); | 
 | 	return pte_offset_kernel(pmd, addr); | 
 | } | 
 |  | 
 | static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, | 
 | 				      unsigned long prot) | 
 | { | 
 | 	return arm_pte_alloc(pmd, addr, prot, early_alloc); | 
 | } | 
 |  | 
 | static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr, | 
 | 				  unsigned long end, unsigned long pfn, | 
 | 				  const struct mem_type *type, | 
 | 				  void *(*alloc)(unsigned long sz), | 
 | 				  bool ng) | 
 | { | 
 | 	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc); | 
 | 	do { | 
 | 		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), | 
 | 			    ng ? PTE_EXT_NG : 0); | 
 | 		pfn++; | 
 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | } | 
 |  | 
 | static void __init __map_init_section(pmd_t *pmd, unsigned long addr, | 
 | 			unsigned long end, phys_addr_t phys, | 
 | 			const struct mem_type *type, bool ng) | 
 | { | 
 | 	pmd_t *p = pmd; | 
 |  | 
 | #ifndef CONFIG_ARM_LPAE | 
 | 	/* | 
 | 	 * In classic MMU format, puds and pmds are folded in to | 
 | 	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a | 
 | 	 * group of L1 entries making up one logical pointer to | 
 | 	 * an L2 table (2MB), where as PMDs refer to the individual | 
 | 	 * L1 entries (1MB). Hence increment to get the correct | 
 | 	 * offset for odd 1MB sections. | 
 | 	 * (See arch/arm/include/asm/pgtable-2level.h) | 
 | 	 */ | 
 | 	if (addr & SECTION_SIZE) | 
 | 		pmd++; | 
 | #endif | 
 | 	do { | 
 | 		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0)); | 
 | 		phys += SECTION_SIZE; | 
 | 	} while (pmd++, addr += SECTION_SIZE, addr != end); | 
 |  | 
 | 	flush_pmd_entry(p); | 
 | } | 
 |  | 
 | static void __init alloc_init_pmd(pud_t *pud, unsigned long addr, | 
 | 				      unsigned long end, phys_addr_t phys, | 
 | 				      const struct mem_type *type, | 
 | 				      void *(*alloc)(unsigned long sz), bool ng) | 
 | { | 
 | 	pmd_t *pmd = pmd_offset(pud, addr); | 
 | 	unsigned long next; | 
 |  | 
 | 	do { | 
 | 		/* | 
 | 		 * With LPAE, we must loop over to map | 
 | 		 * all the pmds for the given range. | 
 | 		 */ | 
 | 		next = pmd_addr_end(addr, end); | 
 |  | 
 | 		/* | 
 | 		 * Try a section mapping - addr, next and phys must all be | 
 | 		 * aligned to a section boundary. | 
 | 		 */ | 
 | 		if (type->prot_sect && | 
 | 				((addr | next | phys) & ~SECTION_MASK) == 0) { | 
 | 			__map_init_section(pmd, addr, next, phys, type, ng); | 
 | 		} else { | 
 | 			alloc_init_pte(pmd, addr, next, | 
 | 				       __phys_to_pfn(phys), type, alloc, ng); | 
 | 		} | 
 |  | 
 | 		phys += next - addr; | 
 |  | 
 | 	} while (pmd++, addr = next, addr != end); | 
 | } | 
 |  | 
 | static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr, | 
 | 				  unsigned long end, phys_addr_t phys, | 
 | 				  const struct mem_type *type, | 
 | 				  void *(*alloc)(unsigned long sz), bool ng) | 
 | { | 
 | 	pud_t *pud = pud_offset(pgd, addr); | 
 | 	unsigned long next; | 
 |  | 
 | 	do { | 
 | 		next = pud_addr_end(addr, end); | 
 | 		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng); | 
 | 		phys += next - addr; | 
 | 	} while (pud++, addr = next, addr != end); | 
 | } | 
 |  | 
 | #ifndef CONFIG_ARM_LPAE | 
 | static void __init create_36bit_mapping(struct mm_struct *mm, | 
 | 					struct map_desc *md, | 
 | 					const struct mem_type *type, | 
 | 					bool ng) | 
 | { | 
 | 	unsigned long addr, length, end; | 
 | 	phys_addr_t phys; | 
 | 	pgd_t *pgd; | 
 |  | 
 | 	addr = md->virtual; | 
 | 	phys = __pfn_to_phys(md->pfn); | 
 | 	length = PAGE_ALIGN(md->length); | 
 |  | 
 | 	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) { | 
 | 		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n", | 
 | 		       (long long)__pfn_to_phys((u64)md->pfn), addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* N.B.	ARMv6 supersections are only defined to work with domain 0. | 
 | 	 *	Since domain assignments can in fact be arbitrary, the | 
 | 	 *	'domain == 0' check below is required to insure that ARMv6 | 
 | 	 *	supersections are only allocated for domain 0 regardless | 
 | 	 *	of the actual domain assignments in use. | 
 | 	 */ | 
 | 	if (type->domain) { | 
 | 		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n", | 
 | 		       (long long)__pfn_to_phys((u64)md->pfn), addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) { | 
 | 		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n", | 
 | 		       (long long)__pfn_to_phys((u64)md->pfn), addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Shift bits [35:32] of address into bits [23:20] of PMD | 
 | 	 * (See ARMv6 spec). | 
 | 	 */ | 
 | 	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); | 
 |  | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	end = addr + length; | 
 | 	do { | 
 | 		pud_t *pud = pud_offset(pgd, addr); | 
 | 		pmd_t *pmd = pmd_offset(pud, addr); | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < 16; i++) | 
 | 			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER | | 
 | 				       (ng ? PMD_SECT_nG : 0)); | 
 |  | 
 | 		addr += SUPERSECTION_SIZE; | 
 | 		phys += SUPERSECTION_SIZE; | 
 | 		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT; | 
 | 	} while (addr != end); | 
 | } | 
 | #endif	/* !CONFIG_ARM_LPAE */ | 
 |  | 
 | static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md, | 
 | 				    void *(*alloc)(unsigned long sz), | 
 | 				    bool ng) | 
 | { | 
 | 	unsigned long addr, length, end; | 
 | 	phys_addr_t phys; | 
 | 	const struct mem_type *type; | 
 | 	pgd_t *pgd; | 
 |  | 
 | 	type = &mem_types[md->type]; | 
 |  | 
 | #ifndef CONFIG_ARM_LPAE | 
 | 	/* | 
 | 	 * Catch 36-bit addresses | 
 | 	 */ | 
 | 	if (md->pfn >= 0x100000) { | 
 | 		create_36bit_mapping(mm, md, type, ng); | 
 | 		return; | 
 | 	} | 
 | #endif | 
 |  | 
 | 	addr = md->virtual & PAGE_MASK; | 
 | 	phys = __pfn_to_phys(md->pfn); | 
 | 	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
 |  | 
 | 	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) { | 
 | 		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n", | 
 | 			(long long)__pfn_to_phys(md->pfn), addr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	pgd = pgd_offset(mm, addr); | 
 | 	end = addr + length; | 
 | 	do { | 
 | 		unsigned long next = pgd_addr_end(addr, end); | 
 |  | 
 | 		alloc_init_pud(pgd, addr, next, phys, type, alloc, ng); | 
 |  | 
 | 		phys += next - addr; | 
 | 		addr = next; | 
 | 	} while (pgd++, addr != end); | 
 | } | 
 |  | 
 | /* | 
 |  * Create the page directory entries and any necessary | 
 |  * page tables for the mapping specified by `md'.  We | 
 |  * are able to cope here with varying sizes and address | 
 |  * offsets, and we take full advantage of sections and | 
 |  * supersections. | 
 |  */ | 
 | static void __init create_mapping(struct map_desc *md) | 
 | { | 
 | 	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { | 
 | 		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n", | 
 | 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if ((md->type == MT_DEVICE || md->type == MT_ROM) && | 
 | 	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START && | 
 | 	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) { | 
 | 		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n", | 
 | 			(long long)__pfn_to_phys((u64)md->pfn), md->virtual); | 
 | 	} | 
 |  | 
 | 	__create_mapping(&init_mm, md, early_alloc, false); | 
 | } | 
 |  | 
 | void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md, | 
 | 				bool ng) | 
 | { | 
 | #ifdef CONFIG_ARM_LPAE | 
 | 	pud_t *pud = pud_alloc(mm, pgd_offset(mm, md->virtual), md->virtual); | 
 | 	if (WARN_ON(!pud)) | 
 | 		return; | 
 | 	pmd_alloc(mm, pud, 0); | 
 | #endif | 
 | 	__create_mapping(mm, md, late_alloc, ng); | 
 | } | 
 |  | 
 | /* | 
 |  * Create the architecture specific mappings | 
 |  */ | 
 | void __init iotable_init(struct map_desc *io_desc, int nr) | 
 | { | 
 | 	struct map_desc *md; | 
 | 	struct vm_struct *vm; | 
 | 	struct static_vm *svm; | 
 |  | 
 | 	if (!nr) | 
 | 		return; | 
 |  | 
 | 	svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm)); | 
 |  | 
 | 	for (md = io_desc; nr; md++, nr--) { | 
 | 		create_mapping(md); | 
 |  | 
 | 		vm = &svm->vm; | 
 | 		vm->addr = (void *)(md->virtual & PAGE_MASK); | 
 | 		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK)); | 
 | 		vm->phys_addr = __pfn_to_phys(md->pfn); | 
 | 		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING; | 
 | 		vm->flags |= VM_ARM_MTYPE(md->type); | 
 | 		vm->caller = iotable_init; | 
 | 		add_static_vm_early(svm++); | 
 | 	} | 
 | } | 
 |  | 
 | void __init vm_reserve_area_early(unsigned long addr, unsigned long size, | 
 | 				  void *caller) | 
 | { | 
 | 	struct vm_struct *vm; | 
 | 	struct static_vm *svm; | 
 |  | 
 | 	svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm)); | 
 |  | 
 | 	vm = &svm->vm; | 
 | 	vm->addr = (void *)addr; | 
 | 	vm->size = size; | 
 | 	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING; | 
 | 	vm->caller = caller; | 
 | 	add_static_vm_early(svm); | 
 | } | 
 |  | 
 | #ifndef CONFIG_ARM_LPAE | 
 |  | 
 | /* | 
 |  * The Linux PMD is made of two consecutive section entries covering 2MB | 
 |  * (see definition in include/asm/pgtable-2level.h).  However a call to | 
 |  * create_mapping() may optimize static mappings by using individual | 
 |  * 1MB section mappings.  This leaves the actual PMD potentially half | 
 |  * initialized if the top or bottom section entry isn't used, leaving it | 
 |  * open to problems if a subsequent ioremap() or vmalloc() tries to use | 
 |  * the virtual space left free by that unused section entry. | 
 |  * | 
 |  * Let's avoid the issue by inserting dummy vm entries covering the unused | 
 |  * PMD halves once the static mappings are in place. | 
 |  */ | 
 |  | 
 | static void __init pmd_empty_section_gap(unsigned long addr) | 
 | { | 
 | 	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap); | 
 | } | 
 |  | 
 | static void __init fill_pmd_gaps(void) | 
 | { | 
 | 	struct static_vm *svm; | 
 | 	struct vm_struct *vm; | 
 | 	unsigned long addr, next = 0; | 
 | 	pmd_t *pmd; | 
 |  | 
 | 	list_for_each_entry(svm, &static_vmlist, list) { | 
 | 		vm = &svm->vm; | 
 | 		addr = (unsigned long)vm->addr; | 
 | 		if (addr < next) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * Check if this vm starts on an odd section boundary. | 
 | 		 * If so and the first section entry for this PMD is free | 
 | 		 * then we block the corresponding virtual address. | 
 | 		 */ | 
 | 		if ((addr & ~PMD_MASK) == SECTION_SIZE) { | 
 | 			pmd = pmd_off_k(addr); | 
 | 			if (pmd_none(*pmd)) | 
 | 				pmd_empty_section_gap(addr & PMD_MASK); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Then check if this vm ends on an odd section boundary. | 
 | 		 * If so and the second section entry for this PMD is empty | 
 | 		 * then we block the corresponding virtual address. | 
 | 		 */ | 
 | 		addr += vm->size; | 
 | 		if ((addr & ~PMD_MASK) == SECTION_SIZE) { | 
 | 			pmd = pmd_off_k(addr) + 1; | 
 | 			if (pmd_none(*pmd)) | 
 | 				pmd_empty_section_gap(addr); | 
 | 		} | 
 |  | 
 | 		/* no need to look at any vm entry until we hit the next PMD */ | 
 | 		next = (addr + PMD_SIZE - 1) & PMD_MASK; | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 | #define fill_pmd_gaps() do { } while (0) | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H) | 
 | static void __init pci_reserve_io(void) | 
 | { | 
 | 	struct static_vm *svm; | 
 |  | 
 | 	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE); | 
 | 	if (svm) | 
 | 		return; | 
 |  | 
 | 	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io); | 
 | } | 
 | #else | 
 | #define pci_reserve_io() do { } while (0) | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_DEBUG_LL | 
 | void __init debug_ll_io_init(void) | 
 | { | 
 | 	struct map_desc map; | 
 |  | 
 | 	debug_ll_addr(&map.pfn, &map.virtual); | 
 | 	if (!map.pfn || !map.virtual) | 
 | 		return; | 
 | 	map.pfn = __phys_to_pfn(map.pfn); | 
 | 	map.virtual &= PAGE_MASK; | 
 | 	map.length = PAGE_SIZE; | 
 | 	map.type = MT_DEVICE; | 
 | 	iotable_init(&map, 1); | 
 | } | 
 | #endif | 
 |  | 
 | static void * __initdata vmalloc_min = | 
 | 	(void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET); | 
 |  | 
 | /* | 
 |  * vmalloc=size forces the vmalloc area to be exactly 'size' | 
 |  * bytes. This can be used to increase (or decrease) the vmalloc | 
 |  * area - the default is 240m. | 
 |  */ | 
 | static int __init early_vmalloc(char *arg) | 
 | { | 
 | 	unsigned long vmalloc_reserve = memparse(arg, NULL); | 
 |  | 
 | 	if (vmalloc_reserve < SZ_16M) { | 
 | 		vmalloc_reserve = SZ_16M; | 
 | 		pr_warn("vmalloc area too small, limiting to %luMB\n", | 
 | 			vmalloc_reserve >> 20); | 
 | 	} | 
 |  | 
 | 	if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) { | 
 | 		vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M); | 
 | 		pr_warn("vmalloc area is too big, limiting to %luMB\n", | 
 | 			vmalloc_reserve >> 20); | 
 | 	} | 
 |  | 
 | 	vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve); | 
 | 	return 0; | 
 | } | 
 | early_param("vmalloc", early_vmalloc); | 
 |  | 
 | phys_addr_t arm_lowmem_limit __initdata = 0; | 
 |  | 
 | void __init adjust_lowmem_bounds(void) | 
 | { | 
 | 	phys_addr_t memblock_limit = 0; | 
 | 	u64 vmalloc_limit; | 
 | 	struct memblock_region *reg; | 
 | 	phys_addr_t lowmem_limit = 0; | 
 |  | 
 | 	/* | 
 | 	 * Let's use our own (unoptimized) equivalent of __pa() that is | 
 | 	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4. | 
 | 	 * The result is used as the upper bound on physical memory address | 
 | 	 * and may itself be outside the valid range for which phys_addr_t | 
 | 	 * and therefore __pa() is defined. | 
 | 	 */ | 
 | 	vmalloc_limit = (u64)(uintptr_t)vmalloc_min - PAGE_OFFSET + PHYS_OFFSET; | 
 |  | 
 | 	/* | 
 | 	 * The first usable region must be PMD aligned. Mark its start | 
 | 	 * as MEMBLOCK_NOMAP if it isn't | 
 | 	 */ | 
 | 	for_each_memblock(memory, reg) { | 
 | 		if (!memblock_is_nomap(reg)) { | 
 | 			if (!IS_ALIGNED(reg->base, PMD_SIZE)) { | 
 | 				phys_addr_t len; | 
 |  | 
 | 				len = round_up(reg->base, PMD_SIZE) - reg->base; | 
 | 				memblock_mark_nomap(reg->base, len); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for_each_memblock(memory, reg) { | 
 | 		phys_addr_t block_start = reg->base; | 
 | 		phys_addr_t block_end = reg->base + reg->size; | 
 |  | 
 | 		if (memblock_is_nomap(reg)) | 
 | 			continue; | 
 |  | 
 | 		if (reg->base < vmalloc_limit) { | 
 | 			if (block_end > lowmem_limit) | 
 | 				/* | 
 | 				 * Compare as u64 to ensure vmalloc_limit does | 
 | 				 * not get truncated. block_end should always | 
 | 				 * fit in phys_addr_t so there should be no | 
 | 				 * issue with assignment. | 
 | 				 */ | 
 | 				lowmem_limit = min_t(u64, | 
 | 							 vmalloc_limit, | 
 | 							 block_end); | 
 |  | 
 | 			/* | 
 | 			 * Find the first non-pmd-aligned page, and point | 
 | 			 * memblock_limit at it. This relies on rounding the | 
 | 			 * limit down to be pmd-aligned, which happens at the | 
 | 			 * end of this function. | 
 | 			 * | 
 | 			 * With this algorithm, the start or end of almost any | 
 | 			 * bank can be non-pmd-aligned. The only exception is | 
 | 			 * that the start of the bank 0 must be section- | 
 | 			 * aligned, since otherwise memory would need to be | 
 | 			 * allocated when mapping the start of bank 0, which | 
 | 			 * occurs before any free memory is mapped. | 
 | 			 */ | 
 | 			if (!memblock_limit) { | 
 | 				if (!IS_ALIGNED(block_start, PMD_SIZE)) | 
 | 					memblock_limit = block_start; | 
 | 				else if (!IS_ALIGNED(block_end, PMD_SIZE)) | 
 | 					memblock_limit = lowmem_limit; | 
 | 			} | 
 |  | 
 | 		} | 
 | 	} | 
 |  | 
 | 	arm_lowmem_limit = lowmem_limit; | 
 |  | 
 | 	high_memory = __va(arm_lowmem_limit - 1) + 1; | 
 |  | 
 | 	if (!memblock_limit) | 
 | 		memblock_limit = arm_lowmem_limit; | 
 |  | 
 | 	/* | 
 | 	 * Round the memblock limit down to a pmd size.  This | 
 | 	 * helps to ensure that we will allocate memory from the | 
 | 	 * last full pmd, which should be mapped. | 
 | 	 */ | 
 | 	memblock_limit = round_down(memblock_limit, PMD_SIZE); | 
 |  | 
 | 	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) { | 
 | 		if (memblock_end_of_DRAM() > arm_lowmem_limit) { | 
 | 			phys_addr_t end = memblock_end_of_DRAM(); | 
 |  | 
 | 			pr_notice("Ignoring RAM at %pa-%pa\n", | 
 | 				  &memblock_limit, &end); | 
 | 			pr_notice("Consider using a HIGHMEM enabled kernel.\n"); | 
 |  | 
 | 			memblock_remove(memblock_limit, end - memblock_limit); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	memblock_set_current_limit(memblock_limit); | 
 | } | 
 |  | 
 | static inline void prepare_page_table(void) | 
 | { | 
 | 	unsigned long addr; | 
 | 	phys_addr_t end; | 
 |  | 
 | 	/* | 
 | 	 * Clear out all the mappings below the kernel image. | 
 | 	 */ | 
 | 	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE) | 
 | 		pmd_clear(pmd_off_k(addr)); | 
 |  | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | 	/* The XIP kernel is mapped in the module area -- skip over it */ | 
 | 	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK; | 
 | #endif | 
 | 	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE) | 
 | 		pmd_clear(pmd_off_k(addr)); | 
 |  | 
 | 	/* | 
 | 	 * Find the end of the first block of lowmem. | 
 | 	 */ | 
 | 	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size; | 
 | 	if (end >= arm_lowmem_limit) | 
 | 		end = arm_lowmem_limit; | 
 |  | 
 | 	/* | 
 | 	 * Clear out all the kernel space mappings, except for the first | 
 | 	 * memory bank, up to the vmalloc region. | 
 | 	 */ | 
 | 	for (addr = __phys_to_virt(end); | 
 | 	     addr < VMALLOC_START; addr += PMD_SIZE) | 
 | 		pmd_clear(pmd_off_k(addr)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARM_LPAE | 
 | /* the first page is reserved for pgd */ | 
 | #define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \ | 
 | 				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t)) | 
 | #else | 
 | #define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t)) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Reserve the special regions of memory | 
 |  */ | 
 | void __init arm_mm_memblock_reserve(void) | 
 | { | 
 | 	/* | 
 | 	 * Reserve the page tables.  These are already in use, | 
 | 	 * and can only be in node 0. | 
 | 	 */ | 
 | 	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE); | 
 |  | 
 | #ifdef CONFIG_SA1111 | 
 | 	/* | 
 | 	 * Because of the SA1111 DMA bug, we want to preserve our | 
 | 	 * precious DMA-able memory... | 
 | 	 */ | 
 | 	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Set up the device mappings.  Since we clear out the page tables for all | 
 |  * mappings above VMALLOC_START, except early fixmap, we might remove debug | 
 |  * device mappings.  This means earlycon can be used to debug this function | 
 |  * Any other function or debugging method which may touch any device _will_ | 
 |  * crash the kernel. | 
 |  */ | 
 | static void __init devicemaps_init(const struct machine_desc *mdesc) | 
 | { | 
 | 	struct map_desc map; | 
 | 	unsigned long addr; | 
 | 	void *vectors; | 
 |  | 
 | 	/* | 
 | 	 * Allocate the vector page early. | 
 | 	 */ | 
 | 	vectors = early_alloc(PAGE_SIZE * 2); | 
 |  | 
 | 	early_trap_init(vectors); | 
 |  | 
 | 	/* | 
 | 	 * Clear page table except top pmd used by early fixmaps | 
 | 	 */ | 
 | 	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE) | 
 | 		pmd_clear(pmd_off_k(addr)); | 
 |  | 
 | 	/* | 
 | 	 * Map the kernel if it is XIP. | 
 | 	 * It is always first in the modulearea. | 
 | 	 */ | 
 | #ifdef CONFIG_XIP_KERNEL | 
 | 	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK); | 
 | 	map.virtual = MODULES_VADDR; | 
 | 	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK; | 
 | 	map.type = MT_ROM; | 
 | 	create_mapping(&map); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Map the cache flushing regions. | 
 | 	 */ | 
 | #ifdef FLUSH_BASE | 
 | 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS); | 
 | 	map.virtual = FLUSH_BASE; | 
 | 	map.length = SZ_1M; | 
 | 	map.type = MT_CACHECLEAN; | 
 | 	create_mapping(&map); | 
 | #endif | 
 | #ifdef FLUSH_BASE_MINICACHE | 
 | 	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M); | 
 | 	map.virtual = FLUSH_BASE_MINICACHE; | 
 | 	map.length = SZ_1M; | 
 | 	map.type = MT_MINICLEAN; | 
 | 	create_mapping(&map); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Create a mapping for the machine vectors at the high-vectors | 
 | 	 * location (0xffff0000).  If we aren't using high-vectors, also | 
 | 	 * create a mapping at the low-vectors virtual address. | 
 | 	 */ | 
 | 	map.pfn = __phys_to_pfn(virt_to_phys(vectors)); | 
 | 	map.virtual = 0xffff0000; | 
 | 	map.length = PAGE_SIZE; | 
 | #ifdef CONFIG_KUSER_HELPERS | 
 | 	map.type = MT_HIGH_VECTORS; | 
 | #else | 
 | 	map.type = MT_LOW_VECTORS; | 
 | #endif | 
 | 	create_mapping(&map); | 
 |  | 
 | 	if (!vectors_high()) { | 
 | 		map.virtual = 0; | 
 | 		map.length = PAGE_SIZE * 2; | 
 | 		map.type = MT_LOW_VECTORS; | 
 | 		create_mapping(&map); | 
 | 	} | 
 |  | 
 | 	/* Now create a kernel read-only mapping */ | 
 | 	map.pfn += 1; | 
 | 	map.virtual = 0xffff0000 + PAGE_SIZE; | 
 | 	map.length = PAGE_SIZE; | 
 | 	map.type = MT_LOW_VECTORS; | 
 | 	create_mapping(&map); | 
 |  | 
 | 	/* | 
 | 	 * Ask the machine support to map in the statically mapped devices. | 
 | 	 */ | 
 | 	if (mdesc->map_io) | 
 | 		mdesc->map_io(); | 
 | 	else | 
 | 		debug_ll_io_init(); | 
 | 	fill_pmd_gaps(); | 
 |  | 
 | 	/* Reserve fixed i/o space in VMALLOC region */ | 
 | 	pci_reserve_io(); | 
 |  | 
 | 	/* | 
 | 	 * Finally flush the caches and tlb to ensure that we're in a | 
 | 	 * consistent state wrt the writebuffer.  This also ensures that | 
 | 	 * any write-allocated cache lines in the vector page are written | 
 | 	 * back.  After this point, we can start to touch devices again. | 
 | 	 */ | 
 | 	local_flush_tlb_all(); | 
 | 	flush_cache_all(); | 
 |  | 
 | 	/* Enable asynchronous aborts */ | 
 | 	early_abt_enable(); | 
 | } | 
 |  | 
 | static void __init kmap_init(void) | 
 | { | 
 | #ifdef CONFIG_HIGHMEM | 
 | 	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE), | 
 | 		PKMAP_BASE, _PAGE_KERNEL_TABLE); | 
 | #endif | 
 |  | 
 | 	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START, | 
 | 			_PAGE_KERNEL_TABLE); | 
 | } | 
 |  | 
 | static void __init map_lowmem(void) | 
 | { | 
 | 	struct memblock_region *reg; | 
 | 	phys_addr_t kernel_x_start = round_down(__pa(KERNEL_START), SECTION_SIZE); | 
 | 	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE); | 
 |  | 
 | 	/* Map all the lowmem memory banks. */ | 
 | 	for_each_memblock(memory, reg) { | 
 | 		phys_addr_t start = reg->base; | 
 | 		phys_addr_t end = start + reg->size; | 
 | 		struct map_desc map; | 
 |  | 
 | 		if (memblock_is_nomap(reg)) | 
 | 			continue; | 
 |  | 
 | 		if (end > arm_lowmem_limit) | 
 | 			end = arm_lowmem_limit; | 
 | 		if (start >= end) | 
 | 			break; | 
 |  | 
 | 		if (end < kernel_x_start) { | 
 | 			map.pfn = __phys_to_pfn(start); | 
 | 			map.virtual = __phys_to_virt(start); | 
 | 			map.length = end - start; | 
 | 			map.type = MT_MEMORY_RWX; | 
 |  | 
 | 			create_mapping(&map); | 
 | 		} else if (start >= kernel_x_end) { | 
 | 			map.pfn = __phys_to_pfn(start); | 
 | 			map.virtual = __phys_to_virt(start); | 
 | 			map.length = end - start; | 
 | 			map.type = MT_MEMORY_RW; | 
 |  | 
 | 			create_mapping(&map); | 
 | 		} else { | 
 | 			/* This better cover the entire kernel */ | 
 | 			if (start < kernel_x_start) { | 
 | 				map.pfn = __phys_to_pfn(start); | 
 | 				map.virtual = __phys_to_virt(start); | 
 | 				map.length = kernel_x_start - start; | 
 | 				map.type = MT_MEMORY_RW; | 
 |  | 
 | 				create_mapping(&map); | 
 | 			} | 
 |  | 
 | 			map.pfn = __phys_to_pfn(kernel_x_start); | 
 | 			map.virtual = __phys_to_virt(kernel_x_start); | 
 | 			map.length = kernel_x_end - kernel_x_start; | 
 | 			map.type = MT_MEMORY_RWX; | 
 |  | 
 | 			create_mapping(&map); | 
 |  | 
 | 			if (kernel_x_end < end) { | 
 | 				map.pfn = __phys_to_pfn(kernel_x_end); | 
 | 				map.virtual = __phys_to_virt(kernel_x_end); | 
 | 				map.length = end - kernel_x_end; | 
 | 				map.type = MT_MEMORY_RW; | 
 |  | 
 | 				create_mapping(&map); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_ARM_PV_FIXUP | 
 | extern unsigned long __atags_pointer; | 
 | typedef void pgtables_remap(long long offset, unsigned long pgd, void *bdata); | 
 | pgtables_remap lpae_pgtables_remap_asm; | 
 |  | 
 | /* | 
 |  * early_paging_init() recreates boot time page table setup, allowing machines | 
 |  * to switch over to a high (>4G) address space on LPAE systems | 
 |  */ | 
 | static void __init early_paging_init(const struct machine_desc *mdesc) | 
 | { | 
 | 	pgtables_remap *lpae_pgtables_remap; | 
 | 	unsigned long pa_pgd; | 
 | 	unsigned int cr, ttbcr; | 
 | 	long long offset; | 
 | 	void *boot_data; | 
 |  | 
 | 	if (!mdesc->pv_fixup) | 
 | 		return; | 
 |  | 
 | 	offset = mdesc->pv_fixup(); | 
 | 	if (offset == 0) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Get the address of the remap function in the 1:1 identity | 
 | 	 * mapping setup by the early page table assembly code.  We | 
 | 	 * must get this prior to the pv update.  The following barrier | 
 | 	 * ensures that this is complete before we fixup any P:V offsets. | 
 | 	 */ | 
 | 	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm); | 
 | 	pa_pgd = __pa(swapper_pg_dir); | 
 | 	boot_data = __va(__atags_pointer); | 
 | 	barrier(); | 
 |  | 
 | 	pr_info("Switching physical address space to 0x%08llx\n", | 
 | 		(u64)PHYS_OFFSET + offset); | 
 |  | 
 | 	/* Re-set the phys pfn offset, and the pv offset */ | 
 | 	__pv_offset += offset; | 
 | 	__pv_phys_pfn_offset += PFN_DOWN(offset); | 
 |  | 
 | 	/* Run the patch stub to update the constants */ | 
 | 	fixup_pv_table(&__pv_table_begin, | 
 | 		(&__pv_table_end - &__pv_table_begin) << 2); | 
 |  | 
 | 	/* | 
 | 	 * We changing not only the virtual to physical mapping, but also | 
 | 	 * the physical addresses used to access memory.  We need to flush | 
 | 	 * all levels of cache in the system with caching disabled to | 
 | 	 * ensure that all data is written back, and nothing is prefetched | 
 | 	 * into the caches.  We also need to prevent the TLB walkers | 
 | 	 * allocating into the caches too.  Note that this is ARMv7 LPAE | 
 | 	 * specific. | 
 | 	 */ | 
 | 	cr = get_cr(); | 
 | 	set_cr(cr & ~(CR_I | CR_C)); | 
 | 	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr)); | 
 | 	asm volatile("mcr p15, 0, %0, c2, c0, 2" | 
 | 		: : "r" (ttbcr & ~(3 << 8 | 3 << 10))); | 
 | 	flush_cache_all(); | 
 |  | 
 | 	/* | 
 | 	 * Fixup the page tables - this must be in the idmap region as | 
 | 	 * we need to disable the MMU to do this safely, and hence it | 
 | 	 * needs to be assembly.  It's fairly simple, as we're using the | 
 | 	 * temporary tables setup by the initial assembly code. | 
 | 	 */ | 
 | 	lpae_pgtables_remap(offset, pa_pgd, boot_data); | 
 |  | 
 | 	/* Re-enable the caches and cacheable TLB walks */ | 
 | 	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr)); | 
 | 	set_cr(cr); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void __init early_paging_init(const struct machine_desc *mdesc) | 
 | { | 
 | 	long long offset; | 
 |  | 
 | 	if (!mdesc->pv_fixup) | 
 | 		return; | 
 |  | 
 | 	offset = mdesc->pv_fixup(); | 
 | 	if (offset == 0) | 
 | 		return; | 
 |  | 
 | 	pr_crit("Physical address space modification is only to support Keystone2.\n"); | 
 | 	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n"); | 
 | 	pr_crit("feature. Your kernel may crash now, have a good day.\n"); | 
 | 	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void __init early_fixmap_shutdown(void) | 
 | { | 
 | 	int i; | 
 | 	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1); | 
 |  | 
 | 	pte_offset_fixmap = pte_offset_late_fixmap; | 
 | 	pmd_clear(fixmap_pmd(va)); | 
 | 	local_flush_tlb_kernel_page(va); | 
 |  | 
 | 	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) { | 
 | 		pte_t *pte; | 
 | 		struct map_desc map; | 
 |  | 
 | 		map.virtual = fix_to_virt(i); | 
 | 		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual); | 
 |  | 
 | 		/* Only i/o device mappings are supported ATM */ | 
 | 		if (pte_none(*pte) || | 
 | 		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED) | 
 | 			continue; | 
 |  | 
 | 		map.pfn = pte_pfn(*pte); | 
 | 		map.type = MT_DEVICE; | 
 | 		map.length = PAGE_SIZE; | 
 |  | 
 | 		create_mapping(&map); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * paging_init() sets up the page tables, initialises the zone memory | 
 |  * maps, and sets up the zero page, bad page and bad page tables. | 
 |  */ | 
 | void __init paging_init(const struct machine_desc *mdesc) | 
 | { | 
 | 	void *zero_page; | 
 |  | 
 | 	prepare_page_table(); | 
 | 	map_lowmem(); | 
 | 	memblock_set_current_limit(arm_lowmem_limit); | 
 | 	dma_contiguous_remap(); | 
 | 	early_fixmap_shutdown(); | 
 | 	devicemaps_init(mdesc); | 
 | 	kmap_init(); | 
 | 	tcm_init(); | 
 |  | 
 | 	top_pmd = pmd_off_k(0xffff0000); | 
 |  | 
 | 	/* allocate the zero page. */ | 
 | 	zero_page = early_alloc(PAGE_SIZE); | 
 |  | 
 | 	bootmem_init(); | 
 |  | 
 | 	empty_zero_page = virt_to_page(zero_page); | 
 | 	__flush_dcache_page(NULL, empty_zero_page); | 
 |  | 
 | 	/* Compute the virt/idmap offset, mostly for the sake of KVM */ | 
 | 	kimage_voffset = (unsigned long)&kimage_voffset - virt_to_idmap(&kimage_voffset); | 
 | } | 
 |  | 
 | void __init early_mm_init(const struct machine_desc *mdesc) | 
 | { | 
 | 	build_mem_type_table(); | 
 | 	early_paging_init(mdesc); | 
 | } |