|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/tcp.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/rculist.h> | 
|  | #include <net/inetpeer.h> | 
|  | #include <net/tcp.h> | 
|  |  | 
|  | void tcp_fastopen_init_key_once(struct net *net) | 
|  | { | 
|  | u8 key[TCP_FASTOPEN_KEY_LENGTH]; | 
|  | struct tcp_fastopen_context *ctxt; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | ctxt = rcu_dereference(net->ipv4.tcp_fastopen_ctx); | 
|  | if (ctxt) { | 
|  | rcu_read_unlock(); | 
|  | return; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | /* tcp_fastopen_reset_cipher publishes the new context | 
|  | * atomically, so we allow this race happening here. | 
|  | * | 
|  | * All call sites of tcp_fastopen_cookie_gen also check | 
|  | * for a valid cookie, so this is an acceptable risk. | 
|  | */ | 
|  | get_random_bytes(key, sizeof(key)); | 
|  | tcp_fastopen_reset_cipher(net, NULL, key, sizeof(key)); | 
|  | } | 
|  |  | 
|  | static void tcp_fastopen_ctx_free(struct rcu_head *head) | 
|  | { | 
|  | struct tcp_fastopen_context *ctx = | 
|  | container_of(head, struct tcp_fastopen_context, rcu); | 
|  | crypto_free_cipher(ctx->tfm); | 
|  | kfree(ctx); | 
|  | } | 
|  |  | 
|  | void tcp_fastopen_destroy_cipher(struct sock *sk) | 
|  | { | 
|  | struct tcp_fastopen_context *ctx; | 
|  |  | 
|  | ctx = rcu_dereference_protected( | 
|  | inet_csk(sk)->icsk_accept_queue.fastopenq.ctx, 1); | 
|  | if (ctx) | 
|  | call_rcu(&ctx->rcu, tcp_fastopen_ctx_free); | 
|  | } | 
|  |  | 
|  | void tcp_fastopen_ctx_destroy(struct net *net) | 
|  | { | 
|  | struct tcp_fastopen_context *ctxt; | 
|  |  | 
|  | spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); | 
|  |  | 
|  | ctxt = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, | 
|  | lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); | 
|  | rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, NULL); | 
|  | spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); | 
|  |  | 
|  | if (ctxt) | 
|  | call_rcu(&ctxt->rcu, tcp_fastopen_ctx_free); | 
|  | } | 
|  |  | 
|  | int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk, | 
|  | void *key, unsigned int len) | 
|  | { | 
|  | struct tcp_fastopen_context *ctx, *octx; | 
|  | struct fastopen_queue *q; | 
|  | int err; | 
|  |  | 
|  | ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); | 
|  | if (!ctx) | 
|  | return -ENOMEM; | 
|  | ctx->tfm = crypto_alloc_cipher("aes", 0, 0); | 
|  |  | 
|  | if (IS_ERR(ctx->tfm)) { | 
|  | err = PTR_ERR(ctx->tfm); | 
|  | error:		kfree(ctx); | 
|  | pr_err("TCP: TFO aes cipher alloc error: %d\n", err); | 
|  | return err; | 
|  | } | 
|  | err = crypto_cipher_setkey(ctx->tfm, key, len); | 
|  | if (err) { | 
|  | pr_err("TCP: TFO cipher key error: %d\n", err); | 
|  | crypto_free_cipher(ctx->tfm); | 
|  | goto error; | 
|  | } | 
|  | memcpy(ctx->key, key, len); | 
|  |  | 
|  |  | 
|  | spin_lock(&net->ipv4.tcp_fastopen_ctx_lock); | 
|  | if (sk) { | 
|  | q = &inet_csk(sk)->icsk_accept_queue.fastopenq; | 
|  | octx = rcu_dereference_protected(q->ctx, | 
|  | lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); | 
|  | rcu_assign_pointer(q->ctx, ctx); | 
|  | } else { | 
|  | octx = rcu_dereference_protected(net->ipv4.tcp_fastopen_ctx, | 
|  | lockdep_is_held(&net->ipv4.tcp_fastopen_ctx_lock)); | 
|  | rcu_assign_pointer(net->ipv4.tcp_fastopen_ctx, ctx); | 
|  | } | 
|  | spin_unlock(&net->ipv4.tcp_fastopen_ctx_lock); | 
|  |  | 
|  | if (octx) | 
|  | call_rcu(&octx->rcu, tcp_fastopen_ctx_free); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool __tcp_fastopen_cookie_gen(struct sock *sk, const void *path, | 
|  | struct tcp_fastopen_cookie *foc) | 
|  | { | 
|  | struct tcp_fastopen_context *ctx; | 
|  | bool ok = false; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx); | 
|  | if (!ctx) | 
|  | ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx); | 
|  |  | 
|  | if (ctx) { | 
|  | crypto_cipher_encrypt_one(ctx->tfm, foc->val, path); | 
|  | foc->len = TCP_FASTOPEN_COOKIE_SIZE; | 
|  | ok = true; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | /* Generate the fastopen cookie by doing aes128 encryption on both | 
|  | * the source and destination addresses. Pad 0s for IPv4 or IPv4-mapped-IPv6 | 
|  | * addresses. For the longer IPv6 addresses use CBC-MAC. | 
|  | * | 
|  | * XXX (TFO) - refactor when TCP_FASTOPEN_COOKIE_SIZE != AES_BLOCK_SIZE. | 
|  | */ | 
|  | static bool tcp_fastopen_cookie_gen(struct sock *sk, | 
|  | struct request_sock *req, | 
|  | struct sk_buff *syn, | 
|  | struct tcp_fastopen_cookie *foc) | 
|  | { | 
|  | if (req->rsk_ops->family == AF_INET) { | 
|  | const struct iphdr *iph = ip_hdr(syn); | 
|  |  | 
|  | __be32 path[4] = { iph->saddr, iph->daddr, 0, 0 }; | 
|  | return __tcp_fastopen_cookie_gen(sk, path, foc); | 
|  | } | 
|  |  | 
|  | #if IS_ENABLED(CONFIG_IPV6) | 
|  | if (req->rsk_ops->family == AF_INET6) { | 
|  | const struct ipv6hdr *ip6h = ipv6_hdr(syn); | 
|  | struct tcp_fastopen_cookie tmp; | 
|  |  | 
|  | if (__tcp_fastopen_cookie_gen(sk, &ip6h->saddr, &tmp)) { | 
|  | struct in6_addr *buf = &tmp.addr; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) | 
|  | buf->s6_addr32[i] ^= ip6h->daddr.s6_addr32[i]; | 
|  | return __tcp_fastopen_cookie_gen(sk, buf, foc); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* If an incoming SYN or SYNACK frame contains a payload and/or FIN, | 
|  | * queue this additional data / FIN. | 
|  | */ | 
|  | void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->end_seq == tp->rcv_nxt) | 
|  | return; | 
|  |  | 
|  | skb = skb_clone(skb, GFP_ATOMIC); | 
|  | if (!skb) | 
|  | return; | 
|  |  | 
|  | skb_dst_drop(skb); | 
|  | /* segs_in has been initialized to 1 in tcp_create_openreq_child(). | 
|  | * Hence, reset segs_in to 0 before calling tcp_segs_in() | 
|  | * to avoid double counting.  Also, tcp_segs_in() expects | 
|  | * skb->len to include the tcp_hdrlen.  Hence, it should | 
|  | * be called before __skb_pull(). | 
|  | */ | 
|  | tp->segs_in = 0; | 
|  | tcp_segs_in(tp, skb); | 
|  | __skb_pull(skb, tcp_hdrlen(skb)); | 
|  | sk_forced_mem_schedule(sk, skb->truesize); | 
|  | skb_set_owner_r(skb, sk); | 
|  |  | 
|  | TCP_SKB_CB(skb)->seq++; | 
|  | TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_SYN; | 
|  |  | 
|  | tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq; | 
|  | __skb_queue_tail(&sk->sk_receive_queue, skb); | 
|  | tp->syn_data_acked = 1; | 
|  |  | 
|  | /* u64_stats_update_begin(&tp->syncp) not needed here, | 
|  | * as we certainly are not changing upper 32bit value (0) | 
|  | */ | 
|  | tp->bytes_received = skb->len; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) | 
|  | tcp_fin(sk); | 
|  | } | 
|  |  | 
|  | static struct sock *tcp_fastopen_create_child(struct sock *sk, | 
|  | struct sk_buff *skb, | 
|  | struct request_sock *req) | 
|  | { | 
|  | struct tcp_sock *tp; | 
|  | struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue; | 
|  | struct sock *child; | 
|  | bool own_req; | 
|  |  | 
|  | req->num_retrans = 0; | 
|  | req->num_timeout = 0; | 
|  | req->sk = NULL; | 
|  |  | 
|  | child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL, | 
|  | NULL, &own_req); | 
|  | if (!child) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock(&queue->fastopenq.lock); | 
|  | queue->fastopenq.qlen++; | 
|  | spin_unlock(&queue->fastopenq.lock); | 
|  |  | 
|  | /* Initialize the child socket. Have to fix some values to take | 
|  | * into account the child is a Fast Open socket and is created | 
|  | * only out of the bits carried in the SYN packet. | 
|  | */ | 
|  | tp = tcp_sk(child); | 
|  |  | 
|  | tp->fastopen_rsk = req; | 
|  | tcp_rsk(req)->tfo_listener = true; | 
|  |  | 
|  | /* RFC1323: The window in SYN & SYN/ACK segments is never | 
|  | * scaled. So correct it appropriately. | 
|  | */ | 
|  | tp->snd_wnd = ntohs(tcp_hdr(skb)->window); | 
|  | tp->max_window = tp->snd_wnd; | 
|  |  | 
|  | /* Activate the retrans timer so that SYNACK can be retransmitted. | 
|  | * The request socket is not added to the ehash | 
|  | * because it's been added to the accept queue directly. | 
|  | */ | 
|  | inet_csk_reset_xmit_timer(child, ICSK_TIME_RETRANS, | 
|  | TCP_TIMEOUT_INIT, TCP_RTO_MAX); | 
|  |  | 
|  | refcount_set(&req->rsk_refcnt, 2); | 
|  |  | 
|  | /* Now finish processing the fastopen child socket. */ | 
|  | tcp_init_transfer(child, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB); | 
|  |  | 
|  | tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1; | 
|  |  | 
|  | tcp_fastopen_add_skb(child, skb); | 
|  |  | 
|  | tcp_rsk(req)->rcv_nxt = tp->rcv_nxt; | 
|  | tp->rcv_wup = tp->rcv_nxt; | 
|  | /* tcp_conn_request() is sending the SYNACK, | 
|  | * and queues the child into listener accept queue. | 
|  | */ | 
|  | return child; | 
|  | } | 
|  |  | 
|  | static bool tcp_fastopen_queue_check(struct sock *sk) | 
|  | { | 
|  | struct fastopen_queue *fastopenq; | 
|  |  | 
|  | /* Make sure the listener has enabled fastopen, and we don't | 
|  | * exceed the max # of pending TFO requests allowed before trying | 
|  | * to validating the cookie in order to avoid burning CPU cycles | 
|  | * unnecessarily. | 
|  | * | 
|  | * XXX (TFO) - The implication of checking the max_qlen before | 
|  | * processing a cookie request is that clients can't differentiate | 
|  | * between qlen overflow causing Fast Open to be disabled | 
|  | * temporarily vs a server not supporting Fast Open at all. | 
|  | */ | 
|  | fastopenq = &inet_csk(sk)->icsk_accept_queue.fastopenq; | 
|  | if (fastopenq->max_qlen == 0) | 
|  | return false; | 
|  |  | 
|  | if (fastopenq->qlen >= fastopenq->max_qlen) { | 
|  | struct request_sock *req1; | 
|  | spin_lock(&fastopenq->lock); | 
|  | req1 = fastopenq->rskq_rst_head; | 
|  | if (!req1 || time_after(req1->rsk_timer.expires, jiffies)) { | 
|  | __NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPFASTOPENLISTENOVERFLOW); | 
|  | spin_unlock(&fastopenq->lock); | 
|  | return false; | 
|  | } | 
|  | fastopenq->rskq_rst_head = req1->dl_next; | 
|  | fastopenq->qlen--; | 
|  | spin_unlock(&fastopenq->lock); | 
|  | reqsk_put(req1); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool tcp_fastopen_no_cookie(const struct sock *sk, | 
|  | const struct dst_entry *dst, | 
|  | int flag) | 
|  | { | 
|  | return (sock_net(sk)->ipv4.sysctl_tcp_fastopen & flag) || | 
|  | tcp_sk(sk)->fastopen_no_cookie || | 
|  | (dst && dst_metric(dst, RTAX_FASTOPEN_NO_COOKIE)); | 
|  | } | 
|  |  | 
|  | /* Returns true if we should perform Fast Open on the SYN. The cookie (foc) | 
|  | * may be updated and return the client in the SYN-ACK later. E.g., Fast Open | 
|  | * cookie request (foc->len == 0). | 
|  | */ | 
|  | struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb, | 
|  | struct request_sock *req, | 
|  | struct tcp_fastopen_cookie *foc, | 
|  | const struct dst_entry *dst) | 
|  | { | 
|  | bool syn_data = TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq + 1; | 
|  | int tcp_fastopen = sock_net(sk)->ipv4.sysctl_tcp_fastopen; | 
|  | struct tcp_fastopen_cookie valid_foc = { .len = -1 }; | 
|  | struct sock *child; | 
|  |  | 
|  | if (foc->len == 0) /* Client requests a cookie */ | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENCOOKIEREQD); | 
|  |  | 
|  | if (!((tcp_fastopen & TFO_SERVER_ENABLE) && | 
|  | (syn_data || foc->len >= 0) && | 
|  | tcp_fastopen_queue_check(sk))) { | 
|  | foc->len = -1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (syn_data && | 
|  | tcp_fastopen_no_cookie(sk, dst, TFO_SERVER_COOKIE_NOT_REQD)) | 
|  | goto fastopen; | 
|  |  | 
|  | if (foc->len >= 0 &&  /* Client presents or requests a cookie */ | 
|  | tcp_fastopen_cookie_gen(sk, req, skb, &valid_foc) && | 
|  | foc->len == TCP_FASTOPEN_COOKIE_SIZE && | 
|  | foc->len == valid_foc.len && | 
|  | !memcmp(foc->val, valid_foc.val, foc->len)) { | 
|  | /* Cookie is valid. Create a (full) child socket to accept | 
|  | * the data in SYN before returning a SYN-ACK to ack the | 
|  | * data. If we fail to create the socket, fall back and | 
|  | * ack the ISN only but includes the same cookie. | 
|  | * | 
|  | * Note: Data-less SYN with valid cookie is allowed to send | 
|  | * data in SYN_RECV state. | 
|  | */ | 
|  | fastopen: | 
|  | child = tcp_fastopen_create_child(sk, skb, req); | 
|  | if (child) { | 
|  | foc->len = -1; | 
|  | NET_INC_STATS(sock_net(sk), | 
|  | LINUX_MIB_TCPFASTOPENPASSIVE); | 
|  | return child; | 
|  | } | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); | 
|  | } else if (foc->len > 0) /* Client presents an invalid cookie */ | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENPASSIVEFAIL); | 
|  |  | 
|  | valid_foc.exp = foc->exp; | 
|  | *foc = valid_foc; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss, | 
|  | struct tcp_fastopen_cookie *cookie) | 
|  | { | 
|  | const struct dst_entry *dst; | 
|  |  | 
|  | tcp_fastopen_cache_get(sk, mss, cookie); | 
|  |  | 
|  | /* Firewall blackhole issue check */ | 
|  | if (tcp_fastopen_active_should_disable(sk)) { | 
|  | cookie->len = -1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | dst = __sk_dst_get(sk); | 
|  |  | 
|  | if (tcp_fastopen_no_cookie(sk, dst, TFO_CLIENT_NO_COOKIE)) { | 
|  | cookie->len = -1; | 
|  | return true; | 
|  | } | 
|  | return cookie->len > 0; | 
|  | } | 
|  |  | 
|  | /* This function checks if we want to defer sending SYN until the first | 
|  | * write().  We defer under the following conditions: | 
|  | * 1. fastopen_connect sockopt is set | 
|  | * 2. we have a valid cookie | 
|  | * Return value: return true if we want to defer until application writes data | 
|  | *               return false if we want to send out SYN immediately | 
|  | */ | 
|  | bool tcp_fastopen_defer_connect(struct sock *sk, int *err) | 
|  | { | 
|  | struct tcp_fastopen_cookie cookie = { .len = 0 }; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u16 mss; | 
|  |  | 
|  | if (tp->fastopen_connect && !tp->fastopen_req) { | 
|  | if (tcp_fastopen_cookie_check(sk, &mss, &cookie)) { | 
|  | inet_sk(sk)->defer_connect = 1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Alloc fastopen_req in order for FO option to be included | 
|  | * in SYN | 
|  | */ | 
|  | tp->fastopen_req = kzalloc(sizeof(*tp->fastopen_req), | 
|  | sk->sk_allocation); | 
|  | if (tp->fastopen_req) | 
|  | tp->fastopen_req->cookie = cookie; | 
|  | else | 
|  | *err = -ENOBUFS; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | EXPORT_SYMBOL(tcp_fastopen_defer_connect); | 
|  |  | 
|  | /* | 
|  | * The following code block is to deal with middle box issues with TFO: | 
|  | * Middlebox firewall issues can potentially cause server's data being | 
|  | * blackholed after a successful 3WHS using TFO. | 
|  | * The proposed solution is to disable active TFO globally under the | 
|  | * following circumstances: | 
|  | *   1. client side TFO socket receives out of order FIN | 
|  | *   2. client side TFO socket receives out of order RST | 
|  | *   3. client side TFO socket has timed out three times consecutively during | 
|  | *      or after handshake | 
|  | * We disable active side TFO globally for 1hr at first. Then if it | 
|  | * happens again, we disable it for 2h, then 4h, 8h, ... | 
|  | * And we reset the timeout back to 1hr when we see a successful active | 
|  | * TFO connection with data exchanges. | 
|  | */ | 
|  |  | 
|  | /* Disable active TFO and record current jiffies and | 
|  | * tfo_active_disable_times | 
|  | */ | 
|  | void tcp_fastopen_active_disable(struct sock *sk) | 
|  | { | 
|  | struct net *net = sock_net(sk); | 
|  |  | 
|  | atomic_inc(&net->ipv4.tfo_active_disable_times); | 
|  | net->ipv4.tfo_active_disable_stamp = jiffies; | 
|  | NET_INC_STATS(net, LINUX_MIB_TCPFASTOPENBLACKHOLE); | 
|  | } | 
|  |  | 
|  | /* Calculate timeout for tfo active disable | 
|  | * Return true if we are still in the active TFO disable period | 
|  | * Return false if timeout already expired and we should use active TFO | 
|  | */ | 
|  | bool tcp_fastopen_active_should_disable(struct sock *sk) | 
|  | { | 
|  | unsigned int tfo_bh_timeout = sock_net(sk)->ipv4.sysctl_tcp_fastopen_blackhole_timeout; | 
|  | int tfo_da_times = atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times); | 
|  | unsigned long timeout; | 
|  | int multiplier; | 
|  |  | 
|  | if (!tfo_da_times) | 
|  | return false; | 
|  |  | 
|  | /* Limit timout to max: 2^6 * initial timeout */ | 
|  | multiplier = 1 << min(tfo_da_times - 1, 6); | 
|  | timeout = multiplier * tfo_bh_timeout * HZ; | 
|  | if (time_before(jiffies, sock_net(sk)->ipv4.tfo_active_disable_stamp + timeout)) | 
|  | return true; | 
|  |  | 
|  | /* Mark check bit so we can check for successful active TFO | 
|  | * condition and reset tfo_active_disable_times | 
|  | */ | 
|  | tcp_sk(sk)->syn_fastopen_ch = 1; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Disable active TFO if FIN is the only packet in the ofo queue | 
|  | * and no data is received. | 
|  | * Also check if we can reset tfo_active_disable_times if data is | 
|  | * received successfully on a marked active TFO sockets opened on | 
|  | * a non-loopback interface | 
|  | */ | 
|  | void tcp_fastopen_active_disable_ofo_check(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct dst_entry *dst; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (!tp->syn_fastopen) | 
|  | return; | 
|  |  | 
|  | if (!tp->data_segs_in) { | 
|  | skb = skb_rb_first(&tp->out_of_order_queue); | 
|  | if (skb && !skb_rb_next(skb)) { | 
|  | if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) { | 
|  | tcp_fastopen_active_disable(sk); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } else if (tp->syn_fastopen_ch && | 
|  | atomic_read(&sock_net(sk)->ipv4.tfo_active_disable_times)) { | 
|  | dst = sk_dst_get(sk); | 
|  | if (!(dst && dst->dev && (dst->dev->flags & IFF_LOOPBACK))) | 
|  | atomic_set(&sock_net(sk)->ipv4.tfo_active_disable_times, 0); | 
|  | dst_release(dst); | 
|  | } | 
|  | } | 
|  |  | 
|  | void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired) | 
|  | { | 
|  | u32 timeouts = inet_csk(sk)->icsk_retransmits; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* Broken middle-boxes may black-hole Fast Open connection during or | 
|  | * even after the handshake. Be extremely conservative and pause | 
|  | * Fast Open globally after hitting the third consecutive timeout or | 
|  | * exceeding the configured timeout limit. | 
|  | */ | 
|  | if ((tp->syn_fastopen || tp->syn_data || tp->syn_data_acked) && | 
|  | (timeouts == 2 || (timeouts < 2 && expired))) { | 
|  | tcp_fastopen_active_disable(sk); | 
|  | NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVEFAIL); | 
|  | } | 
|  | } |