|  | /* | 
|  | BlueZ - Bluetooth protocol stack for Linux | 
|  |  | 
|  | Copyright (C) 2014 Intel Corporation | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License version 2 as | 
|  | published by the Free Software Foundation; | 
|  |  | 
|  | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS | 
|  | OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. | 
|  | IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY | 
|  | CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES | 
|  | WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN | 
|  | ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF | 
|  | OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. | 
|  |  | 
|  | ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS, | 
|  | COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS | 
|  | SOFTWARE IS DISCLAIMED. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched/signal.h> | 
|  |  | 
|  | #include <net/bluetooth/bluetooth.h> | 
|  | #include <net/bluetooth/hci_core.h> | 
|  | #include <net/bluetooth/mgmt.h> | 
|  |  | 
|  | #include "smp.h" | 
|  | #include "hci_request.h" | 
|  |  | 
|  | #define HCI_REQ_DONE	  0 | 
|  | #define HCI_REQ_PEND	  1 | 
|  | #define HCI_REQ_CANCELED  2 | 
|  |  | 
|  | void hci_req_init(struct hci_request *req, struct hci_dev *hdev) | 
|  | { | 
|  | skb_queue_head_init(&req->cmd_q); | 
|  | req->hdev = hdev; | 
|  | req->err = 0; | 
|  | } | 
|  |  | 
|  | void hci_req_purge(struct hci_request *req) | 
|  | { | 
|  | skb_queue_purge(&req->cmd_q); | 
|  | } | 
|  |  | 
|  | bool hci_req_status_pend(struct hci_dev *hdev) | 
|  | { | 
|  | return hdev->req_status == HCI_REQ_PEND; | 
|  | } | 
|  |  | 
|  | static int req_run(struct hci_request *req, hci_req_complete_t complete, | 
|  | hci_req_complete_skb_t complete_skb) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct sk_buff *skb; | 
|  | unsigned long flags; | 
|  |  | 
|  | BT_DBG("length %u", skb_queue_len(&req->cmd_q)); | 
|  |  | 
|  | /* If an error occurred during request building, remove all HCI | 
|  | * commands queued on the HCI request queue. | 
|  | */ | 
|  | if (req->err) { | 
|  | skb_queue_purge(&req->cmd_q); | 
|  | return req->err; | 
|  | } | 
|  |  | 
|  | /* Do not allow empty requests */ | 
|  | if (skb_queue_empty(&req->cmd_q)) | 
|  | return -ENODATA; | 
|  |  | 
|  | skb = skb_peek_tail(&req->cmd_q); | 
|  | if (complete) { | 
|  | bt_cb(skb)->hci.req_complete = complete; | 
|  | } else if (complete_skb) { | 
|  | bt_cb(skb)->hci.req_complete_skb = complete_skb; | 
|  | bt_cb(skb)->hci.req_flags |= HCI_REQ_SKB; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&hdev->cmd_q.lock, flags); | 
|  | skb_queue_splice_tail(&req->cmd_q, &hdev->cmd_q); | 
|  | spin_unlock_irqrestore(&hdev->cmd_q.lock, flags); | 
|  |  | 
|  | queue_work(hdev->workqueue, &hdev->cmd_work); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int hci_req_run(struct hci_request *req, hci_req_complete_t complete) | 
|  | { | 
|  | return req_run(req, complete, NULL); | 
|  | } | 
|  |  | 
|  | int hci_req_run_skb(struct hci_request *req, hci_req_complete_skb_t complete) | 
|  | { | 
|  | return req_run(req, NULL, complete); | 
|  | } | 
|  |  | 
|  | static void hci_req_sync_complete(struct hci_dev *hdev, u8 result, u16 opcode, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | BT_DBG("%s result 0x%2.2x", hdev->name, result); | 
|  |  | 
|  | if (hdev->req_status == HCI_REQ_PEND) { | 
|  | hdev->req_result = result; | 
|  | hdev->req_status = HCI_REQ_DONE; | 
|  | if (skb) | 
|  | hdev->req_skb = skb_get(skb); | 
|  | wake_up_interruptible(&hdev->req_wait_q); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hci_req_sync_cancel(struct hci_dev *hdev, int err) | 
|  | { | 
|  | BT_DBG("%s err 0x%2.2x", hdev->name, err); | 
|  |  | 
|  | if (hdev->req_status == HCI_REQ_PEND) { | 
|  | hdev->req_result = err; | 
|  | hdev->req_status = HCI_REQ_CANCELED; | 
|  | wake_up_interruptible(&hdev->req_wait_q); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct sk_buff *__hci_cmd_sync_ev(struct hci_dev *hdev, u16 opcode, u32 plen, | 
|  | const void *param, u8 event, u32 timeout) | 
|  | { | 
|  | struct hci_request req; | 
|  | struct sk_buff *skb; | 
|  | int err = 0; | 
|  |  | 
|  | BT_DBG("%s", hdev->name); | 
|  |  | 
|  | hci_req_init(&req, hdev); | 
|  |  | 
|  | hci_req_add_ev(&req, opcode, plen, param, event); | 
|  |  | 
|  | hdev->req_status = HCI_REQ_PEND; | 
|  |  | 
|  | err = hci_req_run_skb(&req, hci_req_sync_complete); | 
|  | if (err < 0) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | err = wait_event_interruptible_timeout(hdev->req_wait_q, | 
|  | hdev->req_status != HCI_REQ_PEND, timeout); | 
|  |  | 
|  | if (err == -ERESTARTSYS) | 
|  | return ERR_PTR(-EINTR); | 
|  |  | 
|  | switch (hdev->req_status) { | 
|  | case HCI_REQ_DONE: | 
|  | err = -bt_to_errno(hdev->req_result); | 
|  | break; | 
|  |  | 
|  | case HCI_REQ_CANCELED: | 
|  | err = -hdev->req_result; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | err = -ETIMEDOUT; | 
|  | break; | 
|  | } | 
|  |  | 
|  | hdev->req_status = hdev->req_result = 0; | 
|  | skb = hdev->req_skb; | 
|  | hdev->req_skb = NULL; | 
|  |  | 
|  | BT_DBG("%s end: err %d", hdev->name, err); | 
|  |  | 
|  | if (err < 0) { | 
|  | kfree_skb(skb); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | if (!skb) | 
|  | return ERR_PTR(-ENODATA); | 
|  |  | 
|  | return skb; | 
|  | } | 
|  | EXPORT_SYMBOL(__hci_cmd_sync_ev); | 
|  |  | 
|  | struct sk_buff *__hci_cmd_sync(struct hci_dev *hdev, u16 opcode, u32 plen, | 
|  | const void *param, u32 timeout) | 
|  | { | 
|  | return __hci_cmd_sync_ev(hdev, opcode, plen, param, 0, timeout); | 
|  | } | 
|  | EXPORT_SYMBOL(__hci_cmd_sync); | 
|  |  | 
|  | /* Execute request and wait for completion. */ | 
|  | int __hci_req_sync(struct hci_dev *hdev, int (*func)(struct hci_request *req, | 
|  | unsigned long opt), | 
|  | unsigned long opt, u32 timeout, u8 *hci_status) | 
|  | { | 
|  | struct hci_request req; | 
|  | int err = 0; | 
|  |  | 
|  | BT_DBG("%s start", hdev->name); | 
|  |  | 
|  | hci_req_init(&req, hdev); | 
|  |  | 
|  | hdev->req_status = HCI_REQ_PEND; | 
|  |  | 
|  | err = func(&req, opt); | 
|  | if (err) { | 
|  | if (hci_status) | 
|  | *hci_status = HCI_ERROR_UNSPECIFIED; | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = hci_req_run_skb(&req, hci_req_sync_complete); | 
|  | if (err < 0) { | 
|  | hdev->req_status = 0; | 
|  |  | 
|  | /* ENODATA means the HCI request command queue is empty. | 
|  | * This can happen when a request with conditionals doesn't | 
|  | * trigger any commands to be sent. This is normal behavior | 
|  | * and should not trigger an error return. | 
|  | */ | 
|  | if (err == -ENODATA) { | 
|  | if (hci_status) | 
|  | *hci_status = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (hci_status) | 
|  | *hci_status = HCI_ERROR_UNSPECIFIED; | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | err = wait_event_interruptible_timeout(hdev->req_wait_q, | 
|  | hdev->req_status != HCI_REQ_PEND, timeout); | 
|  |  | 
|  | if (err == -ERESTARTSYS) | 
|  | return -EINTR; | 
|  |  | 
|  | switch (hdev->req_status) { | 
|  | case HCI_REQ_DONE: | 
|  | err = -bt_to_errno(hdev->req_result); | 
|  | if (hci_status) | 
|  | *hci_status = hdev->req_result; | 
|  | break; | 
|  |  | 
|  | case HCI_REQ_CANCELED: | 
|  | err = -hdev->req_result; | 
|  | if (hci_status) | 
|  | *hci_status = HCI_ERROR_UNSPECIFIED; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | err = -ETIMEDOUT; | 
|  | if (hci_status) | 
|  | *hci_status = HCI_ERROR_UNSPECIFIED; | 
|  | break; | 
|  | } | 
|  |  | 
|  | kfree_skb(hdev->req_skb); | 
|  | hdev->req_skb = NULL; | 
|  | hdev->req_status = hdev->req_result = 0; | 
|  |  | 
|  | BT_DBG("%s end: err %d", hdev->name, err); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int hci_req_sync(struct hci_dev *hdev, int (*req)(struct hci_request *req, | 
|  | unsigned long opt), | 
|  | unsigned long opt, u32 timeout, u8 *hci_status) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!test_bit(HCI_UP, &hdev->flags)) | 
|  | return -ENETDOWN; | 
|  |  | 
|  | /* Serialize all requests */ | 
|  | hci_req_sync_lock(hdev); | 
|  | ret = __hci_req_sync(hdev, req, opt, timeout, hci_status); | 
|  | hci_req_sync_unlock(hdev); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct sk_buff *hci_prepare_cmd(struct hci_dev *hdev, u16 opcode, u32 plen, | 
|  | const void *param) | 
|  | { | 
|  | int len = HCI_COMMAND_HDR_SIZE + plen; | 
|  | struct hci_command_hdr *hdr; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = bt_skb_alloc(len, GFP_ATOMIC); | 
|  | if (!skb) | 
|  | return NULL; | 
|  |  | 
|  | hdr = skb_put(skb, HCI_COMMAND_HDR_SIZE); | 
|  | hdr->opcode = cpu_to_le16(opcode); | 
|  | hdr->plen   = plen; | 
|  |  | 
|  | if (plen) | 
|  | skb_put_data(skb, param, plen); | 
|  |  | 
|  | BT_DBG("skb len %d", skb->len); | 
|  |  | 
|  | hci_skb_pkt_type(skb) = HCI_COMMAND_PKT; | 
|  | hci_skb_opcode(skb) = opcode; | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* Queue a command to an asynchronous HCI request */ | 
|  | void hci_req_add_ev(struct hci_request *req, u16 opcode, u32 plen, | 
|  | const void *param, u8 event) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | BT_DBG("%s opcode 0x%4.4x plen %d", hdev->name, opcode, plen); | 
|  |  | 
|  | /* If an error occurred during request building, there is no point in | 
|  | * queueing the HCI command. We can simply return. | 
|  | */ | 
|  | if (req->err) | 
|  | return; | 
|  |  | 
|  | skb = hci_prepare_cmd(hdev, opcode, plen, param); | 
|  | if (!skb) { | 
|  | bt_dev_err(hdev, "no memory for command (opcode 0x%4.4x)", | 
|  | opcode); | 
|  | req->err = -ENOMEM; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (skb_queue_empty(&req->cmd_q)) | 
|  | bt_cb(skb)->hci.req_flags |= HCI_REQ_START; | 
|  |  | 
|  | bt_cb(skb)->hci.req_event = event; | 
|  |  | 
|  | skb_queue_tail(&req->cmd_q, skb); | 
|  | } | 
|  |  | 
|  | void hci_req_add(struct hci_request *req, u16 opcode, u32 plen, | 
|  | const void *param) | 
|  | { | 
|  | hci_req_add_ev(req, opcode, plen, param, 0); | 
|  | } | 
|  |  | 
|  | void __hci_req_write_fast_connectable(struct hci_request *req, bool enable) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct hci_cp_write_page_scan_activity acp; | 
|  | u8 type; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
|  | return; | 
|  |  | 
|  | if (hdev->hci_ver < BLUETOOTH_VER_1_2) | 
|  | return; | 
|  |  | 
|  | if (enable) { | 
|  | type = PAGE_SCAN_TYPE_INTERLACED; | 
|  |  | 
|  | /* 160 msec page scan interval */ | 
|  | acp.interval = cpu_to_le16(0x0100); | 
|  | } else { | 
|  | type = PAGE_SCAN_TYPE_STANDARD;	/* default */ | 
|  |  | 
|  | /* default 1.28 sec page scan */ | 
|  | acp.interval = cpu_to_le16(0x0800); | 
|  | } | 
|  |  | 
|  | acp.window = cpu_to_le16(0x0012); | 
|  |  | 
|  | if (__cpu_to_le16(hdev->page_scan_interval) != acp.interval || | 
|  | __cpu_to_le16(hdev->page_scan_window) != acp.window) | 
|  | hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_ACTIVITY, | 
|  | sizeof(acp), &acp); | 
|  |  | 
|  | if (hdev->page_scan_type != type) | 
|  | hci_req_add(req, HCI_OP_WRITE_PAGE_SCAN_TYPE, 1, &type); | 
|  | } | 
|  |  | 
|  | /* This function controls the background scanning based on hdev->pend_le_conns | 
|  | * list. If there are pending LE connection we start the background scanning, | 
|  | * otherwise we stop it. | 
|  | * | 
|  | * This function requires the caller holds hdev->lock. | 
|  | */ | 
|  | static void __hci_update_background_scan(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  |  | 
|  | if (!test_bit(HCI_UP, &hdev->flags) || | 
|  | test_bit(HCI_INIT, &hdev->flags) || | 
|  | hci_dev_test_flag(hdev, HCI_SETUP) || | 
|  | hci_dev_test_flag(hdev, HCI_CONFIG) || | 
|  | hci_dev_test_flag(hdev, HCI_AUTO_OFF) || | 
|  | hci_dev_test_flag(hdev, HCI_UNREGISTER)) | 
|  | return; | 
|  |  | 
|  | /* No point in doing scanning if LE support hasn't been enabled */ | 
|  | if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
|  | return; | 
|  |  | 
|  | /* If discovery is active don't interfere with it */ | 
|  | if (hdev->discovery.state != DISCOVERY_STOPPED) | 
|  | return; | 
|  |  | 
|  | /* Reset RSSI and UUID filters when starting background scanning | 
|  | * since these filters are meant for service discovery only. | 
|  | * | 
|  | * The Start Discovery and Start Service Discovery operations | 
|  | * ensure to set proper values for RSSI threshold and UUID | 
|  | * filter list. So it is safe to just reset them here. | 
|  | */ | 
|  | hci_discovery_filter_clear(hdev); | 
|  |  | 
|  | if (list_empty(&hdev->pend_le_conns) && | 
|  | list_empty(&hdev->pend_le_reports)) { | 
|  | /* If there is no pending LE connections or devices | 
|  | * to be scanned for, we should stop the background | 
|  | * scanning. | 
|  | */ | 
|  |  | 
|  | /* If controller is not scanning we are done. */ | 
|  | if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
|  | return; | 
|  |  | 
|  | hci_req_add_le_scan_disable(req); | 
|  |  | 
|  | BT_DBG("%s stopping background scanning", hdev->name); | 
|  | } else { | 
|  | /* If there is at least one pending LE connection, we should | 
|  | * keep the background scan running. | 
|  | */ | 
|  |  | 
|  | /* If controller is connecting, we should not start scanning | 
|  | * since some controllers are not able to scan and connect at | 
|  | * the same time. | 
|  | */ | 
|  | if (hci_lookup_le_connect(hdev)) | 
|  | return; | 
|  |  | 
|  | /* If controller is currently scanning, we stop it to ensure we | 
|  | * don't miss any advertising (due to duplicates filter). | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
|  | hci_req_add_le_scan_disable(req); | 
|  |  | 
|  | hci_req_add_le_passive_scan(req); | 
|  |  | 
|  | BT_DBG("%s starting background scanning", hdev->name); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __hci_req_update_name(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct hci_cp_write_local_name cp; | 
|  |  | 
|  | memcpy(cp.name, hdev->dev_name, sizeof(cp.name)); | 
|  |  | 
|  | hci_req_add(req, HCI_OP_WRITE_LOCAL_NAME, sizeof(cp), &cp); | 
|  | } | 
|  |  | 
|  | #define PNP_INFO_SVCLASS_ID		0x1200 | 
|  |  | 
|  | static u8 *create_uuid16_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) | 
|  | { | 
|  | u8 *ptr = data, *uuids_start = NULL; | 
|  | struct bt_uuid *uuid; | 
|  |  | 
|  | if (len < 4) | 
|  | return ptr; | 
|  |  | 
|  | list_for_each_entry(uuid, &hdev->uuids, list) { | 
|  | u16 uuid16; | 
|  |  | 
|  | if (uuid->size != 16) | 
|  | continue; | 
|  |  | 
|  | uuid16 = get_unaligned_le16(&uuid->uuid[12]); | 
|  | if (uuid16 < 0x1100) | 
|  | continue; | 
|  |  | 
|  | if (uuid16 == PNP_INFO_SVCLASS_ID) | 
|  | continue; | 
|  |  | 
|  | if (!uuids_start) { | 
|  | uuids_start = ptr; | 
|  | uuids_start[0] = 1; | 
|  | uuids_start[1] = EIR_UUID16_ALL; | 
|  | ptr += 2; | 
|  | } | 
|  |  | 
|  | /* Stop if not enough space to put next UUID */ | 
|  | if ((ptr - data) + sizeof(u16) > len) { | 
|  | uuids_start[1] = EIR_UUID16_SOME; | 
|  | break; | 
|  | } | 
|  |  | 
|  | *ptr++ = (uuid16 & 0x00ff); | 
|  | *ptr++ = (uuid16 & 0xff00) >> 8; | 
|  | uuids_start[0] += sizeof(uuid16); | 
|  | } | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static u8 *create_uuid32_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) | 
|  | { | 
|  | u8 *ptr = data, *uuids_start = NULL; | 
|  | struct bt_uuid *uuid; | 
|  |  | 
|  | if (len < 6) | 
|  | return ptr; | 
|  |  | 
|  | list_for_each_entry(uuid, &hdev->uuids, list) { | 
|  | if (uuid->size != 32) | 
|  | continue; | 
|  |  | 
|  | if (!uuids_start) { | 
|  | uuids_start = ptr; | 
|  | uuids_start[0] = 1; | 
|  | uuids_start[1] = EIR_UUID32_ALL; | 
|  | ptr += 2; | 
|  | } | 
|  |  | 
|  | /* Stop if not enough space to put next UUID */ | 
|  | if ((ptr - data) + sizeof(u32) > len) { | 
|  | uuids_start[1] = EIR_UUID32_SOME; | 
|  | break; | 
|  | } | 
|  |  | 
|  | memcpy(ptr, &uuid->uuid[12], sizeof(u32)); | 
|  | ptr += sizeof(u32); | 
|  | uuids_start[0] += sizeof(u32); | 
|  | } | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static u8 *create_uuid128_list(struct hci_dev *hdev, u8 *data, ptrdiff_t len) | 
|  | { | 
|  | u8 *ptr = data, *uuids_start = NULL; | 
|  | struct bt_uuid *uuid; | 
|  |  | 
|  | if (len < 18) | 
|  | return ptr; | 
|  |  | 
|  | list_for_each_entry(uuid, &hdev->uuids, list) { | 
|  | if (uuid->size != 128) | 
|  | continue; | 
|  |  | 
|  | if (!uuids_start) { | 
|  | uuids_start = ptr; | 
|  | uuids_start[0] = 1; | 
|  | uuids_start[1] = EIR_UUID128_ALL; | 
|  | ptr += 2; | 
|  | } | 
|  |  | 
|  | /* Stop if not enough space to put next UUID */ | 
|  | if ((ptr - data) + 16 > len) { | 
|  | uuids_start[1] = EIR_UUID128_SOME; | 
|  | break; | 
|  | } | 
|  |  | 
|  | memcpy(ptr, uuid->uuid, 16); | 
|  | ptr += 16; | 
|  | uuids_start[0] += 16; | 
|  | } | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | static void create_eir(struct hci_dev *hdev, u8 *data) | 
|  | { | 
|  | u8 *ptr = data; | 
|  | size_t name_len; | 
|  |  | 
|  | name_len = strlen(hdev->dev_name); | 
|  |  | 
|  | if (name_len > 0) { | 
|  | /* EIR Data type */ | 
|  | if (name_len > 48) { | 
|  | name_len = 48; | 
|  | ptr[1] = EIR_NAME_SHORT; | 
|  | } else | 
|  | ptr[1] = EIR_NAME_COMPLETE; | 
|  |  | 
|  | /* EIR Data length */ | 
|  | ptr[0] = name_len + 1; | 
|  |  | 
|  | memcpy(ptr + 2, hdev->dev_name, name_len); | 
|  |  | 
|  | ptr += (name_len + 2); | 
|  | } | 
|  |  | 
|  | if (hdev->inq_tx_power != HCI_TX_POWER_INVALID) { | 
|  | ptr[0] = 2; | 
|  | ptr[1] = EIR_TX_POWER; | 
|  | ptr[2] = (u8) hdev->inq_tx_power; | 
|  |  | 
|  | ptr += 3; | 
|  | } | 
|  |  | 
|  | if (hdev->devid_source > 0) { | 
|  | ptr[0] = 9; | 
|  | ptr[1] = EIR_DEVICE_ID; | 
|  |  | 
|  | put_unaligned_le16(hdev->devid_source, ptr + 2); | 
|  | put_unaligned_le16(hdev->devid_vendor, ptr + 4); | 
|  | put_unaligned_le16(hdev->devid_product, ptr + 6); | 
|  | put_unaligned_le16(hdev->devid_version, ptr + 8); | 
|  |  | 
|  | ptr += 10; | 
|  | } | 
|  |  | 
|  | ptr = create_uuid16_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); | 
|  | ptr = create_uuid32_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); | 
|  | ptr = create_uuid128_list(hdev, ptr, HCI_MAX_EIR_LENGTH - (ptr - data)); | 
|  | } | 
|  |  | 
|  | void __hci_req_update_eir(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct hci_cp_write_eir cp; | 
|  |  | 
|  | if (!hdev_is_powered(hdev)) | 
|  | return; | 
|  |  | 
|  | if (!lmp_ext_inq_capable(hdev)) | 
|  | return; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_SSP_ENABLED)) | 
|  | return; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) | 
|  | return; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  |  | 
|  | create_eir(hdev, cp.data); | 
|  |  | 
|  | if (memcmp(cp.data, hdev->eir, sizeof(cp.data)) == 0) | 
|  | return; | 
|  |  | 
|  | memcpy(hdev->eir, cp.data, sizeof(cp.data)); | 
|  |  | 
|  | hci_req_add(req, HCI_OP_WRITE_EIR, sizeof(cp), &cp); | 
|  | } | 
|  |  | 
|  | void hci_req_add_le_scan_disable(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  |  | 
|  | if (use_ext_scan(hdev)) { | 
|  | struct hci_cp_le_set_ext_scan_enable cp; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  | cp.enable = LE_SCAN_DISABLE; | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, sizeof(cp), | 
|  | &cp); | 
|  | } else { | 
|  | struct hci_cp_le_set_scan_enable cp; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  | cp.enable = LE_SCAN_DISABLE; | 
|  | hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void add_to_white_list(struct hci_request *req, | 
|  | struct hci_conn_params *params) | 
|  | { | 
|  | struct hci_cp_le_add_to_white_list cp; | 
|  |  | 
|  | cp.bdaddr_type = params->addr_type; | 
|  | bacpy(&cp.bdaddr, ¶ms->addr); | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_ADD_TO_WHITE_LIST, sizeof(cp), &cp); | 
|  | } | 
|  |  | 
|  | static u8 update_white_list(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct hci_conn_params *params; | 
|  | struct bdaddr_list *b; | 
|  | uint8_t white_list_entries = 0; | 
|  |  | 
|  | /* Go through the current white list programmed into the | 
|  | * controller one by one and check if that address is still | 
|  | * in the list of pending connections or list of devices to | 
|  | * report. If not present in either list, then queue the | 
|  | * command to remove it from the controller. | 
|  | */ | 
|  | list_for_each_entry(b, &hdev->le_white_list, list) { | 
|  | /* If the device is neither in pend_le_conns nor | 
|  | * pend_le_reports then remove it from the whitelist. | 
|  | */ | 
|  | if (!hci_pend_le_action_lookup(&hdev->pend_le_conns, | 
|  | &b->bdaddr, b->bdaddr_type) && | 
|  | !hci_pend_le_action_lookup(&hdev->pend_le_reports, | 
|  | &b->bdaddr, b->bdaddr_type)) { | 
|  | struct hci_cp_le_del_from_white_list cp; | 
|  |  | 
|  | cp.bdaddr_type = b->bdaddr_type; | 
|  | bacpy(&cp.bdaddr, &b->bdaddr); | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_DEL_FROM_WHITE_LIST, | 
|  | sizeof(cp), &cp); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (hci_find_irk_by_addr(hdev, &b->bdaddr, b->bdaddr_type)) { | 
|  | /* White list can not be used with RPAs */ | 
|  | return 0x00; | 
|  | } | 
|  |  | 
|  | white_list_entries++; | 
|  | } | 
|  |  | 
|  | /* Since all no longer valid white list entries have been | 
|  | * removed, walk through the list of pending connections | 
|  | * and ensure that any new device gets programmed into | 
|  | * the controller. | 
|  | * | 
|  | * If the list of the devices is larger than the list of | 
|  | * available white list entries in the controller, then | 
|  | * just abort and return filer policy value to not use the | 
|  | * white list. | 
|  | */ | 
|  | list_for_each_entry(params, &hdev->pend_le_conns, action) { | 
|  | if (hci_bdaddr_list_lookup(&hdev->le_white_list, | 
|  | ¶ms->addr, params->addr_type)) | 
|  | continue; | 
|  |  | 
|  | if (white_list_entries >= hdev->le_white_list_size) { | 
|  | /* Select filter policy to accept all advertising */ | 
|  | return 0x00; | 
|  | } | 
|  |  | 
|  | if (hci_find_irk_by_addr(hdev, ¶ms->addr, | 
|  | params->addr_type)) { | 
|  | /* White list can not be used with RPAs */ | 
|  | return 0x00; | 
|  | } | 
|  |  | 
|  | white_list_entries++; | 
|  | add_to_white_list(req, params); | 
|  | } | 
|  |  | 
|  | /* After adding all new pending connections, walk through | 
|  | * the list of pending reports and also add these to the | 
|  | * white list if there is still space. | 
|  | */ | 
|  | list_for_each_entry(params, &hdev->pend_le_reports, action) { | 
|  | if (hci_bdaddr_list_lookup(&hdev->le_white_list, | 
|  | ¶ms->addr, params->addr_type)) | 
|  | continue; | 
|  |  | 
|  | if (white_list_entries >= hdev->le_white_list_size) { | 
|  | /* Select filter policy to accept all advertising */ | 
|  | return 0x00; | 
|  | } | 
|  |  | 
|  | if (hci_find_irk_by_addr(hdev, ¶ms->addr, | 
|  | params->addr_type)) { | 
|  | /* White list can not be used with RPAs */ | 
|  | return 0x00; | 
|  | } | 
|  |  | 
|  | white_list_entries++; | 
|  | add_to_white_list(req, params); | 
|  | } | 
|  |  | 
|  | /* Select filter policy to use white list */ | 
|  | return 0x01; | 
|  | } | 
|  |  | 
|  | static bool scan_use_rpa(struct hci_dev *hdev) | 
|  | { | 
|  | return hci_dev_test_flag(hdev, HCI_PRIVACY); | 
|  | } | 
|  |  | 
|  | static void hci_req_start_scan(struct hci_request *req, u8 type, u16 interval, | 
|  | u16 window, u8 own_addr_type, u8 filter_policy) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  |  | 
|  | /* Use ext scanning if set ext scan param and ext scan enable is | 
|  | * supported | 
|  | */ | 
|  | if (use_ext_scan(hdev)) { | 
|  | struct hci_cp_le_set_ext_scan_params *ext_param_cp; | 
|  | struct hci_cp_le_set_ext_scan_enable ext_enable_cp; | 
|  | struct hci_cp_le_scan_phy_params *phy_params; | 
|  | u8 data[sizeof(*ext_param_cp) + sizeof(*phy_params) * 2]; | 
|  | u32 plen; | 
|  |  | 
|  | ext_param_cp = (void *)data; | 
|  | phy_params = (void *)ext_param_cp->data; | 
|  |  | 
|  | memset(ext_param_cp, 0, sizeof(*ext_param_cp)); | 
|  | ext_param_cp->own_addr_type = own_addr_type; | 
|  | ext_param_cp->filter_policy = filter_policy; | 
|  |  | 
|  | plen = sizeof(*ext_param_cp); | 
|  |  | 
|  | if (scan_1m(hdev) || scan_2m(hdev)) { | 
|  | ext_param_cp->scanning_phys |= LE_SCAN_PHY_1M; | 
|  |  | 
|  | memset(phy_params, 0, sizeof(*phy_params)); | 
|  | phy_params->type = type; | 
|  | phy_params->interval = cpu_to_le16(interval); | 
|  | phy_params->window = cpu_to_le16(window); | 
|  |  | 
|  | plen += sizeof(*phy_params); | 
|  | phy_params++; | 
|  | } | 
|  |  | 
|  | if (scan_coded(hdev)) { | 
|  | ext_param_cp->scanning_phys |= LE_SCAN_PHY_CODED; | 
|  |  | 
|  | memset(phy_params, 0, sizeof(*phy_params)); | 
|  | phy_params->type = type; | 
|  | phy_params->interval = cpu_to_le16(interval); | 
|  | phy_params->window = cpu_to_le16(window); | 
|  |  | 
|  | plen += sizeof(*phy_params); | 
|  | phy_params++; | 
|  | } | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_PARAMS, | 
|  | plen, ext_param_cp); | 
|  |  | 
|  | memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); | 
|  | ext_enable_cp.enable = LE_SCAN_ENABLE; | 
|  | ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, | 
|  | sizeof(ext_enable_cp), &ext_enable_cp); | 
|  | } else { | 
|  | struct hci_cp_le_set_scan_param param_cp; | 
|  | struct hci_cp_le_set_scan_enable enable_cp; | 
|  |  | 
|  | memset(¶m_cp, 0, sizeof(param_cp)); | 
|  | param_cp.type = type; | 
|  | param_cp.interval = cpu_to_le16(interval); | 
|  | param_cp.window = cpu_to_le16(window); | 
|  | param_cp.own_address_type = own_addr_type; | 
|  | param_cp.filter_policy = filter_policy; | 
|  | hci_req_add(req, HCI_OP_LE_SET_SCAN_PARAM, sizeof(param_cp), | 
|  | ¶m_cp); | 
|  |  | 
|  | memset(&enable_cp, 0, sizeof(enable_cp)); | 
|  | enable_cp.enable = LE_SCAN_ENABLE; | 
|  | enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
|  | hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(enable_cp), | 
|  | &enable_cp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hci_req_add_le_passive_scan(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | u8 own_addr_type; | 
|  | u8 filter_policy; | 
|  |  | 
|  | /* Set require_privacy to false since no SCAN_REQ are send | 
|  | * during passive scanning. Not using an non-resolvable address | 
|  | * here is important so that peer devices using direct | 
|  | * advertising with our address will be correctly reported | 
|  | * by the controller. | 
|  | */ | 
|  | if (hci_update_random_address(req, false, scan_use_rpa(hdev), | 
|  | &own_addr_type)) | 
|  | return; | 
|  |  | 
|  | /* Adding or removing entries from the white list must | 
|  | * happen before enabling scanning. The controller does | 
|  | * not allow white list modification while scanning. | 
|  | */ | 
|  | filter_policy = update_white_list(req); | 
|  |  | 
|  | /* When the controller is using random resolvable addresses and | 
|  | * with that having LE privacy enabled, then controllers with | 
|  | * Extended Scanner Filter Policies support can now enable support | 
|  | * for handling directed advertising. | 
|  | * | 
|  | * So instead of using filter polices 0x00 (no whitelist) | 
|  | * and 0x01 (whitelist enabled) use the new filter policies | 
|  | * 0x02 (no whitelist) and 0x03 (whitelist enabled). | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_PRIVACY) && | 
|  | (hdev->le_features[0] & HCI_LE_EXT_SCAN_POLICY)) | 
|  | filter_policy |= 0x02; | 
|  |  | 
|  | hci_req_start_scan(req, LE_SCAN_PASSIVE, hdev->le_scan_interval, | 
|  | hdev->le_scan_window, own_addr_type, filter_policy); | 
|  | } | 
|  |  | 
|  | static u8 get_adv_instance_scan_rsp_len(struct hci_dev *hdev, u8 instance) | 
|  | { | 
|  | struct adv_info *adv_instance; | 
|  |  | 
|  | /* Ignore instance 0 */ | 
|  | if (instance == 0x00) | 
|  | return 0; | 
|  |  | 
|  | adv_instance = hci_find_adv_instance(hdev, instance); | 
|  | if (!adv_instance) | 
|  | return 0; | 
|  |  | 
|  | /* TODO: Take into account the "appearance" and "local-name" flags here. | 
|  | * These are currently being ignored as they are not supported. | 
|  | */ | 
|  | return adv_instance->scan_rsp_len; | 
|  | } | 
|  |  | 
|  | static u8 get_cur_adv_instance_scan_rsp_len(struct hci_dev *hdev) | 
|  | { | 
|  | u8 instance = hdev->cur_adv_instance; | 
|  | struct adv_info *adv_instance; | 
|  |  | 
|  | /* Ignore instance 0 */ | 
|  | if (instance == 0x00) | 
|  | return 0; | 
|  |  | 
|  | adv_instance = hci_find_adv_instance(hdev, instance); | 
|  | if (!adv_instance) | 
|  | return 0; | 
|  |  | 
|  | /* TODO: Take into account the "appearance" and "local-name" flags here. | 
|  | * These are currently being ignored as they are not supported. | 
|  | */ | 
|  | return adv_instance->scan_rsp_len; | 
|  | } | 
|  |  | 
|  | void __hci_req_disable_advertising(struct hci_request *req) | 
|  | { | 
|  | if (ext_adv_capable(req->hdev)) { | 
|  | struct hci_cp_le_set_ext_adv_enable cp; | 
|  |  | 
|  | cp.enable = 0x00; | 
|  | /* Disable all sets since we only support one set at the moment */ | 
|  | cp.num_of_sets = 0x00; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, sizeof(cp), &cp); | 
|  | } else { | 
|  | u8 enable = 0x00; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u32 get_adv_instance_flags(struct hci_dev *hdev, u8 instance) | 
|  | { | 
|  | u32 flags; | 
|  | struct adv_info *adv_instance; | 
|  |  | 
|  | if (instance == 0x00) { | 
|  | /* Instance 0 always manages the "Tx Power" and "Flags" | 
|  | * fields | 
|  | */ | 
|  | flags = MGMT_ADV_FLAG_TX_POWER | MGMT_ADV_FLAG_MANAGED_FLAGS; | 
|  |  | 
|  | /* For instance 0, the HCI_ADVERTISING_CONNECTABLE setting | 
|  | * corresponds to the "connectable" instance flag. | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_ADVERTISING_CONNECTABLE)) | 
|  | flags |= MGMT_ADV_FLAG_CONNECTABLE; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) | 
|  | flags |= MGMT_ADV_FLAG_LIMITED_DISCOV; | 
|  | else if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) | 
|  | flags |= MGMT_ADV_FLAG_DISCOV; | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | adv_instance = hci_find_adv_instance(hdev, instance); | 
|  |  | 
|  | /* Return 0 when we got an invalid instance identifier. */ | 
|  | if (!adv_instance) | 
|  | return 0; | 
|  |  | 
|  | return adv_instance->flags; | 
|  | } | 
|  |  | 
|  | static bool adv_use_rpa(struct hci_dev *hdev, uint32_t flags) | 
|  | { | 
|  | /* If privacy is not enabled don't use RPA */ | 
|  | if (!hci_dev_test_flag(hdev, HCI_PRIVACY)) | 
|  | return false; | 
|  |  | 
|  | /* If basic privacy mode is enabled use RPA */ | 
|  | if (!hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) | 
|  | return true; | 
|  |  | 
|  | /* If limited privacy mode is enabled don't use RPA if we're | 
|  | * both discoverable and bondable. | 
|  | */ | 
|  | if ((flags & MGMT_ADV_FLAG_DISCOV) && | 
|  | hci_dev_test_flag(hdev, HCI_BONDABLE)) | 
|  | return false; | 
|  |  | 
|  | /* We're neither bondable nor discoverable in the limited | 
|  | * privacy mode, therefore use RPA. | 
|  | */ | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool is_advertising_allowed(struct hci_dev *hdev, bool connectable) | 
|  | { | 
|  | /* If there is no connection we are OK to advertise. */ | 
|  | if (hci_conn_num(hdev, LE_LINK) == 0) | 
|  | return true; | 
|  |  | 
|  | /* Check le_states if there is any connection in slave role. */ | 
|  | if (hdev->conn_hash.le_num_slave > 0) { | 
|  | /* Slave connection state and non connectable mode bit 20. */ | 
|  | if (!connectable && !(hdev->le_states[2] & 0x10)) | 
|  | return false; | 
|  |  | 
|  | /* Slave connection state and connectable mode bit 38 | 
|  | * and scannable bit 21. | 
|  | */ | 
|  | if (connectable && (!(hdev->le_states[4] & 0x40) || | 
|  | !(hdev->le_states[2] & 0x20))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* Check le_states if there is any connection in master role. */ | 
|  | if (hci_conn_num(hdev, LE_LINK) != hdev->conn_hash.le_num_slave) { | 
|  | /* Master connection state and non connectable mode bit 18. */ | 
|  | if (!connectable && !(hdev->le_states[2] & 0x02)) | 
|  | return false; | 
|  |  | 
|  | /* Master connection state and connectable mode bit 35 and | 
|  | * scannable 19. | 
|  | */ | 
|  | if (connectable && (!(hdev->le_states[4] & 0x08) || | 
|  | !(hdev->le_states[2] & 0x08))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void __hci_req_enable_advertising(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct hci_cp_le_set_adv_param cp; | 
|  | u8 own_addr_type, enable = 0x01; | 
|  | bool connectable; | 
|  | u32 flags; | 
|  |  | 
|  | flags = get_adv_instance_flags(hdev, hdev->cur_adv_instance); | 
|  |  | 
|  | /* If the "connectable" instance flag was not set, then choose between | 
|  | * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. | 
|  | */ | 
|  | connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || | 
|  | mgmt_get_connectable(hdev); | 
|  |  | 
|  | if (!is_advertising_allowed(hdev, connectable)) | 
|  | return; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_ADV)) | 
|  | __hci_req_disable_advertising(req); | 
|  |  | 
|  | /* Clear the HCI_LE_ADV bit temporarily so that the | 
|  | * hci_update_random_address knows that it's safe to go ahead | 
|  | * and write a new random address. The flag will be set back on | 
|  | * as soon as the SET_ADV_ENABLE HCI command completes. | 
|  | */ | 
|  | hci_dev_clear_flag(hdev, HCI_LE_ADV); | 
|  |  | 
|  | /* Set require_privacy to true only when non-connectable | 
|  | * advertising is used. In that case it is fine to use a | 
|  | * non-resolvable private address. | 
|  | */ | 
|  | if (hci_update_random_address(req, !connectable, | 
|  | adv_use_rpa(hdev, flags), | 
|  | &own_addr_type) < 0) | 
|  | return; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  | cp.min_interval = cpu_to_le16(hdev->le_adv_min_interval); | 
|  | cp.max_interval = cpu_to_le16(hdev->le_adv_max_interval); | 
|  |  | 
|  | if (connectable) | 
|  | cp.type = LE_ADV_IND; | 
|  | else if (get_cur_adv_instance_scan_rsp_len(hdev)) | 
|  | cp.type = LE_ADV_SCAN_IND; | 
|  | else | 
|  | cp.type = LE_ADV_NONCONN_IND; | 
|  |  | 
|  | cp.own_address_type = own_addr_type; | 
|  | cp.channel_map = hdev->le_adv_channel_map; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_ADV_PARAM, sizeof(cp), &cp); | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_ADV_ENABLE, sizeof(enable), &enable); | 
|  | } | 
|  |  | 
|  | u8 append_local_name(struct hci_dev *hdev, u8 *ptr, u8 ad_len) | 
|  | { | 
|  | size_t short_len; | 
|  | size_t complete_len; | 
|  |  | 
|  | /* no space left for name (+ NULL + type + len) */ | 
|  | if ((HCI_MAX_AD_LENGTH - ad_len) < HCI_MAX_SHORT_NAME_LENGTH + 3) | 
|  | return ad_len; | 
|  |  | 
|  | /* use complete name if present and fits */ | 
|  | complete_len = strlen(hdev->dev_name); | 
|  | if (complete_len && complete_len <= HCI_MAX_SHORT_NAME_LENGTH) | 
|  | return eir_append_data(ptr, ad_len, EIR_NAME_COMPLETE, | 
|  | hdev->dev_name, complete_len + 1); | 
|  |  | 
|  | /* use short name if present */ | 
|  | short_len = strlen(hdev->short_name); | 
|  | if (short_len) | 
|  | return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, | 
|  | hdev->short_name, short_len + 1); | 
|  |  | 
|  | /* use shortened full name if present, we already know that name | 
|  | * is longer then HCI_MAX_SHORT_NAME_LENGTH | 
|  | */ | 
|  | if (complete_len) { | 
|  | u8 name[HCI_MAX_SHORT_NAME_LENGTH + 1]; | 
|  |  | 
|  | memcpy(name, hdev->dev_name, HCI_MAX_SHORT_NAME_LENGTH); | 
|  | name[HCI_MAX_SHORT_NAME_LENGTH] = '\0'; | 
|  |  | 
|  | return eir_append_data(ptr, ad_len, EIR_NAME_SHORT, name, | 
|  | sizeof(name)); | 
|  | } | 
|  |  | 
|  | return ad_len; | 
|  | } | 
|  |  | 
|  | static u8 append_appearance(struct hci_dev *hdev, u8 *ptr, u8 ad_len) | 
|  | { | 
|  | return eir_append_le16(ptr, ad_len, EIR_APPEARANCE, hdev->appearance); | 
|  | } | 
|  |  | 
|  | static u8 create_default_scan_rsp_data(struct hci_dev *hdev, u8 *ptr) | 
|  | { | 
|  | u8 scan_rsp_len = 0; | 
|  |  | 
|  | if (hdev->appearance) { | 
|  | scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); | 
|  | } | 
|  |  | 
|  | return append_local_name(hdev, ptr, scan_rsp_len); | 
|  | } | 
|  |  | 
|  | static u8 create_instance_scan_rsp_data(struct hci_dev *hdev, u8 instance, | 
|  | u8 *ptr) | 
|  | { | 
|  | struct adv_info *adv_instance; | 
|  | u32 instance_flags; | 
|  | u8 scan_rsp_len = 0; | 
|  |  | 
|  | adv_instance = hci_find_adv_instance(hdev, instance); | 
|  | if (!adv_instance) | 
|  | return 0; | 
|  |  | 
|  | instance_flags = adv_instance->flags; | 
|  |  | 
|  | if ((instance_flags & MGMT_ADV_FLAG_APPEARANCE) && hdev->appearance) { | 
|  | scan_rsp_len = append_appearance(hdev, ptr, scan_rsp_len); | 
|  | } | 
|  |  | 
|  | memcpy(&ptr[scan_rsp_len], adv_instance->scan_rsp_data, | 
|  | adv_instance->scan_rsp_len); | 
|  |  | 
|  | scan_rsp_len += adv_instance->scan_rsp_len; | 
|  |  | 
|  | if (instance_flags & MGMT_ADV_FLAG_LOCAL_NAME) | 
|  | scan_rsp_len = append_local_name(hdev, ptr, scan_rsp_len); | 
|  |  | 
|  | return scan_rsp_len; | 
|  | } | 
|  |  | 
|  | void __hci_req_update_scan_rsp_data(struct hci_request *req, u8 instance) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | u8 len; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
|  | return; | 
|  |  | 
|  | if (ext_adv_capable(hdev)) { | 
|  | struct hci_cp_le_set_ext_scan_rsp_data cp; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  |  | 
|  | if (instance) | 
|  | len = create_instance_scan_rsp_data(hdev, instance, | 
|  | cp.data); | 
|  | else | 
|  | len = create_default_scan_rsp_data(hdev, cp.data); | 
|  |  | 
|  | if (hdev->scan_rsp_data_len == len && | 
|  | !memcmp(cp.data, hdev->scan_rsp_data, len)) | 
|  | return; | 
|  |  | 
|  | memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); | 
|  | hdev->scan_rsp_data_len = len; | 
|  |  | 
|  | cp.handle = 0; | 
|  | cp.length = len; | 
|  | cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; | 
|  | cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_RSP_DATA, sizeof(cp), | 
|  | &cp); | 
|  | } else { | 
|  | struct hci_cp_le_set_scan_rsp_data cp; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  |  | 
|  | if (instance) | 
|  | len = create_instance_scan_rsp_data(hdev, instance, | 
|  | cp.data); | 
|  | else | 
|  | len = create_default_scan_rsp_data(hdev, cp.data); | 
|  |  | 
|  | if (hdev->scan_rsp_data_len == len && | 
|  | !memcmp(cp.data, hdev->scan_rsp_data, len)) | 
|  | return; | 
|  |  | 
|  | memcpy(hdev->scan_rsp_data, cp.data, sizeof(cp.data)); | 
|  | hdev->scan_rsp_data_len = len; | 
|  |  | 
|  | cp.length = len; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_SCAN_RSP_DATA, sizeof(cp), &cp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static u8 create_instance_adv_data(struct hci_dev *hdev, u8 instance, u8 *ptr) | 
|  | { | 
|  | struct adv_info *adv_instance = NULL; | 
|  | u8 ad_len = 0, flags = 0; | 
|  | u32 instance_flags; | 
|  |  | 
|  | /* Return 0 when the current instance identifier is invalid. */ | 
|  | if (instance) { | 
|  | adv_instance = hci_find_adv_instance(hdev, instance); | 
|  | if (!adv_instance) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | instance_flags = get_adv_instance_flags(hdev, instance); | 
|  |  | 
|  | /* If instance already has the flags set skip adding it once | 
|  | * again. | 
|  | */ | 
|  | if (adv_instance && eir_get_data(adv_instance->adv_data, | 
|  | adv_instance->adv_data_len, EIR_FLAGS, | 
|  | NULL)) | 
|  | goto skip_flags; | 
|  |  | 
|  | /* The Add Advertising command allows userspace to set both the general | 
|  | * and limited discoverable flags. | 
|  | */ | 
|  | if (instance_flags & MGMT_ADV_FLAG_DISCOV) | 
|  | flags |= LE_AD_GENERAL; | 
|  |  | 
|  | if (instance_flags & MGMT_ADV_FLAG_LIMITED_DISCOV) | 
|  | flags |= LE_AD_LIMITED; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
|  | flags |= LE_AD_NO_BREDR; | 
|  |  | 
|  | if (flags || (instance_flags & MGMT_ADV_FLAG_MANAGED_FLAGS)) { | 
|  | /* If a discovery flag wasn't provided, simply use the global | 
|  | * settings. | 
|  | */ | 
|  | if (!flags) | 
|  | flags |= mgmt_get_adv_discov_flags(hdev); | 
|  |  | 
|  | /* If flags would still be empty, then there is no need to | 
|  | * include the "Flags" AD field". | 
|  | */ | 
|  | if (flags) { | 
|  | ptr[0] = 0x02; | 
|  | ptr[1] = EIR_FLAGS; | 
|  | ptr[2] = flags; | 
|  |  | 
|  | ad_len += 3; | 
|  | ptr += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | skip_flags: | 
|  | if (adv_instance) { | 
|  | memcpy(ptr, adv_instance->adv_data, | 
|  | adv_instance->adv_data_len); | 
|  | ad_len += adv_instance->adv_data_len; | 
|  | ptr += adv_instance->adv_data_len; | 
|  | } | 
|  |  | 
|  | if (instance_flags & MGMT_ADV_FLAG_TX_POWER) { | 
|  | s8 adv_tx_power; | 
|  |  | 
|  | if (ext_adv_capable(hdev)) { | 
|  | if (adv_instance) | 
|  | adv_tx_power = adv_instance->tx_power; | 
|  | else | 
|  | adv_tx_power = hdev->adv_tx_power; | 
|  | } else { | 
|  | adv_tx_power = hdev->adv_tx_power; | 
|  | } | 
|  |  | 
|  | /* Provide Tx Power only if we can provide a valid value for it */ | 
|  | if (adv_tx_power != HCI_TX_POWER_INVALID) { | 
|  | ptr[0] = 0x02; | 
|  | ptr[1] = EIR_TX_POWER; | 
|  | ptr[2] = (u8)adv_tx_power; | 
|  |  | 
|  | ad_len += 3; | 
|  | ptr += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ad_len; | 
|  | } | 
|  |  | 
|  | void __hci_req_update_adv_data(struct hci_request *req, u8 instance) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | u8 len; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_LE_ENABLED)) | 
|  | return; | 
|  |  | 
|  | if (ext_adv_capable(hdev)) { | 
|  | struct hci_cp_le_set_ext_adv_data cp; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  |  | 
|  | len = create_instance_adv_data(hdev, instance, cp.data); | 
|  |  | 
|  | /* There's nothing to do if the data hasn't changed */ | 
|  | if (hdev->adv_data_len == len && | 
|  | memcmp(cp.data, hdev->adv_data, len) == 0) | 
|  | return; | 
|  |  | 
|  | memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); | 
|  | hdev->adv_data_len = len; | 
|  |  | 
|  | cp.length = len; | 
|  | cp.handle = 0; | 
|  | cp.operation = LE_SET_ADV_DATA_OP_COMPLETE; | 
|  | cp.frag_pref = LE_SET_ADV_DATA_NO_FRAG; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_DATA, sizeof(cp), &cp); | 
|  | } else { | 
|  | struct hci_cp_le_set_adv_data cp; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  |  | 
|  | len = create_instance_adv_data(hdev, instance, cp.data); | 
|  |  | 
|  | /* There's nothing to do if the data hasn't changed */ | 
|  | if (hdev->adv_data_len == len && | 
|  | memcmp(cp.data, hdev->adv_data, len) == 0) | 
|  | return; | 
|  |  | 
|  | memcpy(hdev->adv_data, cp.data, sizeof(cp.data)); | 
|  | hdev->adv_data_len = len; | 
|  |  | 
|  | cp.length = len; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_ADV_DATA, sizeof(cp), &cp); | 
|  | } | 
|  | } | 
|  |  | 
|  | int hci_req_update_adv_data(struct hci_dev *hdev, u8 instance) | 
|  | { | 
|  | struct hci_request req; | 
|  |  | 
|  | hci_req_init(&req, hdev); | 
|  | __hci_req_update_adv_data(&req, instance); | 
|  |  | 
|  | return hci_req_run(&req, NULL); | 
|  | } | 
|  |  | 
|  | static void adv_enable_complete(struct hci_dev *hdev, u8 status, u16 opcode) | 
|  | { | 
|  | BT_DBG("%s status %u", hdev->name, status); | 
|  | } | 
|  |  | 
|  | void hci_req_reenable_advertising(struct hci_dev *hdev) | 
|  | { | 
|  | struct hci_request req; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_ADVERTISING) && | 
|  | list_empty(&hdev->adv_instances)) | 
|  | return; | 
|  |  | 
|  | hci_req_init(&req, hdev); | 
|  |  | 
|  | if (hdev->cur_adv_instance) { | 
|  | __hci_req_schedule_adv_instance(&req, hdev->cur_adv_instance, | 
|  | true); | 
|  | } else { | 
|  | if (ext_adv_capable(hdev)) { | 
|  | __hci_req_start_ext_adv(&req, 0x00); | 
|  | } else { | 
|  | __hci_req_update_adv_data(&req, 0x00); | 
|  | __hci_req_update_scan_rsp_data(&req, 0x00); | 
|  | __hci_req_enable_advertising(&req); | 
|  | } | 
|  | } | 
|  |  | 
|  | hci_req_run(&req, adv_enable_complete); | 
|  | } | 
|  |  | 
|  | static void adv_timeout_expire(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, | 
|  | adv_instance_expire.work); | 
|  |  | 
|  | struct hci_request req; | 
|  | u8 instance; | 
|  |  | 
|  | BT_DBG("%s", hdev->name); | 
|  |  | 
|  | hci_dev_lock(hdev); | 
|  |  | 
|  | hdev->adv_instance_timeout = 0; | 
|  |  | 
|  | instance = hdev->cur_adv_instance; | 
|  | if (instance == 0x00) | 
|  | goto unlock; | 
|  |  | 
|  | hci_req_init(&req, hdev); | 
|  |  | 
|  | hci_req_clear_adv_instance(hdev, NULL, &req, instance, false); | 
|  |  | 
|  | if (list_empty(&hdev->adv_instances)) | 
|  | __hci_req_disable_advertising(&req); | 
|  |  | 
|  | hci_req_run(&req, NULL); | 
|  |  | 
|  | unlock: | 
|  | hci_dev_unlock(hdev); | 
|  | } | 
|  |  | 
|  | int hci_get_random_address(struct hci_dev *hdev, bool require_privacy, | 
|  | bool use_rpa, struct adv_info *adv_instance, | 
|  | u8 *own_addr_type, bdaddr_t *rand_addr) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | bacpy(rand_addr, BDADDR_ANY); | 
|  |  | 
|  | /* If privacy is enabled use a resolvable private address. If | 
|  | * current RPA has expired then generate a new one. | 
|  | */ | 
|  | if (use_rpa) { | 
|  | int to; | 
|  |  | 
|  | *own_addr_type = ADDR_LE_DEV_RANDOM; | 
|  |  | 
|  | if (adv_instance) { | 
|  | if (!adv_instance->rpa_expired && | 
|  | !bacmp(&adv_instance->random_addr, &hdev->rpa)) | 
|  | return 0; | 
|  |  | 
|  | adv_instance->rpa_expired = false; | 
|  | } else { | 
|  | if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && | 
|  | !bacmp(&hdev->random_addr, &hdev->rpa)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); | 
|  | if (err < 0) { | 
|  | BT_ERR("%s failed to generate new RPA", hdev->name); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | bacpy(rand_addr, &hdev->rpa); | 
|  |  | 
|  | to = msecs_to_jiffies(hdev->rpa_timeout * 1000); | 
|  | if (adv_instance) | 
|  | queue_delayed_work(hdev->workqueue, | 
|  | &adv_instance->rpa_expired_cb, to); | 
|  | else | 
|  | queue_delayed_work(hdev->workqueue, | 
|  | &hdev->rpa_expired, to); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* In case of required privacy without resolvable private address, | 
|  | * use an non-resolvable private address. This is useful for | 
|  | * non-connectable advertising. | 
|  | */ | 
|  | if (require_privacy) { | 
|  | bdaddr_t nrpa; | 
|  |  | 
|  | while (true) { | 
|  | /* The non-resolvable private address is generated | 
|  | * from random six bytes with the two most significant | 
|  | * bits cleared. | 
|  | */ | 
|  | get_random_bytes(&nrpa, 6); | 
|  | nrpa.b[5] &= 0x3f; | 
|  |  | 
|  | /* The non-resolvable private address shall not be | 
|  | * equal to the public address. | 
|  | */ | 
|  | if (bacmp(&hdev->bdaddr, &nrpa)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | *own_addr_type = ADDR_LE_DEV_RANDOM; | 
|  | bacpy(rand_addr, &nrpa); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* No privacy so use a public address. */ | 
|  | *own_addr_type = ADDR_LE_DEV_PUBLIC; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __hci_req_clear_ext_adv_sets(struct hci_request *req) | 
|  | { | 
|  | hci_req_add(req, HCI_OP_LE_CLEAR_ADV_SETS, 0, NULL); | 
|  | } | 
|  |  | 
|  | int __hci_req_setup_ext_adv_instance(struct hci_request *req, u8 instance) | 
|  | { | 
|  | struct hci_cp_le_set_ext_adv_params cp; | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | bool connectable; | 
|  | u32 flags; | 
|  | bdaddr_t random_addr; | 
|  | u8 own_addr_type; | 
|  | int err; | 
|  | struct adv_info *adv_instance; | 
|  | bool secondary_adv; | 
|  | /* In ext adv set param interval is 3 octets */ | 
|  | const u8 adv_interval[3] = { 0x00, 0x08, 0x00 }; | 
|  |  | 
|  | if (instance > 0) { | 
|  | adv_instance = hci_find_adv_instance(hdev, instance); | 
|  | if (!adv_instance) | 
|  | return -EINVAL; | 
|  | } else { | 
|  | adv_instance = NULL; | 
|  | } | 
|  |  | 
|  | flags = get_adv_instance_flags(hdev, instance); | 
|  |  | 
|  | /* If the "connectable" instance flag was not set, then choose between | 
|  | * ADV_IND and ADV_NONCONN_IND based on the global connectable setting. | 
|  | */ | 
|  | connectable = (flags & MGMT_ADV_FLAG_CONNECTABLE) || | 
|  | mgmt_get_connectable(hdev); | 
|  |  | 
|  | if (!is_advertising_allowed(hdev, connectable)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Set require_privacy to true only when non-connectable | 
|  | * advertising is used. In that case it is fine to use a | 
|  | * non-resolvable private address. | 
|  | */ | 
|  | err = hci_get_random_address(hdev, !connectable, | 
|  | adv_use_rpa(hdev, flags), adv_instance, | 
|  | &own_addr_type, &random_addr); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  |  | 
|  | memcpy(cp.min_interval, adv_interval, sizeof(cp.min_interval)); | 
|  | memcpy(cp.max_interval, adv_interval, sizeof(cp.max_interval)); | 
|  |  | 
|  | secondary_adv = (flags & MGMT_ADV_FLAG_SEC_MASK); | 
|  |  | 
|  | if (connectable) { | 
|  | if (secondary_adv) | 
|  | cp.evt_properties = cpu_to_le16(LE_EXT_ADV_CONN_IND); | 
|  | else | 
|  | cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_IND); | 
|  | } else if (get_adv_instance_scan_rsp_len(hdev, instance)) { | 
|  | if (secondary_adv) | 
|  | cp.evt_properties = cpu_to_le16(LE_EXT_ADV_SCAN_IND); | 
|  | else | 
|  | cp.evt_properties = cpu_to_le16(LE_LEGACY_ADV_SCAN_IND); | 
|  | } else { | 
|  | if (secondary_adv) | 
|  | cp.evt_properties = cpu_to_le16(LE_EXT_ADV_NON_CONN_IND); | 
|  | else | 
|  | cp.evt_properties = cpu_to_le16(LE_LEGACY_NONCONN_IND); | 
|  | } | 
|  |  | 
|  | cp.own_addr_type = own_addr_type; | 
|  | cp.channel_map = hdev->le_adv_channel_map; | 
|  | cp.tx_power = 127; | 
|  | cp.handle = 0; | 
|  |  | 
|  | if (flags & MGMT_ADV_FLAG_SEC_2M) { | 
|  | cp.primary_phy = HCI_ADV_PHY_1M; | 
|  | cp.secondary_phy = HCI_ADV_PHY_2M; | 
|  | } else if (flags & MGMT_ADV_FLAG_SEC_CODED) { | 
|  | cp.primary_phy = HCI_ADV_PHY_CODED; | 
|  | cp.secondary_phy = HCI_ADV_PHY_CODED; | 
|  | } else { | 
|  | /* In all other cases use 1M */ | 
|  | cp.primary_phy = HCI_ADV_PHY_1M; | 
|  | cp.secondary_phy = HCI_ADV_PHY_1M; | 
|  | } | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_PARAMS, sizeof(cp), &cp); | 
|  |  | 
|  | if (own_addr_type == ADDR_LE_DEV_RANDOM && | 
|  | bacmp(&random_addr, BDADDR_ANY)) { | 
|  | struct hci_cp_le_set_adv_set_rand_addr cp; | 
|  |  | 
|  | /* Check if random address need to be updated */ | 
|  | if (adv_instance) { | 
|  | if (!bacmp(&random_addr, &adv_instance->random_addr)) | 
|  | return 0; | 
|  | } else { | 
|  | if (!bacmp(&random_addr, &hdev->random_addr)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  |  | 
|  | cp.handle = 0; | 
|  | bacpy(&cp.bdaddr, &random_addr); | 
|  |  | 
|  | hci_req_add(req, | 
|  | HCI_OP_LE_SET_ADV_SET_RAND_ADDR, | 
|  | sizeof(cp), &cp); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __hci_req_enable_ext_advertising(struct hci_request *req) | 
|  | { | 
|  | struct hci_cp_le_set_ext_adv_enable *cp; | 
|  | struct hci_cp_ext_adv_set *adv_set; | 
|  | u8 data[sizeof(*cp) + sizeof(*adv_set) * 1]; | 
|  |  | 
|  | cp = (void *) data; | 
|  | adv_set = (void *) cp->data; | 
|  |  | 
|  | memset(cp, 0, sizeof(*cp)); | 
|  |  | 
|  | cp->enable = 0x01; | 
|  | cp->num_of_sets = 0x01; | 
|  |  | 
|  | memset(adv_set, 0, sizeof(*adv_set)); | 
|  |  | 
|  | adv_set->handle = 0; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_ADV_ENABLE, | 
|  | sizeof(*cp) + sizeof(*adv_set) * cp->num_of_sets, | 
|  | data); | 
|  | } | 
|  |  | 
|  | int __hci_req_start_ext_adv(struct hci_request *req, u8 instance) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | int err; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_ADV)) | 
|  | __hci_req_disable_advertising(req); | 
|  |  | 
|  | err = __hci_req_setup_ext_adv_instance(req, instance); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | __hci_req_update_scan_rsp_data(req, instance); | 
|  | __hci_req_enable_ext_advertising(req); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __hci_req_schedule_adv_instance(struct hci_request *req, u8 instance, | 
|  | bool force) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct adv_info *adv_instance = NULL; | 
|  | u16 timeout; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || | 
|  | list_empty(&hdev->adv_instances)) | 
|  | return -EPERM; | 
|  |  | 
|  | if (hdev->adv_instance_timeout) | 
|  | return -EBUSY; | 
|  |  | 
|  | adv_instance = hci_find_adv_instance(hdev, instance); | 
|  | if (!adv_instance) | 
|  | return -ENOENT; | 
|  |  | 
|  | /* A zero timeout means unlimited advertising. As long as there is | 
|  | * only one instance, duration should be ignored. We still set a timeout | 
|  | * in case further instances are being added later on. | 
|  | * | 
|  | * If the remaining lifetime of the instance is more than the duration | 
|  | * then the timeout corresponds to the duration, otherwise it will be | 
|  | * reduced to the remaining instance lifetime. | 
|  | */ | 
|  | if (adv_instance->timeout == 0 || | 
|  | adv_instance->duration <= adv_instance->remaining_time) | 
|  | timeout = adv_instance->duration; | 
|  | else | 
|  | timeout = adv_instance->remaining_time; | 
|  |  | 
|  | /* The remaining time is being reduced unless the instance is being | 
|  | * advertised without time limit. | 
|  | */ | 
|  | if (adv_instance->timeout) | 
|  | adv_instance->remaining_time = | 
|  | adv_instance->remaining_time - timeout; | 
|  |  | 
|  | hdev->adv_instance_timeout = timeout; | 
|  | queue_delayed_work(hdev->req_workqueue, | 
|  | &hdev->adv_instance_expire, | 
|  | msecs_to_jiffies(timeout * 1000)); | 
|  |  | 
|  | /* If we're just re-scheduling the same instance again then do not | 
|  | * execute any HCI commands. This happens when a single instance is | 
|  | * being advertised. | 
|  | */ | 
|  | if (!force && hdev->cur_adv_instance == instance && | 
|  | hci_dev_test_flag(hdev, HCI_LE_ADV)) | 
|  | return 0; | 
|  |  | 
|  | hdev->cur_adv_instance = instance; | 
|  | if (ext_adv_capable(hdev)) { | 
|  | __hci_req_start_ext_adv(req, instance); | 
|  | } else { | 
|  | __hci_req_update_adv_data(req, instance); | 
|  | __hci_req_update_scan_rsp_data(req, instance); | 
|  | __hci_req_enable_advertising(req); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void cancel_adv_timeout(struct hci_dev *hdev) | 
|  | { | 
|  | if (hdev->adv_instance_timeout) { | 
|  | hdev->adv_instance_timeout = 0; | 
|  | cancel_delayed_work(&hdev->adv_instance_expire); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* For a single instance: | 
|  | * - force == true: The instance will be removed even when its remaining | 
|  | *   lifetime is not zero. | 
|  | * - force == false: the instance will be deactivated but kept stored unless | 
|  | *   the remaining lifetime is zero. | 
|  | * | 
|  | * For instance == 0x00: | 
|  | * - force == true: All instances will be removed regardless of their timeout | 
|  | *   setting. | 
|  | * - force == false: Only instances that have a timeout will be removed. | 
|  | */ | 
|  | void hci_req_clear_adv_instance(struct hci_dev *hdev, struct sock *sk, | 
|  | struct hci_request *req, u8 instance, | 
|  | bool force) | 
|  | { | 
|  | struct adv_info *adv_instance, *n, *next_instance = NULL; | 
|  | int err; | 
|  | u8 rem_inst; | 
|  |  | 
|  | /* Cancel any timeout concerning the removed instance(s). */ | 
|  | if (!instance || hdev->cur_adv_instance == instance) | 
|  | cancel_adv_timeout(hdev); | 
|  |  | 
|  | /* Get the next instance to advertise BEFORE we remove | 
|  | * the current one. This can be the same instance again | 
|  | * if there is only one instance. | 
|  | */ | 
|  | if (instance && hdev->cur_adv_instance == instance) | 
|  | next_instance = hci_get_next_instance(hdev, instance); | 
|  |  | 
|  | if (instance == 0x00) { | 
|  | list_for_each_entry_safe(adv_instance, n, &hdev->adv_instances, | 
|  | list) { | 
|  | if (!(force || adv_instance->timeout)) | 
|  | continue; | 
|  |  | 
|  | rem_inst = adv_instance->instance; | 
|  | err = hci_remove_adv_instance(hdev, rem_inst); | 
|  | if (!err) | 
|  | mgmt_advertising_removed(sk, hdev, rem_inst); | 
|  | } | 
|  | } else { | 
|  | adv_instance = hci_find_adv_instance(hdev, instance); | 
|  |  | 
|  | if (force || (adv_instance && adv_instance->timeout && | 
|  | !adv_instance->remaining_time)) { | 
|  | /* Don't advertise a removed instance. */ | 
|  | if (next_instance && | 
|  | next_instance->instance == instance) | 
|  | next_instance = NULL; | 
|  |  | 
|  | err = hci_remove_adv_instance(hdev, instance); | 
|  | if (!err) | 
|  | mgmt_advertising_removed(sk, hdev, instance); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!req || !hdev_is_powered(hdev) || | 
|  | hci_dev_test_flag(hdev, HCI_ADVERTISING)) | 
|  | return; | 
|  |  | 
|  | if (next_instance) | 
|  | __hci_req_schedule_adv_instance(req, next_instance->instance, | 
|  | false); | 
|  | } | 
|  |  | 
|  | static void set_random_addr(struct hci_request *req, bdaddr_t *rpa) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  |  | 
|  | /* If we're advertising or initiating an LE connection we can't | 
|  | * go ahead and change the random address at this time. This is | 
|  | * because the eventual initiator address used for the | 
|  | * subsequently created connection will be undefined (some | 
|  | * controllers use the new address and others the one we had | 
|  | * when the operation started). | 
|  | * | 
|  | * In this kind of scenario skip the update and let the random | 
|  | * address be updated at the next cycle. | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_ADV) || | 
|  | hci_lookup_le_connect(hdev)) { | 
|  | BT_DBG("Deferring random address update"); | 
|  | hci_dev_set_flag(hdev, HCI_RPA_EXPIRED); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, rpa); | 
|  | } | 
|  |  | 
|  | int hci_update_random_address(struct hci_request *req, bool require_privacy, | 
|  | bool use_rpa, u8 *own_addr_type) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | int err; | 
|  |  | 
|  | /* If privacy is enabled use a resolvable private address. If | 
|  | * current RPA has expired or there is something else than | 
|  | * the current RPA in use, then generate a new one. | 
|  | */ | 
|  | if (use_rpa) { | 
|  | int to; | 
|  |  | 
|  | *own_addr_type = ADDR_LE_DEV_RANDOM; | 
|  |  | 
|  | if (!hci_dev_test_and_clear_flag(hdev, HCI_RPA_EXPIRED) && | 
|  | !bacmp(&hdev->random_addr, &hdev->rpa)) | 
|  | return 0; | 
|  |  | 
|  | err = smp_generate_rpa(hdev, hdev->irk, &hdev->rpa); | 
|  | if (err < 0) { | 
|  | bt_dev_err(hdev, "failed to generate new RPA"); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | set_random_addr(req, &hdev->rpa); | 
|  |  | 
|  | to = msecs_to_jiffies(hdev->rpa_timeout * 1000); | 
|  | queue_delayed_work(hdev->workqueue, &hdev->rpa_expired, to); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* In case of required privacy without resolvable private address, | 
|  | * use an non-resolvable private address. This is useful for active | 
|  | * scanning and non-connectable advertising. | 
|  | */ | 
|  | if (require_privacy) { | 
|  | bdaddr_t nrpa; | 
|  |  | 
|  | while (true) { | 
|  | /* The non-resolvable private address is generated | 
|  | * from random six bytes with the two most significant | 
|  | * bits cleared. | 
|  | */ | 
|  | get_random_bytes(&nrpa, 6); | 
|  | nrpa.b[5] &= 0x3f; | 
|  |  | 
|  | /* The non-resolvable private address shall not be | 
|  | * equal to the public address. | 
|  | */ | 
|  | if (bacmp(&hdev->bdaddr, &nrpa)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | *own_addr_type = ADDR_LE_DEV_RANDOM; | 
|  | set_random_addr(req, &nrpa); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If forcing static address is in use or there is no public | 
|  | * address use the static address as random address (but skip | 
|  | * the HCI command if the current random address is already the | 
|  | * static one. | 
|  | * | 
|  | * In case BR/EDR has been disabled on a dual-mode controller | 
|  | * and a static address has been configured, then use that | 
|  | * address instead of the public BR/EDR address. | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_FORCE_STATIC_ADDR) || | 
|  | !bacmp(&hdev->bdaddr, BDADDR_ANY) || | 
|  | (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED) && | 
|  | bacmp(&hdev->static_addr, BDADDR_ANY))) { | 
|  | *own_addr_type = ADDR_LE_DEV_RANDOM; | 
|  | if (bacmp(&hdev->static_addr, &hdev->random_addr)) | 
|  | hci_req_add(req, HCI_OP_LE_SET_RANDOM_ADDR, 6, | 
|  | &hdev->static_addr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Neither privacy nor static address is being used so use a | 
|  | * public address. | 
|  | */ | 
|  | *own_addr_type = ADDR_LE_DEV_PUBLIC; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool disconnected_whitelist_entries(struct hci_dev *hdev) | 
|  | { | 
|  | struct bdaddr_list *b; | 
|  |  | 
|  | list_for_each_entry(b, &hdev->whitelist, list) { | 
|  | struct hci_conn *conn; | 
|  |  | 
|  | conn = hci_conn_hash_lookup_ba(hdev, ACL_LINK, &b->bdaddr); | 
|  | if (!conn) | 
|  | return true; | 
|  |  | 
|  | if (conn->state != BT_CONNECTED && conn->state != BT_CONFIG) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void __hci_req_update_scan(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | u8 scan; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
|  | return; | 
|  |  | 
|  | if (!hdev_is_powered(hdev)) | 
|  | return; | 
|  |  | 
|  | if (mgmt_powering_down(hdev)) | 
|  | return; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_CONNECTABLE) || | 
|  | disconnected_whitelist_entries(hdev)) | 
|  | scan = SCAN_PAGE; | 
|  | else | 
|  | scan = SCAN_DISABLED; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) | 
|  | scan |= SCAN_INQUIRY; | 
|  |  | 
|  | if (test_bit(HCI_PSCAN, &hdev->flags) == !!(scan & SCAN_PAGE) && | 
|  | test_bit(HCI_ISCAN, &hdev->flags) == !!(scan & SCAN_INQUIRY)) | 
|  | return; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan); | 
|  | } | 
|  |  | 
|  | static int update_scan(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | hci_dev_lock(req->hdev); | 
|  | __hci_req_update_scan(req); | 
|  | hci_dev_unlock(req->hdev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void scan_update_work(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, scan_update); | 
|  |  | 
|  | hci_req_sync(hdev, update_scan, 0, HCI_CMD_TIMEOUT, NULL); | 
|  | } | 
|  |  | 
|  | static int connectable_update(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  |  | 
|  | hci_dev_lock(hdev); | 
|  |  | 
|  | __hci_req_update_scan(req); | 
|  |  | 
|  | /* If BR/EDR is not enabled and we disable advertising as a | 
|  | * by-product of disabling connectable, we need to update the | 
|  | * advertising flags. | 
|  | */ | 
|  | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
|  | __hci_req_update_adv_data(req, hdev->cur_adv_instance); | 
|  |  | 
|  | /* Update the advertising parameters if necessary */ | 
|  | if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || | 
|  | !list_empty(&hdev->adv_instances)) { | 
|  | if (ext_adv_capable(hdev)) | 
|  | __hci_req_start_ext_adv(req, hdev->cur_adv_instance); | 
|  | else | 
|  | __hci_req_enable_advertising(req); | 
|  | } | 
|  |  | 
|  | __hci_update_background_scan(req); | 
|  |  | 
|  | hci_dev_unlock(hdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void connectable_update_work(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, | 
|  | connectable_update); | 
|  | u8 status; | 
|  |  | 
|  | hci_req_sync(hdev, connectable_update, 0, HCI_CMD_TIMEOUT, &status); | 
|  | mgmt_set_connectable_complete(hdev, status); | 
|  | } | 
|  |  | 
|  | static u8 get_service_classes(struct hci_dev *hdev) | 
|  | { | 
|  | struct bt_uuid *uuid; | 
|  | u8 val = 0; | 
|  |  | 
|  | list_for_each_entry(uuid, &hdev->uuids, list) | 
|  | val |= uuid->svc_hint; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | void __hci_req_update_class(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | u8 cod[3]; | 
|  |  | 
|  | BT_DBG("%s", hdev->name); | 
|  |  | 
|  | if (!hdev_is_powered(hdev)) | 
|  | return; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) | 
|  | return; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_SERVICE_CACHE)) | 
|  | return; | 
|  |  | 
|  | cod[0] = hdev->minor_class; | 
|  | cod[1] = hdev->major_class; | 
|  | cod[2] = get_service_classes(hdev); | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) | 
|  | cod[1] |= 0x20; | 
|  |  | 
|  | if (memcmp(cod, hdev->dev_class, 3) == 0) | 
|  | return; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_WRITE_CLASS_OF_DEV, sizeof(cod), cod); | 
|  | } | 
|  |  | 
|  | static void write_iac(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct hci_cp_write_current_iac_lap cp; | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_DISCOVERABLE)) | 
|  | return; | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LIMITED_DISCOVERABLE)) { | 
|  | /* Limited discoverable mode */ | 
|  | cp.num_iac = min_t(u8, hdev->num_iac, 2); | 
|  | cp.iac_lap[0] = 0x00;	/* LIAC */ | 
|  | cp.iac_lap[1] = 0x8b; | 
|  | cp.iac_lap[2] = 0x9e; | 
|  | cp.iac_lap[3] = 0x33;	/* GIAC */ | 
|  | cp.iac_lap[4] = 0x8b; | 
|  | cp.iac_lap[5] = 0x9e; | 
|  | } else { | 
|  | /* General discoverable mode */ | 
|  | cp.num_iac = 1; | 
|  | cp.iac_lap[0] = 0x33;	/* GIAC */ | 
|  | cp.iac_lap[1] = 0x8b; | 
|  | cp.iac_lap[2] = 0x9e; | 
|  | } | 
|  |  | 
|  | hci_req_add(req, HCI_OP_WRITE_CURRENT_IAC_LAP, | 
|  | (cp.num_iac * 3) + 1, &cp); | 
|  | } | 
|  |  | 
|  | static int discoverable_update(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  |  | 
|  | hci_dev_lock(hdev); | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_BREDR_ENABLED)) { | 
|  | write_iac(req); | 
|  | __hci_req_update_scan(req); | 
|  | __hci_req_update_class(req); | 
|  | } | 
|  |  | 
|  | /* Advertising instances don't use the global discoverable setting, so | 
|  | * only update AD if advertising was enabled using Set Advertising. | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { | 
|  | __hci_req_update_adv_data(req, 0x00); | 
|  |  | 
|  | /* Discoverable mode affects the local advertising | 
|  | * address in limited privacy mode. | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_LIMITED_PRIVACY)) { | 
|  | if (ext_adv_capable(hdev)) | 
|  | __hci_req_start_ext_adv(req, 0x00); | 
|  | else | 
|  | __hci_req_enable_advertising(req); | 
|  | } | 
|  | } | 
|  |  | 
|  | hci_dev_unlock(hdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void discoverable_update_work(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, | 
|  | discoverable_update); | 
|  | u8 status; | 
|  |  | 
|  | hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, &status); | 
|  | mgmt_set_discoverable_complete(hdev, status); | 
|  | } | 
|  |  | 
|  | void __hci_abort_conn(struct hci_request *req, struct hci_conn *conn, | 
|  | u8 reason) | 
|  | { | 
|  | switch (conn->state) { | 
|  | case BT_CONNECTED: | 
|  | case BT_CONFIG: | 
|  | if (conn->type == AMP_LINK) { | 
|  | struct hci_cp_disconn_phy_link cp; | 
|  |  | 
|  | cp.phy_handle = HCI_PHY_HANDLE(conn->handle); | 
|  | cp.reason = reason; | 
|  | hci_req_add(req, HCI_OP_DISCONN_PHY_LINK, sizeof(cp), | 
|  | &cp); | 
|  | } else { | 
|  | struct hci_cp_disconnect dc; | 
|  |  | 
|  | dc.handle = cpu_to_le16(conn->handle); | 
|  | dc.reason = reason; | 
|  | hci_req_add(req, HCI_OP_DISCONNECT, sizeof(dc), &dc); | 
|  | } | 
|  |  | 
|  | conn->state = BT_DISCONN; | 
|  |  | 
|  | break; | 
|  | case BT_CONNECT: | 
|  | if (conn->type == LE_LINK) { | 
|  | if (test_bit(HCI_CONN_SCANNING, &conn->flags)) | 
|  | break; | 
|  | hci_req_add(req, HCI_OP_LE_CREATE_CONN_CANCEL, | 
|  | 0, NULL); | 
|  | } else if (conn->type == ACL_LINK) { | 
|  | if (req->hdev->hci_ver < BLUETOOTH_VER_1_2) | 
|  | break; | 
|  | hci_req_add(req, HCI_OP_CREATE_CONN_CANCEL, | 
|  | 6, &conn->dst); | 
|  | } | 
|  | break; | 
|  | case BT_CONNECT2: | 
|  | if (conn->type == ACL_LINK) { | 
|  | struct hci_cp_reject_conn_req rej; | 
|  |  | 
|  | bacpy(&rej.bdaddr, &conn->dst); | 
|  | rej.reason = reason; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_REJECT_CONN_REQ, | 
|  | sizeof(rej), &rej); | 
|  | } else if (conn->type == SCO_LINK || conn->type == ESCO_LINK) { | 
|  | struct hci_cp_reject_sync_conn_req rej; | 
|  |  | 
|  | bacpy(&rej.bdaddr, &conn->dst); | 
|  |  | 
|  | /* SCO rejection has its own limited set of | 
|  | * allowed error values (0x0D-0x0F) which isn't | 
|  | * compatible with most values passed to this | 
|  | * function. To be safe hard-code one of the | 
|  | * values that's suitable for SCO. | 
|  | */ | 
|  | rej.reason = HCI_ERROR_REJ_LIMITED_RESOURCES; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_REJECT_SYNC_CONN_REQ, | 
|  | sizeof(rej), &rej); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | conn->state = BT_CLOSED; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void abort_conn_complete(struct hci_dev *hdev, u8 status, u16 opcode) | 
|  | { | 
|  | if (status) | 
|  | BT_DBG("Failed to abort connection: status 0x%2.2x", status); | 
|  | } | 
|  |  | 
|  | int hci_abort_conn(struct hci_conn *conn, u8 reason) | 
|  | { | 
|  | struct hci_request req; | 
|  | int err; | 
|  |  | 
|  | hci_req_init(&req, conn->hdev); | 
|  |  | 
|  | __hci_abort_conn(&req, conn, reason); | 
|  |  | 
|  | err = hci_req_run(&req, abort_conn_complete); | 
|  | if (err && err != -ENODATA) { | 
|  | bt_dev_err(conn->hdev, "failed to run HCI request: err %d", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int update_bg_scan(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | hci_dev_lock(req->hdev); | 
|  | __hci_update_background_scan(req); | 
|  | hci_dev_unlock(req->hdev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void bg_scan_update(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, | 
|  | bg_scan_update); | 
|  | struct hci_conn *conn; | 
|  | u8 status; | 
|  | int err; | 
|  |  | 
|  | err = hci_req_sync(hdev, update_bg_scan, 0, HCI_CMD_TIMEOUT, &status); | 
|  | if (!err) | 
|  | return; | 
|  |  | 
|  | hci_dev_lock(hdev); | 
|  |  | 
|  | conn = hci_conn_hash_lookup_state(hdev, LE_LINK, BT_CONNECT); | 
|  | if (conn) | 
|  | hci_le_conn_failed(conn, status); | 
|  |  | 
|  | hci_dev_unlock(hdev); | 
|  | } | 
|  |  | 
|  | static int le_scan_disable(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | hci_req_add_le_scan_disable(req); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bredr_inquiry(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | u8 length = opt; | 
|  | const u8 giac[3] = { 0x33, 0x8b, 0x9e }; | 
|  | const u8 liac[3] = { 0x00, 0x8b, 0x9e }; | 
|  | struct hci_cp_inquiry cp; | 
|  |  | 
|  | BT_DBG("%s", req->hdev->name); | 
|  |  | 
|  | hci_dev_lock(req->hdev); | 
|  | hci_inquiry_cache_flush(req->hdev); | 
|  | hci_dev_unlock(req->hdev); | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  |  | 
|  | if (req->hdev->discovery.limited) | 
|  | memcpy(&cp.lap, liac, sizeof(cp.lap)); | 
|  | else | 
|  | memcpy(&cp.lap, giac, sizeof(cp.lap)); | 
|  |  | 
|  | cp.length = length; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_INQUIRY, sizeof(cp), &cp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void le_scan_disable_work(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, | 
|  | le_scan_disable.work); | 
|  | u8 status; | 
|  |  | 
|  | BT_DBG("%s", hdev->name); | 
|  |  | 
|  | if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
|  | return; | 
|  |  | 
|  | cancel_delayed_work(&hdev->le_scan_restart); | 
|  |  | 
|  | hci_req_sync(hdev, le_scan_disable, 0, HCI_CMD_TIMEOUT, &status); | 
|  | if (status) { | 
|  | bt_dev_err(hdev, "failed to disable LE scan: status 0x%02x", | 
|  | status); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hdev->discovery.scan_start = 0; | 
|  |  | 
|  | /* If we were running LE only scan, change discovery state. If | 
|  | * we were running both LE and BR/EDR inquiry simultaneously, | 
|  | * and BR/EDR inquiry is already finished, stop discovery, | 
|  | * otherwise BR/EDR inquiry will stop discovery when finished. | 
|  | * If we will resolve remote device name, do not change | 
|  | * discovery state. | 
|  | */ | 
|  |  | 
|  | if (hdev->discovery.type == DISCOV_TYPE_LE) | 
|  | goto discov_stopped; | 
|  |  | 
|  | if (hdev->discovery.type != DISCOV_TYPE_INTERLEAVED) | 
|  | return; | 
|  |  | 
|  | if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, &hdev->quirks)) { | 
|  | if (!test_bit(HCI_INQUIRY, &hdev->flags) && | 
|  | hdev->discovery.state != DISCOVERY_RESOLVING) | 
|  | goto discov_stopped; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | hci_req_sync(hdev, bredr_inquiry, DISCOV_INTERLEAVED_INQUIRY_LEN, | 
|  | HCI_CMD_TIMEOUT, &status); | 
|  | if (status) { | 
|  | bt_dev_err(hdev, "inquiry failed: status 0x%02x", status); | 
|  | goto discov_stopped; | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | discov_stopped: | 
|  | hci_dev_lock(hdev); | 
|  | hci_discovery_set_state(hdev, DISCOVERY_STOPPED); | 
|  | hci_dev_unlock(hdev); | 
|  | } | 
|  |  | 
|  | static int le_scan_restart(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  |  | 
|  | /* If controller is not scanning we are done. */ | 
|  | if (!hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
|  | return 0; | 
|  |  | 
|  | hci_req_add_le_scan_disable(req); | 
|  |  | 
|  | if (use_ext_scan(hdev)) { | 
|  | struct hci_cp_le_set_ext_scan_enable ext_enable_cp; | 
|  |  | 
|  | memset(&ext_enable_cp, 0, sizeof(ext_enable_cp)); | 
|  | ext_enable_cp.enable = LE_SCAN_ENABLE; | 
|  | ext_enable_cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_LE_SET_EXT_SCAN_ENABLE, | 
|  | sizeof(ext_enable_cp), &ext_enable_cp); | 
|  | } else { | 
|  | struct hci_cp_le_set_scan_enable cp; | 
|  |  | 
|  | memset(&cp, 0, sizeof(cp)); | 
|  | cp.enable = LE_SCAN_ENABLE; | 
|  | cp.filter_dup = LE_SCAN_FILTER_DUP_ENABLE; | 
|  | hci_req_add(req, HCI_OP_LE_SET_SCAN_ENABLE, sizeof(cp), &cp); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void le_scan_restart_work(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, | 
|  | le_scan_restart.work); | 
|  | unsigned long timeout, duration, scan_start, now; | 
|  | u8 status; | 
|  |  | 
|  | BT_DBG("%s", hdev->name); | 
|  |  | 
|  | hci_req_sync(hdev, le_scan_restart, 0, HCI_CMD_TIMEOUT, &status); | 
|  | if (status) { | 
|  | bt_dev_err(hdev, "failed to restart LE scan: status %d", | 
|  | status); | 
|  | return; | 
|  | } | 
|  |  | 
|  | hci_dev_lock(hdev); | 
|  |  | 
|  | if (!test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) || | 
|  | !hdev->discovery.scan_start) | 
|  | goto unlock; | 
|  |  | 
|  | /* When the scan was started, hdev->le_scan_disable has been queued | 
|  | * after duration from scan_start. During scan restart this job | 
|  | * has been canceled, and we need to queue it again after proper | 
|  | * timeout, to make sure that scan does not run indefinitely. | 
|  | */ | 
|  | duration = hdev->discovery.scan_duration; | 
|  | scan_start = hdev->discovery.scan_start; | 
|  | now = jiffies; | 
|  | if (now - scan_start <= duration) { | 
|  | int elapsed; | 
|  |  | 
|  | if (now >= scan_start) | 
|  | elapsed = now - scan_start; | 
|  | else | 
|  | elapsed = ULONG_MAX - scan_start + now; | 
|  |  | 
|  | timeout = duration - elapsed; | 
|  | } else { | 
|  | timeout = 0; | 
|  | } | 
|  |  | 
|  | queue_delayed_work(hdev->req_workqueue, | 
|  | &hdev->le_scan_disable, timeout); | 
|  |  | 
|  | unlock: | 
|  | hci_dev_unlock(hdev); | 
|  | } | 
|  |  | 
|  | static int active_scan(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | uint16_t interval = opt; | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | u8 own_addr_type; | 
|  | int err; | 
|  |  | 
|  | BT_DBG("%s", hdev->name); | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_ADV)) { | 
|  | hci_dev_lock(hdev); | 
|  |  | 
|  | /* Don't let discovery abort an outgoing connection attempt | 
|  | * that's using directed advertising. | 
|  | */ | 
|  | if (hci_lookup_le_connect(hdev)) { | 
|  | hci_dev_unlock(hdev); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | cancel_adv_timeout(hdev); | 
|  | hci_dev_unlock(hdev); | 
|  |  | 
|  | __hci_req_disable_advertising(req); | 
|  | } | 
|  |  | 
|  | /* If controller is scanning, it means the background scanning is | 
|  | * running. Thus, we should temporarily stop it in order to set the | 
|  | * discovery scanning parameters. | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) | 
|  | hci_req_add_le_scan_disable(req); | 
|  |  | 
|  | /* All active scans will be done with either a resolvable private | 
|  | * address (when privacy feature has been enabled) or non-resolvable | 
|  | * private address. | 
|  | */ | 
|  | err = hci_update_random_address(req, true, scan_use_rpa(hdev), | 
|  | &own_addr_type); | 
|  | if (err < 0) | 
|  | own_addr_type = ADDR_LE_DEV_PUBLIC; | 
|  |  | 
|  | hci_req_start_scan(req, LE_SCAN_ACTIVE, interval, DISCOV_LE_SCAN_WIN, | 
|  | own_addr_type, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int interleaved_discov(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | BT_DBG("%s", req->hdev->name); | 
|  |  | 
|  | err = active_scan(req, opt); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | return bredr_inquiry(req, DISCOV_BREDR_INQUIRY_LEN); | 
|  | } | 
|  |  | 
|  | static void start_discovery(struct hci_dev *hdev, u8 *status) | 
|  | { | 
|  | unsigned long timeout; | 
|  |  | 
|  | BT_DBG("%s type %u", hdev->name, hdev->discovery.type); | 
|  |  | 
|  | switch (hdev->discovery.type) { | 
|  | case DISCOV_TYPE_BREDR: | 
|  | if (!hci_dev_test_flag(hdev, HCI_INQUIRY)) | 
|  | hci_req_sync(hdev, bredr_inquiry, | 
|  | DISCOV_BREDR_INQUIRY_LEN, HCI_CMD_TIMEOUT, | 
|  | status); | 
|  | return; | 
|  | case DISCOV_TYPE_INTERLEAVED: | 
|  | /* When running simultaneous discovery, the LE scanning time | 
|  | * should occupy the whole discovery time sine BR/EDR inquiry | 
|  | * and LE scanning are scheduled by the controller. | 
|  | * | 
|  | * For interleaving discovery in comparison, BR/EDR inquiry | 
|  | * and LE scanning are done sequentially with separate | 
|  | * timeouts. | 
|  | */ | 
|  | if (test_bit(HCI_QUIRK_SIMULTANEOUS_DISCOVERY, | 
|  | &hdev->quirks)) { | 
|  | timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); | 
|  | /* During simultaneous discovery, we double LE scan | 
|  | * interval. We must leave some time for the controller | 
|  | * to do BR/EDR inquiry. | 
|  | */ | 
|  | hci_req_sync(hdev, interleaved_discov, | 
|  | DISCOV_LE_SCAN_INT * 2, HCI_CMD_TIMEOUT, | 
|  | status); | 
|  | break; | 
|  | } | 
|  |  | 
|  | timeout = msecs_to_jiffies(hdev->discov_interleaved_timeout); | 
|  | hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, | 
|  | HCI_CMD_TIMEOUT, status); | 
|  | break; | 
|  | case DISCOV_TYPE_LE: | 
|  | timeout = msecs_to_jiffies(DISCOV_LE_TIMEOUT); | 
|  | hci_req_sync(hdev, active_scan, DISCOV_LE_SCAN_INT, | 
|  | HCI_CMD_TIMEOUT, status); | 
|  | break; | 
|  | default: | 
|  | *status = HCI_ERROR_UNSPECIFIED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (*status) | 
|  | return; | 
|  |  | 
|  | BT_DBG("%s timeout %u ms", hdev->name, jiffies_to_msecs(timeout)); | 
|  |  | 
|  | /* When service discovery is used and the controller has a | 
|  | * strict duplicate filter, it is important to remember the | 
|  | * start and duration of the scan. This is required for | 
|  | * restarting scanning during the discovery phase. | 
|  | */ | 
|  | if (test_bit(HCI_QUIRK_STRICT_DUPLICATE_FILTER, &hdev->quirks) && | 
|  | hdev->discovery.result_filtering) { | 
|  | hdev->discovery.scan_start = jiffies; | 
|  | hdev->discovery.scan_duration = timeout; | 
|  | } | 
|  |  | 
|  | queue_delayed_work(hdev->req_workqueue, &hdev->le_scan_disable, | 
|  | timeout); | 
|  | } | 
|  |  | 
|  | bool hci_req_stop_discovery(struct hci_request *req) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | struct discovery_state *d = &hdev->discovery; | 
|  | struct hci_cp_remote_name_req_cancel cp; | 
|  | struct inquiry_entry *e; | 
|  | bool ret = false; | 
|  |  | 
|  | BT_DBG("%s state %u", hdev->name, hdev->discovery.state); | 
|  |  | 
|  | if (d->state == DISCOVERY_FINDING || d->state == DISCOVERY_STOPPING) { | 
|  | if (test_bit(HCI_INQUIRY, &hdev->flags)) | 
|  | hci_req_add(req, HCI_OP_INQUIRY_CANCEL, 0, NULL); | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { | 
|  | cancel_delayed_work(&hdev->le_scan_disable); | 
|  | hci_req_add_le_scan_disable(req); | 
|  | } | 
|  |  | 
|  | ret = true; | 
|  | } else { | 
|  | /* Passive scanning */ | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_SCAN)) { | 
|  | hci_req_add_le_scan_disable(req); | 
|  | ret = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No further actions needed for LE-only discovery */ | 
|  | if (d->type == DISCOV_TYPE_LE) | 
|  | return ret; | 
|  |  | 
|  | if (d->state == DISCOVERY_RESOLVING || d->state == DISCOVERY_STOPPING) { | 
|  | e = hci_inquiry_cache_lookup_resolve(hdev, BDADDR_ANY, | 
|  | NAME_PENDING); | 
|  | if (!e) | 
|  | return ret; | 
|  |  | 
|  | bacpy(&cp.bdaddr, &e->data.bdaddr); | 
|  | hci_req_add(req, HCI_OP_REMOTE_NAME_REQ_CANCEL, sizeof(cp), | 
|  | &cp); | 
|  | ret = true; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int stop_discovery(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | hci_dev_lock(req->hdev); | 
|  | hci_req_stop_discovery(req); | 
|  | hci_dev_unlock(req->hdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void discov_update(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, | 
|  | discov_update); | 
|  | u8 status = 0; | 
|  |  | 
|  | switch (hdev->discovery.state) { | 
|  | case DISCOVERY_STARTING: | 
|  | start_discovery(hdev, &status); | 
|  | mgmt_start_discovery_complete(hdev, status); | 
|  | if (status) | 
|  | hci_discovery_set_state(hdev, DISCOVERY_STOPPED); | 
|  | else | 
|  | hci_discovery_set_state(hdev, DISCOVERY_FINDING); | 
|  | break; | 
|  | case DISCOVERY_STOPPING: | 
|  | hci_req_sync(hdev, stop_discovery, 0, HCI_CMD_TIMEOUT, &status); | 
|  | mgmt_stop_discovery_complete(hdev, status); | 
|  | if (!status) | 
|  | hci_discovery_set_state(hdev, DISCOVERY_STOPPED); | 
|  | break; | 
|  | case DISCOVERY_STOPPED: | 
|  | default: | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void discov_off(struct work_struct *work) | 
|  | { | 
|  | struct hci_dev *hdev = container_of(work, struct hci_dev, | 
|  | discov_off.work); | 
|  |  | 
|  | BT_DBG("%s", hdev->name); | 
|  |  | 
|  | hci_dev_lock(hdev); | 
|  |  | 
|  | /* When discoverable timeout triggers, then just make sure | 
|  | * the limited discoverable flag is cleared. Even in the case | 
|  | * of a timeout triggered from general discoverable, it is | 
|  | * safe to unconditionally clear the flag. | 
|  | */ | 
|  | hci_dev_clear_flag(hdev, HCI_LIMITED_DISCOVERABLE); | 
|  | hci_dev_clear_flag(hdev, HCI_DISCOVERABLE); | 
|  | hdev->discov_timeout = 0; | 
|  |  | 
|  | hci_dev_unlock(hdev); | 
|  |  | 
|  | hci_req_sync(hdev, discoverable_update, 0, HCI_CMD_TIMEOUT, NULL); | 
|  | mgmt_new_settings(hdev); | 
|  | } | 
|  |  | 
|  | static int powered_update_hci(struct hci_request *req, unsigned long opt) | 
|  | { | 
|  | struct hci_dev *hdev = req->hdev; | 
|  | u8 link_sec; | 
|  |  | 
|  | hci_dev_lock(hdev); | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_SSP_ENABLED) && | 
|  | !lmp_host_ssp_capable(hdev)) { | 
|  | u8 mode = 0x01; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_WRITE_SSP_MODE, sizeof(mode), &mode); | 
|  |  | 
|  | if (bredr_sc_enabled(hdev) && !lmp_host_sc_capable(hdev)) { | 
|  | u8 support = 0x01; | 
|  |  | 
|  | hci_req_add(req, HCI_OP_WRITE_SC_SUPPORT, | 
|  | sizeof(support), &support); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_ENABLED) && | 
|  | lmp_bredr_capable(hdev)) { | 
|  | struct hci_cp_write_le_host_supported cp; | 
|  |  | 
|  | cp.le = 0x01; | 
|  | cp.simul = 0x00; | 
|  |  | 
|  | /* Check first if we already have the right | 
|  | * host state (host features set) | 
|  | */ | 
|  | if (cp.le != lmp_host_le_capable(hdev) || | 
|  | cp.simul != lmp_host_le_br_capable(hdev)) | 
|  | hci_req_add(req, HCI_OP_WRITE_LE_HOST_SUPPORTED, | 
|  | sizeof(cp), &cp); | 
|  | } | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_LE_ENABLED)) { | 
|  | /* Make sure the controller has a good default for | 
|  | * advertising data. This also applies to the case | 
|  | * where BR/EDR was toggled during the AUTO_OFF phase. | 
|  | */ | 
|  | if (hci_dev_test_flag(hdev, HCI_ADVERTISING) || | 
|  | list_empty(&hdev->adv_instances)) { | 
|  | int err; | 
|  |  | 
|  | if (ext_adv_capable(hdev)) { | 
|  | err = __hci_req_setup_ext_adv_instance(req, | 
|  | 0x00); | 
|  | if (!err) | 
|  | __hci_req_update_scan_rsp_data(req, | 
|  | 0x00); | 
|  | } else { | 
|  | err = 0; | 
|  | __hci_req_update_adv_data(req, 0x00); | 
|  | __hci_req_update_scan_rsp_data(req, 0x00); | 
|  | } | 
|  |  | 
|  | if (hci_dev_test_flag(hdev, HCI_ADVERTISING)) { | 
|  | if (!ext_adv_capable(hdev)) | 
|  | __hci_req_enable_advertising(req); | 
|  | else if (!err) | 
|  | __hci_req_enable_ext_advertising(req); | 
|  | } | 
|  | } else if (!list_empty(&hdev->adv_instances)) { | 
|  | struct adv_info *adv_instance; | 
|  |  | 
|  | adv_instance = list_first_entry(&hdev->adv_instances, | 
|  | struct adv_info, list); | 
|  | __hci_req_schedule_adv_instance(req, | 
|  | adv_instance->instance, | 
|  | true); | 
|  | } | 
|  | } | 
|  |  | 
|  | link_sec = hci_dev_test_flag(hdev, HCI_LINK_SECURITY); | 
|  | if (link_sec != test_bit(HCI_AUTH, &hdev->flags)) | 
|  | hci_req_add(req, HCI_OP_WRITE_AUTH_ENABLE, | 
|  | sizeof(link_sec), &link_sec); | 
|  |  | 
|  | if (lmp_bredr_capable(hdev)) { | 
|  | if (hci_dev_test_flag(hdev, HCI_FAST_CONNECTABLE)) | 
|  | __hci_req_write_fast_connectable(req, true); | 
|  | else | 
|  | __hci_req_write_fast_connectable(req, false); | 
|  | __hci_req_update_scan(req); | 
|  | __hci_req_update_class(req); | 
|  | __hci_req_update_name(req); | 
|  | __hci_req_update_eir(req); | 
|  | } | 
|  |  | 
|  | hci_dev_unlock(hdev); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int __hci_req_hci_power_on(struct hci_dev *hdev) | 
|  | { | 
|  | /* Register the available SMP channels (BR/EDR and LE) only when | 
|  | * successfully powering on the controller. This late | 
|  | * registration is required so that LE SMP can clearly decide if | 
|  | * the public address or static address is used. | 
|  | */ | 
|  | smp_register(hdev); | 
|  |  | 
|  | return __hci_req_sync(hdev, powered_update_hci, 0, HCI_CMD_TIMEOUT, | 
|  | NULL); | 
|  | } | 
|  |  | 
|  | void hci_request_setup(struct hci_dev *hdev) | 
|  | { | 
|  | INIT_WORK(&hdev->discov_update, discov_update); | 
|  | INIT_WORK(&hdev->bg_scan_update, bg_scan_update); | 
|  | INIT_WORK(&hdev->scan_update, scan_update_work); | 
|  | INIT_WORK(&hdev->connectable_update, connectable_update_work); | 
|  | INIT_WORK(&hdev->discoverable_update, discoverable_update_work); | 
|  | INIT_DELAYED_WORK(&hdev->discov_off, discov_off); | 
|  | INIT_DELAYED_WORK(&hdev->le_scan_disable, le_scan_disable_work); | 
|  | INIT_DELAYED_WORK(&hdev->le_scan_restart, le_scan_restart_work); | 
|  | INIT_DELAYED_WORK(&hdev->adv_instance_expire, adv_timeout_expire); | 
|  | } | 
|  |  | 
|  | void hci_request_cancel_all(struct hci_dev *hdev) | 
|  | { | 
|  | hci_req_sync_cancel(hdev, ENODEV); | 
|  |  | 
|  | cancel_work_sync(&hdev->discov_update); | 
|  | cancel_work_sync(&hdev->bg_scan_update); | 
|  | cancel_work_sync(&hdev->scan_update); | 
|  | cancel_work_sync(&hdev->connectable_update); | 
|  | cancel_work_sync(&hdev->discoverable_update); | 
|  | cancel_delayed_work_sync(&hdev->discov_off); | 
|  | cancel_delayed_work_sync(&hdev->le_scan_disable); | 
|  | cancel_delayed_work_sync(&hdev->le_scan_restart); | 
|  |  | 
|  | if (hdev->adv_instance_timeout) { | 
|  | cancel_delayed_work_sync(&hdev->adv_instance_expire); | 
|  | hdev->adv_instance_timeout = 0; | 
|  | } | 
|  | } |