|  | /* | 
|  | * PowerPC64 SLB support. | 
|  | * | 
|  | * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM | 
|  | * Based on earlier code written by: | 
|  | * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com | 
|  | *    Copyright (c) 2001 Dave Engebretsen | 
|  | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | * | 
|  | * | 
|  | *      This program is free software; you can redistribute it and/or | 
|  | *      modify it under the terms of the GNU General Public License | 
|  | *      as published by the Free Software Foundation; either version | 
|  | *      2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/paca.h> | 
|  | #include <asm/cputable.h> | 
|  | #include <asm/cacheflush.h> | 
|  | #include <asm/smp.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/context_tracking.h> | 
|  | #include <linux/mm_types.h> | 
|  |  | 
|  | #include <asm/udbg.h> | 
|  | #include <asm/code-patching.h> | 
|  |  | 
|  | enum slb_index { | 
|  | LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */ | 
|  | VMALLOC_INDEX	= 1, /* Kernel virtual map (0xd000000000000000) */ | 
|  | KSTACK_INDEX	= 2, /* Kernel stack map */ | 
|  | }; | 
|  |  | 
|  | extern void slb_allocate(unsigned long ea); | 
|  |  | 
|  | #define slb_esid_mask(ssize)	\ | 
|  | (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T) | 
|  |  | 
|  | static inline unsigned long mk_esid_data(unsigned long ea, int ssize, | 
|  | enum slb_index index) | 
|  | { | 
|  | return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index; | 
|  | } | 
|  |  | 
|  | static inline unsigned long mk_vsid_data(unsigned long ea, int ssize, | 
|  | unsigned long flags) | 
|  | { | 
|  | return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags | | 
|  | ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); | 
|  | } | 
|  |  | 
|  | static inline void slb_shadow_update(unsigned long ea, int ssize, | 
|  | unsigned long flags, | 
|  | enum slb_index index) | 
|  | { | 
|  | struct slb_shadow *p = get_slb_shadow(); | 
|  |  | 
|  | /* | 
|  | * Clear the ESID first so the entry is not valid while we are | 
|  | * updating it.  No write barriers are needed here, provided | 
|  | * we only update the current CPU's SLB shadow buffer. | 
|  | */ | 
|  | WRITE_ONCE(p->save_area[index].esid, 0); | 
|  | WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags))); | 
|  | WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index))); | 
|  | } | 
|  |  | 
|  | static inline void slb_shadow_clear(enum slb_index index) | 
|  | { | 
|  | WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index)); | 
|  | } | 
|  |  | 
|  | static inline void create_shadowed_slbe(unsigned long ea, int ssize, | 
|  | unsigned long flags, | 
|  | enum slb_index index) | 
|  | { | 
|  | /* | 
|  | * Updating the shadow buffer before writing the SLB ensures | 
|  | * we don't get a stale entry here if we get preempted by PHYP | 
|  | * between these two statements. | 
|  | */ | 
|  | slb_shadow_update(ea, ssize, flags, index); | 
|  |  | 
|  | asm volatile("slbmte  %0,%1" : | 
|  | : "r" (mk_vsid_data(ea, ssize, flags)), | 
|  | "r" (mk_esid_data(ea, ssize, index)) | 
|  | : "memory" ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert bolted entries into SLB (which may not be empty, so don't clear | 
|  | * slb_cache_ptr). | 
|  | */ | 
|  | void __slb_restore_bolted_realmode(void) | 
|  | { | 
|  | struct slb_shadow *p = get_slb_shadow(); | 
|  | enum slb_index index; | 
|  |  | 
|  | /* No isync needed because realmode. */ | 
|  | for (index = 0; index < SLB_NUM_BOLTED; index++) { | 
|  | asm volatile("slbmte  %0,%1" : | 
|  | : "r" (be64_to_cpu(p->save_area[index].vsid)), | 
|  | "r" (be64_to_cpu(p->save_area[index].esid))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Insert the bolted entries into an empty SLB. | 
|  | * This is not the same as rebolt because the bolted segments are not | 
|  | * changed, just loaded from the shadow area. | 
|  | */ | 
|  | void slb_restore_bolted_realmode(void) | 
|  | { | 
|  | __slb_restore_bolted_realmode(); | 
|  | get_paca()->slb_cache_ptr = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This flushes all SLB entries including 0, so it must be realmode. | 
|  | */ | 
|  | void slb_flush_all_realmode(void) | 
|  | { | 
|  | /* | 
|  | * This flushes all SLB entries including 0, so it must be realmode. | 
|  | */ | 
|  | asm volatile("slbmte %0,%0; slbia" : : "r" (0)); | 
|  | } | 
|  |  | 
|  | static void __slb_flush_and_rebolt(void) | 
|  | { | 
|  | /* If you change this make sure you change SLB_NUM_BOLTED | 
|  | * and PR KVM appropriately too. */ | 
|  | unsigned long linear_llp, vmalloc_llp, lflags, vflags; | 
|  | unsigned long ksp_esid_data, ksp_vsid_data; | 
|  |  | 
|  | linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; | 
|  | vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; | 
|  | lflags = SLB_VSID_KERNEL | linear_llp; | 
|  | vflags = SLB_VSID_KERNEL | vmalloc_llp; | 
|  |  | 
|  | ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX); | 
|  | if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) { | 
|  | ksp_esid_data &= ~SLB_ESID_V; | 
|  | ksp_vsid_data = 0; | 
|  | slb_shadow_clear(KSTACK_INDEX); | 
|  | } else { | 
|  | /* Update stack entry; others don't change */ | 
|  | slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX); | 
|  | ksp_vsid_data = | 
|  | be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid); | 
|  | } | 
|  |  | 
|  | /* We need to do this all in asm, so we're sure we don't touch | 
|  | * the stack between the slbia and rebolting it. */ | 
|  | asm volatile("isync\n" | 
|  | "slbia\n" | 
|  | /* Slot 1 - first VMALLOC segment */ | 
|  | "slbmte	%0,%1\n" | 
|  | /* Slot 2 - kernel stack */ | 
|  | "slbmte	%2,%3\n" | 
|  | "isync" | 
|  | :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)), | 
|  | "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)), | 
|  | "r"(ksp_vsid_data), | 
|  | "r"(ksp_esid_data) | 
|  | : "memory"); | 
|  | } | 
|  |  | 
|  | void slb_flush_and_rebolt(void) | 
|  | { | 
|  |  | 
|  | WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | /* | 
|  | * We can't take a PMU exception in the following code, so hard | 
|  | * disable interrupts. | 
|  | */ | 
|  | hard_irq_disable(); | 
|  |  | 
|  | __slb_flush_and_rebolt(); | 
|  | get_paca()->slb_cache_ptr = 0; | 
|  | } | 
|  |  | 
|  | void slb_vmalloc_update(void) | 
|  | { | 
|  | unsigned long vflags; | 
|  |  | 
|  | vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp; | 
|  | slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX); | 
|  | slb_flush_and_rebolt(); | 
|  | } | 
|  |  | 
|  | /* Helper function to compare esids.  There are four cases to handle. | 
|  | * 1. The system is not 1T segment size capable.  Use the GET_ESID compare. | 
|  | * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare. | 
|  | * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match. | 
|  | * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare. | 
|  | */ | 
|  | static inline int esids_match(unsigned long addr1, unsigned long addr2) | 
|  | { | 
|  | int esid_1t_count; | 
|  |  | 
|  | /* System is not 1T segment size capable. */ | 
|  | if (!mmu_has_feature(MMU_FTR_1T_SEGMENT)) | 
|  | return (GET_ESID(addr1) == GET_ESID(addr2)); | 
|  |  | 
|  | esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) + | 
|  | ((addr2 >> SID_SHIFT_1T) != 0)); | 
|  |  | 
|  | /* both addresses are < 1T */ | 
|  | if (esid_1t_count == 0) | 
|  | return (GET_ESID(addr1) == GET_ESID(addr2)); | 
|  |  | 
|  | /* One address < 1T, the other > 1T.  Not a match */ | 
|  | if (esid_1t_count == 1) | 
|  | return 0; | 
|  |  | 
|  | /* Both addresses are > 1T. */ | 
|  | return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2)); | 
|  | } | 
|  |  | 
|  | /* Flush all user entries from the segment table of the current processor. */ | 
|  | void switch_slb(struct task_struct *tsk, struct mm_struct *mm) | 
|  | { | 
|  | unsigned long offset; | 
|  | unsigned long slbie_data = 0; | 
|  | unsigned long pc = KSTK_EIP(tsk); | 
|  | unsigned long stack = KSTK_ESP(tsk); | 
|  | unsigned long exec_base; | 
|  |  | 
|  | /* | 
|  | * We need interrupts hard-disabled here, not just soft-disabled, | 
|  | * so that a PMU interrupt can't occur, which might try to access | 
|  | * user memory (to get a stack trace) and possible cause an SLB miss | 
|  | * which would update the slb_cache/slb_cache_ptr fields in the PACA. | 
|  | */ | 
|  | hard_irq_disable(); | 
|  | offset = get_paca()->slb_cache_ptr; | 
|  | if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) && | 
|  | offset <= SLB_CACHE_ENTRIES) { | 
|  | int i; | 
|  | asm volatile("isync" : : : "memory"); | 
|  | for (i = 0; i < offset; i++) { | 
|  | slbie_data = (unsigned long)get_paca()->slb_cache[i] | 
|  | << SID_SHIFT; /* EA */ | 
|  | slbie_data |= user_segment_size(slbie_data) | 
|  | << SLBIE_SSIZE_SHIFT; | 
|  | slbie_data |= SLBIE_C; /* C set for user addresses */ | 
|  | asm volatile("slbie %0" : : "r" (slbie_data)); | 
|  | } | 
|  | asm volatile("isync" : : : "memory"); | 
|  | } else { | 
|  | __slb_flush_and_rebolt(); | 
|  | } | 
|  |  | 
|  | /* Workaround POWER5 < DD2.1 issue */ | 
|  | if (offset == 1 || offset > SLB_CACHE_ENTRIES) | 
|  | asm volatile("slbie %0" : : "r" (slbie_data)); | 
|  |  | 
|  | get_paca()->slb_cache_ptr = 0; | 
|  | copy_mm_to_paca(mm); | 
|  |  | 
|  | /* | 
|  | * preload some userspace segments into the SLB. | 
|  | * Almost all 32 and 64bit PowerPC executables are linked at | 
|  | * 0x10000000 so it makes sense to preload this segment. | 
|  | */ | 
|  | exec_base = 0x10000000; | 
|  |  | 
|  | if (is_kernel_addr(pc) || is_kernel_addr(stack) || | 
|  | is_kernel_addr(exec_base)) | 
|  | return; | 
|  |  | 
|  | slb_allocate(pc); | 
|  |  | 
|  | if (!esids_match(pc, stack)) | 
|  | slb_allocate(stack); | 
|  |  | 
|  | if (!esids_match(pc, exec_base) && | 
|  | !esids_match(stack, exec_base)) | 
|  | slb_allocate(exec_base); | 
|  | } | 
|  |  | 
|  | static inline void patch_slb_encoding(unsigned int *insn_addr, | 
|  | unsigned int immed) | 
|  | { | 
|  |  | 
|  | /* | 
|  | * This function patches either an li or a cmpldi instruction with | 
|  | * a new immediate value. This relies on the fact that both li | 
|  | * (which is actually addi) and cmpldi both take a 16-bit immediate | 
|  | * value, and it is situated in the same location in the instruction, | 
|  | * ie. bits 16-31 (Big endian bit order) or the lower 16 bits. | 
|  | * The signedness of the immediate operand differs between the two | 
|  | * instructions however this code is only ever patching a small value, | 
|  | * much less than 1 << 15, so we can get away with it. | 
|  | * To patch the value we read the existing instruction, clear the | 
|  | * immediate value, and or in our new value, then write the instruction | 
|  | * back. | 
|  | */ | 
|  | unsigned int insn = (*insn_addr & 0xffff0000) | immed; | 
|  | patch_instruction(insn_addr, insn); | 
|  | } | 
|  |  | 
|  | extern u32 slb_miss_kernel_load_linear[]; | 
|  | extern u32 slb_miss_kernel_load_io[]; | 
|  | extern u32 slb_compare_rr_to_size[]; | 
|  | extern u32 slb_miss_kernel_load_vmemmap[]; | 
|  |  | 
|  | void slb_set_size(u16 size) | 
|  | { | 
|  | if (mmu_slb_size == size) | 
|  | return; | 
|  |  | 
|  | mmu_slb_size = size; | 
|  | patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size); | 
|  | } | 
|  |  | 
|  | void slb_initialize(void) | 
|  | { | 
|  | unsigned long linear_llp, vmalloc_llp, io_llp; | 
|  | unsigned long lflags, vflags; | 
|  | static int slb_encoding_inited; | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | unsigned long vmemmap_llp; | 
|  | #endif | 
|  |  | 
|  | /* Prepare our SLB miss handler based on our page size */ | 
|  | linear_llp = mmu_psize_defs[mmu_linear_psize].sllp; | 
|  | io_llp = mmu_psize_defs[mmu_io_psize].sllp; | 
|  | vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp; | 
|  | get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp; | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp; | 
|  | #endif | 
|  | if (!slb_encoding_inited) { | 
|  | slb_encoding_inited = 1; | 
|  | patch_slb_encoding(slb_miss_kernel_load_linear, | 
|  | SLB_VSID_KERNEL | linear_llp); | 
|  | patch_slb_encoding(slb_miss_kernel_load_io, | 
|  | SLB_VSID_KERNEL | io_llp); | 
|  | patch_slb_encoding(slb_compare_rr_to_size, | 
|  | mmu_slb_size); | 
|  |  | 
|  | pr_devel("SLB: linear  LLP = %04lx\n", linear_llp); | 
|  | pr_devel("SLB: io      LLP = %04lx\n", io_llp); | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | patch_slb_encoding(slb_miss_kernel_load_vmemmap, | 
|  | SLB_VSID_KERNEL | vmemmap_llp); | 
|  | pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | get_paca()->stab_rr = SLB_NUM_BOLTED - 1; | 
|  |  | 
|  | lflags = SLB_VSID_KERNEL | linear_llp; | 
|  | vflags = SLB_VSID_KERNEL | vmalloc_llp; | 
|  |  | 
|  | /* Invalidate the entire SLB (even entry 0) & all the ERATS */ | 
|  | asm volatile("isync":::"memory"); | 
|  | asm volatile("slbmte  %0,%0"::"r" (0) : "memory"); | 
|  | asm volatile("isync; slbia; isync":::"memory"); | 
|  | create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX); | 
|  | create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX); | 
|  |  | 
|  | /* For the boot cpu, we're running on the stack in init_thread_union, | 
|  | * which is in the first segment of the linear mapping, and also | 
|  | * get_paca()->kstack hasn't been initialized yet. | 
|  | * For secondary cpus, we need to bolt the kernel stack entry now. | 
|  | */ | 
|  | slb_shadow_clear(KSTACK_INDEX); | 
|  | if (raw_smp_processor_id() != boot_cpuid && | 
|  | (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET) | 
|  | create_shadowed_slbe(get_paca()->kstack, | 
|  | mmu_kernel_ssize, lflags, KSTACK_INDEX); | 
|  |  | 
|  | asm volatile("isync":::"memory"); | 
|  | } | 
|  |  | 
|  | static void insert_slb_entry(unsigned long vsid, unsigned long ea, | 
|  | int bpsize, int ssize) | 
|  | { | 
|  | unsigned long flags, vsid_data, esid_data; | 
|  | enum slb_index index; | 
|  | int slb_cache_index; | 
|  |  | 
|  | /* | 
|  | * We are irq disabled, hence should be safe to access PACA. | 
|  | */ | 
|  | VM_WARN_ON(!irqs_disabled()); | 
|  |  | 
|  | /* | 
|  | * We can't take a PMU exception in the following code, so hard | 
|  | * disable interrupts. | 
|  | */ | 
|  | hard_irq_disable(); | 
|  |  | 
|  | index = get_paca()->stab_rr; | 
|  |  | 
|  | /* | 
|  | * simple round-robin replacement of slb starting at SLB_NUM_BOLTED. | 
|  | */ | 
|  | if (index < (mmu_slb_size - 1)) | 
|  | index++; | 
|  | else | 
|  | index = SLB_NUM_BOLTED; | 
|  |  | 
|  | get_paca()->stab_rr = index; | 
|  |  | 
|  | flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp; | 
|  | vsid_data = (vsid << slb_vsid_shift(ssize)) | flags | | 
|  | ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT); | 
|  | esid_data = mk_esid_data(ea, ssize, index); | 
|  |  | 
|  | /* | 
|  | * No need for an isync before or after this slbmte. The exception | 
|  | * we enter with and the rfid we exit with are context synchronizing. | 
|  | * Also we only handle user segments here. | 
|  | */ | 
|  | asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data) | 
|  | : "memory"); | 
|  |  | 
|  | /* | 
|  | * Now update slb cache entries | 
|  | */ | 
|  | slb_cache_index = get_paca()->slb_cache_ptr; | 
|  | if (slb_cache_index < SLB_CACHE_ENTRIES) { | 
|  | /* | 
|  | * We have space in slb cache for optimized switch_slb(). | 
|  | * Top 36 bits from esid_data as per ISA | 
|  | */ | 
|  | get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28; | 
|  | get_paca()->slb_cache_ptr++; | 
|  | } else { | 
|  | /* | 
|  | * Our cache is full and the current cache content strictly | 
|  | * doesn't indicate the active SLB conents. Bump the ptr | 
|  | * so that switch_slb() will ignore the cache. | 
|  | */ | 
|  | get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handle_multi_context_slb_miss(int context_id, unsigned long ea) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | unsigned long vsid; | 
|  | int bpsize; | 
|  |  | 
|  | /* | 
|  | * We are always above 1TB, hence use high user segment size. | 
|  | */ | 
|  | vsid = get_vsid(context_id, ea, mmu_highuser_ssize); | 
|  | bpsize = get_slice_psize(mm, ea); | 
|  | insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize); | 
|  | } | 
|  |  | 
|  | void slb_miss_large_addr(struct pt_regs *regs) | 
|  | { | 
|  | enum ctx_state prev_state = exception_enter(); | 
|  | unsigned long ea = regs->dar; | 
|  | int context; | 
|  |  | 
|  | if (REGION_ID(ea) != USER_REGION_ID) | 
|  | goto slb_bad_addr; | 
|  |  | 
|  | /* | 
|  | * Are we beyound what the page table layout supports ? | 
|  | */ | 
|  | if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE) | 
|  | goto slb_bad_addr; | 
|  |  | 
|  | /* Lower address should have been handled by asm code */ | 
|  | if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT)) | 
|  | goto slb_bad_addr; | 
|  |  | 
|  | /* | 
|  | * consider this as bad access if we take a SLB miss | 
|  | * on an address above addr limit. | 
|  | */ | 
|  | if (ea >= current->mm->context.slb_addr_limit) | 
|  | goto slb_bad_addr; | 
|  |  | 
|  | context = get_ea_context(¤t->mm->context, ea); | 
|  | if (!context) | 
|  | goto slb_bad_addr; | 
|  |  | 
|  | handle_multi_context_slb_miss(context, ea); | 
|  | exception_exit(prev_state); | 
|  | return; | 
|  |  | 
|  | slb_bad_addr: | 
|  | if (user_mode(regs)) | 
|  | _exception(SIGSEGV, regs, SEGV_BNDERR, ea); | 
|  | else | 
|  | bad_page_fault(regs, ea, SIGSEGV); | 
|  | exception_exit(prev_state); | 
|  | } |