|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * AMD SVM support | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
|  | * | 
|  | * Authors: | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) "SVM: " fmt | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "mmu.h" | 
|  | #include "kvm_cache_regs.h" | 
|  | #include "x86.h" | 
|  | #include "cpuid.h" | 
|  | #include "pmu.h" | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/mod_devicetable.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/trace_events.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/amd-iommu.h> | 
|  | #include <linux/hashtable.h> | 
|  | #include <linux/frame.h> | 
|  | #include <linux/psp-sev.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/swap.h> | 
|  |  | 
|  | #include <asm/apic.h> | 
|  | #include <asm/perf_event.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/kvm_para.h> | 
|  | #include <asm/irq_remapping.h> | 
|  | #include <asm/spec-ctrl.h> | 
|  |  | 
|  | #include <asm/virtext.h> | 
|  | #include "trace.h" | 
|  |  | 
|  | #define __ex(x) __kvm_handle_fault_on_reboot(x) | 
|  |  | 
|  | MODULE_AUTHOR("Qumranet"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static const struct x86_cpu_id svm_cpu_id[] = { | 
|  | X86_FEATURE_MATCH(X86_FEATURE_SVM), | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id); | 
|  |  | 
|  | #define IOPM_ALLOC_ORDER 2 | 
|  | #define MSRPM_ALLOC_ORDER 1 | 
|  |  | 
|  | #define SEG_TYPE_LDT 2 | 
|  | #define SEG_TYPE_BUSY_TSS16 3 | 
|  |  | 
|  | #define SVM_FEATURE_NPT            (1 <<  0) | 
|  | #define SVM_FEATURE_LBRV           (1 <<  1) | 
|  | #define SVM_FEATURE_SVML           (1 <<  2) | 
|  | #define SVM_FEATURE_NRIP           (1 <<  3) | 
|  | #define SVM_FEATURE_TSC_RATE       (1 <<  4) | 
|  | #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5) | 
|  | #define SVM_FEATURE_FLUSH_ASID     (1 <<  6) | 
|  | #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7) | 
|  | #define SVM_FEATURE_PAUSE_FILTER   (1 << 10) | 
|  |  | 
|  | #define SVM_AVIC_DOORBELL	0xc001011b | 
|  |  | 
|  | #define NESTED_EXIT_HOST	0	/* Exit handled on host level */ | 
|  | #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */ | 
|  | #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */ | 
|  |  | 
|  | #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) | 
|  |  | 
|  | #define TSC_RATIO_RSVD          0xffffff0000000000ULL | 
|  | #define TSC_RATIO_MIN		0x0000000000000001ULL | 
|  | #define TSC_RATIO_MAX		0x000000ffffffffffULL | 
|  |  | 
|  | #define AVIC_HPA_MASK	~((0xFFFULL << 52) | 0xFFF) | 
|  |  | 
|  | /* | 
|  | * 0xff is broadcast, so the max index allowed for physical APIC ID | 
|  | * table is 0xfe.  APIC IDs above 0xff are reserved. | 
|  | */ | 
|  | #define AVIC_MAX_PHYSICAL_ID_COUNT	255 | 
|  |  | 
|  | #define AVIC_UNACCEL_ACCESS_WRITE_MASK		1 | 
|  | #define AVIC_UNACCEL_ACCESS_OFFSET_MASK		0xFF0 | 
|  | #define AVIC_UNACCEL_ACCESS_VECTOR_MASK		0xFFFFFFFF | 
|  |  | 
|  | /* AVIC GATAG is encoded using VM and VCPU IDs */ | 
|  | #define AVIC_VCPU_ID_BITS		8 | 
|  | #define AVIC_VCPU_ID_MASK		((1 << AVIC_VCPU_ID_BITS) - 1) | 
|  |  | 
|  | #define AVIC_VM_ID_BITS			24 | 
|  | #define AVIC_VM_ID_NR			(1 << AVIC_VM_ID_BITS) | 
|  | #define AVIC_VM_ID_MASK			((1 << AVIC_VM_ID_BITS) - 1) | 
|  |  | 
|  | #define AVIC_GATAG(x, y)		(((x & AVIC_VM_ID_MASK) << AVIC_VCPU_ID_BITS) | \ | 
|  | (y & AVIC_VCPU_ID_MASK)) | 
|  | #define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VCPU_ID_BITS) & AVIC_VM_ID_MASK) | 
|  | #define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK) | 
|  |  | 
|  | static bool erratum_383_found __read_mostly; | 
|  |  | 
|  | static const u32 host_save_user_msrs[] = { | 
|  | #ifdef CONFIG_X86_64 | 
|  | MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, | 
|  | MSR_FS_BASE, | 
|  | #endif | 
|  | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 
|  | MSR_TSC_AUX, | 
|  | }; | 
|  |  | 
|  | #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) | 
|  |  | 
|  | struct kvm_sev_info { | 
|  | bool active;		/* SEV enabled guest */ | 
|  | unsigned int asid;	/* ASID used for this guest */ | 
|  | unsigned int handle;	/* SEV firmware handle */ | 
|  | int fd;			/* SEV device fd */ | 
|  | unsigned long pages_locked; /* Number of pages locked */ | 
|  | struct list_head regions_list;  /* List of registered regions */ | 
|  | }; | 
|  |  | 
|  | struct kvm_svm { | 
|  | struct kvm kvm; | 
|  |  | 
|  | /* Struct members for AVIC */ | 
|  | u32 avic_vm_id; | 
|  | u32 ldr_mode; | 
|  | struct page *avic_logical_id_table_page; | 
|  | struct page *avic_physical_id_table_page; | 
|  | struct hlist_node hnode; | 
|  |  | 
|  | struct kvm_sev_info sev_info; | 
|  | }; | 
|  |  | 
|  | struct kvm_vcpu; | 
|  |  | 
|  | struct nested_state { | 
|  | struct vmcb *hsave; | 
|  | u64 hsave_msr; | 
|  | u64 vm_cr_msr; | 
|  | u64 vmcb; | 
|  |  | 
|  | /* These are the merged vectors */ | 
|  | u32 *msrpm; | 
|  |  | 
|  | /* gpa pointers to the real vectors */ | 
|  | u64 vmcb_msrpm; | 
|  | u64 vmcb_iopm; | 
|  |  | 
|  | /* A VMEXIT is required but not yet emulated */ | 
|  | bool exit_required; | 
|  |  | 
|  | /* cache for intercepts of the guest */ | 
|  | u32 intercept_cr; | 
|  | u32 intercept_dr; | 
|  | u32 intercept_exceptions; | 
|  | u64 intercept; | 
|  |  | 
|  | /* Nested Paging related state */ | 
|  | u64 nested_cr3; | 
|  | }; | 
|  |  | 
|  | #define MSRPM_OFFSETS	16 | 
|  | static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; | 
|  |  | 
|  | /* | 
|  | * Set osvw_len to higher value when updated Revision Guides | 
|  | * are published and we know what the new status bits are | 
|  | */ | 
|  | static uint64_t osvw_len = 4, osvw_status; | 
|  |  | 
|  | struct vcpu_svm { | 
|  | struct kvm_vcpu vcpu; | 
|  | struct vmcb *vmcb; | 
|  | unsigned long vmcb_pa; | 
|  | struct svm_cpu_data *svm_data; | 
|  | uint64_t asid_generation; | 
|  | uint64_t sysenter_esp; | 
|  | uint64_t sysenter_eip; | 
|  | uint64_t tsc_aux; | 
|  |  | 
|  | u64 msr_decfg; | 
|  |  | 
|  | u64 next_rip; | 
|  |  | 
|  | u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; | 
|  | struct { | 
|  | u16 fs; | 
|  | u16 gs; | 
|  | u16 ldt; | 
|  | u64 gs_base; | 
|  | } host; | 
|  |  | 
|  | u64 spec_ctrl; | 
|  | /* | 
|  | * Contains guest-controlled bits of VIRT_SPEC_CTRL, which will be | 
|  | * translated into the appropriate L2_CFG bits on the host to | 
|  | * perform speculative control. | 
|  | */ | 
|  | u64 virt_spec_ctrl; | 
|  |  | 
|  | u32 *msrpm; | 
|  |  | 
|  | ulong nmi_iret_rip; | 
|  |  | 
|  | struct nested_state nested; | 
|  |  | 
|  | bool nmi_singlestep; | 
|  | u64 nmi_singlestep_guest_rflags; | 
|  |  | 
|  | unsigned int3_injected; | 
|  | unsigned long int3_rip; | 
|  |  | 
|  | /* cached guest cpuid flags for faster access */ | 
|  | bool nrips_enabled	: 1; | 
|  |  | 
|  | u32 ldr_reg; | 
|  | struct page *avic_backing_page; | 
|  | u64 *avic_physical_id_cache; | 
|  | bool avic_is_running; | 
|  |  | 
|  | /* | 
|  | * Per-vcpu list of struct amd_svm_iommu_ir: | 
|  | * This is used mainly to store interrupt remapping information used | 
|  | * when update the vcpu affinity. This avoids the need to scan for | 
|  | * IRTE and try to match ga_tag in the IOMMU driver. | 
|  | */ | 
|  | struct list_head ir_list; | 
|  | spinlock_t ir_list_lock; | 
|  |  | 
|  | /* which host CPU was used for running this vcpu */ | 
|  | unsigned int last_cpu; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This is a wrapper of struct amd_iommu_ir_data. | 
|  | */ | 
|  | struct amd_svm_iommu_ir { | 
|  | struct list_head node;	/* Used by SVM for per-vcpu ir_list */ | 
|  | void *data;		/* Storing pointer to struct amd_ir_data */ | 
|  | }; | 
|  |  | 
|  | #define AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK	(0xFF) | 
|  | #define AVIC_LOGICAL_ID_ENTRY_VALID_MASK		(1 << 31) | 
|  |  | 
|  | #define AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK	(0xFFULL) | 
|  | #define AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK	(0xFFFFFFFFFFULL << 12) | 
|  | #define AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK		(1ULL << 62) | 
|  | #define AVIC_PHYSICAL_ID_ENTRY_VALID_MASK		(1ULL << 63) | 
|  |  | 
|  | static DEFINE_PER_CPU(u64, current_tsc_ratio); | 
|  | #define TSC_RATIO_DEFAULT	0x0100000000ULL | 
|  |  | 
|  | #define MSR_INVALID			0xffffffffU | 
|  |  | 
|  | static const struct svm_direct_access_msrs { | 
|  | u32 index;   /* Index of the MSR */ | 
|  | bool always; /* True if intercept is always on */ | 
|  | } direct_access_msrs[] = { | 
|  | { .index = MSR_STAR,				.always = true  }, | 
|  | { .index = MSR_IA32_SYSENTER_CS,		.always = true  }, | 
|  | #ifdef CONFIG_X86_64 | 
|  | { .index = MSR_GS_BASE,				.always = true  }, | 
|  | { .index = MSR_FS_BASE,				.always = true  }, | 
|  | { .index = MSR_KERNEL_GS_BASE,			.always = true  }, | 
|  | { .index = MSR_LSTAR,				.always = true  }, | 
|  | { .index = MSR_CSTAR,				.always = true  }, | 
|  | { .index = MSR_SYSCALL_MASK,			.always = true  }, | 
|  | #endif | 
|  | { .index = MSR_IA32_SPEC_CTRL,			.always = false }, | 
|  | { .index = MSR_IA32_PRED_CMD,			.always = false }, | 
|  | { .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false }, | 
|  | { .index = MSR_IA32_LASTBRANCHTOIP,		.always = false }, | 
|  | { .index = MSR_IA32_LASTINTFROMIP,		.always = false }, | 
|  | { .index = MSR_IA32_LASTINTTOIP,		.always = false }, | 
|  | { .index = MSR_INVALID,				.always = false }, | 
|  | }; | 
|  |  | 
|  | /* enable NPT for AMD64 and X86 with PAE */ | 
|  | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) | 
|  | static bool npt_enabled = true; | 
|  | #else | 
|  | static bool npt_enabled; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * These 2 parameters are used to config the controls for Pause-Loop Exiting: | 
|  | * pause_filter_count: On processors that support Pause filtering(indicated | 
|  | *	by CPUID Fn8000_000A_EDX), the VMCB provides a 16 bit pause filter | 
|  | *	count value. On VMRUN this value is loaded into an internal counter. | 
|  | *	Each time a pause instruction is executed, this counter is decremented | 
|  | *	until it reaches zero at which time a #VMEXIT is generated if pause | 
|  | *	intercept is enabled. Refer to  AMD APM Vol 2 Section 15.14.4 Pause | 
|  | *	Intercept Filtering for more details. | 
|  | *	This also indicate if ple logic enabled. | 
|  | * | 
|  | * pause_filter_thresh: In addition, some processor families support advanced | 
|  | *	pause filtering (indicated by CPUID Fn8000_000A_EDX) upper bound on | 
|  | *	the amount of time a guest is allowed to execute in a pause loop. | 
|  | *	In this mode, a 16-bit pause filter threshold field is added in the | 
|  | *	VMCB. The threshold value is a cycle count that is used to reset the | 
|  | *	pause counter. As with simple pause filtering, VMRUN loads the pause | 
|  | *	count value from VMCB into an internal counter. Then, on each pause | 
|  | *	instruction the hardware checks the elapsed number of cycles since | 
|  | *	the most recent pause instruction against the pause filter threshold. | 
|  | *	If the elapsed cycle count is greater than the pause filter threshold, | 
|  | *	then the internal pause count is reloaded from the VMCB and execution | 
|  | *	continues. If the elapsed cycle count is less than the pause filter | 
|  | *	threshold, then the internal pause count is decremented. If the count | 
|  | *	value is less than zero and PAUSE intercept is enabled, a #VMEXIT is | 
|  | *	triggered. If advanced pause filtering is supported and pause filter | 
|  | *	threshold field is set to zero, the filter will operate in the simpler, | 
|  | *	count only mode. | 
|  | */ | 
|  |  | 
|  | static unsigned short pause_filter_thresh = KVM_DEFAULT_PLE_GAP; | 
|  | module_param(pause_filter_thresh, ushort, 0444); | 
|  |  | 
|  | static unsigned short pause_filter_count = KVM_SVM_DEFAULT_PLE_WINDOW; | 
|  | module_param(pause_filter_count, ushort, 0444); | 
|  |  | 
|  | /* Default doubles per-vcpu window every exit. */ | 
|  | static unsigned short pause_filter_count_grow = KVM_DEFAULT_PLE_WINDOW_GROW; | 
|  | module_param(pause_filter_count_grow, ushort, 0444); | 
|  |  | 
|  | /* Default resets per-vcpu window every exit to pause_filter_count. */ | 
|  | static unsigned short pause_filter_count_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK; | 
|  | module_param(pause_filter_count_shrink, ushort, 0444); | 
|  |  | 
|  | /* Default is to compute the maximum so we can never overflow. */ | 
|  | static unsigned short pause_filter_count_max = KVM_SVM_DEFAULT_PLE_WINDOW_MAX; | 
|  | module_param(pause_filter_count_max, ushort, 0444); | 
|  |  | 
|  | /* allow nested paging (virtualized MMU) for all guests */ | 
|  | static int npt = true; | 
|  | module_param(npt, int, S_IRUGO); | 
|  |  | 
|  | /* allow nested virtualization in KVM/SVM */ | 
|  | static int nested = true; | 
|  | module_param(nested, int, S_IRUGO); | 
|  |  | 
|  | /* enable / disable AVIC */ | 
|  | static int avic; | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | module_param(avic, int, S_IRUGO); | 
|  | #endif | 
|  |  | 
|  | /* enable/disable Virtual VMLOAD VMSAVE */ | 
|  | static int vls = true; | 
|  | module_param(vls, int, 0444); | 
|  |  | 
|  | /* enable/disable Virtual GIF */ | 
|  | static int vgif = true; | 
|  | module_param(vgif, int, 0444); | 
|  |  | 
|  | /* enable/disable SEV support */ | 
|  | static int sev = IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT); | 
|  | module_param(sev, int, 0444); | 
|  |  | 
|  | static u8 rsm_ins_bytes[] = "\x0f\xaa"; | 
|  |  | 
|  | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0); | 
|  | static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa); | 
|  | static void svm_complete_interrupts(struct vcpu_svm *svm); | 
|  |  | 
|  | static int nested_svm_exit_handled(struct vcpu_svm *svm); | 
|  | static int nested_svm_intercept(struct vcpu_svm *svm); | 
|  | static int nested_svm_vmexit(struct vcpu_svm *svm); | 
|  | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, | 
|  | bool has_error_code, u32 error_code); | 
|  |  | 
|  | enum { | 
|  | VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, | 
|  | pause filter count */ | 
|  | VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */ | 
|  | VMCB_ASID,	 /* ASID */ | 
|  | VMCB_INTR,	 /* int_ctl, int_vector */ | 
|  | VMCB_NPT,        /* npt_en, nCR3, gPAT */ | 
|  | VMCB_CR,	 /* CR0, CR3, CR4, EFER */ | 
|  | VMCB_DR,         /* DR6, DR7 */ | 
|  | VMCB_DT,         /* GDT, IDT */ | 
|  | VMCB_SEG,        /* CS, DS, SS, ES, CPL */ | 
|  | VMCB_CR2,        /* CR2 only */ | 
|  | VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ | 
|  | VMCB_AVIC,       /* AVIC APIC_BAR, AVIC APIC_BACKING_PAGE, | 
|  | * AVIC PHYSICAL_TABLE pointer, | 
|  | * AVIC LOGICAL_TABLE pointer | 
|  | */ | 
|  | VMCB_DIRTY_MAX, | 
|  | }; | 
|  |  | 
|  | /* TPR and CR2 are always written before VMRUN */ | 
|  | #define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2)) | 
|  |  | 
|  | #define VMCB_AVIC_APIC_BAR_MASK		0xFFFFFFFFFF000ULL | 
|  |  | 
|  | static unsigned int max_sev_asid; | 
|  | static unsigned int min_sev_asid; | 
|  | static unsigned long *sev_asid_bitmap; | 
|  | #define __sme_page_pa(x) __sme_set(page_to_pfn(x) << PAGE_SHIFT) | 
|  |  | 
|  | struct enc_region { | 
|  | struct list_head list; | 
|  | unsigned long npages; | 
|  | struct page **pages; | 
|  | unsigned long uaddr; | 
|  | unsigned long size; | 
|  | }; | 
|  |  | 
|  |  | 
|  | static inline struct kvm_svm *to_kvm_svm(struct kvm *kvm) | 
|  | { | 
|  | return container_of(kvm, struct kvm_svm, kvm); | 
|  | } | 
|  |  | 
|  | static inline bool svm_sev_enabled(void) | 
|  | { | 
|  | return IS_ENABLED(CONFIG_KVM_AMD_SEV) ? max_sev_asid : 0; | 
|  | } | 
|  |  | 
|  | static inline bool sev_guest(struct kvm *kvm) | 
|  | { | 
|  | #ifdef CONFIG_KVM_AMD_SEV | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  |  | 
|  | return sev->active; | 
|  | #else | 
|  | return false; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int sev_get_asid(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  |  | 
|  | return sev->asid; | 
|  | } | 
|  |  | 
|  | static inline void mark_all_dirty(struct vmcb *vmcb) | 
|  | { | 
|  | vmcb->control.clean = 0; | 
|  | } | 
|  |  | 
|  | static inline void mark_all_clean(struct vmcb *vmcb) | 
|  | { | 
|  | vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1) | 
|  | & ~VMCB_ALWAYS_DIRTY_MASK; | 
|  | } | 
|  |  | 
|  | static inline void mark_dirty(struct vmcb *vmcb, int bit) | 
|  | { | 
|  | vmcb->control.clean &= ~(1 << bit); | 
|  | } | 
|  |  | 
|  | static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return container_of(vcpu, struct vcpu_svm, vcpu); | 
|  | } | 
|  |  | 
|  | static inline void avic_update_vapic_bar(struct vcpu_svm *svm, u64 data) | 
|  | { | 
|  | svm->vmcb->control.avic_vapic_bar = data & VMCB_AVIC_APIC_BAR_MASK; | 
|  | mark_dirty(svm->vmcb, VMCB_AVIC); | 
|  | } | 
|  |  | 
|  | static inline bool avic_vcpu_is_running(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u64 *entry = svm->avic_physical_id_cache; | 
|  |  | 
|  | if (!entry) | 
|  | return false; | 
|  |  | 
|  | return (READ_ONCE(*entry) & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); | 
|  | } | 
|  |  | 
|  | static void recalc_intercepts(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb_control_area *c, *h; | 
|  | struct nested_state *g; | 
|  |  | 
|  | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
|  |  | 
|  | if (!is_guest_mode(&svm->vcpu)) | 
|  | return; | 
|  |  | 
|  | c = &svm->vmcb->control; | 
|  | h = &svm->nested.hsave->control; | 
|  | g = &svm->nested; | 
|  |  | 
|  | c->intercept_cr = h->intercept_cr | g->intercept_cr; | 
|  | c->intercept_dr = h->intercept_dr | g->intercept_dr; | 
|  | c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions; | 
|  | c->intercept = h->intercept | g->intercept; | 
|  | } | 
|  |  | 
|  | static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm) | 
|  | { | 
|  | if (is_guest_mode(&svm->vcpu)) | 
|  | return svm->nested.hsave; | 
|  | else | 
|  | return svm->vmcb; | 
|  | } | 
|  |  | 
|  | static inline void set_cr_intercept(struct vcpu_svm *svm, int bit) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | vmcb->control.intercept_cr |= (1U << bit); | 
|  |  | 
|  | recalc_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | vmcb->control.intercept_cr &= ~(1U << bit); | 
|  |  | 
|  | recalc_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | return vmcb->control.intercept_cr & (1U << bit); | 
|  | } | 
|  |  | 
|  | static inline void set_dr_intercepts(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ) | 
|  | | (1 << INTERCEPT_DR1_READ) | 
|  | | (1 << INTERCEPT_DR2_READ) | 
|  | | (1 << INTERCEPT_DR3_READ) | 
|  | | (1 << INTERCEPT_DR4_READ) | 
|  | | (1 << INTERCEPT_DR5_READ) | 
|  | | (1 << INTERCEPT_DR6_READ) | 
|  | | (1 << INTERCEPT_DR7_READ) | 
|  | | (1 << INTERCEPT_DR0_WRITE) | 
|  | | (1 << INTERCEPT_DR1_WRITE) | 
|  | | (1 << INTERCEPT_DR2_WRITE) | 
|  | | (1 << INTERCEPT_DR3_WRITE) | 
|  | | (1 << INTERCEPT_DR4_WRITE) | 
|  | | (1 << INTERCEPT_DR5_WRITE) | 
|  | | (1 << INTERCEPT_DR6_WRITE) | 
|  | | (1 << INTERCEPT_DR7_WRITE); | 
|  |  | 
|  | recalc_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static inline void clr_dr_intercepts(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | vmcb->control.intercept_dr = 0; | 
|  |  | 
|  | recalc_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static inline void set_exception_intercept(struct vcpu_svm *svm, int bit) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | vmcb->control.intercept_exceptions |= (1U << bit); | 
|  |  | 
|  | recalc_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | vmcb->control.intercept_exceptions &= ~(1U << bit); | 
|  |  | 
|  | recalc_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static inline void set_intercept(struct vcpu_svm *svm, int bit) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | vmcb->control.intercept |= (1ULL << bit); | 
|  |  | 
|  | recalc_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static inline void clr_intercept(struct vcpu_svm *svm, int bit) | 
|  | { | 
|  | struct vmcb *vmcb = get_host_vmcb(svm); | 
|  |  | 
|  | vmcb->control.intercept &= ~(1ULL << bit); | 
|  |  | 
|  | recalc_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static inline bool vgif_enabled(struct vcpu_svm *svm) | 
|  | { | 
|  | return !!(svm->vmcb->control.int_ctl & V_GIF_ENABLE_MASK); | 
|  | } | 
|  |  | 
|  | static inline void enable_gif(struct vcpu_svm *svm) | 
|  | { | 
|  | if (vgif_enabled(svm)) | 
|  | svm->vmcb->control.int_ctl |= V_GIF_MASK; | 
|  | else | 
|  | svm->vcpu.arch.hflags |= HF_GIF_MASK; | 
|  | } | 
|  |  | 
|  | static inline void disable_gif(struct vcpu_svm *svm) | 
|  | { | 
|  | if (vgif_enabled(svm)) | 
|  | svm->vmcb->control.int_ctl &= ~V_GIF_MASK; | 
|  | else | 
|  | svm->vcpu.arch.hflags &= ~HF_GIF_MASK; | 
|  | } | 
|  |  | 
|  | static inline bool gif_set(struct vcpu_svm *svm) | 
|  | { | 
|  | if (vgif_enabled(svm)) | 
|  | return !!(svm->vmcb->control.int_ctl & V_GIF_MASK); | 
|  | else | 
|  | return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); | 
|  | } | 
|  |  | 
|  | static unsigned long iopm_base; | 
|  |  | 
|  | struct kvm_ldttss_desc { | 
|  | u16 limit0; | 
|  | u16 base0; | 
|  | unsigned base1:8, type:5, dpl:2, p:1; | 
|  | unsigned limit1:4, zero0:3, g:1, base2:8; | 
|  | u32 base3; | 
|  | u32 zero1; | 
|  | } __attribute__((packed)); | 
|  |  | 
|  | struct svm_cpu_data { | 
|  | int cpu; | 
|  |  | 
|  | u64 asid_generation; | 
|  | u32 max_asid; | 
|  | u32 next_asid; | 
|  | u32 min_asid; | 
|  | struct kvm_ldttss_desc *tss_desc; | 
|  |  | 
|  | struct page *save_area; | 
|  | struct vmcb *current_vmcb; | 
|  |  | 
|  | /* index = sev_asid, value = vmcb pointer */ | 
|  | struct vmcb **sev_vmcbs; | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); | 
|  |  | 
|  | struct svm_init_data { | 
|  | int cpu; | 
|  | int r; | 
|  | }; | 
|  |  | 
|  | static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; | 
|  |  | 
|  | #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) | 
|  | #define MSRS_RANGE_SIZE 2048 | 
|  | #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) | 
|  |  | 
|  | static u32 svm_msrpm_offset(u32 msr) | 
|  | { | 
|  | u32 offset; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NUM_MSR_MAPS; i++) { | 
|  | if (msr < msrpm_ranges[i] || | 
|  | msr >= msrpm_ranges[i] + MSRS_IN_RANGE) | 
|  | continue; | 
|  |  | 
|  | offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ | 
|  | offset += (i * MSRS_RANGE_SIZE);       /* add range offset */ | 
|  |  | 
|  | /* Now we have the u8 offset - but need the u32 offset */ | 
|  | return offset / 4; | 
|  | } | 
|  |  | 
|  | /* MSR not in any range */ | 
|  | return MSR_INVALID; | 
|  | } | 
|  |  | 
|  | #define MAX_INST_SIZE 15 | 
|  |  | 
|  | static inline void clgi(void) | 
|  | { | 
|  | asm volatile (__ex(SVM_CLGI)); | 
|  | } | 
|  |  | 
|  | static inline void stgi(void) | 
|  | { | 
|  | asm volatile (__ex(SVM_STGI)); | 
|  | } | 
|  |  | 
|  | static inline void invlpga(unsigned long addr, u32 asid) | 
|  | { | 
|  | asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid)); | 
|  | } | 
|  |  | 
|  | static int get_npt_level(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | return PT64_ROOT_4LEVEL; | 
|  | #else | 
|  | return PT32E_ROOT_LEVEL; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
|  | { | 
|  | vcpu->arch.efer = efer; | 
|  |  | 
|  | if (!npt_enabled) { | 
|  | /* Shadow paging assumes NX to be available.  */ | 
|  | efer |= EFER_NX; | 
|  |  | 
|  | if (!(efer & EFER_LMA)) | 
|  | efer &= ~EFER_LME; | 
|  | } | 
|  |  | 
|  | to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; | 
|  | mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); | 
|  | } | 
|  |  | 
|  | static int is_external_interrupt(u32 info) | 
|  | { | 
|  | info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; | 
|  | return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); | 
|  | } | 
|  |  | 
|  | static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 ret = 0; | 
|  |  | 
|  | if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) | 
|  | ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (mask == 0) | 
|  | svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; | 
|  | else | 
|  | svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; | 
|  |  | 
|  | } | 
|  |  | 
|  | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (svm->vmcb->control.next_rip != 0) { | 
|  | WARN_ON_ONCE(!static_cpu_has(X86_FEATURE_NRIPS)); | 
|  | svm->next_rip = svm->vmcb->control.next_rip; | 
|  | } | 
|  |  | 
|  | if (!svm->next_rip) { | 
|  | if (kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) != | 
|  | EMULATE_DONE) | 
|  | printk(KERN_DEBUG "%s: NOP\n", __func__); | 
|  | return; | 
|  | } | 
|  | if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) | 
|  | printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", | 
|  | __func__, kvm_rip_read(vcpu), svm->next_rip); | 
|  |  | 
|  | kvm_rip_write(vcpu, svm->next_rip); | 
|  | svm_set_interrupt_shadow(vcpu, 0); | 
|  | } | 
|  |  | 
|  | static void svm_queue_exception(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | unsigned nr = vcpu->arch.exception.nr; | 
|  | bool has_error_code = vcpu->arch.exception.has_error_code; | 
|  | bool reinject = vcpu->arch.exception.injected; | 
|  | u32 error_code = vcpu->arch.exception.error_code; | 
|  |  | 
|  | /* | 
|  | * If we are within a nested VM we'd better #VMEXIT and let the guest | 
|  | * handle the exception | 
|  | */ | 
|  | if (!reinject && | 
|  | nested_svm_check_exception(svm, nr, has_error_code, error_code)) | 
|  | return; | 
|  |  | 
|  | if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) { | 
|  | unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); | 
|  |  | 
|  | /* | 
|  | * For guest debugging where we have to reinject #BP if some | 
|  | * INT3 is guest-owned: | 
|  | * Emulate nRIP by moving RIP forward. Will fail if injection | 
|  | * raises a fault that is not intercepted. Still better than | 
|  | * failing in all cases. | 
|  | */ | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  | rip = kvm_rip_read(&svm->vcpu); | 
|  | svm->int3_rip = rip + svm->vmcb->save.cs.base; | 
|  | svm->int3_injected = rip - old_rip; | 
|  | } | 
|  |  | 
|  | svm->vmcb->control.event_inj = nr | 
|  | | SVM_EVTINJ_VALID | 
|  | | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | 
|  | | SVM_EVTINJ_TYPE_EXEPT; | 
|  | svm->vmcb->control.event_inj_err = error_code; | 
|  | } | 
|  |  | 
|  | static void svm_init_erratum_383(void) | 
|  | { | 
|  | u32 low, high; | 
|  | int err; | 
|  | u64 val; | 
|  |  | 
|  | if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH)) | 
|  | return; | 
|  |  | 
|  | /* Use _safe variants to not break nested virtualization */ | 
|  | val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); | 
|  | if (err) | 
|  | return; | 
|  |  | 
|  | val |= (1ULL << 47); | 
|  |  | 
|  | low  = lower_32_bits(val); | 
|  | high = upper_32_bits(val); | 
|  |  | 
|  | native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); | 
|  |  | 
|  | erratum_383_found = true; | 
|  | } | 
|  |  | 
|  | static void svm_init_osvw(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* | 
|  | * Guests should see errata 400 and 415 as fixed (assuming that | 
|  | * HLT and IO instructions are intercepted). | 
|  | */ | 
|  | vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3; | 
|  | vcpu->arch.osvw.status = osvw_status & ~(6ULL); | 
|  |  | 
|  | /* | 
|  | * By increasing VCPU's osvw.length to 3 we are telling the guest that | 
|  | * all osvw.status bits inside that length, including bit 0 (which is | 
|  | * reserved for erratum 298), are valid. However, if host processor's | 
|  | * osvw_len is 0 then osvw_status[0] carries no information. We need to | 
|  | * be conservative here and therefore we tell the guest that erratum 298 | 
|  | * is present (because we really don't know). | 
|  | */ | 
|  | if (osvw_len == 0 && boot_cpu_data.x86 == 0x10) | 
|  | vcpu->arch.osvw.status |= 1; | 
|  | } | 
|  |  | 
|  | static int has_svm(void) | 
|  | { | 
|  | const char *msg; | 
|  |  | 
|  | if (!cpu_has_svm(&msg)) { | 
|  | printk(KERN_INFO "has_svm: %s\n", msg); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void svm_hardware_disable(void) | 
|  | { | 
|  | /* Make sure we clean up behind us */ | 
|  | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) | 
|  | wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); | 
|  |  | 
|  | cpu_svm_disable(); | 
|  |  | 
|  | amd_pmu_disable_virt(); | 
|  | } | 
|  |  | 
|  | static int svm_hardware_enable(void) | 
|  | { | 
|  |  | 
|  | struct svm_cpu_data *sd; | 
|  | uint64_t efer; | 
|  | struct desc_struct *gdt; | 
|  | int me = raw_smp_processor_id(); | 
|  |  | 
|  | rdmsrl(MSR_EFER, efer); | 
|  | if (efer & EFER_SVME) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (!has_svm()) { | 
|  | pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me); | 
|  | return -EINVAL; | 
|  | } | 
|  | sd = per_cpu(svm_data, me); | 
|  | if (!sd) { | 
|  | pr_err("%s: svm_data is NULL on %d\n", __func__, me); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | sd->asid_generation = 1; | 
|  | sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; | 
|  | sd->next_asid = sd->max_asid + 1; | 
|  | sd->min_asid = max_sev_asid + 1; | 
|  |  | 
|  | gdt = get_current_gdt_rw(); | 
|  | sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); | 
|  |  | 
|  | wrmsrl(MSR_EFER, efer | EFER_SVME); | 
|  |  | 
|  | wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { | 
|  | wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT); | 
|  | __this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Get OSVW bits. | 
|  | * | 
|  | * Note that it is possible to have a system with mixed processor | 
|  | * revisions and therefore different OSVW bits. If bits are not the same | 
|  | * on different processors then choose the worst case (i.e. if erratum | 
|  | * is present on one processor and not on another then assume that the | 
|  | * erratum is present everywhere). | 
|  | */ | 
|  | if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) { | 
|  | uint64_t len, status = 0; | 
|  | int err; | 
|  |  | 
|  | len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err); | 
|  | if (!err) | 
|  | status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS, | 
|  | &err); | 
|  |  | 
|  | if (err) | 
|  | osvw_status = osvw_len = 0; | 
|  | else { | 
|  | if (len < osvw_len) | 
|  | osvw_len = len; | 
|  | osvw_status |= status; | 
|  | osvw_status &= (1ULL << osvw_len) - 1; | 
|  | } | 
|  | } else | 
|  | osvw_status = osvw_len = 0; | 
|  |  | 
|  | svm_init_erratum_383(); | 
|  |  | 
|  | amd_pmu_enable_virt(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void svm_cpu_uninit(int cpu) | 
|  | { | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); | 
|  |  | 
|  | if (!sd) | 
|  | return; | 
|  |  | 
|  | per_cpu(svm_data, raw_smp_processor_id()) = NULL; | 
|  | kfree(sd->sev_vmcbs); | 
|  | __free_page(sd->save_area); | 
|  | kfree(sd); | 
|  | } | 
|  |  | 
|  | static int svm_cpu_init(int cpu) | 
|  | { | 
|  | struct svm_cpu_data *sd; | 
|  | int r; | 
|  |  | 
|  | sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); | 
|  | if (!sd) | 
|  | return -ENOMEM; | 
|  | sd->cpu = cpu; | 
|  | r = -ENOMEM; | 
|  | sd->save_area = alloc_page(GFP_KERNEL); | 
|  | if (!sd->save_area) | 
|  | goto err_1; | 
|  |  | 
|  | if (svm_sev_enabled()) { | 
|  | r = -ENOMEM; | 
|  | sd->sev_vmcbs = kmalloc_array(max_sev_asid + 1, | 
|  | sizeof(void *), | 
|  | GFP_KERNEL); | 
|  | if (!sd->sev_vmcbs) | 
|  | goto err_1; | 
|  | } | 
|  |  | 
|  | per_cpu(svm_data, cpu) = sd; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_1: | 
|  | kfree(sd); | 
|  | return r; | 
|  |  | 
|  | } | 
|  |  | 
|  | static bool valid_msr_intercept(u32 index) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) | 
|  | if (direct_access_msrs[i].index == index) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool msr_write_intercepted(struct kvm_vcpu *vcpu, unsigned msr) | 
|  | { | 
|  | u8 bit_write; | 
|  | unsigned long tmp; | 
|  | u32 offset; | 
|  | u32 *msrpm; | 
|  |  | 
|  | msrpm = is_guest_mode(vcpu) ? to_svm(vcpu)->nested.msrpm: | 
|  | to_svm(vcpu)->msrpm; | 
|  |  | 
|  | offset    = svm_msrpm_offset(msr); | 
|  | bit_write = 2 * (msr & 0x0f) + 1; | 
|  | tmp       = msrpm[offset]; | 
|  |  | 
|  | BUG_ON(offset == MSR_INVALID); | 
|  |  | 
|  | return !!test_bit(bit_write,  &tmp); | 
|  | } | 
|  |  | 
|  | static void set_msr_interception(u32 *msrpm, unsigned msr, | 
|  | int read, int write) | 
|  | { | 
|  | u8 bit_read, bit_write; | 
|  | unsigned long tmp; | 
|  | u32 offset; | 
|  |  | 
|  | /* | 
|  | * If this warning triggers extend the direct_access_msrs list at the | 
|  | * beginning of the file | 
|  | */ | 
|  | WARN_ON(!valid_msr_intercept(msr)); | 
|  |  | 
|  | offset    = svm_msrpm_offset(msr); | 
|  | bit_read  = 2 * (msr & 0x0f); | 
|  | bit_write = 2 * (msr & 0x0f) + 1; | 
|  | tmp       = msrpm[offset]; | 
|  |  | 
|  | BUG_ON(offset == MSR_INVALID); | 
|  |  | 
|  | read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp); | 
|  | write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); | 
|  |  | 
|  | msrpm[offset] = tmp; | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_init_msrpm(u32 *msrpm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); | 
|  |  | 
|  | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | 
|  | if (!direct_access_msrs[i].always) | 
|  | continue; | 
|  |  | 
|  | set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void add_msr_offset(u32 offset) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MSRPM_OFFSETS; ++i) { | 
|  |  | 
|  | /* Offset already in list? */ | 
|  | if (msrpm_offsets[i] == offset) | 
|  | return; | 
|  |  | 
|  | /* Slot used by another offset? */ | 
|  | if (msrpm_offsets[i] != MSR_INVALID) | 
|  | continue; | 
|  |  | 
|  | /* Add offset to list */ | 
|  | msrpm_offsets[i] = offset; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this BUG triggers the msrpm_offsets table has an overflow. Just | 
|  | * increase MSRPM_OFFSETS in this case. | 
|  | */ | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void init_msrpm_offsets(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); | 
|  |  | 
|  | for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | 
|  | u32 offset; | 
|  |  | 
|  | offset = svm_msrpm_offset(direct_access_msrs[i].index); | 
|  | BUG_ON(offset == MSR_INVALID); | 
|  |  | 
|  | add_msr_offset(offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void svm_enable_lbrv(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 *msrpm = svm->msrpm; | 
|  |  | 
|  | svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK; | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); | 
|  | } | 
|  |  | 
|  | static void svm_disable_lbrv(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 *msrpm = svm->msrpm; | 
|  |  | 
|  | svm->vmcb->control.virt_ext &= ~LBR_CTL_ENABLE_MASK; | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); | 
|  | set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); | 
|  | } | 
|  |  | 
|  | static void disable_nmi_singlestep(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->nmi_singlestep = false; | 
|  |  | 
|  | if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) { | 
|  | /* Clear our flags if they were not set by the guest */ | 
|  | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) | 
|  | svm->vmcb->save.rflags &= ~X86_EFLAGS_TF; | 
|  | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) | 
|  | svm->vmcb->save.rflags &= ~X86_EFLAGS_RF; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Note: | 
|  | * This hash table is used to map VM_ID to a struct kvm_svm, | 
|  | * when handling AMD IOMMU GALOG notification to schedule in | 
|  | * a particular vCPU. | 
|  | */ | 
|  | #define SVM_VM_DATA_HASH_BITS	8 | 
|  | static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS); | 
|  | static u32 next_vm_id = 0; | 
|  | static bool next_vm_id_wrapped = 0; | 
|  | static DEFINE_SPINLOCK(svm_vm_data_hash_lock); | 
|  |  | 
|  | /* Note: | 
|  | * This function is called from IOMMU driver to notify | 
|  | * SVM to schedule in a particular vCPU of a particular VM. | 
|  | */ | 
|  | static int avic_ga_log_notifier(u32 ga_tag) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct kvm_svm *kvm_svm; | 
|  | struct kvm_vcpu *vcpu = NULL; | 
|  | u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag); | 
|  | u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag); | 
|  |  | 
|  | pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id); | 
|  |  | 
|  | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
|  | hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) { | 
|  | if (kvm_svm->avic_vm_id != vm_id) | 
|  | continue; | 
|  | vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id); | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
|  |  | 
|  | /* Note: | 
|  | * At this point, the IOMMU should have already set the pending | 
|  | * bit in the vAPIC backing page. So, we just need to schedule | 
|  | * in the vcpu. | 
|  | */ | 
|  | if (vcpu) | 
|  | kvm_vcpu_wake_up(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __init int sev_hardware_setup(void) | 
|  | { | 
|  | struct sev_user_data_status *status; | 
|  | int rc; | 
|  |  | 
|  | /* Maximum number of encrypted guests supported simultaneously */ | 
|  | max_sev_asid = cpuid_ecx(0x8000001F); | 
|  |  | 
|  | if (!max_sev_asid) | 
|  | return 1; | 
|  |  | 
|  | /* Minimum ASID value that should be used for SEV guest */ | 
|  | min_sev_asid = cpuid_edx(0x8000001F); | 
|  |  | 
|  | /* Initialize SEV ASID bitmap */ | 
|  | sev_asid_bitmap = bitmap_zalloc(max_sev_asid, GFP_KERNEL); | 
|  | if (!sev_asid_bitmap) | 
|  | return 1; | 
|  |  | 
|  | status = kmalloc(sizeof(*status), GFP_KERNEL); | 
|  | if (!status) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Check SEV platform status. | 
|  | * | 
|  | * PLATFORM_STATUS can be called in any state, if we failed to query | 
|  | * the PLATFORM status then either PSP firmware does not support SEV | 
|  | * feature or SEV firmware is dead. | 
|  | */ | 
|  | rc = sev_platform_status(status, NULL); | 
|  | if (rc) | 
|  | goto err; | 
|  |  | 
|  | pr_info("SEV supported\n"); | 
|  |  | 
|  | err: | 
|  | kfree(status); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void grow_ple_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | int old = control->pause_filter_count; | 
|  |  | 
|  | control->pause_filter_count = __grow_ple_window(old, | 
|  | pause_filter_count, | 
|  | pause_filter_count_grow, | 
|  | pause_filter_count_max); | 
|  |  | 
|  | if (control->pause_filter_count != old) | 
|  | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
|  |  | 
|  | trace_kvm_ple_window_grow(vcpu->vcpu_id, | 
|  | control->pause_filter_count, old); | 
|  | } | 
|  |  | 
|  | static void shrink_ple_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | int old = control->pause_filter_count; | 
|  |  | 
|  | control->pause_filter_count = | 
|  | __shrink_ple_window(old, | 
|  | pause_filter_count, | 
|  | pause_filter_count_shrink, | 
|  | pause_filter_count); | 
|  | if (control->pause_filter_count != old) | 
|  | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
|  |  | 
|  | trace_kvm_ple_window_shrink(vcpu->vcpu_id, | 
|  | control->pause_filter_count, old); | 
|  | } | 
|  |  | 
|  | static __init int svm_hardware_setup(void) | 
|  | { | 
|  | int cpu; | 
|  | struct page *iopm_pages; | 
|  | void *iopm_va; | 
|  | int r; | 
|  |  | 
|  | iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); | 
|  |  | 
|  | if (!iopm_pages) | 
|  | return -ENOMEM; | 
|  |  | 
|  | iopm_va = page_address(iopm_pages); | 
|  | memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); | 
|  | iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; | 
|  |  | 
|  | init_msrpm_offsets(); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_NX)) | 
|  | kvm_enable_efer_bits(EFER_NX); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) | 
|  | kvm_enable_efer_bits(EFER_FFXSR); | 
|  |  | 
|  | if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) { | 
|  | kvm_has_tsc_control = true; | 
|  | kvm_max_tsc_scaling_ratio = TSC_RATIO_MAX; | 
|  | kvm_tsc_scaling_ratio_frac_bits = 32; | 
|  | } | 
|  |  | 
|  | /* Check for pause filtering support */ | 
|  | if (!boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { | 
|  | pause_filter_count = 0; | 
|  | pause_filter_thresh = 0; | 
|  | } else if (!boot_cpu_has(X86_FEATURE_PFTHRESHOLD)) { | 
|  | pause_filter_thresh = 0; | 
|  | } | 
|  |  | 
|  | if (nested) { | 
|  | printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); | 
|  | kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); | 
|  | } | 
|  |  | 
|  | if (sev) { | 
|  | if (boot_cpu_has(X86_FEATURE_SEV) && | 
|  | IS_ENABLED(CONFIG_KVM_AMD_SEV)) { | 
|  | r = sev_hardware_setup(); | 
|  | if (r) | 
|  | sev = false; | 
|  | } else { | 
|  | sev = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | r = svm_cpu_init(cpu); | 
|  | if (r) | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_NPT)) | 
|  | npt_enabled = false; | 
|  |  | 
|  | if (npt_enabled && !npt) { | 
|  | printk(KERN_INFO "kvm: Nested Paging disabled\n"); | 
|  | npt_enabled = false; | 
|  | } | 
|  |  | 
|  | if (npt_enabled) { | 
|  | printk(KERN_INFO "kvm: Nested Paging enabled\n"); | 
|  | kvm_enable_tdp(); | 
|  | } else | 
|  | kvm_disable_tdp(); | 
|  |  | 
|  | if (avic) { | 
|  | if (!npt_enabled || | 
|  | !boot_cpu_has(X86_FEATURE_AVIC) || | 
|  | !IS_ENABLED(CONFIG_X86_LOCAL_APIC)) { | 
|  | avic = false; | 
|  | } else { | 
|  | pr_info("AVIC enabled\n"); | 
|  |  | 
|  | amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (vls) { | 
|  | if (!npt_enabled || | 
|  | !boot_cpu_has(X86_FEATURE_V_VMSAVE_VMLOAD) || | 
|  | !IS_ENABLED(CONFIG_X86_64)) { | 
|  | vls = false; | 
|  | } else { | 
|  | pr_info("Virtual VMLOAD VMSAVE supported\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (vgif) { | 
|  | if (!boot_cpu_has(X86_FEATURE_VGIF)) | 
|  | vgif = false; | 
|  | else | 
|  | pr_info("Virtual GIF supported\n"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | __free_pages(iopm_pages, IOPM_ALLOC_ORDER); | 
|  | iopm_base = 0; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static __exit void svm_hardware_unsetup(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (svm_sev_enabled()) | 
|  | bitmap_free(sev_asid_bitmap); | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | svm_cpu_uninit(cpu); | 
|  |  | 
|  | __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); | 
|  | iopm_base = 0; | 
|  | } | 
|  |  | 
|  | static void init_seg(struct vmcb_seg *seg) | 
|  | { | 
|  | seg->selector = 0; | 
|  | seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | | 
|  | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ | 
|  | seg->limit = 0xffff; | 
|  | seg->base = 0; | 
|  | } | 
|  |  | 
|  | static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) | 
|  | { | 
|  | seg->selector = 0; | 
|  | seg->attrib = SVM_SELECTOR_P_MASK | type; | 
|  | seg->limit = 0xffff; | 
|  | seg->base = 0; | 
|  | } | 
|  |  | 
|  | static u64 svm_read_l1_tsc_offset(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (is_guest_mode(vcpu)) | 
|  | return svm->nested.hsave->control.tsc_offset; | 
|  |  | 
|  | return vcpu->arch.tsc_offset; | 
|  | } | 
|  |  | 
|  | static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u64 g_tsc_offset = 0; | 
|  |  | 
|  | if (is_guest_mode(vcpu)) { | 
|  | /* Write L1's TSC offset.  */ | 
|  | g_tsc_offset = svm->vmcb->control.tsc_offset - | 
|  | svm->nested.hsave->control.tsc_offset; | 
|  | svm->nested.hsave->control.tsc_offset = offset; | 
|  | } else | 
|  | trace_kvm_write_tsc_offset(vcpu->vcpu_id, | 
|  | svm->vmcb->control.tsc_offset, | 
|  | offset); | 
|  |  | 
|  | svm->vmcb->control.tsc_offset = offset + g_tsc_offset; | 
|  |  | 
|  | mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
|  | return svm->vmcb->control.tsc_offset; | 
|  | } | 
|  |  | 
|  | static void avic_init_vmcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm); | 
|  | phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page)); | 
|  | phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page)); | 
|  | phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page)); | 
|  |  | 
|  | vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK; | 
|  | vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK; | 
|  | vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK; | 
|  | vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID_COUNT; | 
|  | vmcb->control.int_ctl |= AVIC_ENABLE_MASK; | 
|  | } | 
|  |  | 
|  | static void init_vmcb(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | struct vmcb_save_area *save = &svm->vmcb->save; | 
|  |  | 
|  | svm->vcpu.arch.hflags = 0; | 
|  |  | 
|  | set_cr_intercept(svm, INTERCEPT_CR0_READ); | 
|  | set_cr_intercept(svm, INTERCEPT_CR3_READ); | 
|  | set_cr_intercept(svm, INTERCEPT_CR4_READ); | 
|  | set_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
|  | set_cr_intercept(svm, INTERCEPT_CR3_WRITE); | 
|  | set_cr_intercept(svm, INTERCEPT_CR4_WRITE); | 
|  | if (!kvm_vcpu_apicv_active(&svm->vcpu)) | 
|  | set_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
|  |  | 
|  | set_dr_intercepts(svm); | 
|  |  | 
|  | set_exception_intercept(svm, PF_VECTOR); | 
|  | set_exception_intercept(svm, UD_VECTOR); | 
|  | set_exception_intercept(svm, MC_VECTOR); | 
|  | set_exception_intercept(svm, AC_VECTOR); | 
|  | set_exception_intercept(svm, DB_VECTOR); | 
|  | /* | 
|  | * Guest access to VMware backdoor ports could legitimately | 
|  | * trigger #GP because of TSS I/O permission bitmap. | 
|  | * We intercept those #GP and allow access to them anyway | 
|  | * as VMware does. | 
|  | */ | 
|  | if (enable_vmware_backdoor) | 
|  | set_exception_intercept(svm, GP_VECTOR); | 
|  |  | 
|  | set_intercept(svm, INTERCEPT_INTR); | 
|  | set_intercept(svm, INTERCEPT_NMI); | 
|  | set_intercept(svm, INTERCEPT_SMI); | 
|  | set_intercept(svm, INTERCEPT_SELECTIVE_CR0); | 
|  | set_intercept(svm, INTERCEPT_RDPMC); | 
|  | set_intercept(svm, INTERCEPT_CPUID); | 
|  | set_intercept(svm, INTERCEPT_INVD); | 
|  | set_intercept(svm, INTERCEPT_INVLPG); | 
|  | set_intercept(svm, INTERCEPT_INVLPGA); | 
|  | set_intercept(svm, INTERCEPT_IOIO_PROT); | 
|  | set_intercept(svm, INTERCEPT_MSR_PROT); | 
|  | set_intercept(svm, INTERCEPT_TASK_SWITCH); | 
|  | set_intercept(svm, INTERCEPT_SHUTDOWN); | 
|  | set_intercept(svm, INTERCEPT_VMRUN); | 
|  | set_intercept(svm, INTERCEPT_VMMCALL); | 
|  | set_intercept(svm, INTERCEPT_VMLOAD); | 
|  | set_intercept(svm, INTERCEPT_VMSAVE); | 
|  | set_intercept(svm, INTERCEPT_STGI); | 
|  | set_intercept(svm, INTERCEPT_CLGI); | 
|  | set_intercept(svm, INTERCEPT_SKINIT); | 
|  | set_intercept(svm, INTERCEPT_WBINVD); | 
|  | set_intercept(svm, INTERCEPT_XSETBV); | 
|  | set_intercept(svm, INTERCEPT_RSM); | 
|  |  | 
|  | if (!kvm_mwait_in_guest(svm->vcpu.kvm)) { | 
|  | set_intercept(svm, INTERCEPT_MONITOR); | 
|  | set_intercept(svm, INTERCEPT_MWAIT); | 
|  | } | 
|  |  | 
|  | if (!kvm_hlt_in_guest(svm->vcpu.kvm)) | 
|  | set_intercept(svm, INTERCEPT_HLT); | 
|  |  | 
|  | control->iopm_base_pa = __sme_set(iopm_base); | 
|  | control->msrpm_base_pa = __sme_set(__pa(svm->msrpm)); | 
|  | control->int_ctl = V_INTR_MASKING_MASK; | 
|  |  | 
|  | init_seg(&save->es); | 
|  | init_seg(&save->ss); | 
|  | init_seg(&save->ds); | 
|  | init_seg(&save->fs); | 
|  | init_seg(&save->gs); | 
|  |  | 
|  | save->cs.selector = 0xf000; | 
|  | save->cs.base = 0xffff0000; | 
|  | /* Executable/Readable Code Segment */ | 
|  | save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | | 
|  | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; | 
|  | save->cs.limit = 0xffff; | 
|  |  | 
|  | save->gdtr.limit = 0xffff; | 
|  | save->idtr.limit = 0xffff; | 
|  |  | 
|  | init_sys_seg(&save->ldtr, SEG_TYPE_LDT); | 
|  | init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); | 
|  |  | 
|  | svm_set_efer(&svm->vcpu, 0); | 
|  | save->dr6 = 0xffff0ff0; | 
|  | kvm_set_rflags(&svm->vcpu, 2); | 
|  | save->rip = 0x0000fff0; | 
|  | svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; | 
|  |  | 
|  | /* | 
|  | * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. | 
|  | * It also updates the guest-visible cr0 value. | 
|  | */ | 
|  | svm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); | 
|  | kvm_mmu_reset_context(&svm->vcpu); | 
|  |  | 
|  | save->cr4 = X86_CR4_PAE; | 
|  | /* rdx = ?? */ | 
|  |  | 
|  | if (npt_enabled) { | 
|  | /* Setup VMCB for Nested Paging */ | 
|  | control->nested_ctl |= SVM_NESTED_CTL_NP_ENABLE; | 
|  | clr_intercept(svm, INTERCEPT_INVLPG); | 
|  | clr_exception_intercept(svm, PF_VECTOR); | 
|  | clr_cr_intercept(svm, INTERCEPT_CR3_READ); | 
|  | clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); | 
|  | save->g_pat = svm->vcpu.arch.pat; | 
|  | save->cr3 = 0; | 
|  | save->cr4 = 0; | 
|  | } | 
|  | svm->asid_generation = 0; | 
|  |  | 
|  | svm->nested.vmcb = 0; | 
|  | svm->vcpu.arch.hflags = 0; | 
|  |  | 
|  | if (pause_filter_count) { | 
|  | control->pause_filter_count = pause_filter_count; | 
|  | if (pause_filter_thresh) | 
|  | control->pause_filter_thresh = pause_filter_thresh; | 
|  | set_intercept(svm, INTERCEPT_PAUSE); | 
|  | } else { | 
|  | clr_intercept(svm, INTERCEPT_PAUSE); | 
|  | } | 
|  |  | 
|  | if (kvm_vcpu_apicv_active(&svm->vcpu)) | 
|  | avic_init_vmcb(svm); | 
|  |  | 
|  | /* | 
|  | * If hardware supports Virtual VMLOAD VMSAVE then enable it | 
|  | * in VMCB and clear intercepts to avoid #VMEXIT. | 
|  | */ | 
|  | if (vls) { | 
|  | clr_intercept(svm, INTERCEPT_VMLOAD); | 
|  | clr_intercept(svm, INTERCEPT_VMSAVE); | 
|  | svm->vmcb->control.virt_ext |= VIRTUAL_VMLOAD_VMSAVE_ENABLE_MASK; | 
|  | } | 
|  |  | 
|  | if (vgif) { | 
|  | clr_intercept(svm, INTERCEPT_STGI); | 
|  | clr_intercept(svm, INTERCEPT_CLGI); | 
|  | svm->vmcb->control.int_ctl |= V_GIF_ENABLE_MASK; | 
|  | } | 
|  |  | 
|  | if (sev_guest(svm->vcpu.kvm)) { | 
|  | svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE; | 
|  | clr_exception_intercept(svm, UD_VECTOR); | 
|  | } | 
|  |  | 
|  | mark_all_dirty(svm->vmcb); | 
|  |  | 
|  | enable_gif(svm); | 
|  |  | 
|  | } | 
|  |  | 
|  | static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu, | 
|  | unsigned int index) | 
|  | { | 
|  | u64 *avic_physical_id_table; | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
|  |  | 
|  | if (index >= AVIC_MAX_PHYSICAL_ID_COUNT) | 
|  | return NULL; | 
|  |  | 
|  | avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page); | 
|  |  | 
|  | return &avic_physical_id_table[index]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Note: | 
|  | * AVIC hardware walks the nested page table to check permissions, | 
|  | * but does not use the SPA address specified in the leaf page | 
|  | * table entry since it uses  address in the AVIC_BACKING_PAGE pointer | 
|  | * field of the VMCB. Therefore, we set up the | 
|  | * APIC_ACCESS_PAGE_PRIVATE_MEMSLOT (4KB) here. | 
|  | */ | 
|  | static int avic_init_access_page(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm *kvm = vcpu->kvm; | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&kvm->slots_lock); | 
|  | if (kvm->arch.apic_access_page_done) | 
|  | goto out; | 
|  |  | 
|  | ret = __x86_set_memory_region(kvm, | 
|  | APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, | 
|  | APIC_DEFAULT_PHYS_BASE, | 
|  | PAGE_SIZE); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | kvm->arch.apic_access_page_done = true; | 
|  | out: | 
|  | mutex_unlock(&kvm->slots_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int avic_init_backing_page(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int ret; | 
|  | u64 *entry, new_entry; | 
|  | int id = vcpu->vcpu_id; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | ret = avic_init_access_page(vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (id >= AVIC_MAX_PHYSICAL_ID_COUNT) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!svm->vcpu.arch.apic->regs) | 
|  | return -EINVAL; | 
|  |  | 
|  | svm->avic_backing_page = virt_to_page(svm->vcpu.arch.apic->regs); | 
|  |  | 
|  | /* Setting AVIC backing page address in the phy APIC ID table */ | 
|  | entry = avic_get_physical_id_entry(vcpu, id); | 
|  | if (!entry) | 
|  | return -EINVAL; | 
|  |  | 
|  | new_entry = READ_ONCE(*entry); | 
|  | new_entry = __sme_set((page_to_phys(svm->avic_backing_page) & | 
|  | AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) | | 
|  | AVIC_PHYSICAL_ID_ENTRY_VALID_MASK); | 
|  | WRITE_ONCE(*entry, new_entry); | 
|  |  | 
|  | svm->avic_physical_id_cache = entry; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __sev_asid_free(int asid) | 
|  | { | 
|  | struct svm_cpu_data *sd; | 
|  | int cpu, pos; | 
|  |  | 
|  | pos = asid - 1; | 
|  | clear_bit(pos, sev_asid_bitmap); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | sd = per_cpu(svm_data, cpu); | 
|  | sd->sev_vmcbs[pos] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sev_asid_free(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  |  | 
|  | __sev_asid_free(sev->asid); | 
|  | } | 
|  |  | 
|  | static void sev_unbind_asid(struct kvm *kvm, unsigned int handle) | 
|  | { | 
|  | struct sev_data_decommission *decommission; | 
|  | struct sev_data_deactivate *data; | 
|  |  | 
|  | if (!handle) | 
|  | return; | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return; | 
|  |  | 
|  | /* deactivate handle */ | 
|  | data->handle = handle; | 
|  | sev_guest_deactivate(data, NULL); | 
|  |  | 
|  | wbinvd_on_all_cpus(); | 
|  | sev_guest_df_flush(NULL); | 
|  | kfree(data); | 
|  |  | 
|  | decommission = kzalloc(sizeof(*decommission), GFP_KERNEL); | 
|  | if (!decommission) | 
|  | return; | 
|  |  | 
|  | /* decommission handle */ | 
|  | decommission->handle = handle; | 
|  | sev_guest_decommission(decommission, NULL); | 
|  |  | 
|  | kfree(decommission); | 
|  | } | 
|  |  | 
|  | static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr, | 
|  | unsigned long ulen, unsigned long *n, | 
|  | int write) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | unsigned long npages, npinned, size; | 
|  | unsigned long locked, lock_limit; | 
|  | struct page **pages; | 
|  | unsigned long first, last; | 
|  |  | 
|  | if (ulen == 0 || uaddr + ulen < uaddr) | 
|  | return NULL; | 
|  |  | 
|  | /* Calculate number of pages. */ | 
|  | first = (uaddr & PAGE_MASK) >> PAGE_SHIFT; | 
|  | last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT; | 
|  | npages = (last - first + 1); | 
|  |  | 
|  | locked = sev->pages_locked + npages; | 
|  | lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT; | 
|  | if (locked > lock_limit && !capable(CAP_IPC_LOCK)) { | 
|  | pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Avoid using vmalloc for smaller buffers. */ | 
|  | size = npages * sizeof(struct page *); | 
|  | if (size > PAGE_SIZE) | 
|  | pages = vmalloc(size); | 
|  | else | 
|  | pages = kmalloc(size, GFP_KERNEL); | 
|  |  | 
|  | if (!pages) | 
|  | return NULL; | 
|  |  | 
|  | /* Pin the user virtual address. */ | 
|  | npinned = get_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages); | 
|  | if (npinned != npages) { | 
|  | pr_err("SEV: Failure locking %lu pages.\n", npages); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | *n = npages; | 
|  | sev->pages_locked = locked; | 
|  |  | 
|  | return pages; | 
|  |  | 
|  | err: | 
|  | if (npinned > 0) | 
|  | release_pages(pages, npinned); | 
|  |  | 
|  | kvfree(pages); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void sev_unpin_memory(struct kvm *kvm, struct page **pages, | 
|  | unsigned long npages) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  |  | 
|  | release_pages(pages, npages); | 
|  | kvfree(pages); | 
|  | sev->pages_locked -= npages; | 
|  | } | 
|  |  | 
|  | static void sev_clflush_pages(struct page *pages[], unsigned long npages) | 
|  | { | 
|  | uint8_t *page_virtual; | 
|  | unsigned long i; | 
|  |  | 
|  | if (npages == 0 || pages == NULL) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < npages; i++) { | 
|  | page_virtual = kmap_atomic(pages[i]); | 
|  | clflush_cache_range(page_virtual, PAGE_SIZE); | 
|  | kunmap_atomic(page_virtual); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __unregister_enc_region_locked(struct kvm *kvm, | 
|  | struct enc_region *region) | 
|  | { | 
|  | /* | 
|  | * The guest may change the memory encryption attribute from C=0 -> C=1 | 
|  | * or vice versa for this memory range. Lets make sure caches are | 
|  | * flushed to ensure that guest data gets written into memory with | 
|  | * correct C-bit. | 
|  | */ | 
|  | sev_clflush_pages(region->pages, region->npages); | 
|  |  | 
|  | sev_unpin_memory(kvm, region->pages, region->npages); | 
|  | list_del(®ion->list); | 
|  | kfree(region); | 
|  | } | 
|  |  | 
|  | static struct kvm *svm_vm_alloc(void) | 
|  | { | 
|  | struct kvm_svm *kvm_svm = vzalloc(sizeof(struct kvm_svm)); | 
|  | return &kvm_svm->kvm; | 
|  | } | 
|  |  | 
|  | static void svm_vm_free(struct kvm *kvm) | 
|  | { | 
|  | vfree(to_kvm_svm(kvm)); | 
|  | } | 
|  |  | 
|  | static void sev_vm_destroy(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct list_head *head = &sev->regions_list; | 
|  | struct list_head *pos, *q; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  |  | 
|  | /* | 
|  | * if userspace was terminated before unregistering the memory regions | 
|  | * then lets unpin all the registered memory. | 
|  | */ | 
|  | if (!list_empty(head)) { | 
|  | list_for_each_safe(pos, q, head) { | 
|  | __unregister_enc_region_locked(kvm, | 
|  | list_entry(pos, struct enc_region, list)); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&kvm->lock); | 
|  |  | 
|  | sev_unbind_asid(kvm, sev->handle); | 
|  | sev_asid_free(kvm); | 
|  | } | 
|  |  | 
|  | static void avic_vm_destroy(struct kvm *kvm) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
|  |  | 
|  | if (!avic) | 
|  | return; | 
|  |  | 
|  | if (kvm_svm->avic_logical_id_table_page) | 
|  | __free_page(kvm_svm->avic_logical_id_table_page); | 
|  | if (kvm_svm->avic_physical_id_table_page) | 
|  | __free_page(kvm_svm->avic_physical_id_table_page); | 
|  |  | 
|  | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
|  | hash_del(&kvm_svm->hnode); | 
|  | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
|  | } | 
|  |  | 
|  | static void svm_vm_destroy(struct kvm *kvm) | 
|  | { | 
|  | avic_vm_destroy(kvm); | 
|  | sev_vm_destroy(kvm); | 
|  | } | 
|  |  | 
|  | static int avic_vm_init(struct kvm *kvm) | 
|  | { | 
|  | unsigned long flags; | 
|  | int err = -ENOMEM; | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(kvm); | 
|  | struct kvm_svm *k2; | 
|  | struct page *p_page; | 
|  | struct page *l_page; | 
|  | u32 vm_id; | 
|  |  | 
|  | if (!avic) | 
|  | return 0; | 
|  |  | 
|  | /* Allocating physical APIC ID table (4KB) */ | 
|  | p_page = alloc_page(GFP_KERNEL); | 
|  | if (!p_page) | 
|  | goto free_avic; | 
|  |  | 
|  | kvm_svm->avic_physical_id_table_page = p_page; | 
|  | clear_page(page_address(p_page)); | 
|  |  | 
|  | /* Allocating logical APIC ID table (4KB) */ | 
|  | l_page = alloc_page(GFP_KERNEL); | 
|  | if (!l_page) | 
|  | goto free_avic; | 
|  |  | 
|  | kvm_svm->avic_logical_id_table_page = l_page; | 
|  | clear_page(page_address(l_page)); | 
|  |  | 
|  | spin_lock_irqsave(&svm_vm_data_hash_lock, flags); | 
|  | again: | 
|  | vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK; | 
|  | if (vm_id == 0) { /* id is 1-based, zero is not okay */ | 
|  | next_vm_id_wrapped = 1; | 
|  | goto again; | 
|  | } | 
|  | /* Is it still in use? Only possible if wrapped at least once */ | 
|  | if (next_vm_id_wrapped) { | 
|  | hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) { | 
|  | if (k2->avic_vm_id == vm_id) | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | kvm_svm->avic_vm_id = vm_id; | 
|  | hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id); | 
|  | spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | free_avic: | 
|  | avic_vm_destroy(kvm); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  | struct amd_svm_iommu_ir *ir; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (!kvm_arch_has_assigned_device(vcpu->kvm)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Here, we go through the per-vcpu ir_list to update all existing | 
|  | * interrupt remapping table entry targeting this vcpu. | 
|  | */ | 
|  | spin_lock_irqsave(&svm->ir_list_lock, flags); | 
|  |  | 
|  | if (list_empty(&svm->ir_list)) | 
|  | goto out; | 
|  |  | 
|  | list_for_each_entry(ir, &svm->ir_list, node) { | 
|  | ret = amd_iommu_update_ga(cpu, r, ir->data); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  | out: | 
|  | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | u64 entry; | 
|  | /* ID = 0xff (broadcast), ID > 0xff (reserved) */ | 
|  | int h_physical_id = kvm_cpu_get_apicid(cpu); | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (!kvm_vcpu_apicv_active(vcpu)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Since the host physical APIC id is 8 bits, | 
|  | * we can support host APIC ID upto 255. | 
|  | */ | 
|  | if (WARN_ON(h_physical_id > AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK)) | 
|  | return; | 
|  |  | 
|  | entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
|  | WARN_ON(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK); | 
|  |  | 
|  | entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK; | 
|  | entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK); | 
|  |  | 
|  | entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
|  | if (svm->avic_is_running) | 
|  | entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
|  |  | 
|  | WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | 
|  | avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, | 
|  | svm->avic_is_running); | 
|  | } | 
|  |  | 
|  | static void avic_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 entry; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (!kvm_vcpu_apicv_active(vcpu)) | 
|  | return; | 
|  |  | 
|  | entry = READ_ONCE(*(svm->avic_physical_id_cache)); | 
|  | if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK) | 
|  | avic_update_iommu_vcpu_affinity(vcpu, -1, 0); | 
|  |  | 
|  | entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK; | 
|  | WRITE_ONCE(*(svm->avic_physical_id_cache), entry); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * This function is called during VCPU halt/unhalt. | 
|  | */ | 
|  | static void avic_set_running(struct kvm_vcpu *vcpu, bool is_run) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->avic_is_running = is_run; | 
|  | if (is_run) | 
|  | avic_vcpu_load(vcpu, vcpu->cpu); | 
|  | else | 
|  | avic_vcpu_put(vcpu); | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 dummy; | 
|  | u32 eax = 1; | 
|  |  | 
|  | vcpu->arch.microcode_version = 0x01000065; | 
|  | svm->spec_ctrl = 0; | 
|  | svm->virt_spec_ctrl = 0; | 
|  |  | 
|  | if (!init_event) { | 
|  | svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE | | 
|  | MSR_IA32_APICBASE_ENABLE; | 
|  | if (kvm_vcpu_is_reset_bsp(&svm->vcpu)) | 
|  | svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; | 
|  | } | 
|  | init_vmcb(svm); | 
|  |  | 
|  | kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy, true); | 
|  | kvm_register_write(vcpu, VCPU_REGS_RDX, eax); | 
|  |  | 
|  | if (kvm_vcpu_apicv_active(vcpu) && !init_event) | 
|  | avic_update_vapic_bar(svm, APIC_DEFAULT_PHYS_BASE); | 
|  | } | 
|  |  | 
|  | static int avic_init_vcpu(struct vcpu_svm *svm) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (!kvm_vcpu_apicv_active(&svm->vcpu)) | 
|  | return 0; | 
|  |  | 
|  | ret = avic_init_backing_page(&svm->vcpu); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | INIT_LIST_HEAD(&svm->ir_list); | 
|  | spin_lock_init(&svm->ir_list_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) | 
|  | { | 
|  | struct vcpu_svm *svm; | 
|  | struct page *page; | 
|  | struct page *msrpm_pages; | 
|  | struct page *hsave_page; | 
|  | struct page *nested_msrpm_pages; | 
|  | int err; | 
|  |  | 
|  | svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
|  | if (!svm) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | err = kvm_vcpu_init(&svm->vcpu, kvm, id); | 
|  | if (err) | 
|  | goto free_svm; | 
|  |  | 
|  | err = -ENOMEM; | 
|  | page = alloc_page(GFP_KERNEL); | 
|  | if (!page) | 
|  | goto uninit; | 
|  |  | 
|  | msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); | 
|  | if (!msrpm_pages) | 
|  | goto free_page1; | 
|  |  | 
|  | nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); | 
|  | if (!nested_msrpm_pages) | 
|  | goto free_page2; | 
|  |  | 
|  | hsave_page = alloc_page(GFP_KERNEL); | 
|  | if (!hsave_page) | 
|  | goto free_page3; | 
|  |  | 
|  | err = avic_init_vcpu(svm); | 
|  | if (err) | 
|  | goto free_page4; | 
|  |  | 
|  | /* We initialize this flag to true to make sure that the is_running | 
|  | * bit would be set the first time the vcpu is loaded. | 
|  | */ | 
|  | svm->avic_is_running = true; | 
|  |  | 
|  | svm->nested.hsave = page_address(hsave_page); | 
|  |  | 
|  | svm->msrpm = page_address(msrpm_pages); | 
|  | svm_vcpu_init_msrpm(svm->msrpm); | 
|  |  | 
|  | svm->nested.msrpm = page_address(nested_msrpm_pages); | 
|  | svm_vcpu_init_msrpm(svm->nested.msrpm); | 
|  |  | 
|  | svm->vmcb = page_address(page); | 
|  | clear_page(svm->vmcb); | 
|  | svm->vmcb_pa = __sme_set(page_to_pfn(page) << PAGE_SHIFT); | 
|  | svm->asid_generation = 0; | 
|  | init_vmcb(svm); | 
|  |  | 
|  | svm_init_osvw(&svm->vcpu); | 
|  |  | 
|  | return &svm->vcpu; | 
|  |  | 
|  | free_page4: | 
|  | __free_page(hsave_page); | 
|  | free_page3: | 
|  | __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); | 
|  | free_page2: | 
|  | __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); | 
|  | free_page1: | 
|  | __free_page(page); | 
|  | uninit: | 
|  | kvm_vcpu_uninit(&svm->vcpu); | 
|  | free_svm: | 
|  | kmem_cache_free(kvm_vcpu_cache, svm); | 
|  | out: | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void svm_clear_current_vmcb(struct vmcb *vmcb) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_online_cpu(i) | 
|  | cmpxchg(&per_cpu(svm_data, i)->current_vmcb, vmcb, NULL); | 
|  | } | 
|  |  | 
|  | static void svm_free_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | /* | 
|  | * The vmcb page can be recycled, causing a false negative in | 
|  | * svm_vcpu_load(). So, ensure that no logical CPU has this | 
|  | * vmcb page recorded as its current vmcb. | 
|  | */ | 
|  | svm_clear_current_vmcb(svm->vmcb); | 
|  |  | 
|  | __free_page(pfn_to_page(__sme_clr(svm->vmcb_pa) >> PAGE_SHIFT)); | 
|  | __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); | 
|  | __free_page(virt_to_page(svm->nested.hsave)); | 
|  | __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); | 
|  | kvm_vcpu_uninit(vcpu); | 
|  | kmem_cache_free(kvm_vcpu_cache, svm); | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
|  | int i; | 
|  |  | 
|  | if (unlikely(cpu != vcpu->cpu)) { | 
|  | svm->asid_generation = 0; | 
|  | mark_all_dirty(svm->vmcb); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); | 
|  | #endif | 
|  | savesegment(fs, svm->host.fs); | 
|  | savesegment(gs, svm->host.gs); | 
|  | svm->host.ldt = kvm_read_ldt(); | 
|  |  | 
|  | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 
|  | rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) { | 
|  | u64 tsc_ratio = vcpu->arch.tsc_scaling_ratio; | 
|  | if (tsc_ratio != __this_cpu_read(current_tsc_ratio)) { | 
|  | __this_cpu_write(current_tsc_ratio, tsc_ratio); | 
|  | wrmsrl(MSR_AMD64_TSC_RATIO, tsc_ratio); | 
|  | } | 
|  | } | 
|  | /* This assumes that the kernel never uses MSR_TSC_AUX */ | 
|  | if (static_cpu_has(X86_FEATURE_RDTSCP)) | 
|  | wrmsrl(MSR_TSC_AUX, svm->tsc_aux); | 
|  |  | 
|  | if (sd->current_vmcb != svm->vmcb) { | 
|  | sd->current_vmcb = svm->vmcb; | 
|  | indirect_branch_prediction_barrier(); | 
|  | } | 
|  | avic_vcpu_load(vcpu, cpu); | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | int i; | 
|  |  | 
|  | avic_vcpu_put(vcpu); | 
|  |  | 
|  | ++vcpu->stat.host_state_reload; | 
|  | kvm_load_ldt(svm->host.ldt); | 
|  | #ifdef CONFIG_X86_64 | 
|  | loadsegment(fs, svm->host.fs); | 
|  | wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gsbase); | 
|  | load_gs_index(svm->host.gs); | 
|  | #else | 
|  | #ifdef CONFIG_X86_32_LAZY_GS | 
|  | loadsegment(gs, svm->host.gs); | 
|  | #endif | 
|  | #endif | 
|  | for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 
|  | wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_blocking(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | avic_set_running(vcpu, false); | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_unblocking(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | avic_set_running(vcpu, true); | 
|  | } | 
|  |  | 
|  | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | unsigned long rflags = svm->vmcb->save.rflags; | 
|  |  | 
|  | if (svm->nmi_singlestep) { | 
|  | /* Hide our flags if they were not set by the guest */ | 
|  | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF)) | 
|  | rflags &= ~X86_EFLAGS_TF; | 
|  | if (!(svm->nmi_singlestep_guest_rflags & X86_EFLAGS_RF)) | 
|  | rflags &= ~X86_EFLAGS_RF; | 
|  | } | 
|  | return rflags; | 
|  | } | 
|  |  | 
|  | static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
|  | { | 
|  | if (to_svm(vcpu)->nmi_singlestep) | 
|  | rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); | 
|  |  | 
|  | /* | 
|  | * Any change of EFLAGS.VM is accompanied by a reload of SS | 
|  | * (caused by either a task switch or an inter-privilege IRET), | 
|  | * so we do not need to update the CPL here. | 
|  | */ | 
|  | to_svm(vcpu)->vmcb->save.rflags = rflags; | 
|  | } | 
|  |  | 
|  | static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) | 
|  | { | 
|  | switch (reg) { | 
|  | case VCPU_EXREG_PDPTR: | 
|  | BUG_ON(!npt_enabled); | 
|  | load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void svm_set_vintr(struct vcpu_svm *svm) | 
|  | { | 
|  | set_intercept(svm, INTERCEPT_VINTR); | 
|  | } | 
|  |  | 
|  | static void svm_clear_vintr(struct vcpu_svm *svm) | 
|  | { | 
|  | clr_intercept(svm, INTERCEPT_VINTR); | 
|  | } | 
|  |  | 
|  | static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | 
|  |  | 
|  | switch (seg) { | 
|  | case VCPU_SREG_CS: return &save->cs; | 
|  | case VCPU_SREG_DS: return &save->ds; | 
|  | case VCPU_SREG_ES: return &save->es; | 
|  | case VCPU_SREG_FS: return &save->fs; | 
|  | case VCPU_SREG_GS: return &save->gs; | 
|  | case VCPU_SREG_SS: return &save->ss; | 
|  | case VCPU_SREG_TR: return &save->tr; | 
|  | case VCPU_SREG_LDTR: return &save->ldtr; | 
|  | } | 
|  | BUG(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct vmcb_seg *s = svm_seg(vcpu, seg); | 
|  |  | 
|  | return s->base; | 
|  | } | 
|  |  | 
|  | static void svm_get_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | struct vmcb_seg *s = svm_seg(vcpu, seg); | 
|  |  | 
|  | var->base = s->base; | 
|  | var->limit = s->limit; | 
|  | var->selector = s->selector; | 
|  | var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; | 
|  | var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; | 
|  | var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; | 
|  | var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; | 
|  | var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; | 
|  | var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; | 
|  | var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; | 
|  |  | 
|  | /* | 
|  | * AMD CPUs circa 2014 track the G bit for all segments except CS. | 
|  | * However, the SVM spec states that the G bit is not observed by the | 
|  | * CPU, and some VMware virtual CPUs drop the G bit for all segments. | 
|  | * So let's synthesize a legal G bit for all segments, this helps | 
|  | * running KVM nested. It also helps cross-vendor migration, because | 
|  | * Intel's vmentry has a check on the 'G' bit. | 
|  | */ | 
|  | var->g = s->limit > 0xfffff; | 
|  |  | 
|  | /* | 
|  | * AMD's VMCB does not have an explicit unusable field, so emulate it | 
|  | * for cross vendor migration purposes by "not present" | 
|  | */ | 
|  | var->unusable = !var->present; | 
|  |  | 
|  | switch (seg) { | 
|  | case VCPU_SREG_TR: | 
|  | /* | 
|  | * Work around a bug where the busy flag in the tr selector | 
|  | * isn't exposed | 
|  | */ | 
|  | var->type |= 0x2; | 
|  | break; | 
|  | case VCPU_SREG_DS: | 
|  | case VCPU_SREG_ES: | 
|  | case VCPU_SREG_FS: | 
|  | case VCPU_SREG_GS: | 
|  | /* | 
|  | * The accessed bit must always be set in the segment | 
|  | * descriptor cache, although it can be cleared in the | 
|  | * descriptor, the cached bit always remains at 1. Since | 
|  | * Intel has a check on this, set it here to support | 
|  | * cross-vendor migration. | 
|  | */ | 
|  | if (!var->unusable) | 
|  | var->type |= 0x1; | 
|  | break; | 
|  | case VCPU_SREG_SS: | 
|  | /* | 
|  | * On AMD CPUs sometimes the DB bit in the segment | 
|  | * descriptor is left as 1, although the whole segment has | 
|  | * been made unusable. Clear it here to pass an Intel VMX | 
|  | * entry check when cross vendor migrating. | 
|  | */ | 
|  | if (var->unusable) | 
|  | var->db = 0; | 
|  | /* This is symmetric with svm_set_segment() */ | 
|  | var->dpl = to_svm(vcpu)->vmcb->save.cpl; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int svm_get_cpl(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | 
|  |  | 
|  | return save->cpl; | 
|  | } | 
|  |  | 
|  | static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | dt->size = svm->vmcb->save.idtr.limit; | 
|  | dt->address = svm->vmcb->save.idtr.base; | 
|  | } | 
|  |  | 
|  | static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.idtr.limit = dt->size; | 
|  | svm->vmcb->save.idtr.base = dt->address ; | 
|  | mark_dirty(svm->vmcb, VMCB_DT); | 
|  | } | 
|  |  | 
|  | static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | dt->size = svm->vmcb->save.gdtr.limit; | 
|  | dt->address = svm->vmcb->save.gdtr.base; | 
|  | } | 
|  |  | 
|  | static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.gdtr.limit = dt->size; | 
|  | svm->vmcb->save.gdtr.base = dt->address ; | 
|  | mark_dirty(svm->vmcb, VMCB_DT); | 
|  | } | 
|  |  | 
|  | static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void svm_decache_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void update_cr0_intercept(struct vcpu_svm *svm) | 
|  | { | 
|  | ulong gcr0 = svm->vcpu.arch.cr0; | 
|  | u64 *hcr0 = &svm->vmcb->save.cr0; | 
|  |  | 
|  | *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) | 
|  | | (gcr0 & SVM_CR0_SELECTIVE_MASK); | 
|  |  | 
|  | mark_dirty(svm->vmcb, VMCB_CR); | 
|  |  | 
|  | if (gcr0 == *hcr0) { | 
|  | clr_cr_intercept(svm, INTERCEPT_CR0_READ); | 
|  | clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
|  | } else { | 
|  | set_cr_intercept(svm, INTERCEPT_CR0_READ); | 
|  | set_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (vcpu->arch.efer & EFER_LME) { | 
|  | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | 
|  | vcpu->arch.efer |= EFER_LMA; | 
|  | svm->vmcb->save.efer |= EFER_LMA | EFER_LME; | 
|  | } | 
|  |  | 
|  | if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { | 
|  | vcpu->arch.efer &= ~EFER_LMA; | 
|  | svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | vcpu->arch.cr0 = cr0; | 
|  |  | 
|  | if (!npt_enabled) | 
|  | cr0 |= X86_CR0_PG | X86_CR0_WP; | 
|  |  | 
|  | /* | 
|  | * re-enable caching here because the QEMU bios | 
|  | * does not do it - this results in some delay at | 
|  | * reboot | 
|  | */ | 
|  | if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) | 
|  | cr0 &= ~(X86_CR0_CD | X86_CR0_NW); | 
|  | svm->vmcb->save.cr0 = cr0; | 
|  | mark_dirty(svm->vmcb, VMCB_CR); | 
|  | update_cr0_intercept(svm); | 
|  | } | 
|  |  | 
|  | static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
|  | { | 
|  | unsigned long host_cr4_mce = cr4_read_shadow() & X86_CR4_MCE; | 
|  | unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; | 
|  |  | 
|  | if (cr4 & X86_CR4_VMXE) | 
|  | return 1; | 
|  |  | 
|  | if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) | 
|  | svm_flush_tlb(vcpu, true); | 
|  |  | 
|  | vcpu->arch.cr4 = cr4; | 
|  | if (!npt_enabled) | 
|  | cr4 |= X86_CR4_PAE; | 
|  | cr4 |= host_cr4_mce; | 
|  | to_svm(vcpu)->vmcb->save.cr4 = cr4; | 
|  | mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void svm_set_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb_seg *s = svm_seg(vcpu, seg); | 
|  |  | 
|  | s->base = var->base; | 
|  | s->limit = var->limit; | 
|  | s->selector = var->selector; | 
|  | s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); | 
|  | s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; | 
|  | s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; | 
|  | s->attrib |= ((var->present & 1) && !var->unusable) << SVM_SELECTOR_P_SHIFT; | 
|  | s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; | 
|  | s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; | 
|  | s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; | 
|  | s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; | 
|  |  | 
|  | /* | 
|  | * This is always accurate, except if SYSRET returned to a segment | 
|  | * with SS.DPL != 3.  Intel does not have this quirk, and always | 
|  | * forces SS.DPL to 3 on sysret, so we ignore that case; fixing it | 
|  | * would entail passing the CPL to userspace and back. | 
|  | */ | 
|  | if (seg == VCPU_SREG_SS) | 
|  | /* This is symmetric with svm_get_segment() */ | 
|  | svm->vmcb->save.cpl = (var->dpl & 3); | 
|  |  | 
|  | mark_dirty(svm->vmcb, VMCB_SEG); | 
|  | } | 
|  |  | 
|  | static void update_bp_intercept(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | clr_exception_intercept(svm, BP_VECTOR); | 
|  |  | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { | 
|  | if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) | 
|  | set_exception_intercept(svm, BP_VECTOR); | 
|  | } else | 
|  | vcpu->guest_debug = 0; | 
|  | } | 
|  |  | 
|  | static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) | 
|  | { | 
|  | if (sd->next_asid > sd->max_asid) { | 
|  | ++sd->asid_generation; | 
|  | sd->next_asid = sd->min_asid; | 
|  | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; | 
|  | } | 
|  |  | 
|  | svm->asid_generation = sd->asid_generation; | 
|  | svm->vmcb->control.asid = sd->next_asid++; | 
|  |  | 
|  | mark_dirty(svm->vmcb, VMCB_ASID); | 
|  | } | 
|  |  | 
|  | static u64 svm_get_dr6(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return to_svm(vcpu)->vmcb->save.dr6; | 
|  | } | 
|  |  | 
|  | static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.dr6 = value; | 
|  | mark_dirty(svm->vmcb, VMCB_DR); | 
|  | } | 
|  |  | 
|  | static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | get_debugreg(vcpu->arch.db[0], 0); | 
|  | get_debugreg(vcpu->arch.db[1], 1); | 
|  | get_debugreg(vcpu->arch.db[2], 2); | 
|  | get_debugreg(vcpu->arch.db[3], 3); | 
|  | vcpu->arch.dr6 = svm_get_dr6(vcpu); | 
|  | vcpu->arch.dr7 = svm->vmcb->save.dr7; | 
|  |  | 
|  | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT; | 
|  | set_dr_intercepts(svm); | 
|  | } | 
|  |  | 
|  | static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.dr7 = value; | 
|  | mark_dirty(svm->vmcb, VMCB_DR); | 
|  | } | 
|  |  | 
|  | static int pf_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); | 
|  | u64 error_code = svm->vmcb->control.exit_info_1; | 
|  |  | 
|  | return kvm_handle_page_fault(&svm->vcpu, error_code, fault_address, | 
|  | static_cpu_has(X86_FEATURE_DECODEASSISTS) ? | 
|  | svm->vmcb->control.insn_bytes : NULL, | 
|  | svm->vmcb->control.insn_len); | 
|  | } | 
|  |  | 
|  | static int npf_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u64 fault_address = __sme_clr(svm->vmcb->control.exit_info_2); | 
|  | u64 error_code = svm->vmcb->control.exit_info_1; | 
|  |  | 
|  | trace_kvm_page_fault(fault_address, error_code); | 
|  | return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, | 
|  | static_cpu_has(X86_FEATURE_DECODEASSISTS) ? | 
|  | svm->vmcb->control.insn_bytes : NULL, | 
|  | svm->vmcb->control.insn_len); | 
|  | } | 
|  |  | 
|  | static int db_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  |  | 
|  | if (!(svm->vcpu.guest_debug & | 
|  | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && | 
|  | !svm->nmi_singlestep) { | 
|  | kvm_queue_exception(&svm->vcpu, DB_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (svm->nmi_singlestep) { | 
|  | disable_nmi_singlestep(svm); | 
|  | /* Make sure we check for pending NMIs upon entry */ | 
|  | kvm_make_request(KVM_REQ_EVENT, vcpu); | 
|  | } | 
|  |  | 
|  | if (svm->vcpu.guest_debug & | 
|  | (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { | 
|  | kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
|  | kvm_run->debug.arch.pc = | 
|  | svm->vmcb->save.cs.base + svm->vmcb->save.rip; | 
|  | kvm_run->debug.arch.exception = DB_VECTOR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int bp_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  |  | 
|  | kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
|  | kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; | 
|  | kvm_run->debug.arch.exception = BP_VECTOR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ud_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return handle_ud(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static int ac_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | kvm_queue_exception_e(&svm->vcpu, AC_VECTOR, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int gp_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  | u32 error_code = svm->vmcb->control.exit_info_1; | 
|  | int er; | 
|  |  | 
|  | WARN_ON_ONCE(!enable_vmware_backdoor); | 
|  |  | 
|  | er = kvm_emulate_instruction(vcpu, | 
|  | EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL); | 
|  | if (er == EMULATE_USER_EXIT) | 
|  | return 0; | 
|  | else if (er != EMULATE_DONE) | 
|  | kvm_queue_exception_e(vcpu, GP_VECTOR, error_code); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool is_erratum_383(void) | 
|  | { | 
|  | int err, i; | 
|  | u64 value; | 
|  |  | 
|  | if (!erratum_383_found) | 
|  | return false; | 
|  |  | 
|  | value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); | 
|  | if (err) | 
|  | return false; | 
|  |  | 
|  | /* Bit 62 may or may not be set for this mce */ | 
|  | value &= ~(1ULL << 62); | 
|  |  | 
|  | if (value != 0xb600000000010015ULL) | 
|  | return false; | 
|  |  | 
|  | /* Clear MCi_STATUS registers */ | 
|  | for (i = 0; i < 6; ++i) | 
|  | native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); | 
|  |  | 
|  | value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); | 
|  | if (!err) { | 
|  | u32 low, high; | 
|  |  | 
|  | value &= ~(1ULL << 2); | 
|  | low    = lower_32_bits(value); | 
|  | high   = upper_32_bits(value); | 
|  |  | 
|  | native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); | 
|  | } | 
|  |  | 
|  | /* Flush tlb to evict multi-match entries */ | 
|  | __flush_tlb_all(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void svm_handle_mce(struct vcpu_svm *svm) | 
|  | { | 
|  | if (is_erratum_383()) { | 
|  | /* | 
|  | * Erratum 383 triggered. Guest state is corrupt so kill the | 
|  | * guest. | 
|  | */ | 
|  | pr_err("KVM: Guest triggered AMD Erratum 383\n"); | 
|  |  | 
|  | kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On an #MC intercept the MCE handler is not called automatically in | 
|  | * the host. So do it by hand here. | 
|  | */ | 
|  | asm volatile ( | 
|  | "int $0x12\n"); | 
|  | /* not sure if we ever come back to this point */ | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int mc_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int shutdown_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  |  | 
|  | /* | 
|  | * VMCB is undefined after a SHUTDOWN intercept | 
|  | * so reinitialize it. | 
|  | */ | 
|  | clear_page(svm->vmcb); | 
|  | init_vmcb(svm); | 
|  |  | 
|  | kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int io_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  | u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ | 
|  | int size, in, string; | 
|  | unsigned port; | 
|  |  | 
|  | ++svm->vcpu.stat.io_exits; | 
|  | string = (io_info & SVM_IOIO_STR_MASK) != 0; | 
|  | in = (io_info & SVM_IOIO_TYPE_MASK) != 0; | 
|  | if (string) | 
|  | return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
|  |  | 
|  | port = io_info >> 16; | 
|  | size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; | 
|  | svm->next_rip = svm->vmcb->control.exit_info_2; | 
|  |  | 
|  | return kvm_fast_pio(&svm->vcpu, size, port, in); | 
|  | } | 
|  |  | 
|  | static int nmi_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int intr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | ++svm->vcpu.stat.irq_exits; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int nop_on_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int halt_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; | 
|  | return kvm_emulate_halt(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static int vmmcall_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | return kvm_emulate_hypercall(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | return svm->nested.nested_cr3; | 
|  | } | 
|  |  | 
|  | static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u64 cr3 = svm->nested.nested_cr3; | 
|  | u64 pdpte; | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(__sme_clr(cr3)), &pdpte, | 
|  | offset_in_page(cr3) + index * 8, 8); | 
|  | if (ret) | 
|  | return 0; | 
|  | return pdpte; | 
|  | } | 
|  |  | 
|  | static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu, | 
|  | unsigned long root) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->control.nested_cr3 = __sme_set(root); | 
|  | mark_dirty(svm->vmcb, VMCB_NPT); | 
|  | } | 
|  |  | 
|  | static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, | 
|  | struct x86_exception *fault) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) { | 
|  | /* | 
|  | * TODO: track the cause of the nested page fault, and | 
|  | * correctly fill in the high bits of exit_info_1. | 
|  | */ | 
|  | svm->vmcb->control.exit_code = SVM_EXIT_NPF; | 
|  | svm->vmcb->control.exit_code_hi = 0; | 
|  | svm->vmcb->control.exit_info_1 = (1ULL << 32); | 
|  | svm->vmcb->control.exit_info_2 = fault->address; | 
|  | } | 
|  |  | 
|  | svm->vmcb->control.exit_info_1 &= ~0xffffffffULL; | 
|  | svm->vmcb->control.exit_info_1 |= fault->error_code; | 
|  |  | 
|  | /* | 
|  | * The present bit is always zero for page structure faults on real | 
|  | * hardware. | 
|  | */ | 
|  | if (svm->vmcb->control.exit_info_1 & (2ULL << 32)) | 
|  | svm->vmcb->control.exit_info_1 &= ~1; | 
|  |  | 
|  | nested_svm_vmexit(svm); | 
|  | } | 
|  |  | 
|  | static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | WARN_ON(mmu_is_nested(vcpu)); | 
|  | kvm_init_shadow_mmu(vcpu); | 
|  | vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3; | 
|  | vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3; | 
|  | vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr; | 
|  | vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit; | 
|  | vcpu->arch.mmu.shadow_root_level = get_npt_level(vcpu); | 
|  | reset_shadow_zero_bits_mask(vcpu, &vcpu->arch.mmu); | 
|  | vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu; | 
|  | } | 
|  |  | 
|  | static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.walk_mmu = &vcpu->arch.mmu; | 
|  | } | 
|  |  | 
|  | static int nested_svm_check_permissions(struct vcpu_svm *svm) | 
|  | { | 
|  | if (!(svm->vcpu.arch.efer & EFER_SVME) || | 
|  | !is_paging(&svm->vcpu)) { | 
|  | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (svm->vmcb->save.cpl) { | 
|  | kvm_inject_gp(&svm->vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, | 
|  | bool has_error_code, u32 error_code) | 
|  | { | 
|  | int vmexit; | 
|  |  | 
|  | if (!is_guest_mode(&svm->vcpu)) | 
|  | return 0; | 
|  |  | 
|  | vmexit = nested_svm_intercept(svm); | 
|  | if (vmexit != NESTED_EXIT_DONE) | 
|  | return 0; | 
|  |  | 
|  | svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; | 
|  | svm->vmcb->control.exit_code_hi = 0; | 
|  | svm->vmcb->control.exit_info_1 = error_code; | 
|  |  | 
|  | /* | 
|  | * FIXME: we should not write CR2 when L1 intercepts an L2 #PF exception. | 
|  | * The fix is to add the ancillary datum (CR2 or DR6) to structs | 
|  | * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6 can be | 
|  | * written only when inject_pending_event runs (DR6 would written here | 
|  | * too).  This should be conditional on a new capability---if the | 
|  | * capability is disabled, kvm_multiple_exception would write the | 
|  | * ancillary information to CR2 or DR6, for backwards ABI-compatibility. | 
|  | */ | 
|  | if (svm->vcpu.arch.exception.nested_apf) | 
|  | svm->vmcb->control.exit_info_2 = svm->vcpu.arch.apf.nested_apf_token; | 
|  | else | 
|  | svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; | 
|  |  | 
|  | svm->nested.exit_required = true; | 
|  | return vmexit; | 
|  | } | 
|  |  | 
|  | /* This function returns true if it is save to enable the irq window */ | 
|  | static inline bool nested_svm_intr(struct vcpu_svm *svm) | 
|  | { | 
|  | if (!is_guest_mode(&svm->vcpu)) | 
|  | return true; | 
|  |  | 
|  | if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | 
|  | return true; | 
|  |  | 
|  | if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) | 
|  | return false; | 
|  |  | 
|  | /* | 
|  | * if vmexit was already requested (by intercepted exception | 
|  | * for instance) do not overwrite it with "external interrupt" | 
|  | * vmexit. | 
|  | */ | 
|  | if (svm->nested.exit_required) | 
|  | return false; | 
|  |  | 
|  | svm->vmcb->control.exit_code   = SVM_EXIT_INTR; | 
|  | svm->vmcb->control.exit_info_1 = 0; | 
|  | svm->vmcb->control.exit_info_2 = 0; | 
|  |  | 
|  | if (svm->nested.intercept & 1ULL) { | 
|  | /* | 
|  | * The #vmexit can't be emulated here directly because this | 
|  | * code path runs with irqs and preemption disabled. A | 
|  | * #vmexit emulation might sleep. Only signal request for | 
|  | * the #vmexit here. | 
|  | */ | 
|  | svm->nested.exit_required = true; | 
|  | trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* This function returns true if it is save to enable the nmi window */ | 
|  | static inline bool nested_svm_nmi(struct vcpu_svm *svm) | 
|  | { | 
|  | if (!is_guest_mode(&svm->vcpu)) | 
|  | return true; | 
|  |  | 
|  | if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) | 
|  | return true; | 
|  |  | 
|  | svm->vmcb->control.exit_code = SVM_EXIT_NMI; | 
|  | svm->nested.exit_required = true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | might_sleep(); | 
|  |  | 
|  | page = kvm_vcpu_gfn_to_page(&svm->vcpu, gpa >> PAGE_SHIFT); | 
|  | if (is_error_page(page)) | 
|  | goto error; | 
|  |  | 
|  | *_page = page; | 
|  |  | 
|  | return kmap(page); | 
|  |  | 
|  | error: | 
|  | kvm_inject_gp(&svm->vcpu, 0); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void nested_svm_unmap(struct page *page) | 
|  | { | 
|  | kunmap(page); | 
|  | kvm_release_page_dirty(page); | 
|  | } | 
|  |  | 
|  | static int nested_svm_intercept_ioio(struct vcpu_svm *svm) | 
|  | { | 
|  | unsigned port, size, iopm_len; | 
|  | u16 val, mask; | 
|  | u8 start_bit; | 
|  | u64 gpa; | 
|  |  | 
|  | if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT))) | 
|  | return NESTED_EXIT_HOST; | 
|  |  | 
|  | port = svm->vmcb->control.exit_info_1 >> 16; | 
|  | size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >> | 
|  | SVM_IOIO_SIZE_SHIFT; | 
|  | gpa  = svm->nested.vmcb_iopm + (port / 8); | 
|  | start_bit = port % 8; | 
|  | iopm_len = (start_bit + size > 8) ? 2 : 1; | 
|  | mask = (0xf >> (4 - size)) << start_bit; | 
|  | val = 0; | 
|  |  | 
|  | if (kvm_vcpu_read_guest(&svm->vcpu, gpa, &val, iopm_len)) | 
|  | return NESTED_EXIT_DONE; | 
|  |  | 
|  | return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; | 
|  | } | 
|  |  | 
|  | static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 offset, msr, value; | 
|  | int write, mask; | 
|  |  | 
|  | if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) | 
|  | return NESTED_EXIT_HOST; | 
|  |  | 
|  | msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
|  | offset = svm_msrpm_offset(msr); | 
|  | write  = svm->vmcb->control.exit_info_1 & 1; | 
|  | mask   = 1 << ((2 * (msr & 0xf)) + write); | 
|  |  | 
|  | if (offset == MSR_INVALID) | 
|  | return NESTED_EXIT_DONE; | 
|  |  | 
|  | /* Offset is in 32 bit units but need in 8 bit units */ | 
|  | offset *= 4; | 
|  |  | 
|  | if (kvm_vcpu_read_guest(&svm->vcpu, svm->nested.vmcb_msrpm + offset, &value, 4)) | 
|  | return NESTED_EXIT_DONE; | 
|  |  | 
|  | return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; | 
|  | } | 
|  |  | 
|  | /* DB exceptions for our internal use must not cause vmexit */ | 
|  | static int nested_svm_intercept_db(struct vcpu_svm *svm) | 
|  | { | 
|  | unsigned long dr6; | 
|  |  | 
|  | /* if we're not singlestepping, it's not ours */ | 
|  | if (!svm->nmi_singlestep) | 
|  | return NESTED_EXIT_DONE; | 
|  |  | 
|  | /* if it's not a singlestep exception, it's not ours */ | 
|  | if (kvm_get_dr(&svm->vcpu, 6, &dr6)) | 
|  | return NESTED_EXIT_DONE; | 
|  | if (!(dr6 & DR6_BS)) | 
|  | return NESTED_EXIT_DONE; | 
|  |  | 
|  | /* if the guest is singlestepping, it should get the vmexit */ | 
|  | if (svm->nmi_singlestep_guest_rflags & X86_EFLAGS_TF) { | 
|  | disable_nmi_singlestep(svm); | 
|  | return NESTED_EXIT_DONE; | 
|  | } | 
|  |  | 
|  | /* it's ours, the nested hypervisor must not see this one */ | 
|  | return NESTED_EXIT_HOST; | 
|  | } | 
|  |  | 
|  | static int nested_svm_exit_special(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 exit_code = svm->vmcb->control.exit_code; | 
|  |  | 
|  | switch (exit_code) { | 
|  | case SVM_EXIT_INTR: | 
|  | case SVM_EXIT_NMI: | 
|  | case SVM_EXIT_EXCP_BASE + MC_VECTOR: | 
|  | return NESTED_EXIT_HOST; | 
|  | case SVM_EXIT_NPF: | 
|  | /* For now we are always handling NPFs when using them */ | 
|  | if (npt_enabled) | 
|  | return NESTED_EXIT_HOST; | 
|  | break; | 
|  | case SVM_EXIT_EXCP_BASE + PF_VECTOR: | 
|  | /* When we're shadowing, trap PFs, but not async PF */ | 
|  | if (!npt_enabled && svm->vcpu.arch.apf.host_apf_reason == 0) | 
|  | return NESTED_EXIT_HOST; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NESTED_EXIT_CONTINUE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this function returns true, this #vmexit was already handled | 
|  | */ | 
|  | static int nested_svm_intercept(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 exit_code = svm->vmcb->control.exit_code; | 
|  | int vmexit = NESTED_EXIT_HOST; | 
|  |  | 
|  | switch (exit_code) { | 
|  | case SVM_EXIT_MSR: | 
|  | vmexit = nested_svm_exit_handled_msr(svm); | 
|  | break; | 
|  | case SVM_EXIT_IOIO: | 
|  | vmexit = nested_svm_intercept_ioio(svm); | 
|  | break; | 
|  | case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { | 
|  | u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0); | 
|  | if (svm->nested.intercept_cr & bit) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { | 
|  | u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0); | 
|  | if (svm->nested.intercept_dr & bit) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { | 
|  | u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); | 
|  | if (svm->nested.intercept_exceptions & excp_bits) { | 
|  | if (exit_code == SVM_EXIT_EXCP_BASE + DB_VECTOR) | 
|  | vmexit = nested_svm_intercept_db(svm); | 
|  | else | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | } | 
|  | /* async page fault always cause vmexit */ | 
|  | else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) && | 
|  | svm->vcpu.arch.exception.nested_apf != 0) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_ERR: { | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); | 
|  | if (svm->nested.intercept & exit_bits) | 
|  | vmexit = NESTED_EXIT_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | return vmexit; | 
|  | } | 
|  |  | 
|  | static int nested_svm_exit_handled(struct vcpu_svm *svm) | 
|  | { | 
|  | int vmexit; | 
|  |  | 
|  | vmexit = nested_svm_intercept(svm); | 
|  |  | 
|  | if (vmexit == NESTED_EXIT_DONE) | 
|  | nested_svm_vmexit(svm); | 
|  |  | 
|  | return vmexit; | 
|  | } | 
|  |  | 
|  | static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) | 
|  | { | 
|  | struct vmcb_control_area *dst  = &dst_vmcb->control; | 
|  | struct vmcb_control_area *from = &from_vmcb->control; | 
|  |  | 
|  | dst->intercept_cr         = from->intercept_cr; | 
|  | dst->intercept_dr         = from->intercept_dr; | 
|  | dst->intercept_exceptions = from->intercept_exceptions; | 
|  | dst->intercept            = from->intercept; | 
|  | dst->iopm_base_pa         = from->iopm_base_pa; | 
|  | dst->msrpm_base_pa        = from->msrpm_base_pa; | 
|  | dst->tsc_offset           = from->tsc_offset; | 
|  | dst->asid                 = from->asid; | 
|  | dst->tlb_ctl              = from->tlb_ctl; | 
|  | dst->int_ctl              = from->int_ctl; | 
|  | dst->int_vector           = from->int_vector; | 
|  | dst->int_state            = from->int_state; | 
|  | dst->exit_code            = from->exit_code; | 
|  | dst->exit_code_hi         = from->exit_code_hi; | 
|  | dst->exit_info_1          = from->exit_info_1; | 
|  | dst->exit_info_2          = from->exit_info_2; | 
|  | dst->exit_int_info        = from->exit_int_info; | 
|  | dst->exit_int_info_err    = from->exit_int_info_err; | 
|  | dst->nested_ctl           = from->nested_ctl; | 
|  | dst->event_inj            = from->event_inj; | 
|  | dst->event_inj_err        = from->event_inj_err; | 
|  | dst->nested_cr3           = from->nested_cr3; | 
|  | dst->virt_ext              = from->virt_ext; | 
|  | } | 
|  |  | 
|  | static int nested_svm_vmexit(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *nested_vmcb; | 
|  | struct vmcb *hsave = svm->nested.hsave; | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | struct page *page; | 
|  |  | 
|  | trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, | 
|  | vmcb->control.exit_info_1, | 
|  | vmcb->control.exit_info_2, | 
|  | vmcb->control.exit_int_info, | 
|  | vmcb->control.exit_int_info_err, | 
|  | KVM_ISA_SVM); | 
|  |  | 
|  | nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page); | 
|  | if (!nested_vmcb) | 
|  | return 1; | 
|  |  | 
|  | /* Exit Guest-Mode */ | 
|  | leave_guest_mode(&svm->vcpu); | 
|  | svm->nested.vmcb = 0; | 
|  |  | 
|  | /* Give the current vmcb to the guest */ | 
|  | disable_gif(svm); | 
|  |  | 
|  | nested_vmcb->save.es     = vmcb->save.es; | 
|  | nested_vmcb->save.cs     = vmcb->save.cs; | 
|  | nested_vmcb->save.ss     = vmcb->save.ss; | 
|  | nested_vmcb->save.ds     = vmcb->save.ds; | 
|  | nested_vmcb->save.gdtr   = vmcb->save.gdtr; | 
|  | nested_vmcb->save.idtr   = vmcb->save.idtr; | 
|  | nested_vmcb->save.efer   = svm->vcpu.arch.efer; | 
|  | nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu); | 
|  | nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu); | 
|  | nested_vmcb->save.cr2    = vmcb->save.cr2; | 
|  | nested_vmcb->save.cr4    = svm->vcpu.arch.cr4; | 
|  | nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu); | 
|  | nested_vmcb->save.rip    = vmcb->save.rip; | 
|  | nested_vmcb->save.rsp    = vmcb->save.rsp; | 
|  | nested_vmcb->save.rax    = vmcb->save.rax; | 
|  | nested_vmcb->save.dr7    = vmcb->save.dr7; | 
|  | nested_vmcb->save.dr6    = vmcb->save.dr6; | 
|  | nested_vmcb->save.cpl    = vmcb->save.cpl; | 
|  |  | 
|  | nested_vmcb->control.int_ctl           = vmcb->control.int_ctl; | 
|  | nested_vmcb->control.int_vector        = vmcb->control.int_vector; | 
|  | nested_vmcb->control.int_state         = vmcb->control.int_state; | 
|  | nested_vmcb->control.exit_code         = vmcb->control.exit_code; | 
|  | nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi; | 
|  | nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1; | 
|  | nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2; | 
|  | nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info; | 
|  | nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; | 
|  |  | 
|  | if (svm->nrips_enabled) | 
|  | nested_vmcb->control.next_rip  = vmcb->control.next_rip; | 
|  |  | 
|  | /* | 
|  | * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have | 
|  | * to make sure that we do not lose injected events. So check event_inj | 
|  | * here and copy it to exit_int_info if it is valid. | 
|  | * Exit_int_info and event_inj can't be both valid because the case | 
|  | * below only happens on a VMRUN instruction intercept which has | 
|  | * no valid exit_int_info set. | 
|  | */ | 
|  | if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { | 
|  | struct vmcb_control_area *nc = &nested_vmcb->control; | 
|  |  | 
|  | nc->exit_int_info     = vmcb->control.event_inj; | 
|  | nc->exit_int_info_err = vmcb->control.event_inj_err; | 
|  | } | 
|  |  | 
|  | nested_vmcb->control.tlb_ctl           = 0; | 
|  | nested_vmcb->control.event_inj         = 0; | 
|  | nested_vmcb->control.event_inj_err     = 0; | 
|  |  | 
|  | /* We always set V_INTR_MASKING and remember the old value in hflags */ | 
|  | if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | 
|  | nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; | 
|  |  | 
|  | /* Restore the original control entries */ | 
|  | copy_vmcb_control_area(vmcb, hsave); | 
|  |  | 
|  | svm->vcpu.arch.tsc_offset = svm->vmcb->control.tsc_offset; | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  |  | 
|  | svm->nested.nested_cr3 = 0; | 
|  |  | 
|  | /* Restore selected save entries */ | 
|  | svm->vmcb->save.es = hsave->save.es; | 
|  | svm->vmcb->save.cs = hsave->save.cs; | 
|  | svm->vmcb->save.ss = hsave->save.ss; | 
|  | svm->vmcb->save.ds = hsave->save.ds; | 
|  | svm->vmcb->save.gdtr = hsave->save.gdtr; | 
|  | svm->vmcb->save.idtr = hsave->save.idtr; | 
|  | kvm_set_rflags(&svm->vcpu, hsave->save.rflags); | 
|  | svm_set_efer(&svm->vcpu, hsave->save.efer); | 
|  | svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); | 
|  | svm_set_cr4(&svm->vcpu, hsave->save.cr4); | 
|  | if (npt_enabled) { | 
|  | svm->vmcb->save.cr3 = hsave->save.cr3; | 
|  | svm->vcpu.arch.cr3 = hsave->save.cr3; | 
|  | } else { | 
|  | (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3); | 
|  | } | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); | 
|  | svm->vmcb->save.dr7 = 0; | 
|  | svm->vmcb->save.cpl = 0; | 
|  | svm->vmcb->control.exit_int_info = 0; | 
|  |  | 
|  | mark_all_dirty(svm->vmcb); | 
|  |  | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | nested_svm_uninit_mmu_context(&svm->vcpu); | 
|  | kvm_mmu_reset_context(&svm->vcpu); | 
|  | kvm_mmu_load(&svm->vcpu); | 
|  |  | 
|  | /* | 
|  | * Drop what we picked up for L2 via svm_complete_interrupts() so it | 
|  | * doesn't end up in L1. | 
|  | */ | 
|  | svm->vcpu.arch.nmi_injected = false; | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) | 
|  | { | 
|  | /* | 
|  | * This function merges the msr permission bitmaps of kvm and the | 
|  | * nested vmcb. It is optimized in that it only merges the parts where | 
|  | * the kvm msr permission bitmap may contain zero bits | 
|  | */ | 
|  | int i; | 
|  |  | 
|  | if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) | 
|  | return true; | 
|  |  | 
|  | for (i = 0; i < MSRPM_OFFSETS; i++) { | 
|  | u32 value, p; | 
|  | u64 offset; | 
|  |  | 
|  | if (msrpm_offsets[i] == 0xffffffff) | 
|  | break; | 
|  |  | 
|  | p      = msrpm_offsets[i]; | 
|  | offset = svm->nested.vmcb_msrpm + (p * 4); | 
|  |  | 
|  | if (kvm_vcpu_read_guest(&svm->vcpu, offset, &value, 4)) | 
|  | return false; | 
|  |  | 
|  | svm->nested.msrpm[p] = svm->msrpm[p] | value; | 
|  | } | 
|  |  | 
|  | svm->vmcb->control.msrpm_base_pa = __sme_set(__pa(svm->nested.msrpm)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool nested_vmcb_checks(struct vmcb *vmcb) | 
|  | { | 
|  | if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0) | 
|  | return false; | 
|  |  | 
|  | if (vmcb->control.asid == 0) | 
|  | return false; | 
|  |  | 
|  | if ((vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) && | 
|  | !npt_enabled) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa, | 
|  | struct vmcb *nested_vmcb, struct page *page) | 
|  | { | 
|  | if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF) | 
|  | svm->vcpu.arch.hflags |= HF_HIF_MASK; | 
|  | else | 
|  | svm->vcpu.arch.hflags &= ~HF_HIF_MASK; | 
|  |  | 
|  | if (nested_vmcb->control.nested_ctl & SVM_NESTED_CTL_NP_ENABLE) { | 
|  | kvm_mmu_unload(&svm->vcpu); | 
|  | svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; | 
|  | nested_svm_init_mmu_context(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | /* Load the nested guest state */ | 
|  | svm->vmcb->save.es = nested_vmcb->save.es; | 
|  | svm->vmcb->save.cs = nested_vmcb->save.cs; | 
|  | svm->vmcb->save.ss = nested_vmcb->save.ss; | 
|  | svm->vmcb->save.ds = nested_vmcb->save.ds; | 
|  | svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; | 
|  | svm->vmcb->save.idtr = nested_vmcb->save.idtr; | 
|  | kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags); | 
|  | svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); | 
|  | svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); | 
|  | svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); | 
|  | if (npt_enabled) { | 
|  | svm->vmcb->save.cr3 = nested_vmcb->save.cr3; | 
|  | svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; | 
|  | } else | 
|  | (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); | 
|  |  | 
|  | /* Guest paging mode is active - reset mmu */ | 
|  | kvm_mmu_reset_context(&svm->vcpu); | 
|  |  | 
|  | svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); | 
|  |  | 
|  | /* In case we don't even reach vcpu_run, the fields are not updated */ | 
|  | svm->vmcb->save.rax = nested_vmcb->save.rax; | 
|  | svm->vmcb->save.rsp = nested_vmcb->save.rsp; | 
|  | svm->vmcb->save.rip = nested_vmcb->save.rip; | 
|  | svm->vmcb->save.dr7 = nested_vmcb->save.dr7; | 
|  | svm->vmcb->save.dr6 = nested_vmcb->save.dr6; | 
|  | svm->vmcb->save.cpl = nested_vmcb->save.cpl; | 
|  |  | 
|  | svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL; | 
|  | svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL; | 
|  |  | 
|  | /* cache intercepts */ | 
|  | svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr; | 
|  | svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr; | 
|  | svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; | 
|  | svm->nested.intercept            = nested_vmcb->control.intercept; | 
|  |  | 
|  | svm_flush_tlb(&svm->vcpu, true); | 
|  | svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; | 
|  | if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) | 
|  | svm->vcpu.arch.hflags |= HF_VINTR_MASK; | 
|  | else | 
|  | svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; | 
|  |  | 
|  | if (svm->vcpu.arch.hflags & HF_VINTR_MASK) { | 
|  | /* We only want the cr8 intercept bits of the guest */ | 
|  | clr_cr_intercept(svm, INTERCEPT_CR8_READ); | 
|  | clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
|  | } | 
|  |  | 
|  | /* We don't want to see VMMCALLs from a nested guest */ | 
|  | clr_intercept(svm, INTERCEPT_VMMCALL); | 
|  |  | 
|  | svm->vcpu.arch.tsc_offset += nested_vmcb->control.tsc_offset; | 
|  | svm->vmcb->control.tsc_offset = svm->vcpu.arch.tsc_offset; | 
|  |  | 
|  | svm->vmcb->control.virt_ext = nested_vmcb->control.virt_ext; | 
|  | svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; | 
|  | svm->vmcb->control.int_state = nested_vmcb->control.int_state; | 
|  | svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; | 
|  | svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; | 
|  |  | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | /* Enter Guest-Mode */ | 
|  | enter_guest_mode(&svm->vcpu); | 
|  |  | 
|  | /* | 
|  | * Merge guest and host intercepts - must be called  with vcpu in | 
|  | * guest-mode to take affect here | 
|  | */ | 
|  | recalc_intercepts(svm); | 
|  |  | 
|  | svm->nested.vmcb = vmcb_gpa; | 
|  |  | 
|  | enable_gif(svm); | 
|  |  | 
|  | mark_all_dirty(svm->vmcb); | 
|  | } | 
|  |  | 
|  | static bool nested_svm_vmrun(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *nested_vmcb; | 
|  | struct vmcb *hsave = svm->nested.hsave; | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | struct page *page; | 
|  | u64 vmcb_gpa; | 
|  |  | 
|  | vmcb_gpa = svm->vmcb->save.rax; | 
|  |  | 
|  | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
|  | if (!nested_vmcb) | 
|  | return false; | 
|  |  | 
|  | if (!nested_vmcb_checks(nested_vmcb)) { | 
|  | nested_vmcb->control.exit_code    = SVM_EXIT_ERR; | 
|  | nested_vmcb->control.exit_code_hi = 0; | 
|  | nested_vmcb->control.exit_info_1  = 0; | 
|  | nested_vmcb->control.exit_info_2  = 0; | 
|  |  | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa, | 
|  | nested_vmcb->save.rip, | 
|  | nested_vmcb->control.int_ctl, | 
|  | nested_vmcb->control.event_inj, | 
|  | nested_vmcb->control.nested_ctl); | 
|  |  | 
|  | trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff, | 
|  | nested_vmcb->control.intercept_cr >> 16, | 
|  | nested_vmcb->control.intercept_exceptions, | 
|  | nested_vmcb->control.intercept); | 
|  |  | 
|  | /* Clear internal status */ | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  |  | 
|  | /* | 
|  | * Save the old vmcb, so we don't need to pick what we save, but can | 
|  | * restore everything when a VMEXIT occurs | 
|  | */ | 
|  | hsave->save.es     = vmcb->save.es; | 
|  | hsave->save.cs     = vmcb->save.cs; | 
|  | hsave->save.ss     = vmcb->save.ss; | 
|  | hsave->save.ds     = vmcb->save.ds; | 
|  | hsave->save.gdtr   = vmcb->save.gdtr; | 
|  | hsave->save.idtr   = vmcb->save.idtr; | 
|  | hsave->save.efer   = svm->vcpu.arch.efer; | 
|  | hsave->save.cr0    = kvm_read_cr0(&svm->vcpu); | 
|  | hsave->save.cr4    = svm->vcpu.arch.cr4; | 
|  | hsave->save.rflags = kvm_get_rflags(&svm->vcpu); | 
|  | hsave->save.rip    = kvm_rip_read(&svm->vcpu); | 
|  | hsave->save.rsp    = vmcb->save.rsp; | 
|  | hsave->save.rax    = vmcb->save.rax; | 
|  | if (npt_enabled) | 
|  | hsave->save.cr3    = vmcb->save.cr3; | 
|  | else | 
|  | hsave->save.cr3    = kvm_read_cr3(&svm->vcpu); | 
|  |  | 
|  | copy_vmcb_control_area(hsave, vmcb); | 
|  |  | 
|  | enter_svm_guest_mode(svm, vmcb_gpa, nested_vmcb, page); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) | 
|  | { | 
|  | to_vmcb->save.fs = from_vmcb->save.fs; | 
|  | to_vmcb->save.gs = from_vmcb->save.gs; | 
|  | to_vmcb->save.tr = from_vmcb->save.tr; | 
|  | to_vmcb->save.ldtr = from_vmcb->save.ldtr; | 
|  | to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; | 
|  | to_vmcb->save.star = from_vmcb->save.star; | 
|  | to_vmcb->save.lstar = from_vmcb->save.lstar; | 
|  | to_vmcb->save.cstar = from_vmcb->save.cstar; | 
|  | to_vmcb->save.sfmask = from_vmcb->save.sfmask; | 
|  | to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; | 
|  | to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; | 
|  | to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; | 
|  | } | 
|  |  | 
|  | static int vmload_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *nested_vmcb; | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
|  | if (!nested_vmcb) | 
|  | return 1; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | ret = kvm_skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | nested_svm_vmloadsave(nested_vmcb, svm->vmcb); | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int vmsave_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct vmcb *nested_vmcb; | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
|  | if (!nested_vmcb) | 
|  | return 1; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | ret = kvm_skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | nested_svm_vmloadsave(svm->vmcb, nested_vmcb); | 
|  | nested_svm_unmap(page); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int vmrun_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | /* Save rip after vmrun instruction */ | 
|  | kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3); | 
|  |  | 
|  | if (!nested_svm_vmrun(svm)) | 
|  | return 1; | 
|  |  | 
|  | if (!nested_svm_vmrun_msrpm(svm)) | 
|  | goto failed; | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | failed: | 
|  |  | 
|  | svm->vmcb->control.exit_code    = SVM_EXIT_ERR; | 
|  | svm->vmcb->control.exit_code_hi = 0; | 
|  | svm->vmcb->control.exit_info_1  = 0; | 
|  | svm->vmcb->control.exit_info_2  = 0; | 
|  |  | 
|  | nested_svm_vmexit(svm); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int stgi_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * If VGIF is enabled, the STGI intercept is only added to | 
|  | * detect the opening of the SMI/NMI window; remove it now. | 
|  | */ | 
|  | if (vgif_enabled(svm)) | 
|  | clr_intercept(svm, INTERCEPT_STGI); | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | ret = kvm_skip_emulated_instruction(&svm->vcpu); | 
|  | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
|  |  | 
|  | enable_gif(svm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int clgi_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (nested_svm_check_permissions(svm)) | 
|  | return 1; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | ret = kvm_skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | disable_gif(svm); | 
|  |  | 
|  | /* After a CLGI no interrupts should come */ | 
|  | if (!kvm_vcpu_apicv_active(&svm->vcpu)) { | 
|  | svm_clear_vintr(svm); | 
|  | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 
|  | mark_dirty(svm->vmcb, VMCB_INTR); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int invlpga_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  |  | 
|  | trace_kvm_invlpga(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RCX), | 
|  | kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); | 
|  |  | 
|  | /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ | 
|  | kvm_mmu_invlpg(vcpu, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | return kvm_skip_emulated_instruction(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static int skinit_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | trace_kvm_skinit(svm->vmcb->save.rip, kvm_register_read(&svm->vcpu, VCPU_REGS_RAX)); | 
|  |  | 
|  | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int wbinvd_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return kvm_emulate_wbinvd(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static int xsetbv_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u64 new_bv = kvm_read_edx_eax(&svm->vcpu); | 
|  | u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); | 
|  |  | 
|  | if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
|  | return kvm_skip_emulated_instruction(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int task_switch_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u16 tss_selector; | 
|  | int reason; | 
|  | int int_type = svm->vmcb->control.exit_int_info & | 
|  | SVM_EXITINTINFO_TYPE_MASK; | 
|  | int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; | 
|  | uint32_t type = | 
|  | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; | 
|  | uint32_t idt_v = | 
|  | svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; | 
|  | bool has_error_code = false; | 
|  | u32 error_code = 0; | 
|  |  | 
|  | tss_selector = (u16)svm->vmcb->control.exit_info_1; | 
|  |  | 
|  | if (svm->vmcb->control.exit_info_2 & | 
|  | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) | 
|  | reason = TASK_SWITCH_IRET; | 
|  | else if (svm->vmcb->control.exit_info_2 & | 
|  | (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) | 
|  | reason = TASK_SWITCH_JMP; | 
|  | else if (idt_v) | 
|  | reason = TASK_SWITCH_GATE; | 
|  | else | 
|  | reason = TASK_SWITCH_CALL; | 
|  |  | 
|  | if (reason == TASK_SWITCH_GATE) { | 
|  | switch (type) { | 
|  | case SVM_EXITINTINFO_TYPE_NMI: | 
|  | svm->vcpu.arch.nmi_injected = false; | 
|  | break; | 
|  | case SVM_EXITINTINFO_TYPE_EXEPT: | 
|  | if (svm->vmcb->control.exit_info_2 & | 
|  | (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { | 
|  | has_error_code = true; | 
|  | error_code = | 
|  | (u32)svm->vmcb->control.exit_info_2; | 
|  | } | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | break; | 
|  | case SVM_EXITINTINFO_TYPE_INTR: | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (reason != TASK_SWITCH_GATE || | 
|  | int_type == SVM_EXITINTINFO_TYPE_SOFT || | 
|  | (int_type == SVM_EXITINTINFO_TYPE_EXEPT && | 
|  | (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) | 
|  | skip_emulated_instruction(&svm->vcpu); | 
|  |  | 
|  | if (int_type != SVM_EXITINTINFO_TYPE_SOFT) | 
|  | int_vec = -1; | 
|  |  | 
|  | if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason, | 
|  | has_error_code, error_code) == EMULATE_FAIL) { | 
|  | svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
|  | svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
|  | svm->vcpu.run->internal.ndata = 0; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int cpuid_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
|  | return kvm_emulate_cpuid(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static int iret_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | ++svm->vcpu.stat.nmi_window_exits; | 
|  | clr_intercept(svm, INTERCEPT_IRET); | 
|  | svm->vcpu.arch.hflags |= HF_IRET_MASK; | 
|  | svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu); | 
|  | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int invlpg_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
|  | return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; | 
|  |  | 
|  | kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); | 
|  | return kvm_skip_emulated_instruction(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static int emulate_on_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | static int rsm_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return kvm_emulate_instruction_from_buffer(&svm->vcpu, | 
|  | rsm_ins_bytes, 2) == EMULATE_DONE; | 
|  | } | 
|  |  | 
|  | static int rdpmc_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | if (!static_cpu_has(X86_FEATURE_NRIPS)) | 
|  | return emulate_on_interception(svm); | 
|  |  | 
|  | err = kvm_rdpmc(&svm->vcpu); | 
|  | return kvm_complete_insn_gp(&svm->vcpu, err); | 
|  | } | 
|  |  | 
|  | static bool check_selective_cr0_intercepted(struct vcpu_svm *svm, | 
|  | unsigned long val) | 
|  | { | 
|  | unsigned long cr0 = svm->vcpu.arch.cr0; | 
|  | bool ret = false; | 
|  | u64 intercept; | 
|  |  | 
|  | intercept = svm->nested.intercept; | 
|  |  | 
|  | if (!is_guest_mode(&svm->vcpu) || | 
|  | (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))) | 
|  | return false; | 
|  |  | 
|  | cr0 &= ~SVM_CR0_SELECTIVE_MASK; | 
|  | val &= ~SVM_CR0_SELECTIVE_MASK; | 
|  |  | 
|  | if (cr0 ^ val) { | 
|  | svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; | 
|  | ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define CR_VALID (1ULL << 63) | 
|  |  | 
|  | static int cr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | int reg, cr; | 
|  | unsigned long val; | 
|  | int err; | 
|  |  | 
|  | if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
|  | return emulate_on_interception(svm); | 
|  |  | 
|  | if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) | 
|  | return emulate_on_interception(svm); | 
|  |  | 
|  | reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; | 
|  | if (svm->vmcb->control.exit_code == SVM_EXIT_CR0_SEL_WRITE) | 
|  | cr = SVM_EXIT_WRITE_CR0 - SVM_EXIT_READ_CR0; | 
|  | else | 
|  | cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; | 
|  |  | 
|  | err = 0; | 
|  | if (cr >= 16) { /* mov to cr */ | 
|  | cr -= 16; | 
|  | val = kvm_register_read(&svm->vcpu, reg); | 
|  | switch (cr) { | 
|  | case 0: | 
|  | if (!check_selective_cr0_intercepted(svm, val)) | 
|  | err = kvm_set_cr0(&svm->vcpu, val); | 
|  | else | 
|  | return 1; | 
|  |  | 
|  | break; | 
|  | case 3: | 
|  | err = kvm_set_cr3(&svm->vcpu, val); | 
|  | break; | 
|  | case 4: | 
|  | err = kvm_set_cr4(&svm->vcpu, val); | 
|  | break; | 
|  | case 8: | 
|  | err = kvm_set_cr8(&svm->vcpu, val); | 
|  | break; | 
|  | default: | 
|  | WARN(1, "unhandled write to CR%d", cr); | 
|  | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  | } else { /* mov from cr */ | 
|  | switch (cr) { | 
|  | case 0: | 
|  | val = kvm_read_cr0(&svm->vcpu); | 
|  | break; | 
|  | case 2: | 
|  | val = svm->vcpu.arch.cr2; | 
|  | break; | 
|  | case 3: | 
|  | val = kvm_read_cr3(&svm->vcpu); | 
|  | break; | 
|  | case 4: | 
|  | val = kvm_read_cr4(&svm->vcpu); | 
|  | break; | 
|  | case 8: | 
|  | val = kvm_get_cr8(&svm->vcpu); | 
|  | break; | 
|  | default: | 
|  | WARN(1, "unhandled read from CR%d", cr); | 
|  | kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  | kvm_register_write(&svm->vcpu, reg, val); | 
|  | } | 
|  | return kvm_complete_insn_gp(&svm->vcpu, err); | 
|  | } | 
|  |  | 
|  | static int dr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | int reg, dr; | 
|  | unsigned long val; | 
|  |  | 
|  | if (svm->vcpu.guest_debug == 0) { | 
|  | /* | 
|  | * No more DR vmexits; force a reload of the debug registers | 
|  | * and reenter on this instruction.  The next vmexit will | 
|  | * retrieve the full state of the debug registers. | 
|  | */ | 
|  | clr_dr_intercepts(svm); | 
|  | svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
|  | return emulate_on_interception(svm); | 
|  |  | 
|  | reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; | 
|  | dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; | 
|  |  | 
|  | if (dr >= 16) { /* mov to DRn */ | 
|  | if (!kvm_require_dr(&svm->vcpu, dr - 16)) | 
|  | return 1; | 
|  | val = kvm_register_read(&svm->vcpu, reg); | 
|  | kvm_set_dr(&svm->vcpu, dr - 16, val); | 
|  | } else { | 
|  | if (!kvm_require_dr(&svm->vcpu, dr)) | 
|  | return 1; | 
|  | kvm_get_dr(&svm->vcpu, dr, &val); | 
|  | kvm_register_write(&svm->vcpu, reg, val); | 
|  | } | 
|  |  | 
|  | return kvm_skip_emulated_instruction(&svm->vcpu); | 
|  | } | 
|  |  | 
|  | static int cr8_write_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_run *kvm_run = svm->vcpu.run; | 
|  | int r; | 
|  |  | 
|  | u8 cr8_prev = kvm_get_cr8(&svm->vcpu); | 
|  | /* instruction emulation calls kvm_set_cr8() */ | 
|  | r = cr_interception(svm); | 
|  | if (lapic_in_kernel(&svm->vcpu)) | 
|  | return r; | 
|  | if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) | 
|  | return r; | 
|  | kvm_run->exit_reason = KVM_EXIT_SET_TPR; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int svm_get_msr_feature(struct kvm_msr_entry *msr) | 
|  | { | 
|  | msr->data = 0; | 
|  |  | 
|  | switch (msr->index) { | 
|  | case MSR_F10H_DECFG: | 
|  | if (boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) | 
|  | msr->data |= MSR_F10H_DECFG_LFENCE_SERIALIZE; | 
|  | break; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int svm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | switch (msr_info->index) { | 
|  | case MSR_STAR: | 
|  | msr_info->data = svm->vmcb->save.star; | 
|  | break; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case MSR_LSTAR: | 
|  | msr_info->data = svm->vmcb->save.lstar; | 
|  | break; | 
|  | case MSR_CSTAR: | 
|  | msr_info->data = svm->vmcb->save.cstar; | 
|  | break; | 
|  | case MSR_KERNEL_GS_BASE: | 
|  | msr_info->data = svm->vmcb->save.kernel_gs_base; | 
|  | break; | 
|  | case MSR_SYSCALL_MASK: | 
|  | msr_info->data = svm->vmcb->save.sfmask; | 
|  | break; | 
|  | #endif | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | msr_info->data = svm->vmcb->save.sysenter_cs; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | msr_info->data = svm->sysenter_eip; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | msr_info->data = svm->sysenter_esp; | 
|  | break; | 
|  | case MSR_TSC_AUX: | 
|  | if (!boot_cpu_has(X86_FEATURE_RDTSCP)) | 
|  | return 1; | 
|  | msr_info->data = svm->tsc_aux; | 
|  | break; | 
|  | /* | 
|  | * Nobody will change the following 5 values in the VMCB so we can | 
|  | * safely return them on rdmsr. They will always be 0 until LBRV is | 
|  | * implemented. | 
|  | */ | 
|  | case MSR_IA32_DEBUGCTLMSR: | 
|  | msr_info->data = svm->vmcb->save.dbgctl; | 
|  | break; | 
|  | case MSR_IA32_LASTBRANCHFROMIP: | 
|  | msr_info->data = svm->vmcb->save.br_from; | 
|  | break; | 
|  | case MSR_IA32_LASTBRANCHTOIP: | 
|  | msr_info->data = svm->vmcb->save.br_to; | 
|  | break; | 
|  | case MSR_IA32_LASTINTFROMIP: | 
|  | msr_info->data = svm->vmcb->save.last_excp_from; | 
|  | break; | 
|  | case MSR_IA32_LASTINTTOIP: | 
|  | msr_info->data = svm->vmcb->save.last_excp_to; | 
|  | break; | 
|  | case MSR_VM_HSAVE_PA: | 
|  | msr_info->data = svm->nested.hsave_msr; | 
|  | break; | 
|  | case MSR_VM_CR: | 
|  | msr_info->data = svm->nested.vm_cr_msr; | 
|  | break; | 
|  | case MSR_IA32_SPEC_CTRL: | 
|  | if (!msr_info->host_initiated && | 
|  | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && | 
|  | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) | 
|  | return 1; | 
|  |  | 
|  | msr_info->data = svm->spec_ctrl; | 
|  | break; | 
|  | case MSR_AMD64_VIRT_SPEC_CTRL: | 
|  | if (!msr_info->host_initiated && | 
|  | !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) | 
|  | return 1; | 
|  |  | 
|  | msr_info->data = svm->virt_spec_ctrl; | 
|  | break; | 
|  | case MSR_F15H_IC_CFG: { | 
|  |  | 
|  | int family, model; | 
|  |  | 
|  | family = guest_cpuid_family(vcpu); | 
|  | model  = guest_cpuid_model(vcpu); | 
|  |  | 
|  | if (family < 0 || model < 0) | 
|  | return kvm_get_msr_common(vcpu, msr_info); | 
|  |  | 
|  | msr_info->data = 0; | 
|  |  | 
|  | if (family == 0x15 && | 
|  | (model >= 0x2 && model < 0x20)) | 
|  | msr_info->data = 0x1E; | 
|  | } | 
|  | break; | 
|  | case MSR_F10H_DECFG: | 
|  | msr_info->data = svm->msr_decfg; | 
|  | break; | 
|  | default: | 
|  | return kvm_get_msr_common(vcpu, msr_info); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rdmsr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); | 
|  | struct msr_data msr_info; | 
|  |  | 
|  | msr_info.index = ecx; | 
|  | msr_info.host_initiated = false; | 
|  | if (svm_get_msr(&svm->vcpu, &msr_info)) { | 
|  | trace_kvm_msr_read_ex(ecx); | 
|  | kvm_inject_gp(&svm->vcpu, 0); | 
|  | return 1; | 
|  | } else { | 
|  | trace_kvm_msr_read(ecx, msr_info.data); | 
|  |  | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, | 
|  | msr_info.data & 0xffffffff); | 
|  | kvm_register_write(&svm->vcpu, VCPU_REGS_RDX, | 
|  | msr_info.data >> 32); | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
|  | return kvm_skip_emulated_instruction(&svm->vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | int svm_dis, chg_mask; | 
|  |  | 
|  | if (data & ~SVM_VM_CR_VALID_MASK) | 
|  | return 1; | 
|  |  | 
|  | chg_mask = SVM_VM_CR_VALID_MASK; | 
|  |  | 
|  | if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) | 
|  | chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); | 
|  |  | 
|  | svm->nested.vm_cr_msr &= ~chg_mask; | 
|  | svm->nested.vm_cr_msr |= (data & chg_mask); | 
|  |  | 
|  | svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; | 
|  |  | 
|  | /* check for svm_disable while efer.svme is set */ | 
|  | if (svm_dis && (vcpu->arch.efer & EFER_SVME)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | u32 ecx = msr->index; | 
|  | u64 data = msr->data; | 
|  | switch (ecx) { | 
|  | case MSR_IA32_CR_PAT: | 
|  | if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data)) | 
|  | return 1; | 
|  | vcpu->arch.pat = data; | 
|  | svm->vmcb->save.g_pat = data; | 
|  | mark_dirty(svm->vmcb, VMCB_NPT); | 
|  | break; | 
|  | case MSR_IA32_SPEC_CTRL: | 
|  | if (!msr->host_initiated && | 
|  | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBRS) && | 
|  | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_SSBD)) | 
|  | return 1; | 
|  |  | 
|  | /* The STIBP bit doesn't fault even if it's not advertised */ | 
|  | if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD)) | 
|  | return 1; | 
|  |  | 
|  | svm->spec_ctrl = data; | 
|  |  | 
|  | if (!data) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * For non-nested: | 
|  | * When it's written (to non-zero) for the first time, pass | 
|  | * it through. | 
|  | * | 
|  | * For nested: | 
|  | * The handling of the MSR bitmap for L2 guests is done in | 
|  | * nested_svm_vmrun_msrpm. | 
|  | * We update the L1 MSR bit as well since it will end up | 
|  | * touching the MSR anyway now. | 
|  | */ | 
|  | set_msr_interception(svm->msrpm, MSR_IA32_SPEC_CTRL, 1, 1); | 
|  | break; | 
|  | case MSR_IA32_PRED_CMD: | 
|  | if (!msr->host_initiated && | 
|  | !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) | 
|  | return 1; | 
|  |  | 
|  | if (data & ~PRED_CMD_IBPB) | 
|  | return 1; | 
|  |  | 
|  | if (!data) | 
|  | break; | 
|  |  | 
|  | wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); | 
|  | if (is_guest_mode(vcpu)) | 
|  | break; | 
|  | set_msr_interception(svm->msrpm, MSR_IA32_PRED_CMD, 0, 1); | 
|  | break; | 
|  | case MSR_AMD64_VIRT_SPEC_CTRL: | 
|  | if (!msr->host_initiated && | 
|  | !guest_cpuid_has(vcpu, X86_FEATURE_VIRT_SSBD)) | 
|  | return 1; | 
|  |  | 
|  | if (data & ~SPEC_CTRL_SSBD) | 
|  | return 1; | 
|  |  | 
|  | svm->virt_spec_ctrl = data; | 
|  | break; | 
|  | case MSR_STAR: | 
|  | svm->vmcb->save.star = data; | 
|  | break; | 
|  | #ifdef CONFIG_X86_64 | 
|  | case MSR_LSTAR: | 
|  | svm->vmcb->save.lstar = data; | 
|  | break; | 
|  | case MSR_CSTAR: | 
|  | svm->vmcb->save.cstar = data; | 
|  | break; | 
|  | case MSR_KERNEL_GS_BASE: | 
|  | svm->vmcb->save.kernel_gs_base = data; | 
|  | break; | 
|  | case MSR_SYSCALL_MASK: | 
|  | svm->vmcb->save.sfmask = data; | 
|  | break; | 
|  | #endif | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | svm->vmcb->save.sysenter_cs = data; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | svm->sysenter_eip = data; | 
|  | svm->vmcb->save.sysenter_eip = data; | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | svm->sysenter_esp = data; | 
|  | svm->vmcb->save.sysenter_esp = data; | 
|  | break; | 
|  | case MSR_TSC_AUX: | 
|  | if (!boot_cpu_has(X86_FEATURE_RDTSCP)) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * This is rare, so we update the MSR here instead of using | 
|  | * direct_access_msrs.  Doing that would require a rdmsr in | 
|  | * svm_vcpu_put. | 
|  | */ | 
|  | svm->tsc_aux = data; | 
|  | wrmsrl(MSR_TSC_AUX, svm->tsc_aux); | 
|  | break; | 
|  | case MSR_IA32_DEBUGCTLMSR: | 
|  | if (!boot_cpu_has(X86_FEATURE_LBRV)) { | 
|  | vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", | 
|  | __func__, data); | 
|  | break; | 
|  | } | 
|  | if (data & DEBUGCTL_RESERVED_BITS) | 
|  | return 1; | 
|  |  | 
|  | svm->vmcb->save.dbgctl = data; | 
|  | mark_dirty(svm->vmcb, VMCB_LBR); | 
|  | if (data & (1ULL<<0)) | 
|  | svm_enable_lbrv(svm); | 
|  | else | 
|  | svm_disable_lbrv(svm); | 
|  | break; | 
|  | case MSR_VM_HSAVE_PA: | 
|  | svm->nested.hsave_msr = data; | 
|  | break; | 
|  | case MSR_VM_CR: | 
|  | return svm_set_vm_cr(vcpu, data); | 
|  | case MSR_VM_IGNNE: | 
|  | vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); | 
|  | break; | 
|  | case MSR_F10H_DECFG: { | 
|  | struct kvm_msr_entry msr_entry; | 
|  |  | 
|  | msr_entry.index = msr->index; | 
|  | if (svm_get_msr_feature(&msr_entry)) | 
|  | return 1; | 
|  |  | 
|  | /* Check the supported bits */ | 
|  | if (data & ~msr_entry.data) | 
|  | return 1; | 
|  |  | 
|  | /* Don't allow the guest to change a bit, #GP */ | 
|  | if (!msr->host_initiated && (data ^ msr_entry.data)) | 
|  | return 1; | 
|  |  | 
|  | svm->msr_decfg = data; | 
|  | break; | 
|  | } | 
|  | case MSR_IA32_APICBASE: | 
|  | if (kvm_vcpu_apicv_active(vcpu)) | 
|  | avic_update_vapic_bar(to_svm(vcpu), data); | 
|  | /* Follow through */ | 
|  | default: | 
|  | return kvm_set_msr_common(vcpu, msr); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int wrmsr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct msr_data msr; | 
|  | u32 ecx = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); | 
|  | u64 data = kvm_read_edx_eax(&svm->vcpu); | 
|  |  | 
|  | msr.data = data; | 
|  | msr.index = ecx; | 
|  | msr.host_initiated = false; | 
|  |  | 
|  | svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
|  | if (kvm_set_msr(&svm->vcpu, &msr)) { | 
|  | trace_kvm_msr_write_ex(ecx, data); | 
|  | kvm_inject_gp(&svm->vcpu, 0); | 
|  | return 1; | 
|  | } else { | 
|  | trace_kvm_msr_write(ecx, data); | 
|  | return kvm_skip_emulated_instruction(&svm->vcpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int msr_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | if (svm->vmcb->control.exit_info_1) | 
|  | return wrmsr_interception(svm); | 
|  | else | 
|  | return rdmsr_interception(svm); | 
|  | } | 
|  |  | 
|  | static int interrupt_window_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
|  | svm_clear_vintr(svm); | 
|  | svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 
|  | mark_dirty(svm->vmcb, VMCB_INTR); | 
|  | ++svm->vcpu.stat.irq_window_exits; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int pause_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_vcpu *vcpu = &svm->vcpu; | 
|  | bool in_kernel = (svm_get_cpl(vcpu) == 0); | 
|  |  | 
|  | if (pause_filter_thresh) | 
|  | grow_ple_window(vcpu); | 
|  |  | 
|  | kvm_vcpu_on_spin(vcpu, in_kernel); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int nop_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | return kvm_skip_emulated_instruction(&(svm->vcpu)); | 
|  | } | 
|  |  | 
|  | static int monitor_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n"); | 
|  | return nop_interception(svm); | 
|  | } | 
|  |  | 
|  | static int mwait_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n"); | 
|  | return nop_interception(svm); | 
|  | } | 
|  |  | 
|  | enum avic_ipi_failure_cause { | 
|  | AVIC_IPI_FAILURE_INVALID_INT_TYPE, | 
|  | AVIC_IPI_FAILURE_TARGET_NOT_RUNNING, | 
|  | AVIC_IPI_FAILURE_INVALID_TARGET, | 
|  | AVIC_IPI_FAILURE_INVALID_BACKING_PAGE, | 
|  | }; | 
|  |  | 
|  | static int avic_incomplete_ipi_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | u32 icrh = svm->vmcb->control.exit_info_1 >> 32; | 
|  | u32 icrl = svm->vmcb->control.exit_info_1; | 
|  | u32 id = svm->vmcb->control.exit_info_2 >> 32; | 
|  | u32 index = svm->vmcb->control.exit_info_2 & 0xFF; | 
|  | struct kvm_lapic *apic = svm->vcpu.arch.apic; | 
|  |  | 
|  | trace_kvm_avic_incomplete_ipi(svm->vcpu.vcpu_id, icrh, icrl, id, index); | 
|  |  | 
|  | switch (id) { | 
|  | case AVIC_IPI_FAILURE_INVALID_INT_TYPE: | 
|  | /* | 
|  | * AVIC hardware handles the generation of | 
|  | * IPIs when the specified Message Type is Fixed | 
|  | * (also known as fixed delivery mode) and | 
|  | * the Trigger Mode is edge-triggered. The hardware | 
|  | * also supports self and broadcast delivery modes | 
|  | * specified via the Destination Shorthand(DSH) | 
|  | * field of the ICRL. Logical and physical APIC ID | 
|  | * formats are supported. All other IPI types cause | 
|  | * a #VMEXIT, which needs to emulated. | 
|  | */ | 
|  | kvm_lapic_reg_write(apic, APIC_ICR2, icrh); | 
|  | kvm_lapic_reg_write(apic, APIC_ICR, icrl); | 
|  | break; | 
|  | case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING: { | 
|  | int i; | 
|  | struct kvm_vcpu *vcpu; | 
|  | struct kvm *kvm = svm->vcpu.kvm; | 
|  | struct kvm_lapic *apic = svm->vcpu.arch.apic; | 
|  |  | 
|  | /* | 
|  | * At this point, we expect that the AVIC HW has already | 
|  | * set the appropriate IRR bits on the valid target | 
|  | * vcpus. So, we just need to kick the appropriate vcpu. | 
|  | */ | 
|  | kvm_for_each_vcpu(i, vcpu, kvm) { | 
|  | bool m = kvm_apic_match_dest(vcpu, apic, | 
|  | icrl & KVM_APIC_SHORT_MASK, | 
|  | GET_APIC_DEST_FIELD(icrh), | 
|  | icrl & KVM_APIC_DEST_MASK); | 
|  |  | 
|  | if (m && !avic_vcpu_is_running(vcpu)) | 
|  | kvm_vcpu_wake_up(vcpu); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case AVIC_IPI_FAILURE_INVALID_TARGET: | 
|  | break; | 
|  | case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE: | 
|  | WARN_ONCE(1, "Invalid backing page\n"); | 
|  | break; | 
|  | default: | 
|  | pr_err("Unknown IPI interception\n"); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat) | 
|  | { | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
|  | int index; | 
|  | u32 *logical_apic_id_table; | 
|  | int dlid = GET_APIC_LOGICAL_ID(ldr); | 
|  |  | 
|  | if (!dlid) | 
|  | return NULL; | 
|  |  | 
|  | if (flat) { /* flat */ | 
|  | index = ffs(dlid) - 1; | 
|  | if (index > 7) | 
|  | return NULL; | 
|  | } else { /* cluster */ | 
|  | int cluster = (dlid & 0xf0) >> 4; | 
|  | int apic = ffs(dlid & 0x0f) - 1; | 
|  |  | 
|  | if ((apic < 0) || (apic > 7) || | 
|  | (cluster >= 0xf)) | 
|  | return NULL; | 
|  | index = (cluster << 2) + apic; | 
|  | } | 
|  |  | 
|  | logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page); | 
|  |  | 
|  | return &logical_apic_id_table[index]; | 
|  | } | 
|  |  | 
|  | static int avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr, | 
|  | bool valid) | 
|  | { | 
|  | bool flat; | 
|  | u32 *entry, new_entry; | 
|  |  | 
|  | flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT; | 
|  | entry = avic_get_logical_id_entry(vcpu, ldr, flat); | 
|  | if (!entry) | 
|  | return -EINVAL; | 
|  |  | 
|  | new_entry = READ_ONCE(*entry); | 
|  | new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK; | 
|  | new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK); | 
|  | if (valid) | 
|  | new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK; | 
|  | else | 
|  | new_entry &= ~AVIC_LOGICAL_ID_ENTRY_VALID_MASK; | 
|  | WRITE_ONCE(*entry, new_entry); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int avic_handle_ldr_update(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int ret; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR); | 
|  |  | 
|  | if (!ldr) | 
|  | return 1; | 
|  |  | 
|  | ret = avic_ldr_write(vcpu, vcpu->vcpu_id, ldr, true); | 
|  | if (ret && svm->ldr_reg) { | 
|  | avic_ldr_write(vcpu, 0, svm->ldr_reg, false); | 
|  | svm->ldr_reg = 0; | 
|  | } else { | 
|  | svm->ldr_reg = ldr; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int avic_handle_apic_id_update(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u64 *old, *new; | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u32 apic_id_reg = kvm_lapic_get_reg(vcpu->arch.apic, APIC_ID); | 
|  | u32 id = (apic_id_reg >> 24) & 0xff; | 
|  |  | 
|  | if (vcpu->vcpu_id == id) | 
|  | return 0; | 
|  |  | 
|  | old = avic_get_physical_id_entry(vcpu, vcpu->vcpu_id); | 
|  | new = avic_get_physical_id_entry(vcpu, id); | 
|  | if (!new || !old) | 
|  | return 1; | 
|  |  | 
|  | /* We need to move physical_id_entry to new offset */ | 
|  | *new = *old; | 
|  | *old = 0ULL; | 
|  | to_svm(vcpu)->avic_physical_id_cache = new; | 
|  |  | 
|  | /* | 
|  | * Also update the guest physical APIC ID in the logical | 
|  | * APIC ID table entry if already setup the LDR. | 
|  | */ | 
|  | if (svm->ldr_reg) | 
|  | avic_handle_ldr_update(vcpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int avic_handle_dfr_update(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm); | 
|  | u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR); | 
|  | u32 mod = (dfr >> 28) & 0xf; | 
|  |  | 
|  | /* | 
|  | * We assume that all local APICs are using the same type. | 
|  | * If this changes, we need to flush the AVIC logical | 
|  | * APID id table. | 
|  | */ | 
|  | if (kvm_svm->ldr_mode == mod) | 
|  | return 0; | 
|  |  | 
|  | clear_page(page_address(kvm_svm->avic_logical_id_table_page)); | 
|  | kvm_svm->ldr_mode = mod; | 
|  |  | 
|  | if (svm->ldr_reg) | 
|  | avic_handle_ldr_update(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int avic_unaccel_trap_write(struct vcpu_svm *svm) | 
|  | { | 
|  | struct kvm_lapic *apic = svm->vcpu.arch.apic; | 
|  | u32 offset = svm->vmcb->control.exit_info_1 & | 
|  | AVIC_UNACCEL_ACCESS_OFFSET_MASK; | 
|  |  | 
|  | switch (offset) { | 
|  | case APIC_ID: | 
|  | if (avic_handle_apic_id_update(&svm->vcpu)) | 
|  | return 0; | 
|  | break; | 
|  | case APIC_LDR: | 
|  | if (avic_handle_ldr_update(&svm->vcpu)) | 
|  | return 0; | 
|  | break; | 
|  | case APIC_DFR: | 
|  | avic_handle_dfr_update(&svm->vcpu); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static bool is_avic_unaccelerated_access_trap(u32 offset) | 
|  | { | 
|  | bool ret = false; | 
|  |  | 
|  | switch (offset) { | 
|  | case APIC_ID: | 
|  | case APIC_EOI: | 
|  | case APIC_RRR: | 
|  | case APIC_LDR: | 
|  | case APIC_DFR: | 
|  | case APIC_SPIV: | 
|  | case APIC_ESR: | 
|  | case APIC_ICR: | 
|  | case APIC_LVTT: | 
|  | case APIC_LVTTHMR: | 
|  | case APIC_LVTPC: | 
|  | case APIC_LVT0: | 
|  | case APIC_LVT1: | 
|  | case APIC_LVTERR: | 
|  | case APIC_TMICT: | 
|  | case APIC_TDCR: | 
|  | ret = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int avic_unaccelerated_access_interception(struct vcpu_svm *svm) | 
|  | { | 
|  | int ret = 0; | 
|  | u32 offset = svm->vmcb->control.exit_info_1 & | 
|  | AVIC_UNACCEL_ACCESS_OFFSET_MASK; | 
|  | u32 vector = svm->vmcb->control.exit_info_2 & | 
|  | AVIC_UNACCEL_ACCESS_VECTOR_MASK; | 
|  | bool write = (svm->vmcb->control.exit_info_1 >> 32) & | 
|  | AVIC_UNACCEL_ACCESS_WRITE_MASK; | 
|  | bool trap = is_avic_unaccelerated_access_trap(offset); | 
|  |  | 
|  | trace_kvm_avic_unaccelerated_access(svm->vcpu.vcpu_id, offset, | 
|  | trap, write, vector); | 
|  | if (trap) { | 
|  | /* Handling Trap */ | 
|  | WARN_ONCE(!write, "svm: Handling trap read.\n"); | 
|  | ret = avic_unaccel_trap_write(svm); | 
|  | } else { | 
|  | /* Handling Fault */ | 
|  | ret = (kvm_emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = { | 
|  | [SVM_EXIT_READ_CR0]			= cr_interception, | 
|  | [SVM_EXIT_READ_CR3]			= cr_interception, | 
|  | [SVM_EXIT_READ_CR4]			= cr_interception, | 
|  | [SVM_EXIT_READ_CR8]			= cr_interception, | 
|  | [SVM_EXIT_CR0_SEL_WRITE]		= cr_interception, | 
|  | [SVM_EXIT_WRITE_CR0]			= cr_interception, | 
|  | [SVM_EXIT_WRITE_CR3]			= cr_interception, | 
|  | [SVM_EXIT_WRITE_CR4]			= cr_interception, | 
|  | [SVM_EXIT_WRITE_CR8]			= cr8_write_interception, | 
|  | [SVM_EXIT_READ_DR0]			= dr_interception, | 
|  | [SVM_EXIT_READ_DR1]			= dr_interception, | 
|  | [SVM_EXIT_READ_DR2]			= dr_interception, | 
|  | [SVM_EXIT_READ_DR3]			= dr_interception, | 
|  | [SVM_EXIT_READ_DR4]			= dr_interception, | 
|  | [SVM_EXIT_READ_DR5]			= dr_interception, | 
|  | [SVM_EXIT_READ_DR6]			= dr_interception, | 
|  | [SVM_EXIT_READ_DR7]			= dr_interception, | 
|  | [SVM_EXIT_WRITE_DR0]			= dr_interception, | 
|  | [SVM_EXIT_WRITE_DR1]			= dr_interception, | 
|  | [SVM_EXIT_WRITE_DR2]			= dr_interception, | 
|  | [SVM_EXIT_WRITE_DR3]			= dr_interception, | 
|  | [SVM_EXIT_WRITE_DR4]			= dr_interception, | 
|  | [SVM_EXIT_WRITE_DR5]			= dr_interception, | 
|  | [SVM_EXIT_WRITE_DR6]			= dr_interception, | 
|  | [SVM_EXIT_WRITE_DR7]			= dr_interception, | 
|  | [SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception, | 
|  | [SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception, | 
|  | [SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception, | 
|  | [SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception, | 
|  | [SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception, | 
|  | [SVM_EXIT_EXCP_BASE + AC_VECTOR]	= ac_interception, | 
|  | [SVM_EXIT_EXCP_BASE + GP_VECTOR]	= gp_interception, | 
|  | [SVM_EXIT_INTR]				= intr_interception, | 
|  | [SVM_EXIT_NMI]				= nmi_interception, | 
|  | [SVM_EXIT_SMI]				= nop_on_interception, | 
|  | [SVM_EXIT_INIT]				= nop_on_interception, | 
|  | [SVM_EXIT_VINTR]			= interrupt_window_interception, | 
|  | [SVM_EXIT_RDPMC]			= rdpmc_interception, | 
|  | [SVM_EXIT_CPUID]			= cpuid_interception, | 
|  | [SVM_EXIT_IRET]                         = iret_interception, | 
|  | [SVM_EXIT_INVD]                         = emulate_on_interception, | 
|  | [SVM_EXIT_PAUSE]			= pause_interception, | 
|  | [SVM_EXIT_HLT]				= halt_interception, | 
|  | [SVM_EXIT_INVLPG]			= invlpg_interception, | 
|  | [SVM_EXIT_INVLPGA]			= invlpga_interception, | 
|  | [SVM_EXIT_IOIO]				= io_interception, | 
|  | [SVM_EXIT_MSR]				= msr_interception, | 
|  | [SVM_EXIT_TASK_SWITCH]			= task_switch_interception, | 
|  | [SVM_EXIT_SHUTDOWN]			= shutdown_interception, | 
|  | [SVM_EXIT_VMRUN]			= vmrun_interception, | 
|  | [SVM_EXIT_VMMCALL]			= vmmcall_interception, | 
|  | [SVM_EXIT_VMLOAD]			= vmload_interception, | 
|  | [SVM_EXIT_VMSAVE]			= vmsave_interception, | 
|  | [SVM_EXIT_STGI]				= stgi_interception, | 
|  | [SVM_EXIT_CLGI]				= clgi_interception, | 
|  | [SVM_EXIT_SKINIT]			= skinit_interception, | 
|  | [SVM_EXIT_WBINVD]                       = wbinvd_interception, | 
|  | [SVM_EXIT_MONITOR]			= monitor_interception, | 
|  | [SVM_EXIT_MWAIT]			= mwait_interception, | 
|  | [SVM_EXIT_XSETBV]			= xsetbv_interception, | 
|  | [SVM_EXIT_NPF]				= npf_interception, | 
|  | [SVM_EXIT_RSM]                          = rsm_interception, | 
|  | [SVM_EXIT_AVIC_INCOMPLETE_IPI]		= avic_incomplete_ipi_interception, | 
|  | [SVM_EXIT_AVIC_UNACCELERATED_ACCESS]	= avic_unaccelerated_access_interception, | 
|  | }; | 
|  |  | 
|  | static void dump_vmcb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  | struct vmcb_save_area *save = &svm->vmcb->save; | 
|  |  | 
|  | pr_err("VMCB Control Area:\n"); | 
|  | pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff); | 
|  | pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16); | 
|  | pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff); | 
|  | pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16); | 
|  | pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions); | 
|  | pr_err("%-20s%016llx\n", "intercepts:", control->intercept); | 
|  | pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count); | 
|  | pr_err("%-20s%d\n", "pause filter threshold:", | 
|  | control->pause_filter_thresh); | 
|  | pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa); | 
|  | pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa); | 
|  | pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset); | 
|  | pr_err("%-20s%d\n", "asid:", control->asid); | 
|  | pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl); | 
|  | pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl); | 
|  | pr_err("%-20s%08x\n", "int_vector:", control->int_vector); | 
|  | pr_err("%-20s%08x\n", "int_state:", control->int_state); | 
|  | pr_err("%-20s%08x\n", "exit_code:", control->exit_code); | 
|  | pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1); | 
|  | pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2); | 
|  | pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info); | 
|  | pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err); | 
|  | pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl); | 
|  | pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3); | 
|  | pr_err("%-20s%016llx\n", "avic_vapic_bar:", control->avic_vapic_bar); | 
|  | pr_err("%-20s%08x\n", "event_inj:", control->event_inj); | 
|  | pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err); | 
|  | pr_err("%-20s%lld\n", "virt_ext:", control->virt_ext); | 
|  | pr_err("%-20s%016llx\n", "next_rip:", control->next_rip); | 
|  | pr_err("%-20s%016llx\n", "avic_backing_page:", control->avic_backing_page); | 
|  | pr_err("%-20s%016llx\n", "avic_logical_id:", control->avic_logical_id); | 
|  | pr_err("%-20s%016llx\n", "avic_physical_id:", control->avic_physical_id); | 
|  | pr_err("VMCB State Save Area:\n"); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "es:", | 
|  | save->es.selector, save->es.attrib, | 
|  | save->es.limit, save->es.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "cs:", | 
|  | save->cs.selector, save->cs.attrib, | 
|  | save->cs.limit, save->cs.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "ss:", | 
|  | save->ss.selector, save->ss.attrib, | 
|  | save->ss.limit, save->ss.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "ds:", | 
|  | save->ds.selector, save->ds.attrib, | 
|  | save->ds.limit, save->ds.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "fs:", | 
|  | save->fs.selector, save->fs.attrib, | 
|  | save->fs.limit, save->fs.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "gs:", | 
|  | save->gs.selector, save->gs.attrib, | 
|  | save->gs.limit, save->gs.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "gdtr:", | 
|  | save->gdtr.selector, save->gdtr.attrib, | 
|  | save->gdtr.limit, save->gdtr.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "ldtr:", | 
|  | save->ldtr.selector, save->ldtr.attrib, | 
|  | save->ldtr.limit, save->ldtr.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "idtr:", | 
|  | save->idtr.selector, save->idtr.attrib, | 
|  | save->idtr.limit, save->idtr.base); | 
|  | pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n", | 
|  | "tr:", | 
|  | save->tr.selector, save->tr.attrib, | 
|  | save->tr.limit, save->tr.base); | 
|  | pr_err("cpl:            %d                efer:         %016llx\n", | 
|  | save->cpl, save->efer); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "cr0:", save->cr0, "cr2:", save->cr2); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "cr3:", save->cr3, "cr4:", save->cr4); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "dr6:", save->dr6, "dr7:", save->dr7); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "rip:", save->rip, "rflags:", save->rflags); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "rsp:", save->rsp, "rax:", save->rax); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "star:", save->star, "lstar:", save->lstar); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "cstar:", save->cstar, "sfmask:", save->sfmask); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "kernel_gs_base:", save->kernel_gs_base, | 
|  | "sysenter_cs:", save->sysenter_cs); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "sysenter_esp:", save->sysenter_esp, | 
|  | "sysenter_eip:", save->sysenter_eip); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "gpat:", save->g_pat, "dbgctl:", save->dbgctl); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "br_from:", save->br_from, "br_to:", save->br_to); | 
|  | pr_err("%-15s %016llx %-13s %016llx\n", | 
|  | "excp_from:", save->last_excp_from, | 
|  | "excp_to:", save->last_excp_to); | 
|  | } | 
|  |  | 
|  | static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) | 
|  | { | 
|  | struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; | 
|  |  | 
|  | *info1 = control->exit_info_1; | 
|  | *info2 = control->exit_info_2; | 
|  | } | 
|  |  | 
|  | static int handle_exit(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct kvm_run *kvm_run = vcpu->run; | 
|  | u32 exit_code = svm->vmcb->control.exit_code; | 
|  |  | 
|  | trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); | 
|  |  | 
|  | if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) | 
|  | vcpu->arch.cr0 = svm->vmcb->save.cr0; | 
|  | if (npt_enabled) | 
|  | vcpu->arch.cr3 = svm->vmcb->save.cr3; | 
|  |  | 
|  | if (unlikely(svm->nested.exit_required)) { | 
|  | nested_svm_vmexit(svm); | 
|  | svm->nested.exit_required = false; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (is_guest_mode(vcpu)) { | 
|  | int vmexit; | 
|  |  | 
|  | trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, | 
|  | svm->vmcb->control.exit_info_1, | 
|  | svm->vmcb->control.exit_info_2, | 
|  | svm->vmcb->control.exit_int_info, | 
|  | svm->vmcb->control.exit_int_info_err, | 
|  | KVM_ISA_SVM); | 
|  |  | 
|  | vmexit = nested_svm_exit_special(svm); | 
|  |  | 
|  | if (vmexit == NESTED_EXIT_CONTINUE) | 
|  | vmexit = nested_svm_exit_handled(svm); | 
|  |  | 
|  | if (vmexit == NESTED_EXIT_DONE) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | svm_complete_interrupts(svm); | 
|  |  | 
|  | if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { | 
|  | kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
|  | kvm_run->fail_entry.hardware_entry_failure_reason | 
|  | = svm->vmcb->control.exit_code; | 
|  | pr_err("KVM: FAILED VMRUN WITH VMCB:\n"); | 
|  | dump_vmcb(vcpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_external_interrupt(svm->vmcb->control.exit_int_info) && | 
|  | exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && | 
|  | exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && | 
|  | exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) | 
|  | printk(KERN_ERR "%s: unexpected exit_int_info 0x%x " | 
|  | "exit_code 0x%x\n", | 
|  | __func__, svm->vmcb->control.exit_int_info, | 
|  | exit_code); | 
|  |  | 
|  | if (exit_code >= ARRAY_SIZE(svm_exit_handlers) | 
|  | || !svm_exit_handlers[exit_code]) { | 
|  | WARN_ONCE(1, "svm: unexpected exit reason 0x%x\n", exit_code); | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return svm_exit_handlers[exit_code](svm); | 
|  | } | 
|  |  | 
|  | static void reload_tss(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
|  | sd->tss_desc->type = 9; /* available 32/64-bit TSS */ | 
|  | load_TR_desc(); | 
|  | } | 
|  |  | 
|  | static void pre_sev_run(struct vcpu_svm *svm, int cpu) | 
|  | { | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
|  | int asid = sev_get_asid(svm->vcpu.kvm); | 
|  |  | 
|  | /* Assign the asid allocated with this SEV guest */ | 
|  | svm->vmcb->control.asid = asid; | 
|  |  | 
|  | /* | 
|  | * Flush guest TLB: | 
|  | * | 
|  | * 1) when different VMCB for the same ASID is to be run on the same host CPU. | 
|  | * 2) or this VMCB was executed on different host CPU in previous VMRUNs. | 
|  | */ | 
|  | if (sd->sev_vmcbs[asid] == svm->vmcb && | 
|  | svm->last_cpu == cpu) | 
|  | return; | 
|  |  | 
|  | svm->last_cpu = cpu; | 
|  | sd->sev_vmcbs[asid] = svm->vmcb; | 
|  | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; | 
|  | mark_dirty(svm->vmcb, VMCB_ASID); | 
|  | } | 
|  |  | 
|  | static void pre_svm_run(struct vcpu_svm *svm) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
|  |  | 
|  | if (sev_guest(svm->vcpu.kvm)) | 
|  | return pre_sev_run(svm, cpu); | 
|  |  | 
|  | /* FIXME: handle wraparound of asid_generation */ | 
|  | if (svm->asid_generation != sd->asid_generation) | 
|  | new_asid(svm, sd); | 
|  | } | 
|  |  | 
|  | static void svm_inject_nmi(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; | 
|  | vcpu->arch.hflags |= HF_NMI_MASK; | 
|  | set_intercept(svm, INTERCEPT_IRET); | 
|  | ++vcpu->stat.nmi_injections; | 
|  | } | 
|  |  | 
|  | static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) | 
|  | { | 
|  | struct vmcb_control_area *control; | 
|  |  | 
|  | /* The following fields are ignored when AVIC is enabled */ | 
|  | control = &svm->vmcb->control; | 
|  | control->int_vector = irq; | 
|  | control->int_ctl &= ~V_INTR_PRIO_MASK; | 
|  | control->int_ctl |= V_IRQ_MASK | | 
|  | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); | 
|  | mark_dirty(svm->vmcb, VMCB_INTR); | 
|  | } | 
|  |  | 
|  | static void svm_set_irq(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | BUG_ON(!(gif_set(svm))); | 
|  |  | 
|  | trace_kvm_inj_virq(vcpu->arch.interrupt.nr); | 
|  | ++vcpu->stat.irq_injections; | 
|  |  | 
|  | svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | | 
|  | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; | 
|  | } | 
|  |  | 
|  | static inline bool svm_nested_virtualize_tpr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK); | 
|  | } | 
|  |  | 
|  | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (svm_nested_virtualize_tpr(vcpu) || | 
|  | kvm_vcpu_apicv_active(vcpu)) | 
|  | return; | 
|  |  | 
|  | clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
|  |  | 
|  | if (irr == -1) | 
|  | return; | 
|  |  | 
|  | if (tpr >= irr) | 
|  | set_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
|  | } | 
|  |  | 
|  | static void svm_set_virtual_apic_mode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static bool svm_get_enable_apicv(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return avic && irqchip_split(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | static void svm_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void svm_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* Note: Currently only used by Hyper-V. */ | 
|  | static void svm_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  |  | 
|  | if (!kvm_vcpu_apicv_active(&svm->vcpu)) | 
|  | return; | 
|  |  | 
|  | vmcb->control.int_ctl &= ~AVIC_ENABLE_MASK; | 
|  | mark_dirty(vmcb, VMCB_INTR); | 
|  | } | 
|  |  | 
|  | static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void svm_deliver_avic_intr(struct kvm_vcpu *vcpu, int vec) | 
|  | { | 
|  | kvm_lapic_set_irr(vec, vcpu->arch.apic); | 
|  | smp_mb__after_atomic(); | 
|  |  | 
|  | if (avic_vcpu_is_running(vcpu)) | 
|  | wrmsrl(SVM_AVIC_DOORBELL, | 
|  | kvm_cpu_get_apicid(vcpu->cpu)); | 
|  | else | 
|  | kvm_vcpu_wake_up(vcpu); | 
|  | } | 
|  |  | 
|  | static bool svm_dy_apicv_has_pending_interrupt(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct amd_svm_iommu_ir *cur; | 
|  |  | 
|  | spin_lock_irqsave(&svm->ir_list_lock, flags); | 
|  | list_for_each_entry(cur, &svm->ir_list, node) { | 
|  | if (cur->data != pi->ir_data) | 
|  | continue; | 
|  | list_del(&cur->node); | 
|  | kfree(cur); | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
|  | } | 
|  |  | 
|  | static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long flags; | 
|  | struct amd_svm_iommu_ir *ir; | 
|  |  | 
|  | /** | 
|  | * In some cases, the existing irte is updaed and re-set, | 
|  | * so we need to check here if it's already been * added | 
|  | * to the ir_list. | 
|  | */ | 
|  | if (pi->ir_data && (pi->prev_ga_tag != 0)) { | 
|  | struct kvm *kvm = svm->vcpu.kvm; | 
|  | u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag); | 
|  | struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id); | 
|  | struct vcpu_svm *prev_svm; | 
|  |  | 
|  | if (!prev_vcpu) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | prev_svm = to_svm(prev_vcpu); | 
|  | svm_ir_list_del(prev_svm, pi); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Allocating new amd_iommu_pi_data, which will get | 
|  | * add to the per-vcpu ir_list. | 
|  | */ | 
|  | ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL); | 
|  | if (!ir) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  | ir->data = pi->ir_data; | 
|  |  | 
|  | spin_lock_irqsave(&svm->ir_list_lock, flags); | 
|  | list_add(&ir->node, &svm->ir_list); | 
|  | spin_unlock_irqrestore(&svm->ir_list_lock, flags); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Note: | 
|  | * The HW cannot support posting multicast/broadcast | 
|  | * interrupts to a vCPU. So, we still use legacy interrupt | 
|  | * remapping for these kind of interrupts. | 
|  | * | 
|  | * For lowest-priority interrupts, we only support | 
|  | * those with single CPU as the destination, e.g. user | 
|  | * configures the interrupts via /proc/irq or uses | 
|  | * irqbalance to make the interrupts single-CPU. | 
|  | */ | 
|  | static int | 
|  | get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e, | 
|  | struct vcpu_data *vcpu_info, struct vcpu_svm **svm) | 
|  | { | 
|  | struct kvm_lapic_irq irq; | 
|  | struct kvm_vcpu *vcpu = NULL; | 
|  |  | 
|  | kvm_set_msi_irq(kvm, e, &irq); | 
|  |  | 
|  | if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) { | 
|  | pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n", | 
|  | __func__, irq.vector); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | pr_debug("SVM: %s: use GA mode for irq %u\n", __func__, | 
|  | irq.vector); | 
|  | *svm = to_svm(vcpu); | 
|  | vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page)); | 
|  | vcpu_info->vector = irq.vector; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * svm_update_pi_irte - set IRTE for Posted-Interrupts | 
|  | * | 
|  | * @kvm: kvm | 
|  | * @host_irq: host irq of the interrupt | 
|  | * @guest_irq: gsi of the interrupt | 
|  | * @set: set or unset PI | 
|  | * returns 0 on success, < 0 on failure | 
|  | */ | 
|  | static int svm_update_pi_irte(struct kvm *kvm, unsigned int host_irq, | 
|  | uint32_t guest_irq, bool set) | 
|  | { | 
|  | struct kvm_kernel_irq_routing_entry *e; | 
|  | struct kvm_irq_routing_table *irq_rt; | 
|  | int idx, ret = -EINVAL; | 
|  |  | 
|  | if (!kvm_arch_has_assigned_device(kvm) || | 
|  | !irq_remapping_cap(IRQ_POSTING_CAP)) | 
|  | return 0; | 
|  |  | 
|  | pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n", | 
|  | __func__, host_irq, guest_irq, set); | 
|  |  | 
|  | idx = srcu_read_lock(&kvm->irq_srcu); | 
|  | irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu); | 
|  | WARN_ON(guest_irq >= irq_rt->nr_rt_entries); | 
|  |  | 
|  | hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) { | 
|  | struct vcpu_data vcpu_info; | 
|  | struct vcpu_svm *svm = NULL; | 
|  |  | 
|  | if (e->type != KVM_IRQ_ROUTING_MSI) | 
|  | continue; | 
|  |  | 
|  | /** | 
|  | * Here, we setup with legacy mode in the following cases: | 
|  | * 1. When cannot target interrupt to a specific vcpu. | 
|  | * 2. Unsetting posted interrupt. | 
|  | * 3. APIC virtialization is disabled for the vcpu. | 
|  | */ | 
|  | if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set && | 
|  | kvm_vcpu_apicv_active(&svm->vcpu)) { | 
|  | struct amd_iommu_pi_data pi; | 
|  |  | 
|  | /* Try to enable guest_mode in IRTE */ | 
|  | pi.base = __sme_set(page_to_phys(svm->avic_backing_page) & | 
|  | AVIC_HPA_MASK); | 
|  | pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id, | 
|  | svm->vcpu.vcpu_id); | 
|  | pi.is_guest_mode = true; | 
|  | pi.vcpu_data = &vcpu_info; | 
|  | ret = irq_set_vcpu_affinity(host_irq, &pi); | 
|  |  | 
|  | /** | 
|  | * Here, we successfully setting up vcpu affinity in | 
|  | * IOMMU guest mode. Now, we need to store the posted | 
|  | * interrupt information in a per-vcpu ir_list so that | 
|  | * we can reference to them directly when we update vcpu | 
|  | * scheduling information in IOMMU irte. | 
|  | */ | 
|  | if (!ret && pi.is_guest_mode) | 
|  | svm_ir_list_add(svm, &pi); | 
|  | } else { | 
|  | /* Use legacy mode in IRTE */ | 
|  | struct amd_iommu_pi_data pi; | 
|  |  | 
|  | /** | 
|  | * Here, pi is used to: | 
|  | * - Tell IOMMU to use legacy mode for this interrupt. | 
|  | * - Retrieve ga_tag of prior interrupt remapping data. | 
|  | */ | 
|  | pi.is_guest_mode = false; | 
|  | ret = irq_set_vcpu_affinity(host_irq, &pi); | 
|  |  | 
|  | /** | 
|  | * Check if the posted interrupt was previously | 
|  | * setup with the guest_mode by checking if the ga_tag | 
|  | * was cached. If so, we need to clean up the per-vcpu | 
|  | * ir_list. | 
|  | */ | 
|  | if (!ret && pi.prev_ga_tag) { | 
|  | int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag); | 
|  | struct kvm_vcpu *vcpu; | 
|  |  | 
|  | vcpu = kvm_get_vcpu_by_id(kvm, id); | 
|  | if (vcpu) | 
|  | svm_ir_list_del(to_svm(vcpu), &pi); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ret && svm) { | 
|  | trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id, | 
|  | e->gsi, vcpu_info.vector, | 
|  | vcpu_info.pi_desc_addr, set); | 
|  | } | 
|  |  | 
|  | if (ret < 0) { | 
|  | pr_err("%s: failed to update PI IRTE\n", __func__); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | srcu_read_unlock(&kvm->irq_srcu, idx); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int svm_nmi_allowed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | int ret; | 
|  | ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && | 
|  | !(svm->vcpu.arch.hflags & HF_NMI_MASK); | 
|  | ret = ret && gif_set(svm) && nested_svm_nmi(svm); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); | 
|  | } | 
|  |  | 
|  | static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (masked) { | 
|  | svm->vcpu.arch.hflags |= HF_NMI_MASK; | 
|  | set_intercept(svm, INTERCEPT_IRET); | 
|  | } else { | 
|  | svm->vcpu.arch.hflags &= ~HF_NMI_MASK; | 
|  | clr_intercept(svm, INTERCEPT_IRET); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  | int ret; | 
|  |  | 
|  | if (!gif_set(svm) || | 
|  | (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) | 
|  | return 0; | 
|  |  | 
|  | ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF); | 
|  |  | 
|  | if (is_guest_mode(vcpu)) | 
|  | return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void enable_irq_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (kvm_vcpu_apicv_active(vcpu)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes | 
|  | * 1, because that's a separate STGI/VMRUN intercept.  The next time we | 
|  | * get that intercept, this function will be called again though and | 
|  | * we'll get the vintr intercept. However, if the vGIF feature is | 
|  | * enabled, the STGI interception will not occur. Enable the irq | 
|  | * window under the assumption that the hardware will set the GIF. | 
|  | */ | 
|  | if ((vgif_enabled(svm) || gif_set(svm)) && nested_svm_intr(svm)) { | 
|  | svm_set_vintr(svm); | 
|  | svm_inject_irq(svm, 0x0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enable_nmi_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) | 
|  | == HF_NMI_MASK) | 
|  | return; /* IRET will cause a vm exit */ | 
|  |  | 
|  | if (!gif_set(svm)) { | 
|  | if (vgif_enabled(svm)) | 
|  | set_intercept(svm, INTERCEPT_STGI); | 
|  | return; /* STGI will cause a vm exit */ | 
|  | } | 
|  |  | 
|  | if (svm->nested.exit_required) | 
|  | return; /* we're not going to run the guest yet */ | 
|  |  | 
|  | /* | 
|  | * Something prevents NMI from been injected. Single step over possible | 
|  | * problem (IRET or exception injection or interrupt shadow) | 
|  | */ | 
|  | svm->nmi_singlestep_guest_rflags = svm_get_rflags(vcpu); | 
|  | svm->nmi_singlestep = true; | 
|  | svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); | 
|  | } | 
|  |  | 
|  | static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int svm_set_identity_map_addr(struct kvm *kvm, u64 ident_addr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void svm_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) | 
|  | svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; | 
|  | else | 
|  | svm->asid_generation--; | 
|  | } | 
|  |  | 
|  | static void svm_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t gva) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | invlpga(gva, svm->vmcb->control.asid); | 
|  | } | 
|  |  | 
|  | static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (svm_nested_virtualize_tpr(vcpu)) | 
|  | return; | 
|  |  | 
|  | if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { | 
|  | int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; | 
|  | kvm_set_cr8(vcpu, cr8); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | u64 cr8; | 
|  |  | 
|  | if (svm_nested_virtualize_tpr(vcpu) || | 
|  | kvm_vcpu_apicv_active(vcpu)) | 
|  | return; | 
|  |  | 
|  | cr8 = kvm_get_cr8(vcpu); | 
|  | svm->vmcb->control.int_ctl &= ~V_TPR_MASK; | 
|  | svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; | 
|  | } | 
|  |  | 
|  | static void svm_complete_interrupts(struct vcpu_svm *svm) | 
|  | { | 
|  | u8 vector; | 
|  | int type; | 
|  | u32 exitintinfo = svm->vmcb->control.exit_int_info; | 
|  | unsigned int3_injected = svm->int3_injected; | 
|  |  | 
|  | svm->int3_injected = 0; | 
|  |  | 
|  | /* | 
|  | * If we've made progress since setting HF_IRET_MASK, we've | 
|  | * executed an IRET and can allow NMI injection. | 
|  | */ | 
|  | if ((svm->vcpu.arch.hflags & HF_IRET_MASK) | 
|  | && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) { | 
|  | svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); | 
|  | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
|  | } | 
|  |  | 
|  | svm->vcpu.arch.nmi_injected = false; | 
|  | kvm_clear_exception_queue(&svm->vcpu); | 
|  | kvm_clear_interrupt_queue(&svm->vcpu); | 
|  |  | 
|  | if (!(exitintinfo & SVM_EXITINTINFO_VALID)) | 
|  | return; | 
|  |  | 
|  | kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
|  |  | 
|  | vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; | 
|  | type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; | 
|  |  | 
|  | switch (type) { | 
|  | case SVM_EXITINTINFO_TYPE_NMI: | 
|  | svm->vcpu.arch.nmi_injected = true; | 
|  | break; | 
|  | case SVM_EXITINTINFO_TYPE_EXEPT: | 
|  | /* | 
|  | * In case of software exceptions, do not reinject the vector, | 
|  | * but re-execute the instruction instead. Rewind RIP first | 
|  | * if we emulated INT3 before. | 
|  | */ | 
|  | if (kvm_exception_is_soft(vector)) { | 
|  | if (vector == BP_VECTOR && int3_injected && | 
|  | kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) | 
|  | kvm_rip_write(&svm->vcpu, | 
|  | kvm_rip_read(&svm->vcpu) - | 
|  | int3_injected); | 
|  | break; | 
|  | } | 
|  | if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { | 
|  | u32 err = svm->vmcb->control.exit_int_info_err; | 
|  | kvm_requeue_exception_e(&svm->vcpu, vector, err); | 
|  |  | 
|  | } else | 
|  | kvm_requeue_exception(&svm->vcpu, vector); | 
|  | break; | 
|  | case SVM_EXITINTINFO_TYPE_INTR: | 
|  | kvm_queue_interrupt(&svm->vcpu, vector, false); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void svm_cancel_injection(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb_control_area *control = &svm->vmcb->control; | 
|  |  | 
|  | control->exit_int_info = control->event_inj; | 
|  | control->exit_int_info_err = control->event_inj_err; | 
|  | control->event_inj = 0; | 
|  | svm_complete_interrupts(svm); | 
|  | } | 
|  |  | 
|  | static void svm_vcpu_run(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
|  | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
|  | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; | 
|  |  | 
|  | /* | 
|  | * A vmexit emulation is required before the vcpu can be executed | 
|  | * again. | 
|  | */ | 
|  | if (unlikely(svm->nested.exit_required)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Disable singlestep if we're injecting an interrupt/exception. | 
|  | * We don't want our modified rflags to be pushed on the stack where | 
|  | * we might not be able to easily reset them if we disabled NMI | 
|  | * singlestep later. | 
|  | */ | 
|  | if (svm->nmi_singlestep && svm->vmcb->control.event_inj) { | 
|  | /* | 
|  | * Event injection happens before external interrupts cause a | 
|  | * vmexit and interrupts are disabled here, so smp_send_reschedule | 
|  | * is enough to force an immediate vmexit. | 
|  | */ | 
|  | disable_nmi_singlestep(svm); | 
|  | smp_send_reschedule(vcpu->cpu); | 
|  | } | 
|  |  | 
|  | pre_svm_run(svm); | 
|  |  | 
|  | sync_lapic_to_cr8(vcpu); | 
|  |  | 
|  | svm->vmcb->save.cr2 = vcpu->arch.cr2; | 
|  |  | 
|  | clgi(); | 
|  | kvm_load_guest_xcr0(vcpu); | 
|  |  | 
|  | /* | 
|  | * If this vCPU has touched SPEC_CTRL, restore the guest's value if | 
|  | * it's non-zero. Since vmentry is serialising on affected CPUs, there | 
|  | * is no need to worry about the conditional branch over the wrmsr | 
|  | * being speculatively taken. | 
|  | */ | 
|  | x86_spec_ctrl_set_guest(svm->spec_ctrl, svm->virt_spec_ctrl); | 
|  |  | 
|  | local_irq_enable(); | 
|  |  | 
|  | asm volatile ( | 
|  | "push %%" _ASM_BP "; \n\t" | 
|  | "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t" | 
|  | "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t" | 
|  | "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t" | 
|  | "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t" | 
|  | "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t" | 
|  | "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t" | 
|  | #ifdef CONFIG_X86_64 | 
|  | "mov %c[r8](%[svm]),  %%r8  \n\t" | 
|  | "mov %c[r9](%[svm]),  %%r9  \n\t" | 
|  | "mov %c[r10](%[svm]), %%r10 \n\t" | 
|  | "mov %c[r11](%[svm]), %%r11 \n\t" | 
|  | "mov %c[r12](%[svm]), %%r12 \n\t" | 
|  | "mov %c[r13](%[svm]), %%r13 \n\t" | 
|  | "mov %c[r14](%[svm]), %%r14 \n\t" | 
|  | "mov %c[r15](%[svm]), %%r15 \n\t" | 
|  | #endif | 
|  |  | 
|  | /* Enter guest mode */ | 
|  | "push %%" _ASM_AX " \n\t" | 
|  | "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t" | 
|  | __ex(SVM_VMLOAD) "\n\t" | 
|  | __ex(SVM_VMRUN) "\n\t" | 
|  | __ex(SVM_VMSAVE) "\n\t" | 
|  | "pop %%" _ASM_AX " \n\t" | 
|  |  | 
|  | /* Save guest registers, load host registers */ | 
|  | "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t" | 
|  | "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t" | 
|  | "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t" | 
|  | "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t" | 
|  | "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t" | 
|  | "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t" | 
|  | #ifdef CONFIG_X86_64 | 
|  | "mov %%r8,  %c[r8](%[svm]) \n\t" | 
|  | "mov %%r9,  %c[r9](%[svm]) \n\t" | 
|  | "mov %%r10, %c[r10](%[svm]) \n\t" | 
|  | "mov %%r11, %c[r11](%[svm]) \n\t" | 
|  | "mov %%r12, %c[r12](%[svm]) \n\t" | 
|  | "mov %%r13, %c[r13](%[svm]) \n\t" | 
|  | "mov %%r14, %c[r14](%[svm]) \n\t" | 
|  | "mov %%r15, %c[r15](%[svm]) \n\t" | 
|  | #endif | 
|  | /* | 
|  | * Clear host registers marked as clobbered to prevent | 
|  | * speculative use. | 
|  | */ | 
|  | "xor %%" _ASM_BX ", %%" _ASM_BX " \n\t" | 
|  | "xor %%" _ASM_CX ", %%" _ASM_CX " \n\t" | 
|  | "xor %%" _ASM_DX ", %%" _ASM_DX " \n\t" | 
|  | "xor %%" _ASM_SI ", %%" _ASM_SI " \n\t" | 
|  | "xor %%" _ASM_DI ", %%" _ASM_DI " \n\t" | 
|  | #ifdef CONFIG_X86_64 | 
|  | "xor %%r8, %%r8 \n\t" | 
|  | "xor %%r9, %%r9 \n\t" | 
|  | "xor %%r10, %%r10 \n\t" | 
|  | "xor %%r11, %%r11 \n\t" | 
|  | "xor %%r12, %%r12 \n\t" | 
|  | "xor %%r13, %%r13 \n\t" | 
|  | "xor %%r14, %%r14 \n\t" | 
|  | "xor %%r15, %%r15 \n\t" | 
|  | #endif | 
|  | "pop %%" _ASM_BP | 
|  | : | 
|  | : [svm]"a"(svm), | 
|  | [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), | 
|  | [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), | 
|  | [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), | 
|  | [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), | 
|  | [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), | 
|  | [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), | 
|  | [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) | 
|  | #ifdef CONFIG_X86_64 | 
|  | , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), | 
|  | [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), | 
|  | [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), | 
|  | [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), | 
|  | [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), | 
|  | [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), | 
|  | [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), | 
|  | [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) | 
|  | #endif | 
|  | : "cc", "memory" | 
|  | #ifdef CONFIG_X86_64 | 
|  | , "rbx", "rcx", "rdx", "rsi", "rdi" | 
|  | , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" | 
|  | #else | 
|  | , "ebx", "ecx", "edx", "esi", "edi" | 
|  | #endif | 
|  | ); | 
|  |  | 
|  | /* Eliminate branch target predictions from guest mode */ | 
|  | vmexit_fill_RSB(); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | wrmsrl(MSR_GS_BASE, svm->host.gs_base); | 
|  | #else | 
|  | loadsegment(fs, svm->host.fs); | 
|  | #ifndef CONFIG_X86_32_LAZY_GS | 
|  | loadsegment(gs, svm->host.gs); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We do not use IBRS in the kernel. If this vCPU has used the | 
|  | * SPEC_CTRL MSR it may have left it on; save the value and | 
|  | * turn it off. This is much more efficient than blindly adding | 
|  | * it to the atomic save/restore list. Especially as the former | 
|  | * (Saving guest MSRs on vmexit) doesn't even exist in KVM. | 
|  | * | 
|  | * For non-nested case: | 
|  | * If the L01 MSR bitmap does not intercept the MSR, then we need to | 
|  | * save it. | 
|  | * | 
|  | * For nested case: | 
|  | * If the L02 MSR bitmap does not intercept the MSR, then we need to | 
|  | * save it. | 
|  | */ | 
|  | if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL))) | 
|  | svm->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL); | 
|  |  | 
|  | reload_tss(vcpu); | 
|  |  | 
|  | local_irq_disable(); | 
|  |  | 
|  | x86_spec_ctrl_restore_host(svm->spec_ctrl, svm->virt_spec_ctrl); | 
|  |  | 
|  | vcpu->arch.cr2 = svm->vmcb->save.cr2; | 
|  | vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; | 
|  | vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; | 
|  | vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; | 
|  |  | 
|  | if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) | 
|  | kvm_before_interrupt(&svm->vcpu); | 
|  |  | 
|  | kvm_put_guest_xcr0(vcpu); | 
|  | stgi(); | 
|  |  | 
|  | /* Any pending NMI will happen here */ | 
|  |  | 
|  | if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI)) | 
|  | kvm_after_interrupt(&svm->vcpu); | 
|  |  | 
|  | sync_cr8_to_lapic(vcpu); | 
|  |  | 
|  | svm->next_rip = 0; | 
|  |  | 
|  | svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; | 
|  |  | 
|  | /* if exit due to PF check for async PF */ | 
|  | if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) | 
|  | svm->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason(); | 
|  |  | 
|  | if (npt_enabled) { | 
|  | vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); | 
|  | vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to handle MC intercepts here before the vcpu has a chance to | 
|  | * change the physical cpu | 
|  | */ | 
|  | if (unlikely(svm->vmcb->control.exit_code == | 
|  | SVM_EXIT_EXCP_BASE + MC_VECTOR)) | 
|  | svm_handle_mce(svm); | 
|  |  | 
|  | mark_all_clean(svm->vmcb); | 
|  | } | 
|  | STACK_FRAME_NON_STANDARD(svm_vcpu_run); | 
|  |  | 
|  | static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->save.cr3 = __sme_set(root); | 
|  | mark_dirty(svm->vmcb, VMCB_CR); | 
|  | } | 
|  |  | 
|  | static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | svm->vmcb->control.nested_cr3 = __sme_set(root); | 
|  | mark_dirty(svm->vmcb, VMCB_NPT); | 
|  |  | 
|  | /* Also sync guest cr3 here in case we live migrate */ | 
|  | svm->vmcb->save.cr3 = kvm_read_cr3(vcpu); | 
|  | mark_dirty(svm->vmcb, VMCB_CR); | 
|  | } | 
|  |  | 
|  | static int is_disabled(void) | 
|  | { | 
|  | u64 vm_cr; | 
|  |  | 
|  | rdmsrl(MSR_VM_CR, vm_cr); | 
|  | if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) | 
|  | { | 
|  | /* | 
|  | * Patch in the VMMCALL instruction: | 
|  | */ | 
|  | hypercall[0] = 0x0f; | 
|  | hypercall[1] = 0x01; | 
|  | hypercall[2] = 0xd9; | 
|  | } | 
|  |  | 
|  | static void svm_check_processor_compat(void *rtn) | 
|  | { | 
|  | *(int *)rtn = 0; | 
|  | } | 
|  |  | 
|  | static bool svm_cpu_has_accelerated_tpr(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool svm_has_emulated_msr(int index) | 
|  | { | 
|  | switch (index) { | 
|  | case MSR_IA32_MCG_EXT_CTL: | 
|  | return false; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void svm_cpuid_update(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | /* Update nrips enabled cache */ | 
|  | svm->nrips_enabled = !!guest_cpuid_has(&svm->vcpu, X86_FEATURE_NRIPS); | 
|  |  | 
|  | if (!kvm_vcpu_apicv_active(vcpu)) | 
|  | return; | 
|  |  | 
|  | guest_cpuid_clear(vcpu, X86_FEATURE_X2APIC); | 
|  | } | 
|  |  | 
|  | static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) | 
|  | { | 
|  | switch (func) { | 
|  | case 0x1: | 
|  | if (avic) | 
|  | entry->ecx &= ~bit(X86_FEATURE_X2APIC); | 
|  | break; | 
|  | case 0x80000001: | 
|  | if (nested) | 
|  | entry->ecx |= (1 << 2); /* Set SVM bit */ | 
|  | break; | 
|  | case 0x8000000A: | 
|  | entry->eax = 1; /* SVM revision 1 */ | 
|  | entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper | 
|  | ASID emulation to nested SVM */ | 
|  | entry->ecx = 0; /* Reserved */ | 
|  | entry->edx = 0; /* Per default do not support any | 
|  | additional features */ | 
|  |  | 
|  | /* Support next_rip if host supports it */ | 
|  | if (boot_cpu_has(X86_FEATURE_NRIPS)) | 
|  | entry->edx |= SVM_FEATURE_NRIP; | 
|  |  | 
|  | /* Support NPT for the guest if enabled */ | 
|  | if (npt_enabled) | 
|  | entry->edx |= SVM_FEATURE_NPT; | 
|  |  | 
|  | break; | 
|  | case 0x8000001F: | 
|  | /* Support memory encryption cpuid if host supports it */ | 
|  | if (boot_cpu_has(X86_FEATURE_SEV)) | 
|  | cpuid(0x8000001f, &entry->eax, &entry->ebx, | 
|  | &entry->ecx, &entry->edx); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | static int svm_get_lpage_level(void) | 
|  | { | 
|  | return PT_PDPE_LEVEL; | 
|  | } | 
|  |  | 
|  | static bool svm_rdtscp_supported(void) | 
|  | { | 
|  | return boot_cpu_has(X86_FEATURE_RDTSCP); | 
|  | } | 
|  |  | 
|  | static bool svm_invpcid_supported(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool svm_mpx_supported(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool svm_xsaves_supported(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool svm_umip_emulated(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool svm_has_wbinvd_exit(void) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #define PRE_EX(exit)  { .exit_code = (exit), \ | 
|  | .stage = X86_ICPT_PRE_EXCEPT, } | 
|  | #define POST_EX(exit) { .exit_code = (exit), \ | 
|  | .stage = X86_ICPT_POST_EXCEPT, } | 
|  | #define POST_MEM(exit) { .exit_code = (exit), \ | 
|  | .stage = X86_ICPT_POST_MEMACCESS, } | 
|  |  | 
|  | static const struct __x86_intercept { | 
|  | u32 exit_code; | 
|  | enum x86_intercept_stage stage; | 
|  | } x86_intercept_map[] = { | 
|  | [x86_intercept_cr_read]		= POST_EX(SVM_EXIT_READ_CR0), | 
|  | [x86_intercept_cr_write]	= POST_EX(SVM_EXIT_WRITE_CR0), | 
|  | [x86_intercept_clts]		= POST_EX(SVM_EXIT_WRITE_CR0), | 
|  | [x86_intercept_lmsw]		= POST_EX(SVM_EXIT_WRITE_CR0), | 
|  | [x86_intercept_smsw]		= POST_EX(SVM_EXIT_READ_CR0), | 
|  | [x86_intercept_dr_read]		= POST_EX(SVM_EXIT_READ_DR0), | 
|  | [x86_intercept_dr_write]	= POST_EX(SVM_EXIT_WRITE_DR0), | 
|  | [x86_intercept_sldt]		= POST_EX(SVM_EXIT_LDTR_READ), | 
|  | [x86_intercept_str]		= POST_EX(SVM_EXIT_TR_READ), | 
|  | [x86_intercept_lldt]		= POST_EX(SVM_EXIT_LDTR_WRITE), | 
|  | [x86_intercept_ltr]		= POST_EX(SVM_EXIT_TR_WRITE), | 
|  | [x86_intercept_sgdt]		= POST_EX(SVM_EXIT_GDTR_READ), | 
|  | [x86_intercept_sidt]		= POST_EX(SVM_EXIT_IDTR_READ), | 
|  | [x86_intercept_lgdt]		= POST_EX(SVM_EXIT_GDTR_WRITE), | 
|  | [x86_intercept_lidt]		= POST_EX(SVM_EXIT_IDTR_WRITE), | 
|  | [x86_intercept_vmrun]		= POST_EX(SVM_EXIT_VMRUN), | 
|  | [x86_intercept_vmmcall]		= POST_EX(SVM_EXIT_VMMCALL), | 
|  | [x86_intercept_vmload]		= POST_EX(SVM_EXIT_VMLOAD), | 
|  | [x86_intercept_vmsave]		= POST_EX(SVM_EXIT_VMSAVE), | 
|  | [x86_intercept_stgi]		= POST_EX(SVM_EXIT_STGI), | 
|  | [x86_intercept_clgi]		= POST_EX(SVM_EXIT_CLGI), | 
|  | [x86_intercept_skinit]		= POST_EX(SVM_EXIT_SKINIT), | 
|  | [x86_intercept_invlpga]		= POST_EX(SVM_EXIT_INVLPGA), | 
|  | [x86_intercept_rdtscp]		= POST_EX(SVM_EXIT_RDTSCP), | 
|  | [x86_intercept_monitor]		= POST_MEM(SVM_EXIT_MONITOR), | 
|  | [x86_intercept_mwait]		= POST_EX(SVM_EXIT_MWAIT), | 
|  | [x86_intercept_invlpg]		= POST_EX(SVM_EXIT_INVLPG), | 
|  | [x86_intercept_invd]		= POST_EX(SVM_EXIT_INVD), | 
|  | [x86_intercept_wbinvd]		= POST_EX(SVM_EXIT_WBINVD), | 
|  | [x86_intercept_wrmsr]		= POST_EX(SVM_EXIT_MSR), | 
|  | [x86_intercept_rdtsc]		= POST_EX(SVM_EXIT_RDTSC), | 
|  | [x86_intercept_rdmsr]		= POST_EX(SVM_EXIT_MSR), | 
|  | [x86_intercept_rdpmc]		= POST_EX(SVM_EXIT_RDPMC), | 
|  | [x86_intercept_cpuid]		= PRE_EX(SVM_EXIT_CPUID), | 
|  | [x86_intercept_rsm]		= PRE_EX(SVM_EXIT_RSM), | 
|  | [x86_intercept_pause]		= PRE_EX(SVM_EXIT_PAUSE), | 
|  | [x86_intercept_pushf]		= PRE_EX(SVM_EXIT_PUSHF), | 
|  | [x86_intercept_popf]		= PRE_EX(SVM_EXIT_POPF), | 
|  | [x86_intercept_intn]		= PRE_EX(SVM_EXIT_SWINT), | 
|  | [x86_intercept_iret]		= PRE_EX(SVM_EXIT_IRET), | 
|  | [x86_intercept_icebp]		= PRE_EX(SVM_EXIT_ICEBP), | 
|  | [x86_intercept_hlt]		= POST_EX(SVM_EXIT_HLT), | 
|  | [x86_intercept_in]		= POST_EX(SVM_EXIT_IOIO), | 
|  | [x86_intercept_ins]		= POST_EX(SVM_EXIT_IOIO), | 
|  | [x86_intercept_out]		= POST_EX(SVM_EXIT_IOIO), | 
|  | [x86_intercept_outs]		= POST_EX(SVM_EXIT_IOIO), | 
|  | }; | 
|  |  | 
|  | #undef PRE_EX | 
|  | #undef POST_EX | 
|  | #undef POST_MEM | 
|  |  | 
|  | static int svm_check_intercept(struct kvm_vcpu *vcpu, | 
|  | struct x86_instruction_info *info, | 
|  | enum x86_intercept_stage stage) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | int vmexit, ret = X86EMUL_CONTINUE; | 
|  | struct __x86_intercept icpt_info; | 
|  | struct vmcb *vmcb = svm->vmcb; | 
|  |  | 
|  | if (info->intercept >= ARRAY_SIZE(x86_intercept_map)) | 
|  | goto out; | 
|  |  | 
|  | icpt_info = x86_intercept_map[info->intercept]; | 
|  |  | 
|  | if (stage != icpt_info.stage) | 
|  | goto out; | 
|  |  | 
|  | switch (icpt_info.exit_code) { | 
|  | case SVM_EXIT_READ_CR0: | 
|  | if (info->intercept == x86_intercept_cr_read) | 
|  | icpt_info.exit_code += info->modrm_reg; | 
|  | break; | 
|  | case SVM_EXIT_WRITE_CR0: { | 
|  | unsigned long cr0, val; | 
|  | u64 intercept; | 
|  |  | 
|  | if (info->intercept == x86_intercept_cr_write) | 
|  | icpt_info.exit_code += info->modrm_reg; | 
|  |  | 
|  | if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 || | 
|  | info->intercept == x86_intercept_clts) | 
|  | break; | 
|  |  | 
|  | intercept = svm->nested.intercept; | 
|  |  | 
|  | if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))) | 
|  | break; | 
|  |  | 
|  | cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK; | 
|  | val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK; | 
|  |  | 
|  | if (info->intercept == x86_intercept_lmsw) { | 
|  | cr0 &= 0xfUL; | 
|  | val &= 0xfUL; | 
|  | /* lmsw can't clear PE - catch this here */ | 
|  | if (cr0 & X86_CR0_PE) | 
|  | val |= X86_CR0_PE; | 
|  | } | 
|  |  | 
|  | if (cr0 ^ val) | 
|  | icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE; | 
|  |  | 
|  | break; | 
|  | } | 
|  | case SVM_EXIT_READ_DR0: | 
|  | case SVM_EXIT_WRITE_DR0: | 
|  | icpt_info.exit_code += info->modrm_reg; | 
|  | break; | 
|  | case SVM_EXIT_MSR: | 
|  | if (info->intercept == x86_intercept_wrmsr) | 
|  | vmcb->control.exit_info_1 = 1; | 
|  | else | 
|  | vmcb->control.exit_info_1 = 0; | 
|  | break; | 
|  | case SVM_EXIT_PAUSE: | 
|  | /* | 
|  | * We get this for NOP only, but pause | 
|  | * is rep not, check this here | 
|  | */ | 
|  | if (info->rep_prefix != REPE_PREFIX) | 
|  | goto out; | 
|  | break; | 
|  | case SVM_EXIT_IOIO: { | 
|  | u64 exit_info; | 
|  | u32 bytes; | 
|  |  | 
|  | if (info->intercept == x86_intercept_in || | 
|  | info->intercept == x86_intercept_ins) { | 
|  | exit_info = ((info->src_val & 0xffff) << 16) | | 
|  | SVM_IOIO_TYPE_MASK; | 
|  | bytes = info->dst_bytes; | 
|  | } else { | 
|  | exit_info = (info->dst_val & 0xffff) << 16; | 
|  | bytes = info->src_bytes; | 
|  | } | 
|  |  | 
|  | if (info->intercept == x86_intercept_outs || | 
|  | info->intercept == x86_intercept_ins) | 
|  | exit_info |= SVM_IOIO_STR_MASK; | 
|  |  | 
|  | if (info->rep_prefix) | 
|  | exit_info |= SVM_IOIO_REP_MASK; | 
|  |  | 
|  | bytes = min(bytes, 4u); | 
|  |  | 
|  | exit_info |= bytes << SVM_IOIO_SIZE_SHIFT; | 
|  |  | 
|  | exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1); | 
|  |  | 
|  | vmcb->control.exit_info_1 = exit_info; | 
|  | vmcb->control.exit_info_2 = info->next_rip; | 
|  |  | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* TODO: Advertise NRIPS to guest hypervisor unconditionally */ | 
|  | if (static_cpu_has(X86_FEATURE_NRIPS)) | 
|  | vmcb->control.next_rip  = info->next_rip; | 
|  | vmcb->control.exit_code = icpt_info.exit_code; | 
|  | vmexit = nested_svm_exit_handled(svm); | 
|  |  | 
|  | ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED | 
|  | : X86EMUL_CONTINUE; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void svm_handle_external_intr(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | local_irq_enable(); | 
|  | /* | 
|  | * We must have an instruction with interrupts enabled, so | 
|  | * the timer interrupt isn't delayed by the interrupt shadow. | 
|  | */ | 
|  | asm("nop"); | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | if (pause_filter_thresh) | 
|  | shrink_ple_window(vcpu); | 
|  | } | 
|  |  | 
|  | static inline void avic_post_state_restore(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (avic_handle_apic_id_update(vcpu) != 0) | 
|  | return; | 
|  | if (avic_handle_dfr_update(vcpu) != 0) | 
|  | return; | 
|  | avic_handle_ldr_update(vcpu); | 
|  | } | 
|  |  | 
|  | static void svm_setup_mce(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | /* [63:9] are reserved. */ | 
|  | vcpu->arch.mcg_cap &= 0x1ff; | 
|  | } | 
|  |  | 
|  | static int svm_smi_allowed(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | /* Per APM Vol.2 15.22.2 "Response to SMI" */ | 
|  | if (!gif_set(svm)) | 
|  | return 0; | 
|  |  | 
|  | if (is_guest_mode(&svm->vcpu) && | 
|  | svm->nested.intercept & (1ULL << INTERCEPT_SMI)) { | 
|  | /* TODO: Might need to set exit_info_1 and exit_info_2 here */ | 
|  | svm->vmcb->control.exit_code = SVM_EXIT_SMI; | 
|  | svm->nested.exit_required = true; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int svm_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | int ret; | 
|  |  | 
|  | if (is_guest_mode(vcpu)) { | 
|  | /* FED8h - SVM Guest */ | 
|  | put_smstate(u64, smstate, 0x7ed8, 1); | 
|  | /* FEE0h - SVM Guest VMCB Physical Address */ | 
|  | put_smstate(u64, smstate, 0x7ee0, svm->nested.vmcb); | 
|  |  | 
|  | svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
|  | svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
|  | svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; | 
|  |  | 
|  | ret = nested_svm_vmexit(svm); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int svm_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  | struct vmcb *nested_vmcb; | 
|  | struct page *page; | 
|  | struct { | 
|  | u64 guest; | 
|  | u64 vmcb; | 
|  | } svm_state_save; | 
|  | int ret; | 
|  |  | 
|  | ret = kvm_vcpu_read_guest(vcpu, smbase + 0xfed8, &svm_state_save, | 
|  | sizeof(svm_state_save)); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (svm_state_save.guest) { | 
|  | vcpu->arch.hflags &= ~HF_SMM_MASK; | 
|  | nested_vmcb = nested_svm_map(svm, svm_state_save.vmcb, &page); | 
|  | if (nested_vmcb) | 
|  | enter_svm_guest_mode(svm, svm_state_save.vmcb, nested_vmcb, page); | 
|  | else | 
|  | ret = 1; | 
|  | vcpu->arch.hflags |= HF_SMM_MASK; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int enable_smi_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_svm *svm = to_svm(vcpu); | 
|  |  | 
|  | if (!gif_set(svm)) { | 
|  | if (vgif_enabled(svm)) | 
|  | set_intercept(svm, INTERCEPT_STGI); | 
|  | /* STGI will cause a vm exit */ | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sev_asid_new(void) | 
|  | { | 
|  | int pos; | 
|  |  | 
|  | /* | 
|  | * SEV-enabled guest must use asid from min_sev_asid to max_sev_asid. | 
|  | */ | 
|  | pos = find_next_zero_bit(sev_asid_bitmap, max_sev_asid, min_sev_asid - 1); | 
|  | if (pos >= max_sev_asid) | 
|  | return -EBUSY; | 
|  |  | 
|  | set_bit(pos, sev_asid_bitmap); | 
|  | return pos + 1; | 
|  | } | 
|  |  | 
|  | static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | int asid, ret; | 
|  |  | 
|  | ret = -EBUSY; | 
|  | if (unlikely(sev->active)) | 
|  | return ret; | 
|  |  | 
|  | asid = sev_asid_new(); | 
|  | if (asid < 0) | 
|  | return ret; | 
|  |  | 
|  | ret = sev_platform_init(&argp->error); | 
|  | if (ret) | 
|  | goto e_free; | 
|  |  | 
|  | sev->active = true; | 
|  | sev->asid = asid; | 
|  | INIT_LIST_HEAD(&sev->regions_list); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | e_free: | 
|  | __sev_asid_free(asid); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error) | 
|  | { | 
|  | struct sev_data_activate *data; | 
|  | int asid = sev_get_asid(kvm); | 
|  | int ret; | 
|  |  | 
|  | wbinvd_on_all_cpus(); | 
|  |  | 
|  | ret = sev_guest_df_flush(error); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* activate ASID on the given handle */ | 
|  | data->handle = handle; | 
|  | data->asid   = asid; | 
|  | ret = sev_guest_activate(data, error); | 
|  | kfree(data); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __sev_issue_cmd(int fd, int id, void *data, int *error) | 
|  | { | 
|  | struct fd f; | 
|  | int ret; | 
|  |  | 
|  | f = fdget(fd); | 
|  | if (!f.file) | 
|  | return -EBADF; | 
|  |  | 
|  | ret = sev_issue_cmd_external_user(f.file, id, data, error); | 
|  |  | 
|  | fdput(f); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  |  | 
|  | return __sev_issue_cmd(sev->fd, id, data, error); | 
|  | } | 
|  |  | 
|  | static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_start *start; | 
|  | struct kvm_sev_launch_start params; | 
|  | void *dh_blob, *session_blob; | 
|  | int *error = &argp->error; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | start = kzalloc(sizeof(*start), GFP_KERNEL); | 
|  | if (!start) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dh_blob = NULL; | 
|  | if (params.dh_uaddr) { | 
|  | dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len); | 
|  | if (IS_ERR(dh_blob)) { | 
|  | ret = PTR_ERR(dh_blob); | 
|  | goto e_free; | 
|  | } | 
|  |  | 
|  | start->dh_cert_address = __sme_set(__pa(dh_blob)); | 
|  | start->dh_cert_len = params.dh_len; | 
|  | } | 
|  |  | 
|  | session_blob = NULL; | 
|  | if (params.session_uaddr) { | 
|  | session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len); | 
|  | if (IS_ERR(session_blob)) { | 
|  | ret = PTR_ERR(session_blob); | 
|  | goto e_free_dh; | 
|  | } | 
|  |  | 
|  | start->session_address = __sme_set(__pa(session_blob)); | 
|  | start->session_len = params.session_len; | 
|  | } | 
|  |  | 
|  | start->handle = params.handle; | 
|  | start->policy = params.policy; | 
|  |  | 
|  | /* create memory encryption context */ | 
|  | ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, start, error); | 
|  | if (ret) | 
|  | goto e_free_session; | 
|  |  | 
|  | /* Bind ASID to this guest */ | 
|  | ret = sev_bind_asid(kvm, start->handle, error); | 
|  | if (ret) | 
|  | goto e_free_session; | 
|  |  | 
|  | /* return handle to userspace */ | 
|  | params.handle = start->handle; | 
|  | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) { | 
|  | sev_unbind_asid(kvm, start->handle); | 
|  | ret = -EFAULT; | 
|  | goto e_free_session; | 
|  | } | 
|  |  | 
|  | sev->handle = start->handle; | 
|  | sev->fd = argp->sev_fd; | 
|  |  | 
|  | e_free_session: | 
|  | kfree(session_blob); | 
|  | e_free_dh: | 
|  | kfree(dh_blob); | 
|  | e_free: | 
|  | kfree(start); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static unsigned long get_num_contig_pages(unsigned long idx, | 
|  | struct page **inpages, unsigned long npages) | 
|  | { | 
|  | unsigned long paddr, next_paddr; | 
|  | unsigned long i = idx + 1, pages = 1; | 
|  |  | 
|  | /* find the number of contiguous pages starting from idx */ | 
|  | paddr = __sme_page_pa(inpages[idx]); | 
|  | while (i < npages) { | 
|  | next_paddr = __sme_page_pa(inpages[i++]); | 
|  | if ((paddr + PAGE_SIZE) == next_paddr) { | 
|  | pages++; | 
|  | paddr = next_paddr; | 
|  | continue; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return pages; | 
|  | } | 
|  |  | 
|  | static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i; | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct kvm_sev_launch_update_data params; | 
|  | struct sev_data_launch_update_data *data; | 
|  | struct page **inpages; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vaddr = params.uaddr; | 
|  | size = params.len; | 
|  | vaddr_end = vaddr + size; | 
|  |  | 
|  | /* Lock the user memory. */ | 
|  | inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1); | 
|  | if (!inpages) { | 
|  | ret = -ENOMEM; | 
|  | goto e_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The LAUNCH_UPDATE command will perform in-place encryption of the | 
|  | * memory content (i.e it will write the same memory region with C=1). | 
|  | * It's possible that the cache may contain the data with C=0, i.e., | 
|  | * unencrypted so invalidate it first. | 
|  | */ | 
|  | sev_clflush_pages(inpages, npages); | 
|  |  | 
|  | for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) { | 
|  | int offset, len; | 
|  |  | 
|  | /* | 
|  | * If the user buffer is not page-aligned, calculate the offset | 
|  | * within the page. | 
|  | */ | 
|  | offset = vaddr & (PAGE_SIZE - 1); | 
|  |  | 
|  | /* Calculate the number of pages that can be encrypted in one go. */ | 
|  | pages = get_num_contig_pages(i, inpages, npages); | 
|  |  | 
|  | len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size); | 
|  |  | 
|  | data->handle = sev->handle; | 
|  | data->len = len; | 
|  | data->address = __sme_page_pa(inpages[i]) + offset; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, data, &argp->error); | 
|  | if (ret) | 
|  | goto e_unpin; | 
|  |  | 
|  | size -= len; | 
|  | next_vaddr = vaddr + len; | 
|  | } | 
|  |  | 
|  | e_unpin: | 
|  | /* content of memory is updated, mark pages dirty */ | 
|  | for (i = 0; i < npages; i++) { | 
|  | set_page_dirty_lock(inpages[i]); | 
|  | mark_page_accessed(inpages[i]); | 
|  | } | 
|  | /* unlock the user pages */ | 
|  | sev_unpin_memory(kvm, inpages, npages); | 
|  | e_free: | 
|  | kfree(data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | void __user *measure = (void __user *)(uintptr_t)argp->data; | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_measure *data; | 
|  | struct kvm_sev_launch_measure params; | 
|  | void __user *p = NULL; | 
|  | void *blob = NULL; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, measure, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* User wants to query the blob length */ | 
|  | if (!params.len) | 
|  | goto cmd; | 
|  |  | 
|  | p = (void __user *)(uintptr_t)params.uaddr; | 
|  | if (p) { | 
|  | if (params.len > SEV_FW_BLOB_MAX_SIZE) { | 
|  | ret = -EINVAL; | 
|  | goto e_free; | 
|  | } | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | blob = kmalloc(params.len, GFP_KERNEL); | 
|  | if (!blob) | 
|  | goto e_free; | 
|  |  | 
|  | data->address = __psp_pa(blob); | 
|  | data->len = params.len; | 
|  | } | 
|  |  | 
|  | cmd: | 
|  | data->handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, data, &argp->error); | 
|  |  | 
|  | /* | 
|  | * If we query the session length, FW responded with expected data. | 
|  | */ | 
|  | if (!params.len) | 
|  | goto done; | 
|  |  | 
|  | if (ret) | 
|  | goto e_free_blob; | 
|  |  | 
|  | if (blob) { | 
|  | if (copy_to_user(p, blob, params.len)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | done: | 
|  | params.len = data->len; | 
|  | if (copy_to_user(measure, ¶ms, sizeof(params))) | 
|  | ret = -EFAULT; | 
|  | e_free_blob: | 
|  | kfree(blob); | 
|  | e_free: | 
|  | kfree(data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_finish *data; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data->handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, data, &argp->error); | 
|  |  | 
|  | kfree(data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct kvm_sev_guest_status params; | 
|  | struct sev_data_guest_status *data; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data->handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, data, &argp->error); | 
|  | if (ret) | 
|  | goto e_free; | 
|  |  | 
|  | params.policy = data->policy; | 
|  | params.state = data->state; | 
|  | params.handle = data->handle; | 
|  |  | 
|  | if (copy_to_user((void __user *)(uintptr_t)argp->data, ¶ms, sizeof(params))) | 
|  | ret = -EFAULT; | 
|  | e_free: | 
|  | kfree(data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src, | 
|  | unsigned long dst, int size, | 
|  | int *error, bool enc) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_dbg *data; | 
|  | int ret; | 
|  |  | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | data->handle = sev->handle; | 
|  | data->dst_addr = dst; | 
|  | data->src_addr = src; | 
|  | data->len = size; | 
|  |  | 
|  | ret = sev_issue_cmd(kvm, | 
|  | enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT, | 
|  | data, error); | 
|  | kfree(data); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr, | 
|  | unsigned long dst_paddr, int sz, int *err) | 
|  | { | 
|  | int offset; | 
|  |  | 
|  | /* | 
|  | * Its safe to read more than we are asked, caller should ensure that | 
|  | * destination has enough space. | 
|  | */ | 
|  | src_paddr = round_down(src_paddr, 16); | 
|  | offset = src_paddr & 15; | 
|  | sz = round_up(sz + offset, 16); | 
|  |  | 
|  | return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false); | 
|  | } | 
|  |  | 
|  | static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr, | 
|  | unsigned long __user dst_uaddr, | 
|  | unsigned long dst_paddr, | 
|  | int size, int *err) | 
|  | { | 
|  | struct page *tpage = NULL; | 
|  | int ret, offset; | 
|  |  | 
|  | /* if inputs are not 16-byte then use intermediate buffer */ | 
|  | if (!IS_ALIGNED(dst_paddr, 16) || | 
|  | !IS_ALIGNED(paddr,     16) || | 
|  | !IS_ALIGNED(size,      16)) { | 
|  | tpage = (void *)alloc_page(GFP_KERNEL); | 
|  | if (!tpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dst_paddr = __sme_page_pa(tpage); | 
|  | } | 
|  |  | 
|  | ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err); | 
|  | if (ret) | 
|  | goto e_free; | 
|  |  | 
|  | if (tpage) { | 
|  | offset = paddr & 15; | 
|  | if (copy_to_user((void __user *)(uintptr_t)dst_uaddr, | 
|  | page_address(tpage) + offset, size)) | 
|  | ret = -EFAULT; | 
|  | } | 
|  |  | 
|  | e_free: | 
|  | if (tpage) | 
|  | __free_page(tpage); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr, | 
|  | unsigned long __user vaddr, | 
|  | unsigned long dst_paddr, | 
|  | unsigned long __user dst_vaddr, | 
|  | int size, int *error) | 
|  | { | 
|  | struct page *src_tpage = NULL; | 
|  | struct page *dst_tpage = NULL; | 
|  | int ret, len = size; | 
|  |  | 
|  | /* If source buffer is not aligned then use an intermediate buffer */ | 
|  | if (!IS_ALIGNED(vaddr, 16)) { | 
|  | src_tpage = alloc_page(GFP_KERNEL); | 
|  | if (!src_tpage) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (copy_from_user(page_address(src_tpage), | 
|  | (void __user *)(uintptr_t)vaddr, size)) { | 
|  | __free_page(src_tpage); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | paddr = __sme_page_pa(src_tpage); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  If destination buffer or length is not aligned then do read-modify-write: | 
|  | *   - decrypt destination in an intermediate buffer | 
|  | *   - copy the source buffer in an intermediate buffer | 
|  | *   - use the intermediate buffer as source buffer | 
|  | */ | 
|  | if (!IS_ALIGNED(dst_vaddr, 16) || !IS_ALIGNED(size, 16)) { | 
|  | int dst_offset; | 
|  |  | 
|  | dst_tpage = alloc_page(GFP_KERNEL); | 
|  | if (!dst_tpage) { | 
|  | ret = -ENOMEM; | 
|  | goto e_free; | 
|  | } | 
|  |  | 
|  | ret = __sev_dbg_decrypt(kvm, dst_paddr, | 
|  | __sme_page_pa(dst_tpage), size, error); | 
|  | if (ret) | 
|  | goto e_free; | 
|  |  | 
|  | /* | 
|  | *  If source is kernel buffer then use memcpy() otherwise | 
|  | *  copy_from_user(). | 
|  | */ | 
|  | dst_offset = dst_paddr & 15; | 
|  |  | 
|  | if (src_tpage) | 
|  | memcpy(page_address(dst_tpage) + dst_offset, | 
|  | page_address(src_tpage), size); | 
|  | else { | 
|  | if (copy_from_user(page_address(dst_tpage) + dst_offset, | 
|  | (void __user *)(uintptr_t)vaddr, size)) { | 
|  | ret = -EFAULT; | 
|  | goto e_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | paddr = __sme_page_pa(dst_tpage); | 
|  | dst_paddr = round_down(dst_paddr, 16); | 
|  | len = round_up(size, 16); | 
|  | } | 
|  |  | 
|  | ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true); | 
|  |  | 
|  | e_free: | 
|  | if (src_tpage) | 
|  | __free_page(src_tpage); | 
|  | if (dst_tpage) | 
|  | __free_page(dst_tpage); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec) | 
|  | { | 
|  | unsigned long vaddr, vaddr_end, next_vaddr; | 
|  | unsigned long dst_vaddr; | 
|  | struct page **src_p, **dst_p; | 
|  | struct kvm_sev_dbg debug; | 
|  | unsigned long n; | 
|  | unsigned int size; | 
|  | int ret; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug))) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr) | 
|  | return -EINVAL; | 
|  | if (!debug.dst_uaddr) | 
|  | return -EINVAL; | 
|  |  | 
|  | vaddr = debug.src_uaddr; | 
|  | size = debug.len; | 
|  | vaddr_end = vaddr + size; | 
|  | dst_vaddr = debug.dst_uaddr; | 
|  |  | 
|  | for (; vaddr < vaddr_end; vaddr = next_vaddr) { | 
|  | int len, s_off, d_off; | 
|  |  | 
|  | /* lock userspace source and destination page */ | 
|  | src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0); | 
|  | if (!src_p) | 
|  | return -EFAULT; | 
|  |  | 
|  | dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1); | 
|  | if (!dst_p) { | 
|  | sev_unpin_memory(kvm, src_p, n); | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The DBG_{DE,EN}CRYPT commands will perform {dec,en}cryption of the | 
|  | * memory content (i.e it will write the same memory region with C=1). | 
|  | * It's possible that the cache may contain the data with C=0, i.e., | 
|  | * unencrypted so invalidate it first. | 
|  | */ | 
|  | sev_clflush_pages(src_p, 1); | 
|  | sev_clflush_pages(dst_p, 1); | 
|  |  | 
|  | /* | 
|  | * Since user buffer may not be page aligned, calculate the | 
|  | * offset within the page. | 
|  | */ | 
|  | s_off = vaddr & ~PAGE_MASK; | 
|  | d_off = dst_vaddr & ~PAGE_MASK; | 
|  | len = min_t(size_t, (PAGE_SIZE - s_off), size); | 
|  |  | 
|  | if (dec) | 
|  | ret = __sev_dbg_decrypt_user(kvm, | 
|  | __sme_page_pa(src_p[0]) + s_off, | 
|  | dst_vaddr, | 
|  | __sme_page_pa(dst_p[0]) + d_off, | 
|  | len, &argp->error); | 
|  | else | 
|  | ret = __sev_dbg_encrypt_user(kvm, | 
|  | __sme_page_pa(src_p[0]) + s_off, | 
|  | vaddr, | 
|  | __sme_page_pa(dst_p[0]) + d_off, | 
|  | dst_vaddr, | 
|  | len, &argp->error); | 
|  |  | 
|  | sev_unpin_memory(kvm, src_p, n); | 
|  | sev_unpin_memory(kvm, dst_p, n); | 
|  |  | 
|  | if (ret) | 
|  | goto err; | 
|  |  | 
|  | next_vaddr = vaddr + len; | 
|  | dst_vaddr = dst_vaddr + len; | 
|  | size -= len; | 
|  | } | 
|  | err: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct sev_data_launch_secret *data; | 
|  | struct kvm_sev_launch_secret params; | 
|  | struct page **pages; | 
|  | void *blob, *hdr; | 
|  | unsigned long n; | 
|  | int ret, offset; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(¶ms, (void __user *)(uintptr_t)argp->data, sizeof(params))) | 
|  | return -EFAULT; | 
|  |  | 
|  | pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1); | 
|  | if (!pages) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * The secret must be copied into contiguous memory region, lets verify | 
|  | * that userspace memory pages are contiguous before we issue command. | 
|  | */ | 
|  | if (get_num_contig_pages(0, pages, n) != n) { | 
|  | ret = -EINVAL; | 
|  | goto e_unpin_memory; | 
|  | } | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | data = kzalloc(sizeof(*data), GFP_KERNEL); | 
|  | if (!data) | 
|  | goto e_unpin_memory; | 
|  |  | 
|  | offset = params.guest_uaddr & (PAGE_SIZE - 1); | 
|  | data->guest_address = __sme_page_pa(pages[0]) + offset; | 
|  | data->guest_len = params.guest_len; | 
|  |  | 
|  | blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len); | 
|  | if (IS_ERR(blob)) { | 
|  | ret = PTR_ERR(blob); | 
|  | goto e_free; | 
|  | } | 
|  |  | 
|  | data->trans_address = __psp_pa(blob); | 
|  | data->trans_len = params.trans_len; | 
|  |  | 
|  | hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len); | 
|  | if (IS_ERR(hdr)) { | 
|  | ret = PTR_ERR(hdr); | 
|  | goto e_free_blob; | 
|  | } | 
|  | data->hdr_address = __psp_pa(hdr); | 
|  | data->hdr_len = params.hdr_len; | 
|  |  | 
|  | data->handle = sev->handle; | 
|  | ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, data, &argp->error); | 
|  |  | 
|  | kfree(hdr); | 
|  |  | 
|  | e_free_blob: | 
|  | kfree(blob); | 
|  | e_free: | 
|  | kfree(data); | 
|  | e_unpin_memory: | 
|  | sev_unpin_memory(kvm, pages, n); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int svm_mem_enc_op(struct kvm *kvm, void __user *argp) | 
|  | { | 
|  | struct kvm_sev_cmd sev_cmd; | 
|  | int r; | 
|  |  | 
|  | if (!svm_sev_enabled()) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd))) | 
|  | return -EFAULT; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  |  | 
|  | switch (sev_cmd.id) { | 
|  | case KVM_SEV_INIT: | 
|  | r = sev_guest_init(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_START: | 
|  | r = sev_launch_start(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_UPDATE_DATA: | 
|  | r = sev_launch_update_data(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_MEASURE: | 
|  | r = sev_launch_measure(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_FINISH: | 
|  | r = sev_launch_finish(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_GUEST_STATUS: | 
|  | r = sev_guest_status(kvm, &sev_cmd); | 
|  | break; | 
|  | case KVM_SEV_DBG_DECRYPT: | 
|  | r = sev_dbg_crypt(kvm, &sev_cmd, true); | 
|  | break; | 
|  | case KVM_SEV_DBG_ENCRYPT: | 
|  | r = sev_dbg_crypt(kvm, &sev_cmd, false); | 
|  | break; | 
|  | case KVM_SEV_LAUNCH_SECRET: | 
|  | r = sev_launch_secret(kvm, &sev_cmd); | 
|  | break; | 
|  | default: | 
|  | r = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd))) | 
|  | r = -EFAULT; | 
|  |  | 
|  | out: | 
|  | mutex_unlock(&kvm->lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static int svm_register_enc_region(struct kvm *kvm, | 
|  | struct kvm_enc_region *range) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct enc_region *region; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!sev_guest(kvm)) | 
|  | return -ENOTTY; | 
|  |  | 
|  | if (range->addr > ULONG_MAX || range->size > ULONG_MAX) | 
|  | return -EINVAL; | 
|  |  | 
|  | region = kzalloc(sizeof(*region), GFP_KERNEL); | 
|  | if (!region) | 
|  | return -ENOMEM; | 
|  |  | 
|  | region->pages = sev_pin_memory(kvm, range->addr, range->size, ®ion->npages, 1); | 
|  | if (!region->pages) { | 
|  | ret = -ENOMEM; | 
|  | goto e_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The guest may change the memory encryption attribute from C=0 -> C=1 | 
|  | * or vice versa for this memory range. Lets make sure caches are | 
|  | * flushed to ensure that guest data gets written into memory with | 
|  | * correct C-bit. | 
|  | */ | 
|  | sev_clflush_pages(region->pages, region->npages); | 
|  |  | 
|  | region->uaddr = range->addr; | 
|  | region->size = range->size; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  | list_add_tail(®ion->list, &sev->regions_list); | 
|  | mutex_unlock(&kvm->lock); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | e_free: | 
|  | kfree(region); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct enc_region * | 
|  | find_enc_region(struct kvm *kvm, struct kvm_enc_region *range) | 
|  | { | 
|  | struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info; | 
|  | struct list_head *head = &sev->regions_list; | 
|  | struct enc_region *i; | 
|  |  | 
|  | list_for_each_entry(i, head, list) { | 
|  | if (i->uaddr == range->addr && | 
|  | i->size == range->size) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int svm_unregister_enc_region(struct kvm *kvm, | 
|  | struct kvm_enc_region *range) | 
|  | { | 
|  | struct enc_region *region; | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&kvm->lock); | 
|  |  | 
|  | if (!sev_guest(kvm)) { | 
|  | ret = -ENOTTY; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | region = find_enc_region(kvm, range); | 
|  | if (!region) { | 
|  | ret = -EINVAL; | 
|  | goto failed; | 
|  | } | 
|  |  | 
|  | __unregister_enc_region_locked(kvm, region); | 
|  |  | 
|  | mutex_unlock(&kvm->lock); | 
|  | return 0; | 
|  |  | 
|  | failed: | 
|  | mutex_unlock(&kvm->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct kvm_x86_ops svm_x86_ops __ro_after_init = { | 
|  | .cpu_has_kvm_support = has_svm, | 
|  | .disabled_by_bios = is_disabled, | 
|  | .hardware_setup = svm_hardware_setup, | 
|  | .hardware_unsetup = svm_hardware_unsetup, | 
|  | .check_processor_compatibility = svm_check_processor_compat, | 
|  | .hardware_enable = svm_hardware_enable, | 
|  | .hardware_disable = svm_hardware_disable, | 
|  | .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, | 
|  | .has_emulated_msr = svm_has_emulated_msr, | 
|  |  | 
|  | .vcpu_create = svm_create_vcpu, | 
|  | .vcpu_free = svm_free_vcpu, | 
|  | .vcpu_reset = svm_vcpu_reset, | 
|  |  | 
|  | .vm_alloc = svm_vm_alloc, | 
|  | .vm_free = svm_vm_free, | 
|  | .vm_init = avic_vm_init, | 
|  | .vm_destroy = svm_vm_destroy, | 
|  |  | 
|  | .prepare_guest_switch = svm_prepare_guest_switch, | 
|  | .vcpu_load = svm_vcpu_load, | 
|  | .vcpu_put = svm_vcpu_put, | 
|  | .vcpu_blocking = svm_vcpu_blocking, | 
|  | .vcpu_unblocking = svm_vcpu_unblocking, | 
|  |  | 
|  | .update_bp_intercept = update_bp_intercept, | 
|  | .get_msr_feature = svm_get_msr_feature, | 
|  | .get_msr = svm_get_msr, | 
|  | .set_msr = svm_set_msr, | 
|  | .get_segment_base = svm_get_segment_base, | 
|  | .get_segment = svm_get_segment, | 
|  | .set_segment = svm_set_segment, | 
|  | .get_cpl = svm_get_cpl, | 
|  | .get_cs_db_l_bits = kvm_get_cs_db_l_bits, | 
|  | .decache_cr0_guest_bits = svm_decache_cr0_guest_bits, | 
|  | .decache_cr3 = svm_decache_cr3, | 
|  | .decache_cr4_guest_bits = svm_decache_cr4_guest_bits, | 
|  | .set_cr0 = svm_set_cr0, | 
|  | .set_cr3 = svm_set_cr3, | 
|  | .set_cr4 = svm_set_cr4, | 
|  | .set_efer = svm_set_efer, | 
|  | .get_idt = svm_get_idt, | 
|  | .set_idt = svm_set_idt, | 
|  | .get_gdt = svm_get_gdt, | 
|  | .set_gdt = svm_set_gdt, | 
|  | .get_dr6 = svm_get_dr6, | 
|  | .set_dr6 = svm_set_dr6, | 
|  | .set_dr7 = svm_set_dr7, | 
|  | .sync_dirty_debug_regs = svm_sync_dirty_debug_regs, | 
|  | .cache_reg = svm_cache_reg, | 
|  | .get_rflags = svm_get_rflags, | 
|  | .set_rflags = svm_set_rflags, | 
|  |  | 
|  | .tlb_flush = svm_flush_tlb, | 
|  | .tlb_flush_gva = svm_flush_tlb_gva, | 
|  |  | 
|  | .run = svm_vcpu_run, | 
|  | .handle_exit = handle_exit, | 
|  | .skip_emulated_instruction = skip_emulated_instruction, | 
|  | .set_interrupt_shadow = svm_set_interrupt_shadow, | 
|  | .get_interrupt_shadow = svm_get_interrupt_shadow, | 
|  | .patch_hypercall = svm_patch_hypercall, | 
|  | .set_irq = svm_set_irq, | 
|  | .set_nmi = svm_inject_nmi, | 
|  | .queue_exception = svm_queue_exception, | 
|  | .cancel_injection = svm_cancel_injection, | 
|  | .interrupt_allowed = svm_interrupt_allowed, | 
|  | .nmi_allowed = svm_nmi_allowed, | 
|  | .get_nmi_mask = svm_get_nmi_mask, | 
|  | .set_nmi_mask = svm_set_nmi_mask, | 
|  | .enable_nmi_window = enable_nmi_window, | 
|  | .enable_irq_window = enable_irq_window, | 
|  | .update_cr8_intercept = update_cr8_intercept, | 
|  | .set_virtual_apic_mode = svm_set_virtual_apic_mode, | 
|  | .get_enable_apicv = svm_get_enable_apicv, | 
|  | .refresh_apicv_exec_ctrl = svm_refresh_apicv_exec_ctrl, | 
|  | .load_eoi_exitmap = svm_load_eoi_exitmap, | 
|  | .hwapic_irr_update = svm_hwapic_irr_update, | 
|  | .hwapic_isr_update = svm_hwapic_isr_update, | 
|  | .sync_pir_to_irr = kvm_lapic_find_highest_irr, | 
|  | .apicv_post_state_restore = avic_post_state_restore, | 
|  |  | 
|  | .set_tss_addr = svm_set_tss_addr, | 
|  | .set_identity_map_addr = svm_set_identity_map_addr, | 
|  | .get_tdp_level = get_npt_level, | 
|  | .get_mt_mask = svm_get_mt_mask, | 
|  |  | 
|  | .get_exit_info = svm_get_exit_info, | 
|  |  | 
|  | .get_lpage_level = svm_get_lpage_level, | 
|  |  | 
|  | .cpuid_update = svm_cpuid_update, | 
|  |  | 
|  | .rdtscp_supported = svm_rdtscp_supported, | 
|  | .invpcid_supported = svm_invpcid_supported, | 
|  | .mpx_supported = svm_mpx_supported, | 
|  | .xsaves_supported = svm_xsaves_supported, | 
|  | .umip_emulated = svm_umip_emulated, | 
|  |  | 
|  | .set_supported_cpuid = svm_set_supported_cpuid, | 
|  |  | 
|  | .has_wbinvd_exit = svm_has_wbinvd_exit, | 
|  |  | 
|  | .read_l1_tsc_offset = svm_read_l1_tsc_offset, | 
|  | .write_l1_tsc_offset = svm_write_l1_tsc_offset, | 
|  |  | 
|  | .set_tdp_cr3 = set_tdp_cr3, | 
|  |  | 
|  | .check_intercept = svm_check_intercept, | 
|  | .handle_external_intr = svm_handle_external_intr, | 
|  |  | 
|  | .request_immediate_exit = __kvm_request_immediate_exit, | 
|  |  | 
|  | .sched_in = svm_sched_in, | 
|  |  | 
|  | .pmu_ops = &amd_pmu_ops, | 
|  | .deliver_posted_interrupt = svm_deliver_avic_intr, | 
|  | .dy_apicv_has_pending_interrupt = svm_dy_apicv_has_pending_interrupt, | 
|  | .update_pi_irte = svm_update_pi_irte, | 
|  | .setup_mce = svm_setup_mce, | 
|  |  | 
|  | .smi_allowed = svm_smi_allowed, | 
|  | .pre_enter_smm = svm_pre_enter_smm, | 
|  | .pre_leave_smm = svm_pre_leave_smm, | 
|  | .enable_smi_window = enable_smi_window, | 
|  |  | 
|  | .mem_enc_op = svm_mem_enc_op, | 
|  | .mem_enc_reg_region = svm_register_enc_region, | 
|  | .mem_enc_unreg_region = svm_unregister_enc_region, | 
|  | }; | 
|  |  | 
|  | static int __init svm_init(void) | 
|  | { | 
|  | return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), | 
|  | __alignof__(struct vcpu_svm), THIS_MODULE); | 
|  | } | 
|  |  | 
|  | static void __exit svm_exit(void) | 
|  | { | 
|  | kvm_exit(); | 
|  | } | 
|  |  | 
|  | module_init(svm_init) | 
|  | module_exit(svm_exit) |