|  | /* | 
|  | * Copyright (C) 2011 Red Hat, Inc. | 
|  | * | 
|  | * This file is released under the GPL. | 
|  | */ | 
|  |  | 
|  | #include "dm-btree-internal.h" | 
|  | #include "dm-space-map.h" | 
|  | #include "dm-transaction-manager.h" | 
|  |  | 
|  | #include <linux/export.h> | 
|  | #include <linux/device-mapper.h> | 
|  |  | 
|  | #define DM_MSG_PREFIX "btree" | 
|  |  | 
|  | /*---------------------------------------------------------------- | 
|  | * Array manipulation | 
|  | *--------------------------------------------------------------*/ | 
|  | static void memcpy_disk(void *dest, const void *src, size_t len) | 
|  | __dm_written_to_disk(src) | 
|  | { | 
|  | memcpy(dest, src, len); | 
|  | __dm_unbless_for_disk(src); | 
|  | } | 
|  |  | 
|  | static void array_insert(void *base, size_t elt_size, unsigned nr_elts, | 
|  | unsigned index, void *elt) | 
|  | __dm_written_to_disk(elt) | 
|  | { | 
|  | if (index < nr_elts) | 
|  | memmove(base + (elt_size * (index + 1)), | 
|  | base + (elt_size * index), | 
|  | (nr_elts - index) * elt_size); | 
|  |  | 
|  | memcpy_disk(base + (elt_size * index), elt, elt_size); | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* makes the assumption that no two keys are the same. */ | 
|  | static int bsearch(struct btree_node *n, uint64_t key, int want_hi) | 
|  | { | 
|  | int lo = -1, hi = le32_to_cpu(n->header.nr_entries); | 
|  |  | 
|  | while (hi - lo > 1) { | 
|  | int mid = lo + ((hi - lo) / 2); | 
|  | uint64_t mid_key = le64_to_cpu(n->keys[mid]); | 
|  |  | 
|  | if (mid_key == key) | 
|  | return mid; | 
|  |  | 
|  | if (mid_key < key) | 
|  | lo = mid; | 
|  | else | 
|  | hi = mid; | 
|  | } | 
|  |  | 
|  | return want_hi ? hi : lo; | 
|  | } | 
|  |  | 
|  | int lower_bound(struct btree_node *n, uint64_t key) | 
|  | { | 
|  | return bsearch(n, key, 0); | 
|  | } | 
|  |  | 
|  | static int upper_bound(struct btree_node *n, uint64_t key) | 
|  | { | 
|  | return bsearch(n, key, 1); | 
|  | } | 
|  |  | 
|  | void inc_children(struct dm_transaction_manager *tm, struct btree_node *n, | 
|  | struct dm_btree_value_type *vt) | 
|  | { | 
|  | unsigned i; | 
|  | uint32_t nr_entries = le32_to_cpu(n->header.nr_entries); | 
|  |  | 
|  | if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) | 
|  | for (i = 0; i < nr_entries; i++) | 
|  | dm_tm_inc(tm, value64(n, i)); | 
|  | else if (vt->inc) | 
|  | for (i = 0; i < nr_entries; i++) | 
|  | vt->inc(vt->context, value_ptr(n, i)); | 
|  | } | 
|  |  | 
|  | static int insert_at(size_t value_size, struct btree_node *node, unsigned index, | 
|  | uint64_t key, void *value) | 
|  | __dm_written_to_disk(value) | 
|  | { | 
|  | uint32_t nr_entries = le32_to_cpu(node->header.nr_entries); | 
|  | __le64 key_le = cpu_to_le64(key); | 
|  |  | 
|  | if (index > nr_entries || | 
|  | index >= le32_to_cpu(node->header.max_entries)) { | 
|  | DMERR("too many entries in btree node for insert"); | 
|  | __dm_unbless_for_disk(value); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | __dm_bless_for_disk(&key_le); | 
|  |  | 
|  | array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le); | 
|  | array_insert(value_base(node), value_size, nr_entries, index, value); | 
|  | node->header.nr_entries = cpu_to_le32(nr_entries + 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * We want 3n entries (for some n).  This works more nicely for repeated | 
|  | * insert remove loops than (2n + 1). | 
|  | */ | 
|  | static uint32_t calc_max_entries(size_t value_size, size_t block_size) | 
|  | { | 
|  | uint32_t total, n; | 
|  | size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */ | 
|  |  | 
|  | block_size -= sizeof(struct node_header); | 
|  | total = block_size / elt_size; | 
|  | n = total / 3;		/* rounds down */ | 
|  |  | 
|  | return 3 * n; | 
|  | } | 
|  |  | 
|  | int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root) | 
|  | { | 
|  | int r; | 
|  | struct dm_block *b; | 
|  | struct btree_node *n; | 
|  | size_t block_size; | 
|  | uint32_t max_entries; | 
|  |  | 
|  | r = new_block(info, &b); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | block_size = dm_bm_block_size(dm_tm_get_bm(info->tm)); | 
|  | max_entries = calc_max_entries(info->value_type.size, block_size); | 
|  |  | 
|  | n = dm_block_data(b); | 
|  | memset(n, 0, block_size); | 
|  | n->header.flags = cpu_to_le32(LEAF_NODE); | 
|  | n->header.nr_entries = cpu_to_le32(0); | 
|  | n->header.max_entries = cpu_to_le32(max_entries); | 
|  | n->header.value_size = cpu_to_le32(info->value_type.size); | 
|  |  | 
|  | *root = dm_block_location(b); | 
|  | unlock_block(info, b); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_empty); | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * Deletion uses a recursive algorithm, since we have limited stack space | 
|  | * we explicitly manage our own stack on the heap. | 
|  | */ | 
|  | #define MAX_SPINE_DEPTH 64 | 
|  | struct frame { | 
|  | struct dm_block *b; | 
|  | struct btree_node *n; | 
|  | unsigned level; | 
|  | unsigned nr_children; | 
|  | unsigned current_child; | 
|  | }; | 
|  |  | 
|  | struct del_stack { | 
|  | struct dm_btree_info *info; | 
|  | struct dm_transaction_manager *tm; | 
|  | int top; | 
|  | struct frame spine[MAX_SPINE_DEPTH]; | 
|  | }; | 
|  |  | 
|  | static int top_frame(struct del_stack *s, struct frame **f) | 
|  | { | 
|  | if (s->top < 0) { | 
|  | DMERR("btree deletion stack empty"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | *f = s->spine + s->top; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int unprocessed_frames(struct del_stack *s) | 
|  | { | 
|  | return s->top >= 0; | 
|  | } | 
|  |  | 
|  | static void prefetch_children(struct del_stack *s, struct frame *f) | 
|  | { | 
|  | unsigned i; | 
|  | struct dm_block_manager *bm = dm_tm_get_bm(s->tm); | 
|  |  | 
|  | for (i = 0; i < f->nr_children; i++) | 
|  | dm_bm_prefetch(bm, value64(f->n, i)); | 
|  | } | 
|  |  | 
|  | static bool is_internal_level(struct dm_btree_info *info, struct frame *f) | 
|  | { | 
|  | return f->level < (info->levels - 1); | 
|  | } | 
|  |  | 
|  | static int push_frame(struct del_stack *s, dm_block_t b, unsigned level) | 
|  | { | 
|  | int r; | 
|  | uint32_t ref_count; | 
|  |  | 
|  | if (s->top >= MAX_SPINE_DEPTH - 1) { | 
|  | DMERR("btree deletion stack out of memory"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | r = dm_tm_ref(s->tm, b, &ref_count); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | if (ref_count > 1) | 
|  | /* | 
|  | * This is a shared node, so we can just decrement it's | 
|  | * reference counter and leave the children. | 
|  | */ | 
|  | dm_tm_dec(s->tm, b); | 
|  |  | 
|  | else { | 
|  | uint32_t flags; | 
|  | struct frame *f = s->spine + ++s->top; | 
|  |  | 
|  | r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b); | 
|  | if (r) { | 
|  | s->top--; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | f->n = dm_block_data(f->b); | 
|  | f->level = level; | 
|  | f->nr_children = le32_to_cpu(f->n->header.nr_entries); | 
|  | f->current_child = 0; | 
|  |  | 
|  | flags = le32_to_cpu(f->n->header.flags); | 
|  | if (flags & INTERNAL_NODE || is_internal_level(s->info, f)) | 
|  | prefetch_children(s, f); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pop_frame(struct del_stack *s) | 
|  | { | 
|  | struct frame *f = s->spine + s->top--; | 
|  |  | 
|  | dm_tm_dec(s->tm, dm_block_location(f->b)); | 
|  | dm_tm_unlock(s->tm, f->b); | 
|  | } | 
|  |  | 
|  | static void unlock_all_frames(struct del_stack *s) | 
|  | { | 
|  | struct frame *f; | 
|  |  | 
|  | while (unprocessed_frames(s)) { | 
|  | f = s->spine + s->top--; | 
|  | dm_tm_unlock(s->tm, f->b); | 
|  | } | 
|  | } | 
|  |  | 
|  | int dm_btree_del(struct dm_btree_info *info, dm_block_t root) | 
|  | { | 
|  | int r; | 
|  | struct del_stack *s; | 
|  |  | 
|  | /* | 
|  | * dm_btree_del() is called via an ioctl, as such should be | 
|  | * considered an FS op.  We can't recurse back into the FS, so we | 
|  | * allocate GFP_NOFS. | 
|  | */ | 
|  | s = kmalloc(sizeof(*s), GFP_NOFS); | 
|  | if (!s) | 
|  | return -ENOMEM; | 
|  | s->info = info; | 
|  | s->tm = info->tm; | 
|  | s->top = -1; | 
|  |  | 
|  | r = push_frame(s, root, 0); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | while (unprocessed_frames(s)) { | 
|  | uint32_t flags; | 
|  | struct frame *f; | 
|  | dm_block_t b; | 
|  |  | 
|  | r = top_frame(s, &f); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | if (f->current_child >= f->nr_children) { | 
|  | pop_frame(s); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | flags = le32_to_cpu(f->n->header.flags); | 
|  | if (flags & INTERNAL_NODE) { | 
|  | b = value64(f->n, f->current_child); | 
|  | f->current_child++; | 
|  | r = push_frame(s, b, f->level); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | } else if (is_internal_level(info, f)) { | 
|  | b = value64(f->n, f->current_child); | 
|  | f->current_child++; | 
|  | r = push_frame(s, b, f->level + 1); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | } else { | 
|  | if (info->value_type.dec) { | 
|  | unsigned i; | 
|  |  | 
|  | for (i = 0; i < f->nr_children; i++) | 
|  | info->value_type.dec(info->value_type.context, | 
|  | value_ptr(f->n, i)); | 
|  | } | 
|  | pop_frame(s); | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (r) { | 
|  | /* cleanup all frames of del_stack */ | 
|  | unlock_all_frames(s); | 
|  | } | 
|  | kfree(s); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_del); | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key, | 
|  | int (*search_fn)(struct btree_node *, uint64_t), | 
|  | uint64_t *result_key, void *v, size_t value_size) | 
|  | { | 
|  | int i, r; | 
|  | uint32_t flags, nr_entries; | 
|  |  | 
|  | do { | 
|  | r = ro_step(s, block); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | i = search_fn(ro_node(s), key); | 
|  |  | 
|  | flags = le32_to_cpu(ro_node(s)->header.flags); | 
|  | nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries); | 
|  | if (i < 0 || i >= nr_entries) | 
|  | return -ENODATA; | 
|  |  | 
|  | if (flags & INTERNAL_NODE) | 
|  | block = value64(ro_node(s), i); | 
|  |  | 
|  | } while (!(flags & LEAF_NODE)); | 
|  |  | 
|  | *result_key = le64_to_cpu(ro_node(s)->keys[i]); | 
|  | memcpy(v, value_ptr(ro_node(s), i), value_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *keys, void *value_le) | 
|  | { | 
|  | unsigned level, last_level = info->levels - 1; | 
|  | int r = -ENODATA; | 
|  | uint64_t rkey; | 
|  | __le64 internal_value_le; | 
|  | struct ro_spine spine; | 
|  |  | 
|  | init_ro_spine(&spine, info); | 
|  | for (level = 0; level < info->levels; level++) { | 
|  | size_t size; | 
|  | void *value_p; | 
|  |  | 
|  | if (level == last_level) { | 
|  | value_p = value_le; | 
|  | size = info->value_type.size; | 
|  |  | 
|  | } else { | 
|  | value_p = &internal_value_le; | 
|  | size = sizeof(uint64_t); | 
|  | } | 
|  |  | 
|  | r = btree_lookup_raw(&spine, root, keys[level], | 
|  | lower_bound, &rkey, | 
|  | value_p, size); | 
|  |  | 
|  | if (!r) { | 
|  | if (rkey != keys[level]) { | 
|  | exit_ro_spine(&spine); | 
|  | return -ENODATA; | 
|  | } | 
|  | } else { | 
|  | exit_ro_spine(&spine); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | root = le64_to_cpu(internal_value_le); | 
|  | } | 
|  | exit_ro_spine(&spine); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_lookup); | 
|  |  | 
|  | static int dm_btree_lookup_next_single(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t key, uint64_t *rkey, void *value_le) | 
|  | { | 
|  | int r, i; | 
|  | uint32_t flags, nr_entries; | 
|  | struct dm_block *node; | 
|  | struct btree_node *n; | 
|  |  | 
|  | r = bn_read_lock(info, root, &node); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | n = dm_block_data(node); | 
|  | flags = le32_to_cpu(n->header.flags); | 
|  | nr_entries = le32_to_cpu(n->header.nr_entries); | 
|  |  | 
|  | if (flags & INTERNAL_NODE) { | 
|  | i = lower_bound(n, key); | 
|  | if (i < 0) { | 
|  | /* | 
|  | * avoid early -ENODATA return when all entries are | 
|  | * higher than the search @key. | 
|  | */ | 
|  | i = 0; | 
|  | } | 
|  | if (i >= nr_entries) { | 
|  | r = -ENODATA; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le); | 
|  | if (r == -ENODATA && i < (nr_entries - 1)) { | 
|  | i++; | 
|  | r = dm_btree_lookup_next_single(info, value64(n, i), key, rkey, value_le); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | i = upper_bound(n, key); | 
|  | if (i < 0 || i >= nr_entries) { | 
|  | r = -ENODATA; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | *rkey = le64_to_cpu(n->keys[i]); | 
|  | memcpy(value_le, value_ptr(n, i), info->value_type.size); | 
|  | } | 
|  | out: | 
|  | dm_tm_unlock(info->tm, node); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int dm_btree_lookup_next(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *keys, uint64_t *rkey, void *value_le) | 
|  | { | 
|  | unsigned level; | 
|  | int r = -ENODATA; | 
|  | __le64 internal_value_le; | 
|  | struct ro_spine spine; | 
|  |  | 
|  | init_ro_spine(&spine, info); | 
|  | for (level = 0; level < info->levels - 1u; level++) { | 
|  | r = btree_lookup_raw(&spine, root, keys[level], | 
|  | lower_bound, rkey, | 
|  | &internal_value_le, sizeof(uint64_t)); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | if (*rkey != keys[level]) { | 
|  | r = -ENODATA; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | root = le64_to_cpu(internal_value_le); | 
|  | } | 
|  |  | 
|  | r = dm_btree_lookup_next_single(info, root, keys[level], rkey, value_le); | 
|  | out: | 
|  | exit_ro_spine(&spine); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(dm_btree_lookup_next); | 
|  |  | 
|  | /* | 
|  | * Splits a node by creating a sibling node and shifting half the nodes | 
|  | * contents across.  Assumes there is a parent node, and it has room for | 
|  | * another child. | 
|  | * | 
|  | * Before: | 
|  | *	  +--------+ | 
|  | *	  | Parent | | 
|  | *	  +--------+ | 
|  | *	     | | 
|  | *	     v | 
|  | *	+----------+ | 
|  | *	| A ++++++ | | 
|  | *	+----------+ | 
|  | * | 
|  | * | 
|  | * After: | 
|  | *		+--------+ | 
|  | *		| Parent | | 
|  | *		+--------+ | 
|  | *		  |	| | 
|  | *		  v	+------+ | 
|  | *	    +---------+	       | | 
|  | *	    | A* +++  |	       v | 
|  | *	    +---------+	  +-------+ | 
|  | *			  | B +++ | | 
|  | *			  +-------+ | 
|  | * | 
|  | * Where A* is a shadow of A. | 
|  | */ | 
|  | static int btree_split_sibling(struct shadow_spine *s, unsigned parent_index, | 
|  | uint64_t key) | 
|  | { | 
|  | int r; | 
|  | size_t size; | 
|  | unsigned nr_left, nr_right; | 
|  | struct dm_block *left, *right, *parent; | 
|  | struct btree_node *ln, *rn, *pn; | 
|  | __le64 location; | 
|  |  | 
|  | left = shadow_current(s); | 
|  |  | 
|  | r = new_block(s->info, &right); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | ln = dm_block_data(left); | 
|  | rn = dm_block_data(right); | 
|  |  | 
|  | nr_left = le32_to_cpu(ln->header.nr_entries) / 2; | 
|  | nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left; | 
|  |  | 
|  | ln->header.nr_entries = cpu_to_le32(nr_left); | 
|  |  | 
|  | rn->header.flags = ln->header.flags; | 
|  | rn->header.nr_entries = cpu_to_le32(nr_right); | 
|  | rn->header.max_entries = ln->header.max_entries; | 
|  | rn->header.value_size = ln->header.value_size; | 
|  | memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0])); | 
|  |  | 
|  | size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ? | 
|  | sizeof(uint64_t) : s->info->value_type.size; | 
|  | memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left), | 
|  | size * nr_right); | 
|  |  | 
|  | /* | 
|  | * Patch up the parent | 
|  | */ | 
|  | parent = shadow_parent(s); | 
|  |  | 
|  | pn = dm_block_data(parent); | 
|  | location = cpu_to_le64(dm_block_location(left)); | 
|  | __dm_bless_for_disk(&location); | 
|  | memcpy_disk(value_ptr(pn, parent_index), | 
|  | &location, sizeof(__le64)); | 
|  |  | 
|  | location = cpu_to_le64(dm_block_location(right)); | 
|  | __dm_bless_for_disk(&location); | 
|  |  | 
|  | r = insert_at(sizeof(__le64), pn, parent_index + 1, | 
|  | le64_to_cpu(rn->keys[0]), &location); | 
|  | if (r) { | 
|  | unlock_block(s->info, right); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | if (key < le64_to_cpu(rn->keys[0])) { | 
|  | unlock_block(s->info, right); | 
|  | s->nodes[1] = left; | 
|  | } else { | 
|  | unlock_block(s->info, left); | 
|  | s->nodes[1] = right; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Splits a node by creating two new children beneath the given node. | 
|  | * | 
|  | * Before: | 
|  | *	  +----------+ | 
|  | *	  | A ++++++ | | 
|  | *	  +----------+ | 
|  | * | 
|  | * | 
|  | * After: | 
|  | *	+------------+ | 
|  | *	| A (shadow) | | 
|  | *	+------------+ | 
|  | *	    |	| | 
|  | *   +------+	+----+ | 
|  | *   |		     | | 
|  | *   v		     v | 
|  | * +-------+	 +-------+ | 
|  | * | B +++ |	 | C +++ | | 
|  | * +-------+	 +-------+ | 
|  | */ | 
|  | static int btree_split_beneath(struct shadow_spine *s, uint64_t key) | 
|  | { | 
|  | int r; | 
|  | size_t size; | 
|  | unsigned nr_left, nr_right; | 
|  | struct dm_block *left, *right, *new_parent; | 
|  | struct btree_node *pn, *ln, *rn; | 
|  | __le64 val; | 
|  |  | 
|  | new_parent = shadow_current(s); | 
|  |  | 
|  | pn = dm_block_data(new_parent); | 
|  | size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ? | 
|  | sizeof(__le64) : s->info->value_type.size; | 
|  |  | 
|  | /* create & init the left block */ | 
|  | r = new_block(s->info, &left); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | ln = dm_block_data(left); | 
|  | nr_left = le32_to_cpu(pn->header.nr_entries) / 2; | 
|  |  | 
|  | ln->header.flags = pn->header.flags; | 
|  | ln->header.nr_entries = cpu_to_le32(nr_left); | 
|  | ln->header.max_entries = pn->header.max_entries; | 
|  | ln->header.value_size = pn->header.value_size; | 
|  | memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0])); | 
|  | memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size); | 
|  |  | 
|  | /* create & init the right block */ | 
|  | r = new_block(s->info, &right); | 
|  | if (r < 0) { | 
|  | unlock_block(s->info, left); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | rn = dm_block_data(right); | 
|  | nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left; | 
|  |  | 
|  | rn->header.flags = pn->header.flags; | 
|  | rn->header.nr_entries = cpu_to_le32(nr_right); | 
|  | rn->header.max_entries = pn->header.max_entries; | 
|  | rn->header.value_size = pn->header.value_size; | 
|  | memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0])); | 
|  | memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left), | 
|  | nr_right * size); | 
|  |  | 
|  | /* new_parent should just point to l and r now */ | 
|  | pn->header.flags = cpu_to_le32(INTERNAL_NODE); | 
|  | pn->header.nr_entries = cpu_to_le32(2); | 
|  | pn->header.max_entries = cpu_to_le32( | 
|  | calc_max_entries(sizeof(__le64), | 
|  | dm_bm_block_size( | 
|  | dm_tm_get_bm(s->info->tm)))); | 
|  | pn->header.value_size = cpu_to_le32(sizeof(__le64)); | 
|  |  | 
|  | val = cpu_to_le64(dm_block_location(left)); | 
|  | __dm_bless_for_disk(&val); | 
|  | pn->keys[0] = ln->keys[0]; | 
|  | memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64)); | 
|  |  | 
|  | val = cpu_to_le64(dm_block_location(right)); | 
|  | __dm_bless_for_disk(&val); | 
|  | pn->keys[1] = rn->keys[0]; | 
|  | memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64)); | 
|  |  | 
|  | unlock_block(s->info, left); | 
|  | unlock_block(s->info, right); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int btree_insert_raw(struct shadow_spine *s, dm_block_t root, | 
|  | struct dm_btree_value_type *vt, | 
|  | uint64_t key, unsigned *index) | 
|  | { | 
|  | int r, i = *index, top = 1; | 
|  | struct btree_node *node; | 
|  |  | 
|  | for (;;) { | 
|  | r = shadow_step(s, root, vt); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | node = dm_block_data(shadow_current(s)); | 
|  |  | 
|  | /* | 
|  | * We have to patch up the parent node, ugly, but I don't | 
|  | * see a way to do this automatically as part of the spine | 
|  | * op. | 
|  | */ | 
|  | if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */ | 
|  | __le64 location = cpu_to_le64(dm_block_location(shadow_current(s))); | 
|  |  | 
|  | __dm_bless_for_disk(&location); | 
|  | memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i), | 
|  | &location, sizeof(__le64)); | 
|  | } | 
|  |  | 
|  | node = dm_block_data(shadow_current(s)); | 
|  |  | 
|  | if (node->header.nr_entries == node->header.max_entries) { | 
|  | if (top) | 
|  | r = btree_split_beneath(s, key); | 
|  | else | 
|  | r = btree_split_sibling(s, i, key); | 
|  |  | 
|  | if (r < 0) | 
|  | return r; | 
|  | } | 
|  |  | 
|  | node = dm_block_data(shadow_current(s)); | 
|  |  | 
|  | i = lower_bound(node, key); | 
|  |  | 
|  | if (le32_to_cpu(node->header.flags) & LEAF_NODE) | 
|  | break; | 
|  |  | 
|  | if (i < 0) { | 
|  | /* change the bounds on the lowest key */ | 
|  | node->keys[0] = cpu_to_le64(key); | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | root = value64(node, i); | 
|  | top = 0; | 
|  | } | 
|  |  | 
|  | if (i < 0 || le64_to_cpu(node->keys[i]) != key) | 
|  | i++; | 
|  |  | 
|  | *index = i; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool need_insert(struct btree_node *node, uint64_t *keys, | 
|  | unsigned level, unsigned index) | 
|  | { | 
|  | return ((index >= le32_to_cpu(node->header.nr_entries)) || | 
|  | (le64_to_cpu(node->keys[index]) != keys[level])); | 
|  | } | 
|  |  | 
|  | static int insert(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *keys, void *value, dm_block_t *new_root, | 
|  | int *inserted) | 
|  | __dm_written_to_disk(value) | 
|  | { | 
|  | int r; | 
|  | unsigned level, index = -1, last_level = info->levels - 1; | 
|  | dm_block_t block = root; | 
|  | struct shadow_spine spine; | 
|  | struct btree_node *n; | 
|  | struct dm_btree_value_type le64_type; | 
|  |  | 
|  | init_le64_type(info->tm, &le64_type); | 
|  | init_shadow_spine(&spine, info); | 
|  |  | 
|  | for (level = 0; level < (info->levels - 1); level++) { | 
|  | r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index); | 
|  | if (r < 0) | 
|  | goto bad; | 
|  |  | 
|  | n = dm_block_data(shadow_current(&spine)); | 
|  |  | 
|  | if (need_insert(n, keys, level, index)) { | 
|  | dm_block_t new_tree; | 
|  | __le64 new_le; | 
|  |  | 
|  | r = dm_btree_empty(info, &new_tree); | 
|  | if (r < 0) | 
|  | goto bad; | 
|  |  | 
|  | new_le = cpu_to_le64(new_tree); | 
|  | __dm_bless_for_disk(&new_le); | 
|  |  | 
|  | r = insert_at(sizeof(uint64_t), n, index, | 
|  | keys[level], &new_le); | 
|  | if (r) | 
|  | goto bad; | 
|  | } | 
|  |  | 
|  | if (level < last_level) | 
|  | block = value64(n, index); | 
|  | } | 
|  |  | 
|  | r = btree_insert_raw(&spine, block, &info->value_type, | 
|  | keys[level], &index); | 
|  | if (r < 0) | 
|  | goto bad; | 
|  |  | 
|  | n = dm_block_data(shadow_current(&spine)); | 
|  |  | 
|  | if (need_insert(n, keys, level, index)) { | 
|  | if (inserted) | 
|  | *inserted = 1; | 
|  |  | 
|  | r = insert_at(info->value_type.size, n, index, | 
|  | keys[level], value); | 
|  | if (r) | 
|  | goto bad_unblessed; | 
|  | } else { | 
|  | if (inserted) | 
|  | *inserted = 0; | 
|  |  | 
|  | if (info->value_type.dec && | 
|  | (!info->value_type.equal || | 
|  | !info->value_type.equal( | 
|  | info->value_type.context, | 
|  | value_ptr(n, index), | 
|  | value))) { | 
|  | info->value_type.dec(info->value_type.context, | 
|  | value_ptr(n, index)); | 
|  | } | 
|  | memcpy_disk(value_ptr(n, index), | 
|  | value, info->value_type.size); | 
|  | } | 
|  |  | 
|  | *new_root = shadow_root(&spine); | 
|  | exit_shadow_spine(&spine); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | bad: | 
|  | __dm_unbless_for_disk(value); | 
|  | bad_unblessed: | 
|  | exit_shadow_spine(&spine); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int dm_btree_insert(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *keys, void *value, dm_block_t *new_root) | 
|  | __dm_written_to_disk(value) | 
|  | { | 
|  | return insert(info, root, keys, value, new_root, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_insert); | 
|  |  | 
|  | int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *keys, void *value, dm_block_t *new_root, | 
|  | int *inserted) | 
|  | __dm_written_to_disk(value) | 
|  | { | 
|  | return insert(info, root, keys, value, new_root, inserted); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_insert_notify); | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static int find_key(struct ro_spine *s, dm_block_t block, bool find_highest, | 
|  | uint64_t *result_key, dm_block_t *next_block) | 
|  | { | 
|  | int i, r; | 
|  | uint32_t flags; | 
|  |  | 
|  | do { | 
|  | r = ro_step(s, block); | 
|  | if (r < 0) | 
|  | return r; | 
|  |  | 
|  | flags = le32_to_cpu(ro_node(s)->header.flags); | 
|  | i = le32_to_cpu(ro_node(s)->header.nr_entries); | 
|  | if (!i) | 
|  | return -ENODATA; | 
|  | else | 
|  | i--; | 
|  |  | 
|  | if (find_highest) | 
|  | *result_key = le64_to_cpu(ro_node(s)->keys[i]); | 
|  | else | 
|  | *result_key = le64_to_cpu(ro_node(s)->keys[0]); | 
|  |  | 
|  | if (next_block || flags & INTERNAL_NODE) { | 
|  | if (find_highest) | 
|  | block = value64(ro_node(s), i); | 
|  | else | 
|  | block = value64(ro_node(s), 0); | 
|  | } | 
|  |  | 
|  | } while (flags & INTERNAL_NODE); | 
|  |  | 
|  | if (next_block) | 
|  | *next_block = block; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dm_btree_find_key(struct dm_btree_info *info, dm_block_t root, | 
|  | bool find_highest, uint64_t *result_keys) | 
|  | { | 
|  | int r = 0, count = 0, level; | 
|  | struct ro_spine spine; | 
|  |  | 
|  | init_ro_spine(&spine, info); | 
|  | for (level = 0; level < info->levels; level++) { | 
|  | r = find_key(&spine, root, find_highest, result_keys + level, | 
|  | level == info->levels - 1 ? NULL : &root); | 
|  | if (r == -ENODATA) { | 
|  | r = 0; | 
|  | break; | 
|  |  | 
|  | } else if (r) | 
|  | break; | 
|  |  | 
|  | count++; | 
|  | } | 
|  | exit_ro_spine(&spine); | 
|  |  | 
|  | return r ? r : count; | 
|  | } | 
|  |  | 
|  | int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *result_keys) | 
|  | { | 
|  | return dm_btree_find_key(info, root, true, result_keys); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_find_highest_key); | 
|  |  | 
|  | int dm_btree_find_lowest_key(struct dm_btree_info *info, dm_block_t root, | 
|  | uint64_t *result_keys) | 
|  | { | 
|  | return dm_btree_find_key(info, root, false, result_keys); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_find_lowest_key); | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | /* | 
|  | * FIXME: We shouldn't use a recursive algorithm when we have limited stack | 
|  | * space.  Also this only works for single level trees. | 
|  | */ | 
|  | static int walk_node(struct dm_btree_info *info, dm_block_t block, | 
|  | int (*fn)(void *context, uint64_t *keys, void *leaf), | 
|  | void *context) | 
|  | { | 
|  | int r; | 
|  | unsigned i, nr; | 
|  | struct dm_block *node; | 
|  | struct btree_node *n; | 
|  | uint64_t keys; | 
|  |  | 
|  | r = bn_read_lock(info, block, &node); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | n = dm_block_data(node); | 
|  |  | 
|  | nr = le32_to_cpu(n->header.nr_entries); | 
|  | for (i = 0; i < nr; i++) { | 
|  | if (le32_to_cpu(n->header.flags) & INTERNAL_NODE) { | 
|  | r = walk_node(info, value64(n, i), fn, context); | 
|  | if (r) | 
|  | goto out; | 
|  | } else { | 
|  | keys = le64_to_cpu(*key_ptr(n, i)); | 
|  | r = fn(context, &keys, value_ptr(n, i)); | 
|  | if (r) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | out: | 
|  | dm_tm_unlock(info->tm, node); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int dm_btree_walk(struct dm_btree_info *info, dm_block_t root, | 
|  | int (*fn)(void *context, uint64_t *keys, void *leaf), | 
|  | void *context) | 
|  | { | 
|  | BUG_ON(info->levels > 1); | 
|  | return walk_node(info, root, fn, context); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_walk); | 
|  |  | 
|  | /*----------------------------------------------------------------*/ | 
|  |  | 
|  | static void prefetch_values(struct dm_btree_cursor *c) | 
|  | { | 
|  | unsigned i, nr; | 
|  | __le64 value_le; | 
|  | struct cursor_node *n = c->nodes + c->depth - 1; | 
|  | struct btree_node *bn = dm_block_data(n->b); | 
|  | struct dm_block_manager *bm = dm_tm_get_bm(c->info->tm); | 
|  |  | 
|  | BUG_ON(c->info->value_type.size != sizeof(value_le)); | 
|  |  | 
|  | nr = le32_to_cpu(bn->header.nr_entries); | 
|  | for (i = 0; i < nr; i++) { | 
|  | memcpy(&value_le, value_ptr(bn, i), sizeof(value_le)); | 
|  | dm_bm_prefetch(bm, le64_to_cpu(value_le)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool leaf_node(struct dm_btree_cursor *c) | 
|  | { | 
|  | struct cursor_node *n = c->nodes + c->depth - 1; | 
|  | struct btree_node *bn = dm_block_data(n->b); | 
|  |  | 
|  | return le32_to_cpu(bn->header.flags) & LEAF_NODE; | 
|  | } | 
|  |  | 
|  | static int push_node(struct dm_btree_cursor *c, dm_block_t b) | 
|  | { | 
|  | int r; | 
|  | struct cursor_node *n = c->nodes + c->depth; | 
|  |  | 
|  | if (c->depth >= DM_BTREE_CURSOR_MAX_DEPTH - 1) { | 
|  | DMERR("couldn't push cursor node, stack depth too high"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | r = bn_read_lock(c->info, b, &n->b); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | n->index = 0; | 
|  | c->depth++; | 
|  |  | 
|  | if (c->prefetch_leaves || !leaf_node(c)) | 
|  | prefetch_values(c); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void pop_node(struct dm_btree_cursor *c) | 
|  | { | 
|  | c->depth--; | 
|  | unlock_block(c->info, c->nodes[c->depth].b); | 
|  | } | 
|  |  | 
|  | static int inc_or_backtrack(struct dm_btree_cursor *c) | 
|  | { | 
|  | struct cursor_node *n; | 
|  | struct btree_node *bn; | 
|  |  | 
|  | for (;;) { | 
|  | if (!c->depth) | 
|  | return -ENODATA; | 
|  |  | 
|  | n = c->nodes + c->depth - 1; | 
|  | bn = dm_block_data(n->b); | 
|  |  | 
|  | n->index++; | 
|  | if (n->index < le32_to_cpu(bn->header.nr_entries)) | 
|  | break; | 
|  |  | 
|  | pop_node(c); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int find_leaf(struct dm_btree_cursor *c) | 
|  | { | 
|  | int r = 0; | 
|  | struct cursor_node *n; | 
|  | struct btree_node *bn; | 
|  | __le64 value_le; | 
|  |  | 
|  | for (;;) { | 
|  | n = c->nodes + c->depth - 1; | 
|  | bn = dm_block_data(n->b); | 
|  |  | 
|  | if (le32_to_cpu(bn->header.flags) & LEAF_NODE) | 
|  | break; | 
|  |  | 
|  | memcpy(&value_le, value_ptr(bn, n->index), sizeof(value_le)); | 
|  | r = push_node(c, le64_to_cpu(value_le)); | 
|  | if (r) { | 
|  | DMERR("push_node failed"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!r && (le32_to_cpu(bn->header.nr_entries) == 0)) | 
|  | return -ENODATA; | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | int dm_btree_cursor_begin(struct dm_btree_info *info, dm_block_t root, | 
|  | bool prefetch_leaves, struct dm_btree_cursor *c) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | c->info = info; | 
|  | c->root = root; | 
|  | c->depth = 0; | 
|  | c->prefetch_leaves = prefetch_leaves; | 
|  |  | 
|  | r = push_node(c, root); | 
|  | if (r) | 
|  | return r; | 
|  |  | 
|  | return find_leaf(c); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_cursor_begin); | 
|  |  | 
|  | void dm_btree_cursor_end(struct dm_btree_cursor *c) | 
|  | { | 
|  | while (c->depth) | 
|  | pop_node(c); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_cursor_end); | 
|  |  | 
|  | int dm_btree_cursor_next(struct dm_btree_cursor *c) | 
|  | { | 
|  | int r = inc_or_backtrack(c); | 
|  | if (!r) { | 
|  | r = find_leaf(c); | 
|  | if (r) | 
|  | DMERR("find_leaf failed"); | 
|  | } | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_cursor_next); | 
|  |  | 
|  | int dm_btree_cursor_skip(struct dm_btree_cursor *c, uint32_t count) | 
|  | { | 
|  | int r = 0; | 
|  |  | 
|  | while (count-- && !r) | 
|  | r = dm_btree_cursor_next(c); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_cursor_skip); | 
|  |  | 
|  | int dm_btree_cursor_get_value(struct dm_btree_cursor *c, uint64_t *key, void *value_le) | 
|  | { | 
|  | if (c->depth) { | 
|  | struct cursor_node *n = c->nodes + c->depth - 1; | 
|  | struct btree_node *bn = dm_block_data(n->b); | 
|  |  | 
|  | if (le32_to_cpu(bn->header.flags) & INTERNAL_NODE) | 
|  | return -EINVAL; | 
|  |  | 
|  | *key = le64_to_cpu(*key_ptr(bn, n->index)); | 
|  | memcpy(value_le, value_ptr(bn, n->index), c->info->value_type.size); | 
|  | return 0; | 
|  |  | 
|  | } else | 
|  | return -ENODATA; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(dm_btree_cursor_get_value); |