|  | /* | 
|  | * Copyright (c) International Business Machines Corp., 2006 | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | 
|  | * the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | 
|  | * | 
|  | * Author: Artem Bityutskiy (Битюцкий Артём) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The UBI Eraseblock Association (EBA) sub-system. | 
|  | * | 
|  | * This sub-system is responsible for I/O to/from logical eraseblock. | 
|  | * | 
|  | * Although in this implementation the EBA table is fully kept and managed in | 
|  | * RAM, which assumes poor scalability, it might be (partially) maintained on | 
|  | * flash in future implementations. | 
|  | * | 
|  | * The EBA sub-system implements per-logical eraseblock locking. Before | 
|  | * accessing a logical eraseblock it is locked for reading or writing. The | 
|  | * per-logical eraseblock locking is implemented by means of the lock tree. The | 
|  | * lock tree is an RB-tree which refers all the currently locked logical | 
|  | * eraseblocks. The lock tree elements are &struct ubi_ltree_entry objects. | 
|  | * They are indexed by (@vol_id, @lnum) pairs. | 
|  | * | 
|  | * EBA also maintains the global sequence counter which is incremented each | 
|  | * time a logical eraseblock is mapped to a physical eraseblock and it is | 
|  | * stored in the volume identifier header. This means that each VID header has | 
|  | * a unique sequence number. The sequence number is only increased an we assume | 
|  | * 64 bits is enough to never overflow. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/err.h> | 
|  | #include "ubi.h" | 
|  |  | 
|  | /* Number of physical eraseblocks reserved for atomic LEB change operation */ | 
|  | #define EBA_RESERVED_PEBS 1 | 
|  |  | 
|  | /** | 
|  | * struct ubi_eba_entry - structure encoding a single LEB -> PEB association | 
|  | * @pnum: the physical eraseblock number attached to the LEB | 
|  | * | 
|  | * This structure is encoding a LEB -> PEB association. Note that the LEB | 
|  | * number is not stored here, because it is the index used to access the | 
|  | * entries table. | 
|  | */ | 
|  | struct ubi_eba_entry { | 
|  | int pnum; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct ubi_eba_table - LEB -> PEB association information | 
|  | * @entries: the LEB to PEB mapping (one entry per LEB). | 
|  | * | 
|  | * This structure is private to the EBA logic and should be kept here. | 
|  | * It is encoding the LEB to PEB association table, and is subject to | 
|  | * changes. | 
|  | */ | 
|  | struct ubi_eba_table { | 
|  | struct ubi_eba_entry *entries; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * next_sqnum - get next sequence number. | 
|  | * @ubi: UBI device description object | 
|  | * | 
|  | * This function returns next sequence number to use, which is just the current | 
|  | * global sequence counter value. It also increases the global sequence | 
|  | * counter. | 
|  | */ | 
|  | unsigned long long ubi_next_sqnum(struct ubi_device *ubi) | 
|  | { | 
|  | unsigned long long sqnum; | 
|  |  | 
|  | spin_lock(&ubi->ltree_lock); | 
|  | sqnum = ubi->global_sqnum++; | 
|  | spin_unlock(&ubi->ltree_lock); | 
|  |  | 
|  | return sqnum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_get_compat - get compatibility flags of a volume. | 
|  | * @ubi: UBI device description object | 
|  | * @vol_id: volume ID | 
|  | * | 
|  | * This function returns compatibility flags for an internal volume. User | 
|  | * volumes have no compatibility flags, so %0 is returned. | 
|  | */ | 
|  | static int ubi_get_compat(const struct ubi_device *ubi, int vol_id) | 
|  | { | 
|  | if (vol_id == UBI_LAYOUT_VOLUME_ID) | 
|  | return UBI_LAYOUT_VOLUME_COMPAT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_get_ldesc - get information about a LEB | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * @ldesc: the LEB descriptor to fill | 
|  | * | 
|  | * Used to query information about a specific LEB. | 
|  | * It is currently only returning the physical position of the LEB, but will be | 
|  | * extended to provide more information. | 
|  | */ | 
|  | void ubi_eba_get_ldesc(struct ubi_volume *vol, int lnum, | 
|  | struct ubi_eba_leb_desc *ldesc) | 
|  | { | 
|  | ldesc->lnum = lnum; | 
|  | ldesc->pnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_create_table - allocate a new EBA table and initialize it with all | 
|  | *			  LEBs unmapped | 
|  | * @vol: volume containing the EBA table to copy | 
|  | * @nentries: number of entries in the table | 
|  | * | 
|  | * Allocate a new EBA table and initialize it with all LEBs unmapped. | 
|  | * Returns a valid pointer if it succeed, an ERR_PTR() otherwise. | 
|  | */ | 
|  | struct ubi_eba_table *ubi_eba_create_table(struct ubi_volume *vol, | 
|  | int nentries) | 
|  | { | 
|  | struct ubi_eba_table *tbl; | 
|  | int err = -ENOMEM; | 
|  | int i; | 
|  |  | 
|  | tbl = kzalloc(sizeof(*tbl), GFP_KERNEL); | 
|  | if (!tbl) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | tbl->entries = kmalloc_array(nentries, sizeof(*tbl->entries), | 
|  | GFP_KERNEL); | 
|  | if (!tbl->entries) | 
|  | goto err; | 
|  |  | 
|  | for (i = 0; i < nentries; i++) | 
|  | tbl->entries[i].pnum = UBI_LEB_UNMAPPED; | 
|  |  | 
|  | return tbl; | 
|  |  | 
|  | err: | 
|  | kfree(tbl->entries); | 
|  | kfree(tbl); | 
|  |  | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_destroy_table - destroy an EBA table | 
|  | * @tbl: the table to destroy | 
|  | * | 
|  | * Destroy an EBA table. | 
|  | */ | 
|  | void ubi_eba_destroy_table(struct ubi_eba_table *tbl) | 
|  | { | 
|  | if (!tbl) | 
|  | return; | 
|  |  | 
|  | kfree(tbl->entries); | 
|  | kfree(tbl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_copy_table - copy the EBA table attached to vol into another table | 
|  | * @vol: volume containing the EBA table to copy | 
|  | * @dst: destination | 
|  | * @nentries: number of entries to copy | 
|  | * | 
|  | * Copy the EBA table stored in vol into the one pointed by dst. | 
|  | */ | 
|  | void ubi_eba_copy_table(struct ubi_volume *vol, struct ubi_eba_table *dst, | 
|  | int nentries) | 
|  | { | 
|  | struct ubi_eba_table *src; | 
|  | int i; | 
|  |  | 
|  | ubi_assert(dst && vol && vol->eba_tbl); | 
|  |  | 
|  | src = vol->eba_tbl; | 
|  |  | 
|  | for (i = 0; i < nentries; i++) | 
|  | dst->entries[i].pnum = src->entries[i].pnum; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_replace_table - assign a new EBA table to a volume | 
|  | * @vol: volume containing the EBA table to copy | 
|  | * @tbl: new EBA table | 
|  | * | 
|  | * Assign a new EBA table to the volume and release the old one. | 
|  | */ | 
|  | void ubi_eba_replace_table(struct ubi_volume *vol, struct ubi_eba_table *tbl) | 
|  | { | 
|  | ubi_eba_destroy_table(vol->eba_tbl); | 
|  | vol->eba_tbl = tbl; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ltree_lookup - look up the lock tree. | 
|  | * @ubi: UBI device description object | 
|  | * @vol_id: volume ID | 
|  | * @lnum: logical eraseblock number | 
|  | * | 
|  | * This function returns a pointer to the corresponding &struct ubi_ltree_entry | 
|  | * object if the logical eraseblock is locked and %NULL if it is not. | 
|  | * @ubi->ltree_lock has to be locked. | 
|  | */ | 
|  | static struct ubi_ltree_entry *ltree_lookup(struct ubi_device *ubi, int vol_id, | 
|  | int lnum) | 
|  | { | 
|  | struct rb_node *p; | 
|  |  | 
|  | p = ubi->ltree.rb_node; | 
|  | while (p) { | 
|  | struct ubi_ltree_entry *le; | 
|  |  | 
|  | le = rb_entry(p, struct ubi_ltree_entry, rb); | 
|  |  | 
|  | if (vol_id < le->vol_id) | 
|  | p = p->rb_left; | 
|  | else if (vol_id > le->vol_id) | 
|  | p = p->rb_right; | 
|  | else { | 
|  | if (lnum < le->lnum) | 
|  | p = p->rb_left; | 
|  | else if (lnum > le->lnum) | 
|  | p = p->rb_right; | 
|  | else | 
|  | return le; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ltree_add_entry - add new entry to the lock tree. | 
|  | * @ubi: UBI device description object | 
|  | * @vol_id: volume ID | 
|  | * @lnum: logical eraseblock number | 
|  | * | 
|  | * This function adds new entry for logical eraseblock (@vol_id, @lnum) to the | 
|  | * lock tree. If such entry is already there, its usage counter is increased. | 
|  | * Returns pointer to the lock tree entry or %-ENOMEM if memory allocation | 
|  | * failed. | 
|  | */ | 
|  | static struct ubi_ltree_entry *ltree_add_entry(struct ubi_device *ubi, | 
|  | int vol_id, int lnum) | 
|  | { | 
|  | struct ubi_ltree_entry *le, *le1, *le_free; | 
|  |  | 
|  | le = kmalloc(sizeof(struct ubi_ltree_entry), GFP_NOFS); | 
|  | if (!le) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | le->users = 0; | 
|  | init_rwsem(&le->mutex); | 
|  | le->vol_id = vol_id; | 
|  | le->lnum = lnum; | 
|  |  | 
|  | spin_lock(&ubi->ltree_lock); | 
|  | le1 = ltree_lookup(ubi, vol_id, lnum); | 
|  |  | 
|  | if (le1) { | 
|  | /* | 
|  | * This logical eraseblock is already locked. The newly | 
|  | * allocated lock entry is not needed. | 
|  | */ | 
|  | le_free = le; | 
|  | le = le1; | 
|  | } else { | 
|  | struct rb_node **p, *parent = NULL; | 
|  |  | 
|  | /* | 
|  | * No lock entry, add the newly allocated one to the | 
|  | * @ubi->ltree RB-tree. | 
|  | */ | 
|  | le_free = NULL; | 
|  |  | 
|  | p = &ubi->ltree.rb_node; | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | le1 = rb_entry(parent, struct ubi_ltree_entry, rb); | 
|  |  | 
|  | if (vol_id < le1->vol_id) | 
|  | p = &(*p)->rb_left; | 
|  | else if (vol_id > le1->vol_id) | 
|  | p = &(*p)->rb_right; | 
|  | else { | 
|  | ubi_assert(lnum != le1->lnum); | 
|  | if (lnum < le1->lnum) | 
|  | p = &(*p)->rb_left; | 
|  | else | 
|  | p = &(*p)->rb_right; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(&le->rb, parent, p); | 
|  | rb_insert_color(&le->rb, &ubi->ltree); | 
|  | } | 
|  | le->users += 1; | 
|  | spin_unlock(&ubi->ltree_lock); | 
|  |  | 
|  | kfree(le_free); | 
|  | return le; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * leb_read_lock - lock logical eraseblock for reading. | 
|  | * @ubi: UBI device description object | 
|  | * @vol_id: volume ID | 
|  | * @lnum: logical eraseblock number | 
|  | * | 
|  | * This function locks a logical eraseblock for reading. Returns zero in case | 
|  | * of success and a negative error code in case of failure. | 
|  | */ | 
|  | static int leb_read_lock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | { | 
|  | struct ubi_ltree_entry *le; | 
|  |  | 
|  | le = ltree_add_entry(ubi, vol_id, lnum); | 
|  | if (IS_ERR(le)) | 
|  | return PTR_ERR(le); | 
|  | down_read(&le->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * leb_read_unlock - unlock logical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @vol_id: volume ID | 
|  | * @lnum: logical eraseblock number | 
|  | */ | 
|  | static void leb_read_unlock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | { | 
|  | struct ubi_ltree_entry *le; | 
|  |  | 
|  | spin_lock(&ubi->ltree_lock); | 
|  | le = ltree_lookup(ubi, vol_id, lnum); | 
|  | le->users -= 1; | 
|  | ubi_assert(le->users >= 0); | 
|  | up_read(&le->mutex); | 
|  | if (le->users == 0) { | 
|  | rb_erase(&le->rb, &ubi->ltree); | 
|  | kfree(le); | 
|  | } | 
|  | spin_unlock(&ubi->ltree_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * leb_write_lock - lock logical eraseblock for writing. | 
|  | * @ubi: UBI device description object | 
|  | * @vol_id: volume ID | 
|  | * @lnum: logical eraseblock number | 
|  | * | 
|  | * This function locks a logical eraseblock for writing. Returns zero in case | 
|  | * of success and a negative error code in case of failure. | 
|  | */ | 
|  | static int leb_write_lock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | { | 
|  | struct ubi_ltree_entry *le; | 
|  |  | 
|  | le = ltree_add_entry(ubi, vol_id, lnum); | 
|  | if (IS_ERR(le)) | 
|  | return PTR_ERR(le); | 
|  | down_write(&le->mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * leb_write_trylock - try to lock logical eraseblock for writing. | 
|  | * @ubi: UBI device description object | 
|  | * @vol_id: volume ID | 
|  | * @lnum: logical eraseblock number | 
|  | * | 
|  | * This function locks a logical eraseblock for writing if there is no | 
|  | * contention and does nothing if there is contention. Returns %0 in case of | 
|  | * success, %1 in case of contention, and and a negative error code in case of | 
|  | * failure. | 
|  | */ | 
|  | static int leb_write_trylock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | { | 
|  | struct ubi_ltree_entry *le; | 
|  |  | 
|  | le = ltree_add_entry(ubi, vol_id, lnum); | 
|  | if (IS_ERR(le)) | 
|  | return PTR_ERR(le); | 
|  | if (down_write_trylock(&le->mutex)) | 
|  | return 0; | 
|  |  | 
|  | /* Contention, cancel */ | 
|  | spin_lock(&ubi->ltree_lock); | 
|  | le->users -= 1; | 
|  | ubi_assert(le->users >= 0); | 
|  | if (le->users == 0) { | 
|  | rb_erase(&le->rb, &ubi->ltree); | 
|  | kfree(le); | 
|  | } | 
|  | spin_unlock(&ubi->ltree_lock); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * leb_write_unlock - unlock logical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @vol_id: volume ID | 
|  | * @lnum: logical eraseblock number | 
|  | */ | 
|  | static void leb_write_unlock(struct ubi_device *ubi, int vol_id, int lnum) | 
|  | { | 
|  | struct ubi_ltree_entry *le; | 
|  |  | 
|  | spin_lock(&ubi->ltree_lock); | 
|  | le = ltree_lookup(ubi, vol_id, lnum); | 
|  | le->users -= 1; | 
|  | ubi_assert(le->users >= 0); | 
|  | up_write(&le->mutex); | 
|  | if (le->users == 0) { | 
|  | rb_erase(&le->rb, &ubi->ltree); | 
|  | kfree(le); | 
|  | } | 
|  | spin_unlock(&ubi->ltree_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_is_mapped - check if a LEB is mapped. | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * | 
|  | * This function returns true if the LEB is mapped, false otherwise. | 
|  | */ | 
|  | bool ubi_eba_is_mapped(struct ubi_volume *vol, int lnum) | 
|  | { | 
|  | return vol->eba_tbl->entries[lnum].pnum >= 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_unmap_leb - un-map logical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * | 
|  | * This function un-maps logical eraseblock @lnum and schedules corresponding | 
|  | * physical eraseblock for erasure. Returns zero in case of success and a | 
|  | * negative error code in case of failure. | 
|  | */ | 
|  | int ubi_eba_unmap_leb(struct ubi_device *ubi, struct ubi_volume *vol, | 
|  | int lnum) | 
|  | { | 
|  | int err, pnum, vol_id = vol->vol_id; | 
|  |  | 
|  | if (ubi->ro_mode) | 
|  | return -EROFS; | 
|  |  | 
|  | err = leb_write_lock(ubi, vol_id, lnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | pnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | if (pnum < 0) | 
|  | /* This logical eraseblock is already unmapped */ | 
|  | goto out_unlock; | 
|  |  | 
|  | dbg_eba("erase LEB %d:%d, PEB %d", vol_id, lnum, pnum); | 
|  |  | 
|  | down_read(&ubi->fm_eba_sem); | 
|  | vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; | 
|  | up_read(&ubi->fm_eba_sem); | 
|  | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 0); | 
|  |  | 
|  | out_unlock: | 
|  | leb_write_unlock(ubi, vol_id, lnum); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_UBI_FASTMAP | 
|  | /** | 
|  | * check_mapping - check and fixup a mapping | 
|  | * @ubi: UBI device description object | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * @pnum: physical eraseblock number | 
|  | * | 
|  | * Checks whether a given mapping is valid. Fastmap cannot track LEB unmap | 
|  | * operations, if such an operation is interrupted the mapping still looks | 
|  | * good, but upon first read an ECC is reported to the upper layer. | 
|  | * Normaly during the full-scan at attach time this is fixed, for Fastmap | 
|  | * we have to deal with it while reading. | 
|  | * If the PEB behind a LEB shows this symthom we change the mapping to | 
|  | * %UBI_LEB_UNMAPPED and schedule the PEB for erasure. | 
|  | * | 
|  | * Returns 0 on success, negative error code in case of failure. | 
|  | */ | 
|  | static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, | 
|  | int *pnum) | 
|  | { | 
|  | int err; | 
|  | struct ubi_vid_io_buf *vidb; | 
|  | struct ubi_vid_hdr *vid_hdr; | 
|  |  | 
|  | if (!ubi->fast_attach) | 
|  | return 0; | 
|  |  | 
|  | if (!vol->checkmap || test_bit(lnum, vol->checkmap)) | 
|  | return 0; | 
|  |  | 
|  | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | if (!vidb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | err = ubi_io_read_vid_hdr(ubi, *pnum, vidb, 0); | 
|  | if (err > 0 && err != UBI_IO_BITFLIPS) { | 
|  | int torture = 0; | 
|  |  | 
|  | switch (err) { | 
|  | case UBI_IO_FF: | 
|  | case UBI_IO_FF_BITFLIPS: | 
|  | case UBI_IO_BAD_HDR: | 
|  | case UBI_IO_BAD_HDR_EBADMSG: | 
|  | break; | 
|  | default: | 
|  | ubi_assert(0); | 
|  | } | 
|  |  | 
|  | if (err == UBI_IO_BAD_HDR_EBADMSG || err == UBI_IO_FF_BITFLIPS) | 
|  | torture = 1; | 
|  |  | 
|  | down_read(&ubi->fm_eba_sem); | 
|  | vol->eba_tbl->entries[lnum].pnum = UBI_LEB_UNMAPPED; | 
|  | up_read(&ubi->fm_eba_sem); | 
|  | ubi_wl_put_peb(ubi, vol->vol_id, lnum, *pnum, torture); | 
|  |  | 
|  | *pnum = UBI_LEB_UNMAPPED; | 
|  | } else if (err < 0) { | 
|  | ubi_err(ubi, "unable to read VID header back from PEB %i: %i", | 
|  | *pnum, err); | 
|  |  | 
|  | goto out_free; | 
|  | } else { | 
|  | int found_vol_id, found_lnum; | 
|  |  | 
|  | ubi_assert(err == 0 || err == UBI_IO_BITFLIPS); | 
|  |  | 
|  | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | found_vol_id = be32_to_cpu(vid_hdr->vol_id); | 
|  | found_lnum = be32_to_cpu(vid_hdr->lnum); | 
|  |  | 
|  | if (found_lnum != lnum || found_vol_id != vol->vol_id) { | 
|  | ubi_err(ubi, "EBA mismatch! PEB %i is LEB %i:%i instead of LEB %i:%i", | 
|  | *pnum, found_vol_id, found_lnum, vol->vol_id, lnum); | 
|  | ubi_ro_mode(ubi); | 
|  | err = -EINVAL; | 
|  | goto out_free; | 
|  | } | 
|  | } | 
|  |  | 
|  | set_bit(lnum, vol->checkmap); | 
|  | err = 0; | 
|  |  | 
|  | out_free: | 
|  | ubi_free_vid_buf(vidb); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | #else | 
|  | static int check_mapping(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, | 
|  | int *pnum) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * ubi_eba_read_leb - read data. | 
|  | * @ubi: UBI device description object | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * @buf: buffer to store the read data | 
|  | * @offset: offset from where to read | 
|  | * @len: how many bytes to read | 
|  | * @check: data CRC check flag | 
|  | * | 
|  | * If the logical eraseblock @lnum is unmapped, @buf is filled with 0xFF | 
|  | * bytes. The @check flag only makes sense for static volumes and forces | 
|  | * eraseblock data CRC checking. | 
|  | * | 
|  | * In case of success this function returns zero. In case of a static volume, | 
|  | * if data CRC mismatches - %-EBADMSG is returned. %-EBADMSG may also be | 
|  | * returned for any volume type if an ECC error was detected by the MTD device | 
|  | * driver. Other negative error cored may be returned in case of other errors. | 
|  | */ | 
|  | int ubi_eba_read_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, | 
|  | void *buf, int offset, int len, int check) | 
|  | { | 
|  | int err, pnum, scrub = 0, vol_id = vol->vol_id; | 
|  | struct ubi_vid_io_buf *vidb; | 
|  | struct ubi_vid_hdr *vid_hdr; | 
|  | uint32_t uninitialized_var(crc); | 
|  |  | 
|  | err = leb_read_lock(ubi, vol_id, lnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | pnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | if (pnum >= 0) { | 
|  | err = check_mapping(ubi, vol, lnum, &pnum); | 
|  | if (err < 0) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (pnum == UBI_LEB_UNMAPPED) { | 
|  | /* | 
|  | * The logical eraseblock is not mapped, fill the whole buffer | 
|  | * with 0xFF bytes. The exception is static volumes for which | 
|  | * it is an error to read unmapped logical eraseblocks. | 
|  | */ | 
|  | dbg_eba("read %d bytes from offset %d of LEB %d:%d (unmapped)", | 
|  | len, offset, vol_id, lnum); | 
|  | leb_read_unlock(ubi, vol_id, lnum); | 
|  | ubi_assert(vol->vol_type != UBI_STATIC_VOLUME); | 
|  | memset(buf, 0xFF, len); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | dbg_eba("read %d bytes from offset %d of LEB %d:%d, PEB %d", | 
|  | len, offset, vol_id, lnum, pnum); | 
|  |  | 
|  | if (vol->vol_type == UBI_DYNAMIC_VOLUME) | 
|  | check = 0; | 
|  |  | 
|  | retry: | 
|  | if (check) { | 
|  | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | if (!vidb) { | 
|  | err = -ENOMEM; | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  |  | 
|  | err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); | 
|  | if (err && err != UBI_IO_BITFLIPS) { | 
|  | if (err > 0) { | 
|  | /* | 
|  | * The header is either absent or corrupted. | 
|  | * The former case means there is a bug - | 
|  | * switch to read-only mode just in case. | 
|  | * The latter case means a real corruption - we | 
|  | * may try to recover data. FIXME: but this is | 
|  | * not implemented. | 
|  | */ | 
|  | if (err == UBI_IO_BAD_HDR_EBADMSG || | 
|  | err == UBI_IO_BAD_HDR) { | 
|  | ubi_warn(ubi, "corrupted VID header at PEB %d, LEB %d:%d", | 
|  | pnum, vol_id, lnum); | 
|  | err = -EBADMSG; | 
|  | } else { | 
|  | /* | 
|  | * Ending up here in the non-Fastmap case | 
|  | * is a clear bug as the VID header had to | 
|  | * be present at scan time to have it referenced. | 
|  | * With fastmap the story is more complicated. | 
|  | * Fastmap has the mapping info without the need | 
|  | * of a full scan. So the LEB could have been | 
|  | * unmapped, Fastmap cannot know this and keeps | 
|  | * the LEB referenced. | 
|  | * This is valid and works as the layer above UBI | 
|  | * has to do bookkeeping about used/referenced | 
|  | * LEBs in any case. | 
|  | */ | 
|  | if (ubi->fast_attach) { | 
|  | err = -EBADMSG; | 
|  | } else { | 
|  | err = -EINVAL; | 
|  | ubi_ro_mode(ubi); | 
|  | } | 
|  | } | 
|  | } | 
|  | goto out_free; | 
|  | } else if (err == UBI_IO_BITFLIPS) | 
|  | scrub = 1; | 
|  |  | 
|  | ubi_assert(lnum < be32_to_cpu(vid_hdr->used_ebs)); | 
|  | ubi_assert(len == be32_to_cpu(vid_hdr->data_size)); | 
|  |  | 
|  | crc = be32_to_cpu(vid_hdr->data_crc); | 
|  | ubi_free_vid_buf(vidb); | 
|  | } | 
|  |  | 
|  | err = ubi_io_read_data(ubi, buf, pnum, offset, len); | 
|  | if (err) { | 
|  | if (err == UBI_IO_BITFLIPS) | 
|  | scrub = 1; | 
|  | else if (mtd_is_eccerr(err)) { | 
|  | if (vol->vol_type == UBI_DYNAMIC_VOLUME) | 
|  | goto out_unlock; | 
|  | scrub = 1; | 
|  | if (!check) { | 
|  | ubi_msg(ubi, "force data checking"); | 
|  | check = 1; | 
|  | goto retry; | 
|  | } | 
|  | } else | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | if (check) { | 
|  | uint32_t crc1 = crc32(UBI_CRC32_INIT, buf, len); | 
|  | if (crc1 != crc) { | 
|  | ubi_warn(ubi, "CRC error: calculated %#08x, must be %#08x", | 
|  | crc1, crc); | 
|  | err = -EBADMSG; | 
|  | goto out_unlock; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (scrub) | 
|  | err = ubi_wl_scrub_peb(ubi, pnum); | 
|  |  | 
|  | leb_read_unlock(ubi, vol_id, lnum); | 
|  | return err; | 
|  |  | 
|  | out_free: | 
|  | ubi_free_vid_buf(vidb); | 
|  | out_unlock: | 
|  | leb_read_unlock(ubi, vol_id, lnum); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_read_leb_sg - read data into a scatter gather list. | 
|  | * @ubi: UBI device description object | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * @sgl: UBI scatter gather list to store the read data | 
|  | * @offset: offset from where to read | 
|  | * @len: how many bytes to read | 
|  | * @check: data CRC check flag | 
|  | * | 
|  | * This function works exactly like ubi_eba_read_leb(). But instead of | 
|  | * storing the read data into a buffer it writes to an UBI scatter gather | 
|  | * list. | 
|  | */ | 
|  | int ubi_eba_read_leb_sg(struct ubi_device *ubi, struct ubi_volume *vol, | 
|  | struct ubi_sgl *sgl, int lnum, int offset, int len, | 
|  | int check) | 
|  | { | 
|  | int to_read; | 
|  | int ret; | 
|  | struct scatterlist *sg; | 
|  |  | 
|  | for (;;) { | 
|  | ubi_assert(sgl->list_pos < UBI_MAX_SG_COUNT); | 
|  | sg = &sgl->sg[sgl->list_pos]; | 
|  | if (len < sg->length - sgl->page_pos) | 
|  | to_read = len; | 
|  | else | 
|  | to_read = sg->length - sgl->page_pos; | 
|  |  | 
|  | ret = ubi_eba_read_leb(ubi, vol, lnum, | 
|  | sg_virt(sg) + sgl->page_pos, offset, | 
|  | to_read, check); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | offset += to_read; | 
|  | len -= to_read; | 
|  | if (!len) { | 
|  | sgl->page_pos += to_read; | 
|  | if (sgl->page_pos == sg->length) { | 
|  | sgl->list_pos++; | 
|  | sgl->page_pos = 0; | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | sgl->list_pos++; | 
|  | sgl->page_pos = 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_recover_peb - try to recover from write failure. | 
|  | * @vol: volume description object | 
|  | * @pnum: the physical eraseblock to recover | 
|  | * @lnum: logical eraseblock number | 
|  | * @buf: data which was not written because of the write failure | 
|  | * @offset: offset of the failed write | 
|  | * @len: how many bytes should have been written | 
|  | * @vidb: VID buffer | 
|  | * @retry: whether the caller should retry in case of failure | 
|  | * | 
|  | * This function is called in case of a write failure and moves all good data | 
|  | * from the potentially bad physical eraseblock to a good physical eraseblock. | 
|  | * This function also writes the data which was not written due to the failure. | 
|  | * Returns 0 in case of success, and a negative error code in case of failure. | 
|  | * In case of failure, the %retry parameter is set to false if this is a fatal | 
|  | * error (retrying won't help), and true otherwise. | 
|  | */ | 
|  | static int try_recover_peb(struct ubi_volume *vol, int pnum, int lnum, | 
|  | const void *buf, int offset, int len, | 
|  | struct ubi_vid_io_buf *vidb, bool *retry) | 
|  | { | 
|  | struct ubi_device *ubi = vol->ubi; | 
|  | struct ubi_vid_hdr *vid_hdr; | 
|  | int new_pnum, err, vol_id = vol->vol_id, data_size; | 
|  | uint32_t crc; | 
|  |  | 
|  | *retry = false; | 
|  |  | 
|  | new_pnum = ubi_wl_get_peb(ubi); | 
|  | if (new_pnum < 0) { | 
|  | err = new_pnum; | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | ubi_msg(ubi, "recover PEB %d, move data to PEB %d", | 
|  | pnum, new_pnum); | 
|  |  | 
|  | err = ubi_io_read_vid_hdr(ubi, pnum, vidb, 1); | 
|  | if (err && err != UBI_IO_BITFLIPS) { | 
|  | if (err > 0) | 
|  | err = -EIO; | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | ubi_assert(vid_hdr->vol_type == UBI_VID_DYNAMIC); | 
|  |  | 
|  | mutex_lock(&ubi->buf_mutex); | 
|  | memset(ubi->peb_buf + offset, 0xFF, len); | 
|  |  | 
|  | /* Read everything before the area where the write failure happened */ | 
|  | if (offset > 0) { | 
|  | err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, offset); | 
|  | if (err && err != UBI_IO_BITFLIPS) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | *retry = true; | 
|  |  | 
|  | memcpy(ubi->peb_buf + offset, buf, len); | 
|  |  | 
|  | data_size = offset + len; | 
|  | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); | 
|  | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | vid_hdr->copy_flag = 1; | 
|  | vid_hdr->data_size = cpu_to_be32(data_size); | 
|  | vid_hdr->data_crc = cpu_to_be32(crc); | 
|  | err = ubi_io_write_vid_hdr(ubi, new_pnum, vidb); | 
|  | if (err) | 
|  | goto out_unlock; | 
|  |  | 
|  | err = ubi_io_write_data(ubi, ubi->peb_buf, new_pnum, 0, data_size); | 
|  |  | 
|  | out_unlock: | 
|  | mutex_unlock(&ubi->buf_mutex); | 
|  |  | 
|  | if (!err) | 
|  | vol->eba_tbl->entries[lnum].pnum = new_pnum; | 
|  |  | 
|  | out_put: | 
|  | up_read(&ubi->fm_eba_sem); | 
|  |  | 
|  | if (!err) { | 
|  | ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); | 
|  | ubi_msg(ubi, "data was successfully recovered"); | 
|  | } else if (new_pnum >= 0) { | 
|  | /* | 
|  | * Bad luck? This physical eraseblock is bad too? Crud. Let's | 
|  | * try to get another one. | 
|  | */ | 
|  | ubi_wl_put_peb(ubi, vol_id, lnum, new_pnum, 1); | 
|  | ubi_warn(ubi, "failed to write to PEB %d", new_pnum); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * recover_peb - recover from write failure. | 
|  | * @ubi: UBI device description object | 
|  | * @pnum: the physical eraseblock to recover | 
|  | * @vol_id: volume ID | 
|  | * @lnum: logical eraseblock number | 
|  | * @buf: data which was not written because of the write failure | 
|  | * @offset: offset of the failed write | 
|  | * @len: how many bytes should have been written | 
|  | * | 
|  | * This function is called in case of a write failure and moves all good data | 
|  | * from the potentially bad physical eraseblock to a good physical eraseblock. | 
|  | * This function also writes the data which was not written due to the failure. | 
|  | * Returns 0 in case of success, and a negative error code in case of failure. | 
|  | * This function tries %UBI_IO_RETRIES before giving up. | 
|  | */ | 
|  | static int recover_peb(struct ubi_device *ubi, int pnum, int vol_id, int lnum, | 
|  | const void *buf, int offset, int len) | 
|  | { | 
|  | int err, idx = vol_id2idx(ubi, vol_id), tries; | 
|  | struct ubi_volume *vol = ubi->volumes[idx]; | 
|  | struct ubi_vid_io_buf *vidb; | 
|  |  | 
|  | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | if (!vidb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { | 
|  | bool retry; | 
|  |  | 
|  | err = try_recover_peb(vol, pnum, lnum, buf, offset, len, vidb, | 
|  | &retry); | 
|  | if (!err || !retry) | 
|  | break; | 
|  |  | 
|  | ubi_msg(ubi, "try again"); | 
|  | } | 
|  |  | 
|  | ubi_free_vid_buf(vidb); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * try_write_vid_and_data - try to write VID header and data to a new PEB. | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * @vidb: the VID buffer to write | 
|  | * @buf: buffer containing the data | 
|  | * @offset: where to start writing data | 
|  | * @len: how many bytes should be written | 
|  | * | 
|  | * This function tries to write VID header and data belonging to logical | 
|  | * eraseblock @lnum of volume @vol to a new physical eraseblock. Returns zero | 
|  | * in case of success and a negative error code in case of failure. | 
|  | * In case of error, it is possible that something was still written to the | 
|  | * flash media, but may be some garbage. | 
|  | */ | 
|  | static int try_write_vid_and_data(struct ubi_volume *vol, int lnum, | 
|  | struct ubi_vid_io_buf *vidb, const void *buf, | 
|  | int offset, int len) | 
|  | { | 
|  | struct ubi_device *ubi = vol->ubi; | 
|  | int pnum, opnum, err, vol_id = vol->vol_id; | 
|  |  | 
|  | pnum = ubi_wl_get_peb(ubi); | 
|  | if (pnum < 0) { | 
|  | err = pnum; | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | opnum = vol->eba_tbl->entries[lnum].pnum; | 
|  |  | 
|  | dbg_eba("write VID hdr and %d bytes at offset %d of LEB %d:%d, PEB %d", | 
|  | len, offset, vol_id, lnum, pnum); | 
|  |  | 
|  | err = ubi_io_write_vid_hdr(ubi, pnum, vidb); | 
|  | if (err) { | 
|  | ubi_warn(ubi, "failed to write VID header to LEB %d:%d, PEB %d", | 
|  | vol_id, lnum, pnum); | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | if (len) { | 
|  | err = ubi_io_write_data(ubi, buf, pnum, offset, len); | 
|  | if (err) { | 
|  | ubi_warn(ubi, | 
|  | "failed to write %d bytes at offset %d of LEB %d:%d, PEB %d", | 
|  | len, offset, vol_id, lnum, pnum); | 
|  | goto out_put; | 
|  | } | 
|  | } | 
|  |  | 
|  | vol->eba_tbl->entries[lnum].pnum = pnum; | 
|  |  | 
|  | out_put: | 
|  | up_read(&ubi->fm_eba_sem); | 
|  |  | 
|  | if (err && pnum >= 0) | 
|  | err = ubi_wl_put_peb(ubi, vol_id, lnum, pnum, 1); | 
|  | else if (!err && opnum >= 0) | 
|  | err = ubi_wl_put_peb(ubi, vol_id, lnum, opnum, 0); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_write_leb - write data to dynamic volume. | 
|  | * @ubi: UBI device description object | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * @buf: the data to write | 
|  | * @offset: offset within the logical eraseblock where to write | 
|  | * @len: how many bytes to write | 
|  | * | 
|  | * This function writes data to logical eraseblock @lnum of a dynamic volume | 
|  | * @vol. Returns zero in case of success and a negative error code in case | 
|  | * of failure. In case of error, it is possible that something was still | 
|  | * written to the flash media, but may be some garbage. | 
|  | * This function retries %UBI_IO_RETRIES times before giving up. | 
|  | */ | 
|  | int ubi_eba_write_leb(struct ubi_device *ubi, struct ubi_volume *vol, int lnum, | 
|  | const void *buf, int offset, int len) | 
|  | { | 
|  | int err, pnum, tries, vol_id = vol->vol_id; | 
|  | struct ubi_vid_io_buf *vidb; | 
|  | struct ubi_vid_hdr *vid_hdr; | 
|  |  | 
|  | if (ubi->ro_mode) | 
|  | return -EROFS; | 
|  |  | 
|  | err = leb_write_lock(ubi, vol_id, lnum); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | pnum = vol->eba_tbl->entries[lnum].pnum; | 
|  | if (pnum >= 0) { | 
|  | err = check_mapping(ubi, vol, lnum, &pnum); | 
|  | if (err < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (pnum >= 0) { | 
|  | dbg_eba("write %d bytes at offset %d of LEB %d:%d, PEB %d", | 
|  | len, offset, vol_id, lnum, pnum); | 
|  |  | 
|  | err = ubi_io_write_data(ubi, buf, pnum, offset, len); | 
|  | if (err) { | 
|  | ubi_warn(ubi, "failed to write data to PEB %d", pnum); | 
|  | if (err == -EIO && ubi->bad_allowed) | 
|  | err = recover_peb(ubi, pnum, vol_id, lnum, buf, | 
|  | offset, len); | 
|  | } | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The logical eraseblock is not mapped. We have to get a free physical | 
|  | * eraseblock and write the volume identifier header there first. | 
|  | */ | 
|  | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | if (!vidb) { | 
|  | leb_write_unlock(ubi, vol_id, lnum); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  |  | 
|  | vid_hdr->vol_type = UBI_VID_DYNAMIC; | 
|  | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | vid_hdr->vol_id = cpu_to_be32(vol_id); | 
|  | vid_hdr->lnum = cpu_to_be32(lnum); | 
|  | vid_hdr->compat = ubi_get_compat(ubi, vol_id); | 
|  | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); | 
|  |  | 
|  | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { | 
|  | err = try_write_vid_and_data(vol, lnum, vidb, buf, offset, len); | 
|  | if (err != -EIO || !ubi->bad_allowed) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Fortunately, this is the first write operation to this | 
|  | * physical eraseblock, so just put it and request a new one. | 
|  | * We assume that if this physical eraseblock went bad, the | 
|  | * erase code will handle that. | 
|  | */ | 
|  | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | ubi_msg(ubi, "try another PEB"); | 
|  | } | 
|  |  | 
|  | ubi_free_vid_buf(vidb); | 
|  |  | 
|  | out: | 
|  | if (err) | 
|  | ubi_ro_mode(ubi); | 
|  |  | 
|  | leb_write_unlock(ubi, vol_id, lnum); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_write_leb_st - write data to static volume. | 
|  | * @ubi: UBI device description object | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * @buf: data to write | 
|  | * @len: how many bytes to write | 
|  | * @used_ebs: how many logical eraseblocks will this volume contain | 
|  | * | 
|  | * This function writes data to logical eraseblock @lnum of static volume | 
|  | * @vol. The @used_ebs argument should contain total number of logical | 
|  | * eraseblock in this static volume. | 
|  | * | 
|  | * When writing to the last logical eraseblock, the @len argument doesn't have | 
|  | * to be aligned to the minimal I/O unit size. Instead, it has to be equivalent | 
|  | * to the real data size, although the @buf buffer has to contain the | 
|  | * alignment. In all other cases, @len has to be aligned. | 
|  | * | 
|  | * It is prohibited to write more than once to logical eraseblocks of static | 
|  | * volumes. This function returns zero in case of success and a negative error | 
|  | * code in case of failure. | 
|  | */ | 
|  | int ubi_eba_write_leb_st(struct ubi_device *ubi, struct ubi_volume *vol, | 
|  | int lnum, const void *buf, int len, int used_ebs) | 
|  | { | 
|  | int err, tries, data_size = len, vol_id = vol->vol_id; | 
|  | struct ubi_vid_io_buf *vidb; | 
|  | struct ubi_vid_hdr *vid_hdr; | 
|  | uint32_t crc; | 
|  |  | 
|  | if (ubi->ro_mode) | 
|  | return -EROFS; | 
|  |  | 
|  | if (lnum == used_ebs - 1) | 
|  | /* If this is the last LEB @len may be unaligned */ | 
|  | len = ALIGN(data_size, ubi->min_io_size); | 
|  | else | 
|  | ubi_assert(!(len & (ubi->min_io_size - 1))); | 
|  |  | 
|  | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | if (!vidb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  |  | 
|  | err = leb_write_lock(ubi, vol_id, lnum); | 
|  | if (err) | 
|  | goto out; | 
|  |  | 
|  | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | vid_hdr->vol_id = cpu_to_be32(vol_id); | 
|  | vid_hdr->lnum = cpu_to_be32(lnum); | 
|  | vid_hdr->compat = ubi_get_compat(ubi, vol_id); | 
|  | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); | 
|  |  | 
|  | crc = crc32(UBI_CRC32_INIT, buf, data_size); | 
|  | vid_hdr->vol_type = UBI_VID_STATIC; | 
|  | vid_hdr->data_size = cpu_to_be32(data_size); | 
|  | vid_hdr->used_ebs = cpu_to_be32(used_ebs); | 
|  | vid_hdr->data_crc = cpu_to_be32(crc); | 
|  |  | 
|  | ubi_assert(vol->eba_tbl->entries[lnum].pnum < 0); | 
|  |  | 
|  | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { | 
|  | err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); | 
|  | if (err != -EIO || !ubi->bad_allowed) | 
|  | break; | 
|  |  | 
|  | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | ubi_msg(ubi, "try another PEB"); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | ubi_ro_mode(ubi); | 
|  |  | 
|  | leb_write_unlock(ubi, vol_id, lnum); | 
|  |  | 
|  | out: | 
|  | ubi_free_vid_buf(vidb); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ubi_eba_atomic_leb_change - change logical eraseblock atomically. | 
|  | * @ubi: UBI device description object | 
|  | * @vol: volume description object | 
|  | * @lnum: logical eraseblock number | 
|  | * @buf: data to write | 
|  | * @len: how many bytes to write | 
|  | * | 
|  | * This function changes the contents of a logical eraseblock atomically. @buf | 
|  | * has to contain new logical eraseblock data, and @len - the length of the | 
|  | * data, which has to be aligned. This function guarantees that in case of an | 
|  | * unclean reboot the old contents is preserved. Returns zero in case of | 
|  | * success and a negative error code in case of failure. | 
|  | * | 
|  | * UBI reserves one LEB for the "atomic LEB change" operation, so only one | 
|  | * LEB change may be done at a time. This is ensured by @ubi->alc_mutex. | 
|  | */ | 
|  | int ubi_eba_atomic_leb_change(struct ubi_device *ubi, struct ubi_volume *vol, | 
|  | int lnum, const void *buf, int len) | 
|  | { | 
|  | int err, tries, vol_id = vol->vol_id; | 
|  | struct ubi_vid_io_buf *vidb; | 
|  | struct ubi_vid_hdr *vid_hdr; | 
|  | uint32_t crc; | 
|  |  | 
|  | if (ubi->ro_mode) | 
|  | return -EROFS; | 
|  |  | 
|  | if (len == 0) { | 
|  | /* | 
|  | * Special case when data length is zero. In this case the LEB | 
|  | * has to be unmapped and mapped somewhere else. | 
|  | */ | 
|  | err = ubi_eba_unmap_leb(ubi, vol, lnum); | 
|  | if (err) | 
|  | return err; | 
|  | return ubi_eba_write_leb(ubi, vol, lnum, NULL, 0, 0); | 
|  | } | 
|  |  | 
|  | vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); | 
|  | if (!vidb) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vid_hdr = ubi_get_vid_hdr(vidb); | 
|  |  | 
|  | mutex_lock(&ubi->alc_mutex); | 
|  | err = leb_write_lock(ubi, vol_id, lnum); | 
|  | if (err) | 
|  | goto out_mutex; | 
|  |  | 
|  | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | vid_hdr->vol_id = cpu_to_be32(vol_id); | 
|  | vid_hdr->lnum = cpu_to_be32(lnum); | 
|  | vid_hdr->compat = ubi_get_compat(ubi, vol_id); | 
|  | vid_hdr->data_pad = cpu_to_be32(vol->data_pad); | 
|  |  | 
|  | crc = crc32(UBI_CRC32_INIT, buf, len); | 
|  | vid_hdr->vol_type = UBI_VID_DYNAMIC; | 
|  | vid_hdr->data_size = cpu_to_be32(len); | 
|  | vid_hdr->copy_flag = 1; | 
|  | vid_hdr->data_crc = cpu_to_be32(crc); | 
|  |  | 
|  | dbg_eba("change LEB %d:%d", vol_id, lnum); | 
|  |  | 
|  | for (tries = 0; tries <= UBI_IO_RETRIES; tries++) { | 
|  | err = try_write_vid_and_data(vol, lnum, vidb, buf, 0, len); | 
|  | if (err != -EIO || !ubi->bad_allowed) | 
|  | break; | 
|  |  | 
|  | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  | ubi_msg(ubi, "try another PEB"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This flash device does not admit of bad eraseblocks or | 
|  | * something nasty and unexpected happened. Switch to read-only | 
|  | * mode just in case. | 
|  | */ | 
|  | if (err) | 
|  | ubi_ro_mode(ubi); | 
|  |  | 
|  | leb_write_unlock(ubi, vol_id, lnum); | 
|  |  | 
|  | out_mutex: | 
|  | mutex_unlock(&ubi->alc_mutex); | 
|  | ubi_free_vid_buf(vidb); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * is_error_sane - check whether a read error is sane. | 
|  | * @err: code of the error happened during reading | 
|  | * | 
|  | * This is a helper function for 'ubi_eba_copy_leb()' which is called when we | 
|  | * cannot read data from the target PEB (an error @err happened). If the error | 
|  | * code is sane, then we treat this error as non-fatal. Otherwise the error is | 
|  | * fatal and UBI will be switched to R/O mode later. | 
|  | * | 
|  | * The idea is that we try not to switch to R/O mode if the read error is | 
|  | * something which suggests there was a real read problem. E.g., %-EIO. Or a | 
|  | * memory allocation failed (-%ENOMEM). Otherwise, it is safer to switch to R/O | 
|  | * mode, simply because we do not know what happened at the MTD level, and we | 
|  | * cannot handle this. E.g., the underlying driver may have become crazy, and | 
|  | * it is safer to switch to R/O mode to preserve the data. | 
|  | * | 
|  | * And bear in mind, this is about reading from the target PEB, i.e. the PEB | 
|  | * which we have just written. | 
|  | */ | 
|  | static int is_error_sane(int err) | 
|  | { | 
|  | if (err == -EIO || err == -ENOMEM || err == UBI_IO_BAD_HDR || | 
|  | err == UBI_IO_BAD_HDR_EBADMSG || err == -ETIMEDOUT) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_copy_leb - copy logical eraseblock. | 
|  | * @ubi: UBI device description object | 
|  | * @from: physical eraseblock number from where to copy | 
|  | * @to: physical eraseblock number where to copy | 
|  | * @vid_hdr: VID header of the @from physical eraseblock | 
|  | * | 
|  | * This function copies logical eraseblock from physical eraseblock @from to | 
|  | * physical eraseblock @to. The @vid_hdr buffer may be changed by this | 
|  | * function. Returns: | 
|  | *   o %0 in case of success; | 
|  | *   o %MOVE_CANCEL_RACE, %MOVE_TARGET_WR_ERR, %MOVE_TARGET_BITFLIPS, etc; | 
|  | *   o a negative error code in case of failure. | 
|  | */ | 
|  | int ubi_eba_copy_leb(struct ubi_device *ubi, int from, int to, | 
|  | struct ubi_vid_io_buf *vidb) | 
|  | { | 
|  | int err, vol_id, lnum, data_size, aldata_size, idx; | 
|  | struct ubi_vid_hdr *vid_hdr = ubi_get_vid_hdr(vidb); | 
|  | struct ubi_volume *vol; | 
|  | uint32_t crc; | 
|  |  | 
|  | ubi_assert(rwsem_is_locked(&ubi->fm_eba_sem)); | 
|  |  | 
|  | vol_id = be32_to_cpu(vid_hdr->vol_id); | 
|  | lnum = be32_to_cpu(vid_hdr->lnum); | 
|  |  | 
|  | dbg_wl("copy LEB %d:%d, PEB %d to PEB %d", vol_id, lnum, from, to); | 
|  |  | 
|  | if (vid_hdr->vol_type == UBI_VID_STATIC) { | 
|  | data_size = be32_to_cpu(vid_hdr->data_size); | 
|  | aldata_size = ALIGN(data_size, ubi->min_io_size); | 
|  | } else | 
|  | data_size = aldata_size = | 
|  | ubi->leb_size - be32_to_cpu(vid_hdr->data_pad); | 
|  |  | 
|  | idx = vol_id2idx(ubi, vol_id); | 
|  | spin_lock(&ubi->volumes_lock); | 
|  | /* | 
|  | * Note, we may race with volume deletion, which means that the volume | 
|  | * this logical eraseblock belongs to might be being deleted. Since the | 
|  | * volume deletion un-maps all the volume's logical eraseblocks, it will | 
|  | * be locked in 'ubi_wl_put_peb()' and wait for the WL worker to finish. | 
|  | */ | 
|  | vol = ubi->volumes[idx]; | 
|  | spin_unlock(&ubi->volumes_lock); | 
|  | if (!vol) { | 
|  | /* No need to do further work, cancel */ | 
|  | dbg_wl("volume %d is being removed, cancel", vol_id); | 
|  | return MOVE_CANCEL_RACE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We do not want anybody to write to this logical eraseblock while we | 
|  | * are moving it, so lock it. | 
|  | * | 
|  | * Note, we are using non-waiting locking here, because we cannot sleep | 
|  | * on the LEB, since it may cause deadlocks. Indeed, imagine a task is | 
|  | * unmapping the LEB which is mapped to the PEB we are going to move | 
|  | * (@from). This task locks the LEB and goes sleep in the | 
|  | * 'ubi_wl_put_peb()' function on the @ubi->move_mutex. In turn, we are | 
|  | * holding @ubi->move_mutex and go sleep on the LEB lock. So, if the | 
|  | * LEB is already locked, we just do not move it and return | 
|  | * %MOVE_RETRY. Note, we do not return %MOVE_CANCEL_RACE here because | 
|  | * we do not know the reasons of the contention - it may be just a | 
|  | * normal I/O on this LEB, so we want to re-try. | 
|  | */ | 
|  | err = leb_write_trylock(ubi, vol_id, lnum); | 
|  | if (err) { | 
|  | dbg_wl("contention on LEB %d:%d, cancel", vol_id, lnum); | 
|  | return MOVE_RETRY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The LEB might have been put meanwhile, and the task which put it is | 
|  | * probably waiting on @ubi->move_mutex. No need to continue the work, | 
|  | * cancel it. | 
|  | */ | 
|  | if (vol->eba_tbl->entries[lnum].pnum != from) { | 
|  | dbg_wl("LEB %d:%d is no longer mapped to PEB %d, mapped to PEB %d, cancel", | 
|  | vol_id, lnum, from, vol->eba_tbl->entries[lnum].pnum); | 
|  | err = MOVE_CANCEL_RACE; | 
|  | goto out_unlock_leb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK, now the LEB is locked and we can safely start moving it. Since | 
|  | * this function utilizes the @ubi->peb_buf buffer which is shared | 
|  | * with some other functions - we lock the buffer by taking the | 
|  | * @ubi->buf_mutex. | 
|  | */ | 
|  | mutex_lock(&ubi->buf_mutex); | 
|  | dbg_wl("read %d bytes of data", aldata_size); | 
|  | err = ubi_io_read_data(ubi, ubi->peb_buf, from, 0, aldata_size); | 
|  | if (err && err != UBI_IO_BITFLIPS) { | 
|  | ubi_warn(ubi, "error %d while reading data from PEB %d", | 
|  | err, from); | 
|  | err = MOVE_SOURCE_RD_ERR; | 
|  | goto out_unlock_buf; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we have got to calculate how much data we have to copy. In | 
|  | * case of a static volume it is fairly easy - the VID header contains | 
|  | * the data size. In case of a dynamic volume it is more difficult - we | 
|  | * have to read the contents, cut 0xFF bytes from the end and copy only | 
|  | * the first part. We must do this to avoid writing 0xFF bytes as it | 
|  | * may have some side-effects. And not only this. It is important not | 
|  | * to include those 0xFFs to CRC because later the they may be filled | 
|  | * by data. | 
|  | */ | 
|  | if (vid_hdr->vol_type == UBI_VID_DYNAMIC) | 
|  | aldata_size = data_size = | 
|  | ubi_calc_data_len(ubi, ubi->peb_buf, data_size); | 
|  |  | 
|  | cond_resched(); | 
|  | crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, data_size); | 
|  | cond_resched(); | 
|  |  | 
|  | /* | 
|  | * It may turn out to be that the whole @from physical eraseblock | 
|  | * contains only 0xFF bytes. Then we have to only write the VID header | 
|  | * and do not write any data. This also means we should not set | 
|  | * @vid_hdr->copy_flag, @vid_hdr->data_size, and @vid_hdr->data_crc. | 
|  | */ | 
|  | if (data_size > 0) { | 
|  | vid_hdr->copy_flag = 1; | 
|  | vid_hdr->data_size = cpu_to_be32(data_size); | 
|  | vid_hdr->data_crc = cpu_to_be32(crc); | 
|  | } | 
|  | vid_hdr->sqnum = cpu_to_be64(ubi_next_sqnum(ubi)); | 
|  |  | 
|  | err = ubi_io_write_vid_hdr(ubi, to, vidb); | 
|  | if (err) { | 
|  | if (err == -EIO) | 
|  | err = MOVE_TARGET_WR_ERR; | 
|  | goto out_unlock_buf; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | /* Read the VID header back and check if it was written correctly */ | 
|  | err = ubi_io_read_vid_hdr(ubi, to, vidb, 1); | 
|  | if (err) { | 
|  | if (err != UBI_IO_BITFLIPS) { | 
|  | ubi_warn(ubi, "error %d while reading VID header back from PEB %d", | 
|  | err, to); | 
|  | if (is_error_sane(err)) | 
|  | err = MOVE_TARGET_RD_ERR; | 
|  | } else | 
|  | err = MOVE_TARGET_BITFLIPS; | 
|  | goto out_unlock_buf; | 
|  | } | 
|  |  | 
|  | if (data_size > 0) { | 
|  | err = ubi_io_write_data(ubi, ubi->peb_buf, to, 0, aldata_size); | 
|  | if (err) { | 
|  | if (err == -EIO) | 
|  | err = MOVE_TARGET_WR_ERR; | 
|  | goto out_unlock_buf; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | ubi_assert(vol->eba_tbl->entries[lnum].pnum == from); | 
|  | vol->eba_tbl->entries[lnum].pnum = to; | 
|  |  | 
|  | out_unlock_buf: | 
|  | mutex_unlock(&ubi->buf_mutex); | 
|  | out_unlock_leb: | 
|  | leb_write_unlock(ubi, vol_id, lnum); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * print_rsvd_warning - warn about not having enough reserved PEBs. | 
|  | * @ubi: UBI device description object | 
|  | * | 
|  | * This is a helper function for 'ubi_eba_init()' which is called when UBI | 
|  | * cannot reserve enough PEBs for bad block handling. This function makes a | 
|  | * decision whether we have to print a warning or not. The algorithm is as | 
|  | * follows: | 
|  | *   o if this is a new UBI image, then just print the warning | 
|  | *   o if this is an UBI image which has already been used for some time, print | 
|  | *     a warning only if we can reserve less than 10% of the expected amount of | 
|  | *     the reserved PEB. | 
|  | * | 
|  | * The idea is that when UBI is used, PEBs become bad, and the reserved pool | 
|  | * of PEBs becomes smaller, which is normal and we do not want to scare users | 
|  | * with a warning every time they attach the MTD device. This was an issue | 
|  | * reported by real users. | 
|  | */ | 
|  | static void print_rsvd_warning(struct ubi_device *ubi, | 
|  | struct ubi_attach_info *ai) | 
|  | { | 
|  | /* | 
|  | * The 1 << 18 (256KiB) number is picked randomly, just a reasonably | 
|  | * large number to distinguish between newly flashed and used images. | 
|  | */ | 
|  | if (ai->max_sqnum > (1 << 18)) { | 
|  | int min = ubi->beb_rsvd_level / 10; | 
|  |  | 
|  | if (!min) | 
|  | min = 1; | 
|  | if (ubi->beb_rsvd_pebs > min) | 
|  | return; | 
|  | } | 
|  |  | 
|  | ubi_warn(ubi, "cannot reserve enough PEBs for bad PEB handling, reserved %d, need %d", | 
|  | ubi->beb_rsvd_pebs, ubi->beb_rsvd_level); | 
|  | if (ubi->corr_peb_count) | 
|  | ubi_warn(ubi, "%d PEBs are corrupted and not used", | 
|  | ubi->corr_peb_count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * self_check_eba - run a self check on the EBA table constructed by fastmap. | 
|  | * @ubi: UBI device description object | 
|  | * @ai_fastmap: UBI attach info object created by fastmap | 
|  | * @ai_scan: UBI attach info object created by scanning | 
|  | * | 
|  | * Returns < 0 in case of an internal error, 0 otherwise. | 
|  | * If a bad EBA table entry was found it will be printed out and | 
|  | * ubi_assert() triggers. | 
|  | */ | 
|  | int self_check_eba(struct ubi_device *ubi, struct ubi_attach_info *ai_fastmap, | 
|  | struct ubi_attach_info *ai_scan) | 
|  | { | 
|  | int i, j, num_volumes, ret = 0; | 
|  | int **scan_eba, **fm_eba; | 
|  | struct ubi_ainf_volume *av; | 
|  | struct ubi_volume *vol; | 
|  | struct ubi_ainf_peb *aeb; | 
|  | struct rb_node *rb; | 
|  |  | 
|  | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; | 
|  |  | 
|  | scan_eba = kmalloc_array(num_volumes, sizeof(*scan_eba), GFP_KERNEL); | 
|  | if (!scan_eba) | 
|  | return -ENOMEM; | 
|  |  | 
|  | fm_eba = kmalloc_array(num_volumes, sizeof(*fm_eba), GFP_KERNEL); | 
|  | if (!fm_eba) { | 
|  | kfree(scan_eba); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_volumes; i++) { | 
|  | vol = ubi->volumes[i]; | 
|  | if (!vol) | 
|  | continue; | 
|  |  | 
|  | scan_eba[i] = kmalloc_array(vol->reserved_pebs, | 
|  | sizeof(**scan_eba), | 
|  | GFP_KERNEL); | 
|  | if (!scan_eba[i]) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | fm_eba[i] = kmalloc_array(vol->reserved_pebs, | 
|  | sizeof(**fm_eba), | 
|  | GFP_KERNEL); | 
|  | if (!fm_eba[i]) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < vol->reserved_pebs; j++) | 
|  | scan_eba[i][j] = fm_eba[i][j] = UBI_LEB_UNMAPPED; | 
|  |  | 
|  | av = ubi_find_av(ai_scan, idx2vol_id(ubi, i)); | 
|  | if (!av) | 
|  | continue; | 
|  |  | 
|  | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) | 
|  | scan_eba[i][aeb->lnum] = aeb->pnum; | 
|  |  | 
|  | av = ubi_find_av(ai_fastmap, idx2vol_id(ubi, i)); | 
|  | if (!av) | 
|  | continue; | 
|  |  | 
|  | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) | 
|  | fm_eba[i][aeb->lnum] = aeb->pnum; | 
|  |  | 
|  | for (j = 0; j < vol->reserved_pebs; j++) { | 
|  | if (scan_eba[i][j] != fm_eba[i][j]) { | 
|  | if (scan_eba[i][j] == UBI_LEB_UNMAPPED || | 
|  | fm_eba[i][j] == UBI_LEB_UNMAPPED) | 
|  | continue; | 
|  |  | 
|  | ubi_err(ubi, "LEB:%i:%i is PEB:%i instead of %i!", | 
|  | vol->vol_id, j, fm_eba[i][j], | 
|  | scan_eba[i][j]); | 
|  | ubi_assert(0); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | out_free: | 
|  | for (i = 0; i < num_volumes; i++) { | 
|  | if (!ubi->volumes[i]) | 
|  | continue; | 
|  |  | 
|  | kfree(scan_eba[i]); | 
|  | kfree(fm_eba[i]); | 
|  | } | 
|  |  | 
|  | kfree(scan_eba); | 
|  | kfree(fm_eba); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ubi_eba_init - initialize the EBA sub-system using attaching information. | 
|  | * @ubi: UBI device description object | 
|  | * @ai: attaching information | 
|  | * | 
|  | * This function returns zero in case of success and a negative error code in | 
|  | * case of failure. | 
|  | */ | 
|  | int ubi_eba_init(struct ubi_device *ubi, struct ubi_attach_info *ai) | 
|  | { | 
|  | int i, err, num_volumes; | 
|  | struct ubi_ainf_volume *av; | 
|  | struct ubi_volume *vol; | 
|  | struct ubi_ainf_peb *aeb; | 
|  | struct rb_node *rb; | 
|  |  | 
|  | dbg_eba("initialize EBA sub-system"); | 
|  |  | 
|  | spin_lock_init(&ubi->ltree_lock); | 
|  | mutex_init(&ubi->alc_mutex); | 
|  | ubi->ltree = RB_ROOT; | 
|  |  | 
|  | ubi->global_sqnum = ai->max_sqnum + 1; | 
|  | num_volumes = ubi->vtbl_slots + UBI_INT_VOL_COUNT; | 
|  |  | 
|  | for (i = 0; i < num_volumes; i++) { | 
|  | struct ubi_eba_table *tbl; | 
|  |  | 
|  | vol = ubi->volumes[i]; | 
|  | if (!vol) | 
|  | continue; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | tbl = ubi_eba_create_table(vol, vol->reserved_pebs); | 
|  | if (IS_ERR(tbl)) { | 
|  | err = PTR_ERR(tbl); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | ubi_eba_replace_table(vol, tbl); | 
|  |  | 
|  | av = ubi_find_av(ai, idx2vol_id(ubi, i)); | 
|  | if (!av) | 
|  | continue; | 
|  |  | 
|  | ubi_rb_for_each_entry(rb, aeb, &av->root, u.rb) { | 
|  | if (aeb->lnum >= vol->reserved_pebs) { | 
|  | /* | 
|  | * This may happen in case of an unclean reboot | 
|  | * during re-size. | 
|  | */ | 
|  | ubi_move_aeb_to_list(av, aeb, &ai->erase); | 
|  | } else { | 
|  | struct ubi_eba_entry *entry; | 
|  |  | 
|  | entry = &vol->eba_tbl->entries[aeb->lnum]; | 
|  | entry->pnum = aeb->pnum; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ubi->avail_pebs < EBA_RESERVED_PEBS) { | 
|  | ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", | 
|  | ubi->avail_pebs, EBA_RESERVED_PEBS); | 
|  | if (ubi->corr_peb_count) | 
|  | ubi_err(ubi, "%d PEBs are corrupted and not used", | 
|  | ubi->corr_peb_count); | 
|  | err = -ENOSPC; | 
|  | goto out_free; | 
|  | } | 
|  | ubi->avail_pebs -= EBA_RESERVED_PEBS; | 
|  | ubi->rsvd_pebs += EBA_RESERVED_PEBS; | 
|  |  | 
|  | if (ubi->bad_allowed) { | 
|  | ubi_calculate_reserved(ubi); | 
|  |  | 
|  | if (ubi->avail_pebs < ubi->beb_rsvd_level) { | 
|  | /* No enough free physical eraseblocks */ | 
|  | ubi->beb_rsvd_pebs = ubi->avail_pebs; | 
|  | print_rsvd_warning(ubi, ai); | 
|  | } else | 
|  | ubi->beb_rsvd_pebs = ubi->beb_rsvd_level; | 
|  |  | 
|  | ubi->avail_pebs -= ubi->beb_rsvd_pebs; | 
|  | ubi->rsvd_pebs  += ubi->beb_rsvd_pebs; | 
|  | } | 
|  |  | 
|  | dbg_eba("EBA sub-system is initialized"); | 
|  | return 0; | 
|  |  | 
|  | out_free: | 
|  | for (i = 0; i < num_volumes; i++) { | 
|  | if (!ubi->volumes[i]) | 
|  | continue; | 
|  | ubi_eba_replace_table(ubi->volumes[i], NULL); | 
|  | } | 
|  | return err; | 
|  | } |