| /* lanai.c -- Copyright 1999-2003 by Mitchell Blank Jr <mitch@sfgoth.com> | 
 |  * | 
 |  *  This program is free software; you can redistribute it and/or | 
 |  *  modify it under the terms of the GNU General Public License | 
 |  *  as published by the Free Software Foundation; either version | 
 |  *  2 of the License, or (at your option) any later version. | 
 |  * | 
 |  * This driver supports ATM cards based on the Efficient "Lanai" | 
 |  * chipset such as the Speedstream 3010 and the ENI-25p.  The | 
 |  * Speedstream 3060 is currently not supported since we don't | 
 |  * have the code to drive the on-board Alcatel DSL chipset (yet). | 
 |  * | 
 |  * Thanks to Efficient for supporting this project with hardware, | 
 |  * documentation, and by answering my questions. | 
 |  * | 
 |  * Things not working yet: | 
 |  * | 
 |  * o  We don't support the Speedstream 3060 yet - this card has | 
 |  *    an on-board DSL modem chip by Alcatel and the driver will | 
 |  *    need some extra code added to handle it | 
 |  * | 
 |  * o  Note that due to limitations of the Lanai only one VCC can be | 
 |  *    in CBR at once | 
 |  * | 
 |  * o We don't currently parse the EEPROM at all.  The code is all | 
 |  *   there as per the spec, but it doesn't actually work.  I think | 
 |  *   there may be some issues with the docs.  Anyway, do NOT | 
 |  *   enable it yet - bugs in that code may actually damage your | 
 |  *   hardware!  Because of this you should hardware an ESI before | 
 |  *   trying to use this in a LANE or MPOA environment. | 
 |  * | 
 |  * o  AAL0 is stubbed in but the actual rx/tx path isn't written yet: | 
 |  *	vcc_tx_aal0() needs to send or queue a SKB | 
 |  *	vcc_tx_unqueue_aal0() needs to attempt to send queued SKBs | 
 |  *	vcc_rx_aal0() needs to handle AAL0 interrupts | 
 |  *    This isn't too much work - I just wanted to get other things | 
 |  *    done first. | 
 |  * | 
 |  * o  lanai_change_qos() isn't written yet | 
 |  * | 
 |  * o  There aren't any ioctl's yet -- I'd like to eventually support | 
 |  *    setting loopback and LED modes that way. | 
 |  * | 
 |  * o  If the segmentation engine or DMA gets shut down we should restart | 
 |  *    card as per section 17.0i.  (see lanai_reset) | 
 |  * | 
 |  * o setsockopt(SO_CIRANGE) isn't done (although despite what the | 
 |  *   API says it isn't exactly commonly implemented) | 
 |  */ | 
 |  | 
 | /* Version history: | 
 |  *   v.1.00 -- 26-JUL-2003 -- PCI/DMA updates | 
 |  *   v.0.02 -- 11-JAN-2000 -- Endian fixes | 
 |  *   v.0.01 -- 30-NOV-1999 -- Initial release | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/atmdev.h> | 
 | #include <asm/io.h> | 
 | #include <asm/byteorder.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/init.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/interrupt.h> | 
 |  | 
 | /* -------------------- TUNABLE PARAMATERS: */ | 
 |  | 
 | /* | 
 |  * Maximum number of VCIs per card.  Setting it lower could theoretically | 
 |  * save some memory, but since we allocate our vcc list with get_free_pages, | 
 |  * it's not really likely for most architectures | 
 |  */ | 
 | #define NUM_VCI			(1024) | 
 |  | 
 | /* | 
 |  * Enable extra debugging | 
 |  */ | 
 | #define DEBUG | 
 | /* | 
 |  * Debug _all_ register operations with card, except the memory test. | 
 |  * Also disables the timed poll to prevent extra chattiness.  This | 
 |  * isn't for normal use | 
 |  */ | 
 | #undef DEBUG_RW | 
 |  | 
 | /* | 
 |  * The programming guide specifies a full test of the on-board SRAM | 
 |  * at initialization time.  Undefine to remove this | 
 |  */ | 
 | #define FULL_MEMORY_TEST | 
 |  | 
 | /* | 
 |  * This is the number of (4 byte) service entries that we will | 
 |  * try to allocate at startup.  Note that we will end up with | 
 |  * one PAGE_SIZE's worth regardless of what this is set to | 
 |  */ | 
 | #define SERVICE_ENTRIES		(1024) | 
 | /* TODO: make above a module load-time option */ | 
 |  | 
 | /* | 
 |  * We normally read the onboard EEPROM in order to discover our MAC | 
 |  * address.  Undefine to _not_ do this | 
 |  */ | 
 | /* #define READ_EEPROM */ /* ***DONT ENABLE YET*** */ | 
 | /* TODO: make above a module load-time option (also) */ | 
 |  | 
 | /* | 
 |  * Depth of TX fifo (in 128 byte units; range 2-31) | 
 |  * Smaller numbers are better for network latency | 
 |  * Larger numbers are better for PCI latency | 
 |  * I'm really sure where the best tradeoff is, but the BSD driver uses | 
 |  * 7 and it seems to work ok. | 
 |  */ | 
 | #define TX_FIFO_DEPTH		(7) | 
 | /* TODO: make above a module load-time option */ | 
 |  | 
 | /* | 
 |  * How often (in jiffies) we will try to unstick stuck connections - | 
 |  * shouldn't need to happen much | 
 |  */ | 
 | #define LANAI_POLL_PERIOD	(10*HZ) | 
 | /* TODO: make above a module load-time option */ | 
 |  | 
 | /* | 
 |  * When allocating an AAL5 receiving buffer, try to make it at least | 
 |  * large enough to hold this many max_sdu sized PDUs | 
 |  */ | 
 | #define AAL5_RX_MULTIPLIER	(3) | 
 | /* TODO: make above a module load-time option */ | 
 |  | 
 | /* | 
 |  * Same for transmitting buffer | 
 |  */ | 
 | #define AAL5_TX_MULTIPLIER	(3) | 
 | /* TODO: make above a module load-time option */ | 
 |  | 
 | /* | 
 |  * When allocating an AAL0 transmiting buffer, how many cells should fit. | 
 |  * Remember we'll end up with a PAGE_SIZE of them anyway, so this isn't | 
 |  * really critical | 
 |  */ | 
 | #define AAL0_TX_MULTIPLIER	(40) | 
 | /* TODO: make above a module load-time option */ | 
 |  | 
 | /* | 
 |  * How large should we make the AAL0 receiving buffer.  Remember that this | 
 |  * is shared between all AAL0 VC's | 
 |  */ | 
 | #define AAL0_RX_BUFFER_SIZE	(PAGE_SIZE) | 
 | /* TODO: make above a module load-time option */ | 
 |  | 
 | /* | 
 |  * Should we use Lanai's "powerdown" feature when no vcc's are bound? | 
 |  */ | 
 | /* #define USE_POWERDOWN */ | 
 | /* TODO: make above a module load-time option (also) */ | 
 |  | 
 | /* -------------------- DEBUGGING AIDS: */ | 
 |  | 
 | #define DEV_LABEL "lanai" | 
 |  | 
 | #ifdef DEBUG | 
 |  | 
 | #define DPRINTK(format, args...) \ | 
 | 	printk(KERN_DEBUG DEV_LABEL ": " format, ##args) | 
 | #define APRINTK(truth, format, args...) \ | 
 | 	do { \ | 
 | 		if (unlikely(!(truth))) \ | 
 | 			printk(KERN_ERR DEV_LABEL ": " format, ##args); \ | 
 | 	} while (0) | 
 |  | 
 | #else /* !DEBUG */ | 
 |  | 
 | #define DPRINTK(format, args...) | 
 | #define APRINTK(truth, format, args...) | 
 |  | 
 | #endif /* DEBUG */ | 
 |  | 
 | #ifdef DEBUG_RW | 
 | #define RWDEBUG(format, args...) \ | 
 | 	printk(KERN_DEBUG DEV_LABEL ": " format, ##args) | 
 | #else /* !DEBUG_RW */ | 
 | #define RWDEBUG(format, args...) | 
 | #endif | 
 |  | 
 | /* -------------------- DATA DEFINITIONS: */ | 
 |  | 
 | #define LANAI_MAPPING_SIZE	(0x40000) | 
 | #define LANAI_EEPROM_SIZE	(128) | 
 |  | 
 | typedef int vci_t; | 
 | typedef void __iomem *bus_addr_t; | 
 |  | 
 | /* DMA buffer in host memory for TX, RX, or service list. */ | 
 | struct lanai_buffer { | 
 | 	u32 *start;	/* From get_free_pages */ | 
 | 	u32 *end;	/* One past last byte */ | 
 | 	u32 *ptr;	/* Pointer to current host location */ | 
 | 	dma_addr_t dmaaddr; | 
 | }; | 
 |  | 
 | struct lanai_vcc_stats { | 
 | 	unsigned rx_nomem; | 
 | 	union { | 
 | 		struct { | 
 | 			unsigned rx_badlen; | 
 | 			unsigned service_trash; | 
 | 			unsigned service_stream; | 
 | 			unsigned service_rxcrc; | 
 | 		} aal5; | 
 | 		struct { | 
 | 		} aal0; | 
 | 	} x; | 
 | }; | 
 |  | 
 | struct lanai_dev;			/* Forward declaration */ | 
 |  | 
 | /* | 
 |  * This is the card-specific per-vcc data.  Note that unlike some other | 
 |  * drivers there is NOT a 1-to-1 correspondance between these and | 
 |  * atm_vcc's - each one of these represents an actual 2-way vcc, but | 
 |  * an atm_vcc can be 1-way and share with a 1-way vcc in the other | 
 |  * direction.  To make it weirder, there can even be 0-way vccs | 
 |  * bound to us, waiting to do a change_qos | 
 |  */ | 
 | struct lanai_vcc { | 
 | 	bus_addr_t vbase;		/* Base of VCC's registers */ | 
 | 	struct lanai_vcc_stats stats; | 
 | 	int nref;			/* # of atm_vcc's who reference us */ | 
 | 	vci_t vci; | 
 | 	struct { | 
 | 		struct lanai_buffer buf; | 
 | 		struct atm_vcc *atmvcc;	/* atm_vcc who is receiver */ | 
 | 	} rx; | 
 | 	struct { | 
 | 		struct lanai_buffer buf; | 
 | 		struct atm_vcc *atmvcc;	/* atm_vcc who is transmitter */ | 
 | 		int endptr;		/* last endptr from service entry */ | 
 | 		struct sk_buff_head backlog; | 
 | 		void (*unqueue)(struct lanai_dev *, struct lanai_vcc *, int); | 
 | 	} tx; | 
 | }; | 
 |  | 
 | enum lanai_type { | 
 | 	lanai2	= PCI_DEVICE_ID_EF_ATM_LANAI2, | 
 | 	lanaihb	= PCI_DEVICE_ID_EF_ATM_LANAIHB | 
 | }; | 
 |  | 
 | struct lanai_dev_stats { | 
 | 	unsigned ovfl_trash;	/* # of cells dropped - buffer overflow */ | 
 | 	unsigned vci_trash;	/* # of cells dropped - closed vci */ | 
 | 	unsigned hec_err;	/* # of cells dropped - bad HEC */ | 
 | 	unsigned atm_ovfl;	/* # of cells dropped - rx fifo overflow */ | 
 | 	unsigned pcierr_parity_detect; | 
 | 	unsigned pcierr_serr_set; | 
 | 	unsigned pcierr_master_abort; | 
 | 	unsigned pcierr_m_target_abort; | 
 | 	unsigned pcierr_s_target_abort; | 
 | 	unsigned pcierr_master_parity; | 
 | 	unsigned service_notx; | 
 | 	unsigned service_norx; | 
 | 	unsigned service_rxnotaal5; | 
 | 	unsigned dma_reenable; | 
 | 	unsigned card_reset; | 
 | }; | 
 |  | 
 | struct lanai_dev { | 
 | 	bus_addr_t base; | 
 | 	struct lanai_dev_stats stats; | 
 | 	struct lanai_buffer service; | 
 | 	struct lanai_vcc **vccs; | 
 | #ifdef USE_POWERDOWN | 
 | 	int nbound;			/* number of bound vccs */ | 
 | #endif | 
 | 	enum lanai_type type; | 
 | 	vci_t num_vci;			/* Currently just NUM_VCI */ | 
 | 	u8 eeprom[LANAI_EEPROM_SIZE]; | 
 | 	u32 serialno, magicno; | 
 | 	struct pci_dev *pci; | 
 | 	DECLARE_BITMAP(backlog_vccs, NUM_VCI);   /* VCCs with tx backlog */ | 
 | 	DECLARE_BITMAP(transmit_ready, NUM_VCI); /* VCCs with transmit space */ | 
 | 	struct timer_list timer; | 
 | 	int naal0; | 
 | 	struct lanai_buffer aal0buf;	/* AAL0 RX buffers */ | 
 | 	u32 conf1, conf2;		/* CONFIG[12] registers */ | 
 | 	u32 status;			/* STATUS register */ | 
 | 	spinlock_t endtxlock; | 
 | 	spinlock_t servicelock; | 
 | 	struct atm_vcc *cbrvcc; | 
 | 	int number; | 
 | 	int board_rev; | 
 | /* TODO - look at race conditions with maintence of conf1/conf2 */ | 
 | /* TODO - transmit locking: should we use _irq not _irqsave? */ | 
 | /* TODO - organize above in some rational fashion (see <asm/cache.h>) */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Each device has two bitmaps for each VCC (baclog_vccs and transmit_ready) | 
 |  * This function iterates one of these, calling a given function for each | 
 |  * vci with their bit set | 
 |  */ | 
 | static void vci_bitfield_iterate(struct lanai_dev *lanai, | 
 | 	const unsigned long *lp, | 
 | 	void (*func)(struct lanai_dev *,vci_t vci)) | 
 | { | 
 | 	vci_t vci; | 
 |  | 
 | 	for_each_set_bit(vci, lp, NUM_VCI) | 
 | 		func(lanai, vci); | 
 | } | 
 |  | 
 | /* -------------------- BUFFER  UTILITIES: */ | 
 |  | 
 | /* | 
 |  * Lanai needs DMA buffers aligned to 256 bytes of at least 1024 bytes - | 
 |  * usually any page allocation will do.  Just to be safe in case | 
 |  * PAGE_SIZE is insanely tiny, though... | 
 |  */ | 
 | #define LANAI_PAGE_SIZE   ((PAGE_SIZE >= 1024) ? PAGE_SIZE : 1024) | 
 |  | 
 | /* | 
 |  * Allocate a buffer in host RAM for service list, RX, or TX | 
 |  * Returns buf->start==NULL if no memory | 
 |  * Note that the size will be rounded up 2^n bytes, and | 
 |  * if we can't allocate that we'll settle for something smaller | 
 |  * until minbytes | 
 |  */ | 
 | static void lanai_buf_allocate(struct lanai_buffer *buf, | 
 | 	size_t bytes, size_t minbytes, struct pci_dev *pci) | 
 | { | 
 | 	int size; | 
 |  | 
 | 	if (bytes > (128 * 1024))	/* max lanai buffer size */ | 
 | 		bytes = 128 * 1024; | 
 | 	for (size = LANAI_PAGE_SIZE; size < bytes; size *= 2) | 
 | 		; | 
 | 	if (minbytes < LANAI_PAGE_SIZE) | 
 | 		minbytes = LANAI_PAGE_SIZE; | 
 | 	do { | 
 | 		/* | 
 | 		 * Technically we could use non-consistent mappings for | 
 | 		 * everything, but the way the lanai uses DMA memory would | 
 | 		 * make that a terrific pain.  This is much simpler. | 
 | 		 */ | 
 | 		buf->start = dma_alloc_coherent(&pci->dev, | 
 | 						size, &buf->dmaaddr, GFP_KERNEL); | 
 | 		if (buf->start != NULL) {	/* Success */ | 
 | 			/* Lanai requires 256-byte alignment of DMA bufs */ | 
 | 			APRINTK((buf->dmaaddr & ~0xFFFFFF00) == 0, | 
 | 			    "bad dmaaddr: 0x%lx\n", | 
 | 			    (unsigned long) buf->dmaaddr); | 
 | 			buf->ptr = buf->start; | 
 | 			buf->end = (u32 *) | 
 | 			    (&((unsigned char *) buf->start)[size]); | 
 | 			memset(buf->start, 0, size); | 
 | 			break; | 
 | 		} | 
 | 		size /= 2; | 
 | 	} while (size >= minbytes); | 
 | } | 
 |  | 
 | /* size of buffer in bytes */ | 
 | static inline size_t lanai_buf_size(const struct lanai_buffer *buf) | 
 | { | 
 | 	return ((unsigned long) buf->end) - ((unsigned long) buf->start); | 
 | } | 
 |  | 
 | static void lanai_buf_deallocate(struct lanai_buffer *buf, | 
 | 	struct pci_dev *pci) | 
 | { | 
 | 	if (buf->start != NULL) { | 
 | 		dma_free_coherent(&pci->dev, lanai_buf_size(buf), | 
 | 				  buf->start, buf->dmaaddr); | 
 | 		buf->start = buf->end = buf->ptr = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* size of buffer as "card order" (0=1k .. 7=128k) */ | 
 | static int lanai_buf_size_cardorder(const struct lanai_buffer *buf) | 
 | { | 
 | 	int order = get_order(lanai_buf_size(buf)) + (PAGE_SHIFT - 10); | 
 |  | 
 | 	/* This can only happen if PAGE_SIZE is gigantic, but just in case */ | 
 | 	if (order > 7) | 
 | 		order = 7; | 
 | 	return order; | 
 | } | 
 |  | 
 | /* -------------------- PORT I/O UTILITIES: */ | 
 |  | 
 | /* Registers (and their bit-fields) */ | 
 | enum lanai_register { | 
 | 	Reset_Reg		= 0x00,	/* Reset; read for chip type; bits: */ | 
 | #define   RESET_GET_BOARD_REV(x)    (((x)>> 0)&0x03)	/* Board revision */ | 
 | #define   RESET_GET_BOARD_ID(x)	    (((x)>> 2)&0x03)	/* Board ID */ | 
 | #define     BOARD_ID_LANAI256		(0)	/* 25.6M adapter card */ | 
 | 	Endian_Reg		= 0x04,	/* Endian setting */ | 
 | 	IntStatus_Reg		= 0x08,	/* Interrupt status */ | 
 | 	IntStatusMasked_Reg	= 0x0C,	/* Interrupt status (masked) */ | 
 | 	IntAck_Reg		= 0x10,	/* Interrupt acknowledge */ | 
 | 	IntAckMasked_Reg	= 0x14,	/* Interrupt acknowledge (masked) */ | 
 | 	IntStatusSet_Reg	= 0x18,	/* Get status + enable/disable */ | 
 | 	IntStatusSetMasked_Reg	= 0x1C,	/* Get status + en/di (masked) */ | 
 | 	IntControlEna_Reg	= 0x20,	/* Interrupt control enable */ | 
 | 	IntControlDis_Reg	= 0x24,	/* Interrupt control disable */ | 
 | 	Status_Reg		= 0x28,	/* Status */ | 
 | #define   STATUS_PROMDATA	 (0x00000001)	/* PROM_DATA pin */ | 
 | #define   STATUS_WAITING	 (0x00000002)	/* Interrupt being delayed */ | 
 | #define	  STATUS_SOOL		 (0x00000004)	/* SOOL alarm */ | 
 | #define   STATUS_LOCD		 (0x00000008)	/* LOCD alarm */ | 
 | #define	  STATUS_LED		 (0x00000010)	/* LED (HAPPI) output */ | 
 | #define   STATUS_GPIN		 (0x00000020)	/* GPIN pin */ | 
 | #define   STATUS_BUTTBUSY	 (0x00000040)	/* Butt register is pending */ | 
 | 	Config1_Reg		= 0x2C,	/* Config word 1; bits: */ | 
 | #define   CONFIG1_PROMDATA	 (0x00000001)	/* PROM_DATA pin */ | 
 | #define   CONFIG1_PROMCLK	 (0x00000002)	/* PROM_CLK pin */ | 
 | #define   CONFIG1_SET_READMODE(x) ((x)*0x004)	/* PCI BM reads; values: */ | 
 | #define     READMODE_PLAIN	    (0)		/*   Plain memory read */ | 
 | #define     READMODE_LINE	    (2)		/*   Memory read line */ | 
 | #define     READMODE_MULTIPLE	    (3)		/*   Memory read multiple */ | 
 | #define   CONFIG1_DMA_ENABLE	 (0x00000010)	/* Turn on DMA */ | 
 | #define   CONFIG1_POWERDOWN	 (0x00000020)	/* Turn off clocks */ | 
 | #define   CONFIG1_SET_LOOPMODE(x) ((x)*0x080)	/* Clock&loop mode; values: */ | 
 | #define     LOOPMODE_NORMAL	    (0)		/*   Normal - no loop */ | 
 | #define     LOOPMODE_TIME	    (1) | 
 | #define     LOOPMODE_DIAG	    (2) | 
 | #define     LOOPMODE_LINE	    (3) | 
 | #define   CONFIG1_MASK_LOOPMODE  (0x00000180) | 
 | #define   CONFIG1_SET_LEDMODE(x) ((x)*0x0200)	/* Mode of LED; values: */ | 
 | #define     LEDMODE_NOT_SOOL	    (0)		/*   !SOOL */ | 
 | #define	    LEDMODE_OFF		    (1)		/*   0     */ | 
 | #define	    LEDMODE_ON		    (2)		/*   1     */ | 
 | #define	    LEDMODE_NOT_LOCD	    (3)		/*   !LOCD */ | 
 | #define	    LEDMORE_GPIN	    (4)		/*   GPIN  */ | 
 | #define     LEDMODE_NOT_GPIN	    (7)		/*   !GPIN */ | 
 | #define   CONFIG1_MASK_LEDMODE	 (0x00000E00) | 
 | #define   CONFIG1_GPOUT1	 (0x00001000)	/* Toggle for reset */ | 
 | #define   CONFIG1_GPOUT2	 (0x00002000)	/* Loopback PHY */ | 
 | #define   CONFIG1_GPOUT3	 (0x00004000)	/* Loopback lanai */ | 
 | 	Config2_Reg		= 0x30,	/* Config word 2; bits: */ | 
 | #define   CONFIG2_HOWMANY	 (0x00000001)	/* >512 VCIs? */ | 
 | #define   CONFIG2_PTI7_MODE	 (0x00000002)	/* Make PTI=7 RM, not OAM */ | 
 | #define   CONFIG2_VPI_CHK_DIS	 (0x00000004)	/* Ignore RX VPI value */ | 
 | #define   CONFIG2_HEC_DROP	 (0x00000008)	/* Drop cells w/ HEC errors */ | 
 | #define   CONFIG2_VCI0_NORMAL	 (0x00000010)	/* Treat VCI=0 normally */ | 
 | #define   CONFIG2_CBR_ENABLE	 (0x00000020)	/* Deal with CBR traffic */ | 
 | #define   CONFIG2_TRASH_ALL	 (0x00000040)	/* Trashing incoming cells */ | 
 | #define   CONFIG2_TX_DISABLE	 (0x00000080)	/* Trashing outgoing cells */ | 
 | #define   CONFIG2_SET_TRASH	 (0x00000100)	/* Turn trashing on */ | 
 | 	Statistics_Reg		= 0x34,	/* Statistics; bits: */ | 
 | #define   STATS_GET_FIFO_OVFL(x)    (((x)>> 0)&0xFF)	/* FIFO overflowed */ | 
 | #define   STATS_GET_HEC_ERR(x)      (((x)>> 8)&0xFF)	/* HEC was bad */ | 
 | #define   STATS_GET_BAD_VCI(x)      (((x)>>16)&0xFF)	/* VCI not open */ | 
 | #define   STATS_GET_BUF_OVFL(x)     (((x)>>24)&0xFF)	/* VCC buffer full */ | 
 | 	ServiceStuff_Reg	= 0x38,	/* Service stuff; bits: */ | 
 | #define   SSTUFF_SET_SIZE(x) ((x)*0x20000000)	/* size of service buffer */ | 
 | #define   SSTUFF_SET_ADDR(x)	    ((x)>>8)	/* set address of buffer */ | 
 | 	ServWrite_Reg		= 0x3C,	/* ServWrite Pointer */ | 
 | 	ServRead_Reg		= 0x40,	/* ServRead Pointer */ | 
 | 	TxDepth_Reg		= 0x44,	/* FIFO Transmit Depth */ | 
 | 	Butt_Reg		= 0x48,	/* Butt register */ | 
 | 	CBR_ICG_Reg		= 0x50, | 
 | 	CBR_PTR_Reg		= 0x54, | 
 | 	PingCount_Reg		= 0x58,	/* Ping count */ | 
 | 	DMA_Addr_Reg		= 0x5C	/* DMA address */ | 
 | }; | 
 |  | 
 | static inline bus_addr_t reg_addr(const struct lanai_dev *lanai, | 
 | 	enum lanai_register reg) | 
 | { | 
 | 	return lanai->base + reg; | 
 | } | 
 |  | 
 | static inline u32 reg_read(const struct lanai_dev *lanai, | 
 | 	enum lanai_register reg) | 
 | { | 
 | 	u32 t; | 
 | 	t = readl(reg_addr(lanai, reg)); | 
 | 	RWDEBUG("R [0x%08X] 0x%02X = 0x%08X\n", (unsigned int) lanai->base, | 
 | 	    (int) reg, t); | 
 | 	return t; | 
 | } | 
 |  | 
 | static inline void reg_write(const struct lanai_dev *lanai, u32 val, | 
 | 	enum lanai_register reg) | 
 | { | 
 | 	RWDEBUG("W [0x%08X] 0x%02X < 0x%08X\n", (unsigned int) lanai->base, | 
 | 	    (int) reg, val); | 
 | 	writel(val, reg_addr(lanai, reg)); | 
 | } | 
 |  | 
 | static inline void conf1_write(const struct lanai_dev *lanai) | 
 | { | 
 | 	reg_write(lanai, lanai->conf1, Config1_Reg); | 
 | } | 
 |  | 
 | static inline void conf2_write(const struct lanai_dev *lanai) | 
 | { | 
 | 	reg_write(lanai, lanai->conf2, Config2_Reg); | 
 | } | 
 |  | 
 | /* Same as conf2_write(), but defers I/O if we're powered down */ | 
 | static inline void conf2_write_if_powerup(const struct lanai_dev *lanai) | 
 | { | 
 | #ifdef USE_POWERDOWN | 
 | 	if (unlikely((lanai->conf1 & CONFIG1_POWERDOWN) != 0)) | 
 | 		return; | 
 | #endif /* USE_POWERDOWN */ | 
 | 	conf2_write(lanai); | 
 | } | 
 |  | 
 | static inline void reset_board(const struct lanai_dev *lanai) | 
 | { | 
 | 	DPRINTK("about to reset board\n"); | 
 | 	reg_write(lanai, 0, Reset_Reg); | 
 | 	/* | 
 | 	 * If we don't delay a little while here then we can end up | 
 | 	 * leaving the card in a VERY weird state and lock up the | 
 | 	 * PCI bus.  This isn't documented anywhere but I've convinced | 
 | 	 * myself after a lot of painful experimentation | 
 | 	 */ | 
 | 	udelay(5); | 
 | } | 
 |  | 
 | /* -------------------- CARD SRAM UTILITIES: */ | 
 |  | 
 | /* The SRAM is mapped into normal PCI memory space - the only catch is | 
 |  * that it is only 16-bits wide but must be accessed as 32-bit.  The | 
 |  * 16 high bits will be zero.  We don't hide this, since they get | 
 |  * programmed mostly like discrete registers anyway | 
 |  */ | 
 | #define SRAM_START (0x20000) | 
 | #define SRAM_BYTES (0x20000)	/* Again, half don't really exist */ | 
 |  | 
 | static inline bus_addr_t sram_addr(const struct lanai_dev *lanai, int offset) | 
 | { | 
 | 	return lanai->base + SRAM_START + offset; | 
 | } | 
 |  | 
 | static inline u32 sram_read(const struct lanai_dev *lanai, int offset) | 
 | { | 
 | 	return readl(sram_addr(lanai, offset)); | 
 | } | 
 |  | 
 | static inline void sram_write(const struct lanai_dev *lanai, | 
 | 	u32 val, int offset) | 
 | { | 
 | 	writel(val, sram_addr(lanai, offset)); | 
 | } | 
 |  | 
 | static int sram_test_word(const struct lanai_dev *lanai, int offset, | 
 | 			  u32 pattern) | 
 | { | 
 | 	u32 readback; | 
 | 	sram_write(lanai, pattern, offset); | 
 | 	readback = sram_read(lanai, offset); | 
 | 	if (likely(readback == pattern)) | 
 | 		return 0; | 
 | 	printk(KERN_ERR DEV_LABEL | 
 | 	    "(itf %d): SRAM word at %d bad: wrote 0x%X, read 0x%X\n", | 
 | 	    lanai->number, offset, | 
 | 	    (unsigned int) pattern, (unsigned int) readback); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static int sram_test_pass(const struct lanai_dev *lanai, u32 pattern) | 
 | { | 
 | 	int offset, result = 0; | 
 | 	for (offset = 0; offset < SRAM_BYTES && result == 0; offset += 4) | 
 | 		result = sram_test_word(lanai, offset, pattern); | 
 | 	return result; | 
 | } | 
 |  | 
 | static int sram_test_and_clear(const struct lanai_dev *lanai) | 
 | { | 
 | #ifdef FULL_MEMORY_TEST | 
 | 	int result; | 
 | 	DPRINTK("testing SRAM\n"); | 
 | 	if ((result = sram_test_pass(lanai, 0x5555)) != 0) | 
 | 		return result; | 
 | 	if ((result = sram_test_pass(lanai, 0xAAAA)) != 0) | 
 | 		return result; | 
 | #endif | 
 | 	DPRINTK("clearing SRAM\n"); | 
 | 	return sram_test_pass(lanai, 0x0000); | 
 | } | 
 |  | 
 | /* -------------------- CARD-BASED VCC TABLE UTILITIES: */ | 
 |  | 
 | /* vcc table */ | 
 | enum lanai_vcc_offset { | 
 | 	vcc_rxaddr1		= 0x00,	/* Location1, plus bits: */ | 
 | #define   RXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of RX buffer */ | 
 | #define   RXADDR1_SET_RMMODE(x) ((x)*0x00800)	/* RM cell action; values: */ | 
 | #define     RMMODE_TRASH	  (0)		/*   discard */ | 
 | #define     RMMODE_PRESERVE	  (1)		/*   input as AAL0 */ | 
 | #define     RMMODE_PIPE		  (2)		/*   pipe to coscheduler */ | 
 | #define     RMMODE_PIPEALL	  (3)		/*   pipe non-RM too */ | 
 | #define   RXADDR1_OAM_PRESERVE	 (0x00002000)	/* Input OAM cells as AAL0 */ | 
 | #define   RXADDR1_SET_MODE(x) ((x)*0x0004000)	/* Reassembly mode */ | 
 | #define     RXMODE_TRASH	  (0)		/*   discard */ | 
 | #define     RXMODE_AAL0		  (1)		/*   non-AAL5 mode */ | 
 | #define     RXMODE_AAL5		  (2)		/*   AAL5, intr. each PDU */ | 
 | #define     RXMODE_AAL5_STREAM	  (3)		/*   AAL5 w/o per-PDU intr */ | 
 | 	vcc_rxaddr2		= 0x04,	/* Location2 */ | 
 | 	vcc_rxcrc1		= 0x08,	/* RX CRC claculation space */ | 
 | 	vcc_rxcrc2		= 0x0C, | 
 | 	vcc_rxwriteptr		= 0x10, /* RX writeptr, plus bits: */ | 
 | #define   RXWRITEPTR_LASTEFCI	 (0x00002000)	/* Last PDU had EFCI bit */ | 
 | #define   RXWRITEPTR_DROPPING	 (0x00004000)	/* Had error, dropping */ | 
 | #define   RXWRITEPTR_TRASHING	 (0x00008000)	/* Trashing */ | 
 | 	vcc_rxbufstart		= 0x14,	/* RX bufstart, plus bits: */ | 
 | #define   RXBUFSTART_CLP	 (0x00004000) | 
 | #define   RXBUFSTART_CI		 (0x00008000) | 
 | 	vcc_rxreadptr		= 0x18,	/* RX readptr */ | 
 | 	vcc_txicg		= 0x1C, /* TX ICG */ | 
 | 	vcc_txaddr1		= 0x20,	/* Location1, plus bits: */ | 
 | #define   TXADDR1_SET_SIZE(x) ((x)*0x0000100)	/* size of TX buffer */ | 
 | #define   TXADDR1_ABR		 (0x00008000)	/* use ABR (doesn't work) */ | 
 | 	vcc_txaddr2		= 0x24,	/* Location2 */ | 
 | 	vcc_txcrc1		= 0x28,	/* TX CRC claculation space */ | 
 | 	vcc_txcrc2		= 0x2C, | 
 | 	vcc_txreadptr		= 0x30, /* TX Readptr, plus bits: */ | 
 | #define   TXREADPTR_GET_PTR(x) ((x)&0x01FFF) | 
 | #define   TXREADPTR_MASK_DELTA	(0x0000E000)	/* ? */ | 
 | 	vcc_txendptr		= 0x34, /* TX Endptr, plus bits: */ | 
 | #define   TXENDPTR_CLP		(0x00002000) | 
 | #define   TXENDPTR_MASK_PDUMODE	(0x0000C000)	/* PDU mode; values: */ | 
 | #define     PDUMODE_AAL0	 (0*0x04000) | 
 | #define     PDUMODE_AAL5	 (2*0x04000) | 
 | #define     PDUMODE_AAL5STREAM	 (3*0x04000) | 
 | 	vcc_txwriteptr		= 0x38,	/* TX Writeptr */ | 
 | #define   TXWRITEPTR_GET_PTR(x) ((x)&0x1FFF) | 
 | 	vcc_txcbr_next		= 0x3C	/* # of next CBR VCI in ring */ | 
 | #define   TXCBR_NEXT_BOZO	(0x00008000)	/* "bozo bit" */ | 
 | }; | 
 |  | 
 | #define CARDVCC_SIZE	(0x40) | 
 |  | 
 | static inline bus_addr_t cardvcc_addr(const struct lanai_dev *lanai, | 
 | 	vci_t vci) | 
 | { | 
 | 	return sram_addr(lanai, vci * CARDVCC_SIZE); | 
 | } | 
 |  | 
 | static inline u32 cardvcc_read(const struct lanai_vcc *lvcc, | 
 | 	enum lanai_vcc_offset offset) | 
 | { | 
 | 	u32 val; | 
 | 	APRINTK(lvcc->vbase != NULL, "cardvcc_read: unbound vcc!\n"); | 
 | 	val= readl(lvcc->vbase + offset); | 
 | 	RWDEBUG("VR vci=%04d 0x%02X = 0x%08X\n", | 
 | 	    lvcc->vci, (int) offset, val); | 
 | 	return val; | 
 | } | 
 |  | 
 | static inline void cardvcc_write(const struct lanai_vcc *lvcc, | 
 | 	u32 val, enum lanai_vcc_offset offset) | 
 | { | 
 | 	APRINTK(lvcc->vbase != NULL, "cardvcc_write: unbound vcc!\n"); | 
 | 	APRINTK((val & ~0xFFFF) == 0, | 
 | 	    "cardvcc_write: bad val 0x%X (vci=%d, addr=0x%02X)\n", | 
 | 	    (unsigned int) val, lvcc->vci, (unsigned int) offset); | 
 | 	RWDEBUG("VW vci=%04d 0x%02X > 0x%08X\n", | 
 | 	    lvcc->vci, (unsigned int) offset, (unsigned int) val); | 
 | 	writel(val, lvcc->vbase + offset); | 
 | } | 
 |  | 
 | /* -------------------- COMPUTE SIZE OF AN AAL5 PDU: */ | 
 |  | 
 | /* How many bytes will an AAL5 PDU take to transmit - remember that: | 
 |  *   o  we need to add 8 bytes for length, CPI, UU, and CRC | 
 |  *   o  we need to round up to 48 bytes for cells | 
 |  */ | 
 | static inline int aal5_size(int size) | 
 | { | 
 | 	int cells = (size + 8 + 47) / 48; | 
 | 	return cells * 48; | 
 | } | 
 |  | 
 | /* -------------------- FREE AN ATM SKB: */ | 
 |  | 
 | static inline void lanai_free_skb(struct atm_vcc *atmvcc, struct sk_buff *skb) | 
 | { | 
 | 	if (atmvcc->pop != NULL) | 
 | 		atmvcc->pop(atmvcc, skb); | 
 | 	else | 
 | 		dev_kfree_skb_any(skb); | 
 | } | 
 |  | 
 | /* -------------------- TURN VCCS ON AND OFF: */ | 
 |  | 
 | static void host_vcc_start_rx(const struct lanai_vcc *lvcc) | 
 | { | 
 | 	u32 addr1; | 
 | 	if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) { | 
 | 		dma_addr_t dmaaddr = lvcc->rx.buf.dmaaddr; | 
 | 		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc1); | 
 | 		cardvcc_write(lvcc, 0xFFFF, vcc_rxcrc2); | 
 | 		cardvcc_write(lvcc, 0, vcc_rxwriteptr); | 
 | 		cardvcc_write(lvcc, 0, vcc_rxbufstart); | 
 | 		cardvcc_write(lvcc, 0, vcc_rxreadptr); | 
 | 		cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_rxaddr2); | 
 | 		addr1 = ((dmaaddr >> 8) & 0xFF) | | 
 | 		    RXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->rx.buf))| | 
 | 		    RXADDR1_SET_RMMODE(RMMODE_TRASH) |	/* ??? */ | 
 | 		 /* RXADDR1_OAM_PRESERVE |	--- no OAM support yet */ | 
 | 		    RXADDR1_SET_MODE(RXMODE_AAL5); | 
 | 	} else | 
 | 		addr1 = RXADDR1_SET_RMMODE(RMMODE_PRESERVE) | /* ??? */ | 
 | 		    RXADDR1_OAM_PRESERVE |		      /* ??? */ | 
 | 		    RXADDR1_SET_MODE(RXMODE_AAL0); | 
 | 	/* This one must be last! */ | 
 | 	cardvcc_write(lvcc, addr1, vcc_rxaddr1); | 
 | } | 
 |  | 
 | static void host_vcc_start_tx(const struct lanai_vcc *lvcc) | 
 | { | 
 | 	dma_addr_t dmaaddr = lvcc->tx.buf.dmaaddr; | 
 | 	cardvcc_write(lvcc, 0, vcc_txicg); | 
 | 	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc1); | 
 | 	cardvcc_write(lvcc, 0xFFFF, vcc_txcrc2); | 
 | 	cardvcc_write(lvcc, 0, vcc_txreadptr); | 
 | 	cardvcc_write(lvcc, 0, vcc_txendptr); | 
 | 	cardvcc_write(lvcc, 0, vcc_txwriteptr); | 
 | 	cardvcc_write(lvcc, | 
 | 		(lvcc->tx.atmvcc->qos.txtp.traffic_class == ATM_CBR) ? | 
 | 		TXCBR_NEXT_BOZO | lvcc->vci : 0, vcc_txcbr_next); | 
 | 	cardvcc_write(lvcc, (dmaaddr >> 16) & 0xFFFF, vcc_txaddr2); | 
 | 	cardvcc_write(lvcc, | 
 | 	    ((dmaaddr >> 8) & 0xFF) | | 
 | 	    TXADDR1_SET_SIZE(lanai_buf_size_cardorder(&lvcc->tx.buf)), | 
 | 	    vcc_txaddr1); | 
 | } | 
 |  | 
 | /* Shutdown receiving on card */ | 
 | static void lanai_shutdown_rx_vci(const struct lanai_vcc *lvcc) | 
 | { | 
 | 	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */ | 
 | 		return; | 
 | 	/* 15.1.1 - set to trashing, wait one cell time (15us) */ | 
 | 	cardvcc_write(lvcc, | 
 | 	    RXADDR1_SET_RMMODE(RMMODE_TRASH) | | 
 | 	    RXADDR1_SET_MODE(RXMODE_TRASH), vcc_rxaddr1); | 
 | 	udelay(15); | 
 | 	/* 15.1.2 - clear rest of entries */ | 
 | 	cardvcc_write(lvcc, 0, vcc_rxaddr2); | 
 | 	cardvcc_write(lvcc, 0, vcc_rxcrc1); | 
 | 	cardvcc_write(lvcc, 0, vcc_rxcrc2); | 
 | 	cardvcc_write(lvcc, 0, vcc_rxwriteptr); | 
 | 	cardvcc_write(lvcc, 0, vcc_rxbufstart); | 
 | 	cardvcc_write(lvcc, 0, vcc_rxreadptr); | 
 | } | 
 |  | 
 | /* Shutdown transmitting on card. | 
 |  * Unfortunately the lanai needs us to wait until all the data | 
 |  * drains out of the buffer before we can dealloc it, so this | 
 |  * can take awhile -- up to 370ms for a full 128KB buffer | 
 |  * assuming everone else is quiet.  In theory the time is | 
 |  * boundless if there's a CBR VCC holding things up. | 
 |  */ | 
 | static void lanai_shutdown_tx_vci(struct lanai_dev *lanai, | 
 | 	struct lanai_vcc *lvcc) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	unsigned long flags, timeout; | 
 | 	int read, write, lastread = -1; | 
 | 	APRINTK(!in_interrupt(), | 
 | 	    "lanai_shutdown_tx_vci called w/o process context!\n"); | 
 | 	if (lvcc->vbase == NULL)	/* We were never bound to a VCI */ | 
 | 		return; | 
 | 	/* 15.2.1 - wait for queue to drain */ | 
 | 	while ((skb = skb_dequeue(&lvcc->tx.backlog)) != NULL) | 
 | 		lanai_free_skb(lvcc->tx.atmvcc, skb); | 
 | 	read_lock_irqsave(&vcc_sklist_lock, flags); | 
 | 	__clear_bit(lvcc->vci, lanai->backlog_vccs); | 
 | 	read_unlock_irqrestore(&vcc_sklist_lock, flags); | 
 | 	/* | 
 | 	 * We need to wait for the VCC to drain but don't wait forever.  We | 
 | 	 * give each 1K of buffer size 1/128th of a second to clear out. | 
 | 	 * TODO: maybe disable CBR if we're about to timeout? | 
 | 	 */ | 
 | 	timeout = jiffies + | 
 | 	    (((lanai_buf_size(&lvcc->tx.buf) / 1024) * HZ) >> 7); | 
 | 	write = TXWRITEPTR_GET_PTR(cardvcc_read(lvcc, vcc_txwriteptr)); | 
 | 	for (;;) { | 
 | 		read = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)); | 
 | 		if (read == write &&	   /* Is TX buffer empty? */ | 
 | 		    (lvcc->tx.atmvcc->qos.txtp.traffic_class != ATM_CBR || | 
 | 		    (cardvcc_read(lvcc, vcc_txcbr_next) & | 
 | 		    TXCBR_NEXT_BOZO) == 0)) | 
 | 			break; | 
 | 		if (read != lastread) {	   /* Has there been any progress? */ | 
 | 			lastread = read; | 
 | 			timeout += HZ / 10; | 
 | 		} | 
 | 		if (unlikely(time_after(jiffies, timeout))) { | 
 | 			printk(KERN_ERR DEV_LABEL "(itf %d): Timed out on " | 
 | 			    "backlog closing vci %d\n", | 
 | 			    lvcc->tx.atmvcc->dev->number, lvcc->vci); | 
 | 			DPRINTK("read, write = %d, %d\n", read, write); | 
 | 			break; | 
 | 		} | 
 | 		msleep(40); | 
 | 	} | 
 | 	/* 15.2.2 - clear out all tx registers */ | 
 | 	cardvcc_write(lvcc, 0, vcc_txreadptr); | 
 | 	cardvcc_write(lvcc, 0, vcc_txwriteptr); | 
 | 	cardvcc_write(lvcc, 0, vcc_txendptr); | 
 | 	cardvcc_write(lvcc, 0, vcc_txcrc1); | 
 | 	cardvcc_write(lvcc, 0, vcc_txcrc2); | 
 | 	cardvcc_write(lvcc, 0, vcc_txaddr2); | 
 | 	cardvcc_write(lvcc, 0, vcc_txaddr1); | 
 | } | 
 |  | 
 | /* -------------------- MANAGING AAL0 RX BUFFER: */ | 
 |  | 
 | static inline int aal0_buffer_allocate(struct lanai_dev *lanai) | 
 | { | 
 | 	DPRINTK("aal0_buffer_allocate: allocating AAL0 RX buffer\n"); | 
 | 	lanai_buf_allocate(&lanai->aal0buf, AAL0_RX_BUFFER_SIZE, 80, | 
 | 			   lanai->pci); | 
 | 	return (lanai->aal0buf.start == NULL) ? -ENOMEM : 0; | 
 | } | 
 |  | 
 | static inline void aal0_buffer_free(struct lanai_dev *lanai) | 
 | { | 
 | 	DPRINTK("aal0_buffer_allocate: freeing AAL0 RX buffer\n"); | 
 | 	lanai_buf_deallocate(&lanai->aal0buf, lanai->pci); | 
 | } | 
 |  | 
 | /* -------------------- EEPROM UTILITIES: */ | 
 |  | 
 | /* Offsets of data in the EEPROM */ | 
 | #define EEPROM_COPYRIGHT	(0) | 
 | #define EEPROM_COPYRIGHT_LEN	(44) | 
 | #define EEPROM_CHECKSUM		(62) | 
 | #define EEPROM_CHECKSUM_REV	(63) | 
 | #define EEPROM_MAC		(64) | 
 | #define EEPROM_MAC_REV		(70) | 
 | #define EEPROM_SERIAL		(112) | 
 | #define EEPROM_SERIAL_REV	(116) | 
 | #define EEPROM_MAGIC		(120) | 
 | #define EEPROM_MAGIC_REV	(124) | 
 |  | 
 | #define EEPROM_MAGIC_VALUE	(0x5AB478D2) | 
 |  | 
 | #ifndef READ_EEPROM | 
 |  | 
 | /* Stub functions to use if EEPROM reading is disabled */ | 
 | static int eeprom_read(struct lanai_dev *lanai) | 
 | { | 
 | 	printk(KERN_INFO DEV_LABEL "(itf %d): *NOT* reading EEPROM\n", | 
 | 	    lanai->number); | 
 | 	memset(&lanai->eeprom[EEPROM_MAC], 0, 6); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int eeprom_validate(struct lanai_dev *lanai) | 
 | { | 
 | 	lanai->serialno = 0; | 
 | 	lanai->magicno = EEPROM_MAGIC_VALUE; | 
 | 	return 0; | 
 | } | 
 |  | 
 | #else /* READ_EEPROM */ | 
 |  | 
 | static int eeprom_read(struct lanai_dev *lanai) | 
 | { | 
 | 	int i, address; | 
 | 	u8 data; | 
 | 	u32 tmp; | 
 | #define set_config1(x)   do { lanai->conf1 = x; conf1_write(lanai); \ | 
 | 			    } while (0) | 
 | #define clock_h()	 set_config1(lanai->conf1 | CONFIG1_PROMCLK) | 
 | #define clock_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMCLK) | 
 | #define data_h()	 set_config1(lanai->conf1 | CONFIG1_PROMDATA) | 
 | #define data_l()	 set_config1(lanai->conf1 &~ CONFIG1_PROMDATA) | 
 | #define pre_read()	 do { data_h(); clock_h(); udelay(5); } while (0) | 
 | #define read_pin()	 (reg_read(lanai, Status_Reg) & STATUS_PROMDATA) | 
 | #define send_stop()	 do { data_l(); udelay(5); clock_h(); udelay(5); \ | 
 | 			      data_h(); udelay(5); } while (0) | 
 | 	/* start with both clock and data high */ | 
 | 	data_h(); clock_h(); udelay(5); | 
 | 	for (address = 0; address < LANAI_EEPROM_SIZE; address++) { | 
 | 		data = (address << 1) | 1;	/* Command=read + address */ | 
 | 		/* send start bit */ | 
 | 		data_l(); udelay(5); | 
 | 		clock_l(); udelay(5); | 
 | 		for (i = 128; i != 0; i >>= 1) {   /* write command out */ | 
 | 			tmp = (lanai->conf1 & ~CONFIG1_PROMDATA) | | 
 | 			    ((data & i) ? CONFIG1_PROMDATA : 0); | 
 | 			if (lanai->conf1 != tmp) { | 
 | 				set_config1(tmp); | 
 | 				udelay(5);	/* Let new data settle */ | 
 | 			} | 
 | 			clock_h(); udelay(5); clock_l(); udelay(5); | 
 | 		} | 
 | 		/* look for ack */ | 
 | 		data_h(); clock_h(); udelay(5); | 
 | 		if (read_pin() != 0) | 
 | 			goto error;	/* No ack seen */ | 
 | 		clock_l(); udelay(5); | 
 | 		/* read back result */ | 
 | 		for (data = 0, i = 7; i >= 0; i--) { | 
 | 			data_h(); clock_h(); udelay(5); | 
 | 			data = (data << 1) | !!read_pin(); | 
 | 			clock_l(); udelay(5); | 
 | 		} | 
 | 		/* look again for ack */ | 
 | 		data_h(); clock_h(); udelay(5); | 
 | 		if (read_pin() == 0) | 
 | 			goto error;	/* Spurious ack */ | 
 | 		clock_l(); udelay(5); | 
 | 		send_stop(); | 
 | 		lanai->eeprom[address] = data; | 
 | 		DPRINTK("EEPROM 0x%04X %02X\n", | 
 | 		    (unsigned int) address, (unsigned int) data); | 
 | 	} | 
 | 	return 0; | 
 |     error: | 
 | 	clock_l(); udelay(5);		/* finish read */ | 
 | 	send_stop(); | 
 | 	printk(KERN_ERR DEV_LABEL "(itf %d): error reading EEPROM byte %d\n", | 
 | 	    lanai->number, address); | 
 | 	return -EIO; | 
 | #undef set_config1 | 
 | #undef clock_h | 
 | #undef clock_l | 
 | #undef data_h | 
 | #undef data_l | 
 | #undef pre_read | 
 | #undef read_pin | 
 | #undef send_stop | 
 | } | 
 |  | 
 | /* read a big-endian 4-byte value out of eeprom */ | 
 | static inline u32 eeprom_be4(const struct lanai_dev *lanai, int address) | 
 | { | 
 | 	return be32_to_cpup((const u32 *) &lanai->eeprom[address]); | 
 | } | 
 |  | 
 | /* Checksum/validate EEPROM contents */ | 
 | static int eeprom_validate(struct lanai_dev *lanai) | 
 | { | 
 | 	int i, s; | 
 | 	u32 v; | 
 | 	const u8 *e = lanai->eeprom; | 
 | #ifdef DEBUG | 
 | 	/* First, see if we can get an ASCIIZ string out of the copyright */ | 
 | 	for (i = EEPROM_COPYRIGHT; | 
 | 	    i < (EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN); i++) | 
 | 		if (e[i] < 0x20 || e[i] > 0x7E) | 
 | 			break; | 
 | 	if ( i != EEPROM_COPYRIGHT && | 
 | 	    i != EEPROM_COPYRIGHT + EEPROM_COPYRIGHT_LEN && e[i] == '\0') | 
 | 		DPRINTK("eeprom: copyright = \"%s\"\n", | 
 | 		    (char *) &e[EEPROM_COPYRIGHT]); | 
 | 	else | 
 | 		DPRINTK("eeprom: copyright not found\n"); | 
 | #endif | 
 | 	/* Validate checksum */ | 
 | 	for (i = s = 0; i < EEPROM_CHECKSUM; i++) | 
 | 		s += e[i]; | 
 | 	s &= 0xFF; | 
 | 	if (s != e[EEPROM_CHECKSUM]) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM checksum bad " | 
 | 		    "(wanted 0x%02X, got 0x%02X)\n", lanai->number, | 
 | 		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM]); | 
 | 		return -EIO; | 
 | 	} | 
 | 	s ^= 0xFF; | 
 | 	if (s != e[EEPROM_CHECKSUM_REV]) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM inverse checksum " | 
 | 		    "bad (wanted 0x%02X, got 0x%02X)\n", lanai->number, | 
 | 		    (unsigned int) s, (unsigned int) e[EEPROM_CHECKSUM_REV]); | 
 | 		return -EIO; | 
 | 	} | 
 | 	/* Verify MAC address */ | 
 | 	for (i = 0; i < 6; i++) | 
 | 		if ((e[EEPROM_MAC + i] ^ e[EEPROM_MAC_REV + i]) != 0xFF) { | 
 | 			printk(KERN_ERR DEV_LABEL | 
 | 			    "(itf %d) : EEPROM MAC addresses don't match " | 
 | 			    "(0x%02X, inverse 0x%02X)\n", lanai->number, | 
 | 			    (unsigned int) e[EEPROM_MAC + i], | 
 | 			    (unsigned int) e[EEPROM_MAC_REV + i]); | 
 | 			return -EIO; | 
 | 		} | 
 | 	DPRINTK("eeprom: MAC address = %pM\n", &e[EEPROM_MAC]); | 
 | 	/* Verify serial number */ | 
 | 	lanai->serialno = eeprom_be4(lanai, EEPROM_SERIAL); | 
 | 	v = eeprom_be4(lanai, EEPROM_SERIAL_REV); | 
 | 	if ((lanai->serialno ^ v) != 0xFFFFFFFF) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM serial numbers " | 
 | 		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number, | 
 | 		    (unsigned int) lanai->serialno, (unsigned int) v); | 
 | 		return -EIO; | 
 | 	} | 
 | 	DPRINTK("eeprom: Serial number = %d\n", (unsigned int) lanai->serialno); | 
 | 	/* Verify magic number */ | 
 | 	lanai->magicno = eeprom_be4(lanai, EEPROM_MAGIC); | 
 | 	v = eeprom_be4(lanai, EEPROM_MAGIC_REV); | 
 | 	if ((lanai->magicno ^ v) != 0xFFFFFFFF) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): EEPROM magic numbers " | 
 | 		    "don't match (0x%08X, inverse 0x%08X)\n", lanai->number, | 
 | 		    lanai->magicno, v); | 
 | 		return -EIO; | 
 | 	} | 
 | 	DPRINTK("eeprom: Magic number = 0x%08X\n", lanai->magicno); | 
 | 	if (lanai->magicno != EEPROM_MAGIC_VALUE) | 
 | 		printk(KERN_WARNING DEV_LABEL "(itf %d): warning - EEPROM " | 
 | 		    "magic not what expected (got 0x%08X, not 0x%08X)\n", | 
 | 		    lanai->number, (unsigned int) lanai->magicno, | 
 | 		    (unsigned int) EEPROM_MAGIC_VALUE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | #endif /* READ_EEPROM */ | 
 |  | 
 | static inline const u8 *eeprom_mac(const struct lanai_dev *lanai) | 
 | { | 
 | 	return &lanai->eeprom[EEPROM_MAC]; | 
 | } | 
 |  | 
 | /* -------------------- INTERRUPT HANDLING UTILITIES: */ | 
 |  | 
 | /* Interrupt types */ | 
 | #define INT_STATS	(0x00000002)	/* Statistics counter overflow */ | 
 | #define INT_SOOL	(0x00000004)	/* SOOL changed state */ | 
 | #define INT_LOCD	(0x00000008)	/* LOCD changed state */ | 
 | #define INT_LED		(0x00000010)	/* LED (HAPPI) changed state */ | 
 | #define INT_GPIN	(0x00000020)	/* GPIN changed state */ | 
 | #define INT_PING	(0x00000040)	/* PING_COUNT fulfilled */ | 
 | #define INT_WAKE	(0x00000080)	/* Lanai wants bus */ | 
 | #define INT_CBR0	(0x00000100)	/* CBR sched hit VCI 0 */ | 
 | #define INT_LOCK	(0x00000200)	/* Service list overflow */ | 
 | #define INT_MISMATCH	(0x00000400)	/* TX magic list mismatch */ | 
 | #define INT_AAL0_STR	(0x00000800)	/* Non-AAL5 buffer half filled */ | 
 | #define INT_AAL0	(0x00001000)	/* Non-AAL5 data available */ | 
 | #define INT_SERVICE	(0x00002000)	/* Service list entries available */ | 
 | #define INT_TABORTSENT	(0x00004000)	/* Target abort sent by lanai */ | 
 | #define INT_TABORTBM	(0x00008000)	/* Abort rcv'd as bus master */ | 
 | #define INT_TIMEOUTBM	(0x00010000)	/* No response to bus master */ | 
 | #define INT_PCIPARITY	(0x00020000)	/* Parity error on PCI */ | 
 |  | 
 | /* Sets of the above */ | 
 | #define INT_ALL		(0x0003FFFE)	/* All interrupts */ | 
 | #define INT_STATUS	(0x0000003C)	/* Some status pin changed */ | 
 | #define INT_DMASHUT	(0x00038000)	/* DMA engine got shut down */ | 
 | #define INT_SEGSHUT	(0x00000700)	/* Segmentation got shut down */ | 
 |  | 
 | static inline u32 intr_pending(const struct lanai_dev *lanai) | 
 | { | 
 | 	return reg_read(lanai, IntStatusMasked_Reg); | 
 | } | 
 |  | 
 | static inline void intr_enable(const struct lanai_dev *lanai, u32 i) | 
 | { | 
 | 	reg_write(lanai, i, IntControlEna_Reg); | 
 | } | 
 |  | 
 | static inline void intr_disable(const struct lanai_dev *lanai, u32 i) | 
 | { | 
 | 	reg_write(lanai, i, IntControlDis_Reg); | 
 | } | 
 |  | 
 | /* -------------------- CARD/PCI STATUS: */ | 
 |  | 
 | static void status_message(int itf, const char *name, int status) | 
 | { | 
 | 	static const char *onoff[2] = { "off to on", "on to off" }; | 
 | 	printk(KERN_INFO DEV_LABEL "(itf %d): %s changed from %s\n", | 
 | 	    itf, name, onoff[!status]); | 
 | } | 
 |  | 
 | static void lanai_check_status(struct lanai_dev *lanai) | 
 | { | 
 | 	u32 new = reg_read(lanai, Status_Reg); | 
 | 	u32 changes = new ^ lanai->status; | 
 | 	lanai->status = new; | 
 | #define e(flag, name) \ | 
 | 		if (changes & flag) \ | 
 | 			status_message(lanai->number, name, new & flag) | 
 | 	e(STATUS_SOOL, "SOOL"); | 
 | 	e(STATUS_LOCD, "LOCD"); | 
 | 	e(STATUS_LED, "LED"); | 
 | 	e(STATUS_GPIN, "GPIN"); | 
 | #undef e | 
 | } | 
 |  | 
 | static void pcistatus_got(int itf, const char *name) | 
 | { | 
 | 	printk(KERN_INFO DEV_LABEL "(itf %d): PCI got %s error\n", itf, name); | 
 | } | 
 |  | 
 | static void pcistatus_check(struct lanai_dev *lanai, int clearonly) | 
 | { | 
 | 	u16 s; | 
 | 	int result; | 
 | 	result = pci_read_config_word(lanai->pci, PCI_STATUS, &s); | 
 | 	if (result != PCIBIOS_SUCCESSFUL) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): can't read PCI_STATUS: " | 
 | 		    "%d\n", lanai->number, result); | 
 | 		return; | 
 | 	} | 
 | 	s &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR | | 
 | 	    PCI_STATUS_REC_MASTER_ABORT | PCI_STATUS_REC_TARGET_ABORT | | 
 | 	    PCI_STATUS_SIG_TARGET_ABORT | PCI_STATUS_PARITY; | 
 | 	if (s == 0) | 
 | 		return; | 
 | 	result = pci_write_config_word(lanai->pci, PCI_STATUS, s); | 
 | 	if (result != PCIBIOS_SUCCESSFUL) | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): can't write PCI_STATUS: " | 
 | 		    "%d\n", lanai->number, result); | 
 | 	if (clearonly) | 
 | 		return; | 
 | #define e(flag, name, stat) \ | 
 | 		if (s & flag) { \ | 
 | 			pcistatus_got(lanai->number, name); \ | 
 | 			++lanai->stats.pcierr_##stat; \ | 
 | 		} | 
 | 	e(PCI_STATUS_DETECTED_PARITY, "parity", parity_detect); | 
 | 	e(PCI_STATUS_SIG_SYSTEM_ERROR, "signalled system", serr_set); | 
 | 	e(PCI_STATUS_REC_MASTER_ABORT, "master", master_abort); | 
 | 	e(PCI_STATUS_REC_TARGET_ABORT, "master target", m_target_abort); | 
 | 	e(PCI_STATUS_SIG_TARGET_ABORT, "slave", s_target_abort); | 
 | 	e(PCI_STATUS_PARITY, "master parity", master_parity); | 
 | #undef e | 
 | } | 
 |  | 
 | /* -------------------- VCC TX BUFFER UTILITIES: */ | 
 |  | 
 | /* space left in tx buffer in bytes */ | 
 | static inline int vcc_tx_space(const struct lanai_vcc *lvcc, int endptr) | 
 | { | 
 | 	int r; | 
 | 	r = endptr * 16; | 
 | 	r -= ((unsigned long) lvcc->tx.buf.ptr) - | 
 | 	    ((unsigned long) lvcc->tx.buf.start); | 
 | 	r -= 16;	/* Leave "bubble" - if start==end it looks empty */ | 
 | 	if (r < 0) | 
 | 		r += lanai_buf_size(&lvcc->tx.buf); | 
 | 	return r; | 
 | } | 
 |  | 
 | /* test if VCC is currently backlogged */ | 
 | static inline int vcc_is_backlogged(const struct lanai_vcc *lvcc) | 
 | { | 
 | 	return !skb_queue_empty(&lvcc->tx.backlog); | 
 | } | 
 |  | 
 | /* Bit fields in the segmentation buffer descriptor */ | 
 | #define DESCRIPTOR_MAGIC	(0xD0000000) | 
 | #define DESCRIPTOR_AAL5		(0x00008000) | 
 | #define DESCRIPTOR_AAL5_STREAM	(0x00004000) | 
 | #define DESCRIPTOR_CLP		(0x00002000) | 
 |  | 
 | /* Add 32-bit descriptor with its padding */ | 
 | static inline void vcc_tx_add_aal5_descriptor(struct lanai_vcc *lvcc, | 
 | 	u32 flags, int len) | 
 | { | 
 | 	int pos; | 
 | 	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 0, | 
 | 	    "vcc_tx_add_aal5_descriptor: bad ptr=%p\n", lvcc->tx.buf.ptr); | 
 | 	lvcc->tx.buf.ptr += 4;	/* Hope the values REALLY don't matter */ | 
 | 	pos = ((unsigned char *) lvcc->tx.buf.ptr) - | 
 | 	    (unsigned char *) lvcc->tx.buf.start; | 
 | 	APRINTK((pos & ~0x0001FFF0) == 0, | 
 | 	    "vcc_tx_add_aal5_descriptor: bad pos (%d) before, vci=%d, " | 
 | 	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci, | 
 | 	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end); | 
 | 	pos = (pos + len) & (lanai_buf_size(&lvcc->tx.buf) - 1); | 
 | 	APRINTK((pos & ~0x0001FFF0) == 0, | 
 | 	    "vcc_tx_add_aal5_descriptor: bad pos (%d) after, vci=%d, " | 
 | 	    "start,ptr,end=%p,%p,%p\n", pos, lvcc->vci, | 
 | 	    lvcc->tx.buf.start, lvcc->tx.buf.ptr, lvcc->tx.buf.end); | 
 | 	lvcc->tx.buf.ptr[-1] = | 
 | 	    cpu_to_le32(DESCRIPTOR_MAGIC | DESCRIPTOR_AAL5 | | 
 | 	    ((lvcc->tx.atmvcc->atm_options & ATM_ATMOPT_CLP) ? | 
 | 	    DESCRIPTOR_CLP : 0) | flags | pos >> 4); | 
 | 	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end) | 
 | 		lvcc->tx.buf.ptr = lvcc->tx.buf.start; | 
 | } | 
 |  | 
 | /* Add 32-bit AAL5 trailer and leave room for its CRC */ | 
 | static inline void vcc_tx_add_aal5_trailer(struct lanai_vcc *lvcc, | 
 | 	int len, int cpi, int uu) | 
 | { | 
 | 	APRINTK((((unsigned long) lvcc->tx.buf.ptr) & 15) == 8, | 
 | 	    "vcc_tx_add_aal5_trailer: bad ptr=%p\n", lvcc->tx.buf.ptr); | 
 | 	lvcc->tx.buf.ptr += 2; | 
 | 	lvcc->tx.buf.ptr[-2] = cpu_to_be32((uu << 24) | (cpi << 16) | len); | 
 | 	if (lvcc->tx.buf.ptr >= lvcc->tx.buf.end) | 
 | 		lvcc->tx.buf.ptr = lvcc->tx.buf.start; | 
 | } | 
 |  | 
 | static inline void vcc_tx_memcpy(struct lanai_vcc *lvcc, | 
 | 	const unsigned char *src, int n) | 
 | { | 
 | 	unsigned char *e; | 
 | 	int m; | 
 | 	e = ((unsigned char *) lvcc->tx.buf.ptr) + n; | 
 | 	m = e - (unsigned char *) lvcc->tx.buf.end; | 
 | 	if (m < 0) | 
 | 		m = 0; | 
 | 	memcpy(lvcc->tx.buf.ptr, src, n - m); | 
 | 	if (m != 0) { | 
 | 		memcpy(lvcc->tx.buf.start, src + n - m, m); | 
 | 		e = ((unsigned char *) lvcc->tx.buf.start) + m; | 
 | 	} | 
 | 	lvcc->tx.buf.ptr = (u32 *) e; | 
 | } | 
 |  | 
 | static inline void vcc_tx_memzero(struct lanai_vcc *lvcc, int n) | 
 | { | 
 | 	unsigned char *e; | 
 | 	int m; | 
 | 	if (n == 0) | 
 | 		return; | 
 | 	e = ((unsigned char *) lvcc->tx.buf.ptr) + n; | 
 | 	m = e - (unsigned char *) lvcc->tx.buf.end; | 
 | 	if (m < 0) | 
 | 		m = 0; | 
 | 	memset(lvcc->tx.buf.ptr, 0, n - m); | 
 | 	if (m != 0) { | 
 | 		memset(lvcc->tx.buf.start, 0, m); | 
 | 		e = ((unsigned char *) lvcc->tx.buf.start) + m; | 
 | 	} | 
 | 	lvcc->tx.buf.ptr = (u32 *) e; | 
 | } | 
 |  | 
 | /* Update "butt" register to specify new WritePtr */ | 
 | static inline void lanai_endtx(struct lanai_dev *lanai, | 
 | 	const struct lanai_vcc *lvcc) | 
 | { | 
 | 	int i, ptr = ((unsigned char *) lvcc->tx.buf.ptr) - | 
 | 	    (unsigned char *) lvcc->tx.buf.start; | 
 | 	APRINTK((ptr & ~0x0001FFF0) == 0, | 
 | 	    "lanai_endtx: bad ptr (%d), vci=%d, start,ptr,end=%p,%p,%p\n", | 
 | 	    ptr, lvcc->vci, lvcc->tx.buf.start, lvcc->tx.buf.ptr, | 
 | 	    lvcc->tx.buf.end); | 
 |  | 
 | 	/* | 
 | 	 * Since the "butt register" is a shared resounce on the card we | 
 | 	 * serialize all accesses to it through this spinlock.  This is | 
 | 	 * mostly just paranoia since the register is rarely "busy" anyway | 
 | 	 * but is needed for correctness. | 
 | 	 */ | 
 | 	spin_lock(&lanai->endtxlock); | 
 | 	/* | 
 | 	 * We need to check if the "butt busy" bit is set before | 
 | 	 * updating the butt register.  In theory this should | 
 | 	 * never happen because the ATM card is plenty fast at | 
 | 	 * updating the register.  Still, we should make sure | 
 | 	 */ | 
 | 	for (i = 0; reg_read(lanai, Status_Reg) & STATUS_BUTTBUSY; i++) { | 
 | 		if (unlikely(i > 50)) { | 
 | 			printk(KERN_ERR DEV_LABEL "(itf %d): butt register " | 
 | 			    "always busy!\n", lanai->number); | 
 | 			break; | 
 | 		} | 
 | 		udelay(5); | 
 | 	} | 
 | 	/* | 
 | 	 * Before we tall the card to start work we need to be sure 100% of | 
 | 	 * the info in the service buffer has been written before we tell | 
 | 	 * the card about it | 
 | 	 */ | 
 | 	wmb(); | 
 | 	reg_write(lanai, (ptr << 12) | lvcc->vci, Butt_Reg); | 
 | 	spin_unlock(&lanai->endtxlock); | 
 | } | 
 |  | 
 | /* | 
 |  * Add one AAL5 PDU to lvcc's transmit buffer.  Caller garauntees there's | 
 |  * space available.  "pdusize" is the number of bytes the PDU will take | 
 |  */ | 
 | static void lanai_send_one_aal5(struct lanai_dev *lanai, | 
 | 	struct lanai_vcc *lvcc, struct sk_buff *skb, int pdusize) | 
 | { | 
 | 	int pad; | 
 | 	APRINTK(pdusize == aal5_size(skb->len), | 
 | 	    "lanai_send_one_aal5: wrong size packet (%d != %d)\n", | 
 | 	    pdusize, aal5_size(skb->len)); | 
 | 	vcc_tx_add_aal5_descriptor(lvcc, 0, pdusize); | 
 | 	pad = pdusize - skb->len - 8; | 
 | 	APRINTK(pad >= 0, "pad is negative (%d)\n", pad); | 
 | 	APRINTK(pad < 48, "pad is too big (%d)\n", pad); | 
 | 	vcc_tx_memcpy(lvcc, skb->data, skb->len); | 
 | 	vcc_tx_memzero(lvcc, pad); | 
 | 	vcc_tx_add_aal5_trailer(lvcc, skb->len, 0, 0); | 
 | 	lanai_endtx(lanai, lvcc); | 
 | 	lanai_free_skb(lvcc->tx.atmvcc, skb); | 
 | 	atomic_inc(&lvcc->tx.atmvcc->stats->tx); | 
 | } | 
 |  | 
 | /* Try to fill the buffer - don't call unless there is backlog */ | 
 | static void vcc_tx_unqueue_aal5(struct lanai_dev *lanai, | 
 | 	struct lanai_vcc *lvcc, int endptr) | 
 | { | 
 | 	int n; | 
 | 	struct sk_buff *skb; | 
 | 	int space = vcc_tx_space(lvcc, endptr); | 
 | 	APRINTK(vcc_is_backlogged(lvcc), | 
 | 	    "vcc_tx_unqueue() called with empty backlog (vci=%d)\n", | 
 | 	    lvcc->vci); | 
 | 	while (space >= 64) { | 
 | 		skb = skb_dequeue(&lvcc->tx.backlog); | 
 | 		if (skb == NULL) | 
 | 			goto no_backlog; | 
 | 		n = aal5_size(skb->len); | 
 | 		if (n + 16 > space) { | 
 | 			/* No room for this packet - put it back on queue */ | 
 | 			skb_queue_head(&lvcc->tx.backlog, skb); | 
 | 			return; | 
 | 		} | 
 | 		lanai_send_one_aal5(lanai, lvcc, skb, n); | 
 | 		space -= n + 16; | 
 | 	} | 
 | 	if (!vcc_is_backlogged(lvcc)) { | 
 | 	    no_backlog: | 
 | 		__clear_bit(lvcc->vci, lanai->backlog_vccs); | 
 | 	} | 
 | } | 
 |  | 
 | /* Given an skb that we want to transmit either send it now or queue */ | 
 | static void vcc_tx_aal5(struct lanai_dev *lanai, struct lanai_vcc *lvcc, | 
 | 	struct sk_buff *skb) | 
 | { | 
 | 	int space, n; | 
 | 	if (vcc_is_backlogged(lvcc))		/* Already backlogged */ | 
 | 		goto queue_it; | 
 | 	space = vcc_tx_space(lvcc, | 
 | 		    TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr))); | 
 | 	n = aal5_size(skb->len); | 
 | 	APRINTK(n + 16 >= 64, "vcc_tx_aal5: n too small (%d)\n", n); | 
 | 	if (space < n + 16) {			/* No space for this PDU */ | 
 | 		__set_bit(lvcc->vci, lanai->backlog_vccs); | 
 | 	    queue_it: | 
 | 		skb_queue_tail(&lvcc->tx.backlog, skb); | 
 | 		return; | 
 | 	} | 
 | 	lanai_send_one_aal5(lanai, lvcc, skb, n); | 
 | } | 
 |  | 
 | static void vcc_tx_unqueue_aal0(struct lanai_dev *lanai, | 
 | 	struct lanai_vcc *lvcc, int endptr) | 
 | { | 
 | 	printk(KERN_INFO DEV_LABEL | 
 | 	    ": vcc_tx_unqueue_aal0: not implemented\n"); | 
 | } | 
 |  | 
 | static void vcc_tx_aal0(struct lanai_dev *lanai, struct lanai_vcc *lvcc, | 
 | 	struct sk_buff *skb) | 
 | { | 
 | 	printk(KERN_INFO DEV_LABEL ": vcc_tx_aal0: not implemented\n"); | 
 | 	/* Remember to increment lvcc->tx.atmvcc->stats->tx */ | 
 | 	lanai_free_skb(lvcc->tx.atmvcc, skb); | 
 | } | 
 |  | 
 | /* -------------------- VCC RX BUFFER UTILITIES: */ | 
 |  | 
 | /* unlike the _tx_ cousins, this doesn't update ptr */ | 
 | static inline void vcc_rx_memcpy(unsigned char *dest, | 
 | 	const struct lanai_vcc *lvcc, int n) | 
 | { | 
 | 	int m = ((const unsigned char *) lvcc->rx.buf.ptr) + n - | 
 | 	    ((const unsigned char *) (lvcc->rx.buf.end)); | 
 | 	if (m < 0) | 
 | 		m = 0; | 
 | 	memcpy(dest, lvcc->rx.buf.ptr, n - m); | 
 | 	memcpy(dest + n - m, lvcc->rx.buf.start, m); | 
 | 	/* Make sure that these copies don't get reordered */ | 
 | 	barrier(); | 
 | } | 
 |  | 
 | /* Receive AAL5 data on a VCC with a particular endptr */ | 
 | static void vcc_rx_aal5(struct lanai_vcc *lvcc, int endptr) | 
 | { | 
 | 	int size; | 
 | 	struct sk_buff *skb; | 
 | 	const u32 *x; | 
 | 	u32 *end = &lvcc->rx.buf.start[endptr * 4]; | 
 | 	int n = ((unsigned long) end) - ((unsigned long) lvcc->rx.buf.ptr); | 
 | 	if (n < 0) | 
 | 		n += lanai_buf_size(&lvcc->rx.buf); | 
 | 	APRINTK(n >= 0 && n < lanai_buf_size(&lvcc->rx.buf) && !(n & 15), | 
 | 	    "vcc_rx_aal5: n out of range (%d/%zu)\n", | 
 | 	    n, lanai_buf_size(&lvcc->rx.buf)); | 
 | 	/* Recover the second-to-last word to get true pdu length */ | 
 | 	if ((x = &end[-2]) < lvcc->rx.buf.start) | 
 | 		x = &lvcc->rx.buf.end[-2]; | 
 | 	/* | 
 | 	 * Before we actually read from the buffer, make sure the memory | 
 | 	 * changes have arrived | 
 | 	 */ | 
 | 	rmb(); | 
 | 	size = be32_to_cpup(x) & 0xffff; | 
 | 	if (unlikely(n != aal5_size(size))) { | 
 | 		/* Make sure size matches padding */ | 
 | 		printk(KERN_INFO DEV_LABEL "(itf %d): Got bad AAL5 length " | 
 | 		    "on vci=%d - size=%d n=%d\n", | 
 | 		    lvcc->rx.atmvcc->dev->number, lvcc->vci, size, n); | 
 | 		lvcc->stats.x.aal5.rx_badlen++; | 
 | 		goto out; | 
 | 	} | 
 | 	skb = atm_alloc_charge(lvcc->rx.atmvcc, size, GFP_ATOMIC); | 
 | 	if (unlikely(skb == NULL)) { | 
 | 		lvcc->stats.rx_nomem++; | 
 | 		goto out; | 
 | 	} | 
 | 	skb_put(skb, size); | 
 | 	vcc_rx_memcpy(skb->data, lvcc, size); | 
 | 	ATM_SKB(skb)->vcc = lvcc->rx.atmvcc; | 
 | 	__net_timestamp(skb); | 
 | 	lvcc->rx.atmvcc->push(lvcc->rx.atmvcc, skb); | 
 | 	atomic_inc(&lvcc->rx.atmvcc->stats->rx); | 
 |     out: | 
 | 	lvcc->rx.buf.ptr = end; | 
 | 	cardvcc_write(lvcc, endptr, vcc_rxreadptr); | 
 | } | 
 |  | 
 | static void vcc_rx_aal0(struct lanai_dev *lanai) | 
 | { | 
 | 	printk(KERN_INFO DEV_LABEL ": vcc_rx_aal0: not implemented\n"); | 
 | 	/* Remember to get read_lock(&vcc_sklist_lock) while looking up VC */ | 
 | 	/* Remember to increment lvcc->rx.atmvcc->stats->rx */ | 
 | } | 
 |  | 
 | /* -------------------- MANAGING HOST-BASED VCC TABLE: */ | 
 |  | 
 | /* Decide whether to use vmalloc or get_zeroed_page for VCC table */ | 
 | #if (NUM_VCI * BITS_PER_LONG) <= PAGE_SIZE | 
 | #define VCCTABLE_GETFREEPAGE | 
 | #else | 
 | #include <linux/vmalloc.h> | 
 | #endif | 
 |  | 
 | static int vcc_table_allocate(struct lanai_dev *lanai) | 
 | { | 
 | #ifdef VCCTABLE_GETFREEPAGE | 
 | 	APRINTK((lanai->num_vci) * sizeof(struct lanai_vcc *) <= PAGE_SIZE, | 
 | 	    "vcc table > PAGE_SIZE!"); | 
 | 	lanai->vccs = (struct lanai_vcc **) get_zeroed_page(GFP_KERNEL); | 
 | 	return (lanai->vccs == NULL) ? -ENOMEM : 0; | 
 | #else | 
 | 	int bytes = (lanai->num_vci) * sizeof(struct lanai_vcc *); | 
 | 	lanai->vccs = vzalloc(bytes); | 
 | 	if (unlikely(lanai->vccs == NULL)) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static inline void vcc_table_deallocate(const struct lanai_dev *lanai) | 
 | { | 
 | #ifdef VCCTABLE_GETFREEPAGE | 
 | 	free_page((unsigned long) lanai->vccs); | 
 | #else | 
 | 	vfree(lanai->vccs); | 
 | #endif | 
 | } | 
 |  | 
 | /* Allocate a fresh lanai_vcc, with the appropriate things cleared */ | 
 | static inline struct lanai_vcc *new_lanai_vcc(void) | 
 | { | 
 | 	struct lanai_vcc *lvcc; | 
 | 	lvcc =  kzalloc(sizeof(*lvcc), GFP_KERNEL); | 
 | 	if (likely(lvcc != NULL)) { | 
 | 		skb_queue_head_init(&lvcc->tx.backlog); | 
 | #ifdef DEBUG | 
 | 		lvcc->vci = -1; | 
 | #endif | 
 | 	} | 
 | 	return lvcc; | 
 | } | 
 |  | 
 | static int lanai_get_sized_buffer(struct lanai_dev *lanai, | 
 | 	struct lanai_buffer *buf, int max_sdu, int multiplier, | 
 | 	const char *name) | 
 | { | 
 | 	int size; | 
 | 	if (unlikely(max_sdu < 1)) | 
 | 		max_sdu = 1; | 
 | 	max_sdu = aal5_size(max_sdu); | 
 | 	size = (max_sdu + 16) * multiplier + 16; | 
 | 	lanai_buf_allocate(buf, size, max_sdu + 32, lanai->pci); | 
 | 	if (unlikely(buf->start == NULL)) | 
 | 		return -ENOMEM; | 
 | 	if (unlikely(lanai_buf_size(buf) < size)) | 
 | 		printk(KERN_WARNING DEV_LABEL "(itf %d): wanted %d bytes " | 
 | 		    "for %s buffer, got only %zu\n", lanai->number, size, | 
 | 		    name, lanai_buf_size(buf)); | 
 | 	DPRINTK("Allocated %zu byte %s buffer\n", lanai_buf_size(buf), name); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Setup a RX buffer for a currently unbound AAL5 vci */ | 
 | static inline int lanai_setup_rx_vci_aal5(struct lanai_dev *lanai, | 
 | 	struct lanai_vcc *lvcc, const struct atm_qos *qos) | 
 | { | 
 | 	return lanai_get_sized_buffer(lanai, &lvcc->rx.buf, | 
 | 	    qos->rxtp.max_sdu, AAL5_RX_MULTIPLIER, "RX"); | 
 | } | 
 |  | 
 | /* Setup a TX buffer for a currently unbound AAL5 vci */ | 
 | static int lanai_setup_tx_vci(struct lanai_dev *lanai, struct lanai_vcc *lvcc, | 
 | 	const struct atm_qos *qos) | 
 | { | 
 | 	int max_sdu, multiplier; | 
 | 	if (qos->aal == ATM_AAL0) { | 
 | 		lvcc->tx.unqueue = vcc_tx_unqueue_aal0; | 
 | 		max_sdu = ATM_CELL_SIZE - 1; | 
 | 		multiplier = AAL0_TX_MULTIPLIER; | 
 | 	} else { | 
 | 		lvcc->tx.unqueue = vcc_tx_unqueue_aal5; | 
 | 		max_sdu = qos->txtp.max_sdu; | 
 | 		multiplier = AAL5_TX_MULTIPLIER; | 
 | 	} | 
 | 	return lanai_get_sized_buffer(lanai, &lvcc->tx.buf, max_sdu, | 
 | 	    multiplier, "TX"); | 
 | } | 
 |  | 
 | static inline void host_vcc_bind(struct lanai_dev *lanai, | 
 | 	struct lanai_vcc *lvcc, vci_t vci) | 
 | { | 
 | 	if (lvcc->vbase != NULL) | 
 | 		return;    /* We already were bound in the other direction */ | 
 | 	DPRINTK("Binding vci %d\n", vci); | 
 | #ifdef USE_POWERDOWN | 
 | 	if (lanai->nbound++ == 0) { | 
 | 		DPRINTK("Coming out of powerdown\n"); | 
 | 		lanai->conf1 &= ~CONFIG1_POWERDOWN; | 
 | 		conf1_write(lanai); | 
 | 		conf2_write(lanai); | 
 | 	} | 
 | #endif | 
 | 	lvcc->vbase = cardvcc_addr(lanai, vci); | 
 | 	lanai->vccs[lvcc->vci = vci] = lvcc; | 
 | } | 
 |  | 
 | static inline void host_vcc_unbind(struct lanai_dev *lanai, | 
 | 	struct lanai_vcc *lvcc) | 
 | { | 
 | 	if (lvcc->vbase == NULL) | 
 | 		return;	/* This vcc was never bound */ | 
 | 	DPRINTK("Unbinding vci %d\n", lvcc->vci); | 
 | 	lvcc->vbase = NULL; | 
 | 	lanai->vccs[lvcc->vci] = NULL; | 
 | #ifdef USE_POWERDOWN | 
 | 	if (--lanai->nbound == 0) { | 
 | 		DPRINTK("Going into powerdown\n"); | 
 | 		lanai->conf1 |= CONFIG1_POWERDOWN; | 
 | 		conf1_write(lanai); | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* -------------------- RESET CARD: */ | 
 |  | 
 | static void lanai_reset(struct lanai_dev *lanai) | 
 | { | 
 | 	printk(KERN_CRIT DEV_LABEL "(itf %d): *NOT* resetting - not " | 
 | 	    "implemented\n", lanai->number); | 
 | 	/* TODO */ | 
 | 	/* The following is just a hack until we write the real | 
 | 	 * resetter - at least ack whatever interrupt sent us | 
 | 	 * here | 
 | 	 */ | 
 | 	reg_write(lanai, INT_ALL, IntAck_Reg); | 
 | 	lanai->stats.card_reset++; | 
 | } | 
 |  | 
 | /* -------------------- SERVICE LIST UTILITIES: */ | 
 |  | 
 | /* | 
 |  * Allocate service buffer and tell card about it | 
 |  */ | 
 | static int service_buffer_allocate(struct lanai_dev *lanai) | 
 | { | 
 | 	lanai_buf_allocate(&lanai->service, SERVICE_ENTRIES * 4, 8, | 
 | 	    lanai->pci); | 
 | 	if (unlikely(lanai->service.start == NULL)) | 
 | 		return -ENOMEM; | 
 | 	DPRINTK("allocated service buffer at %p, size %zu(%d)\n", | 
 | 	    lanai->service.start, | 
 | 	    lanai_buf_size(&lanai->service), | 
 | 	    lanai_buf_size_cardorder(&lanai->service)); | 
 | 	/* Clear ServWrite register to be safe */ | 
 | 	reg_write(lanai, 0, ServWrite_Reg); | 
 | 	/* ServiceStuff register contains size and address of buffer */ | 
 | 	reg_write(lanai, | 
 | 	    SSTUFF_SET_SIZE(lanai_buf_size_cardorder(&lanai->service)) | | 
 | 	    SSTUFF_SET_ADDR(lanai->service.dmaaddr), | 
 | 	    ServiceStuff_Reg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void service_buffer_deallocate(struct lanai_dev *lanai) | 
 | { | 
 | 	lanai_buf_deallocate(&lanai->service, lanai->pci); | 
 | } | 
 |  | 
 | /* Bitfields in service list */ | 
 | #define SERVICE_TX	(0x80000000)	/* Was from transmission */ | 
 | #define SERVICE_TRASH	(0x40000000)	/* RXed PDU was trashed */ | 
 | #define SERVICE_CRCERR	(0x20000000)	/* RXed PDU had CRC error */ | 
 | #define SERVICE_CI	(0x10000000)	/* RXed PDU had CI set */ | 
 | #define SERVICE_CLP	(0x08000000)	/* RXed PDU had CLP set */ | 
 | #define SERVICE_STREAM	(0x04000000)	/* RX Stream mode */ | 
 | #define SERVICE_GET_VCI(x) (((x)>>16)&0x3FF) | 
 | #define SERVICE_GET_END(x) ((x)&0x1FFF) | 
 |  | 
 | /* Handle one thing from the service list - returns true if it marked a | 
 |  * VCC ready for xmit | 
 |  */ | 
 | static int handle_service(struct lanai_dev *lanai, u32 s) | 
 | { | 
 | 	vci_t vci = SERVICE_GET_VCI(s); | 
 | 	struct lanai_vcc *lvcc; | 
 | 	read_lock(&vcc_sklist_lock); | 
 | 	lvcc = lanai->vccs[vci]; | 
 | 	if (unlikely(lvcc == NULL)) { | 
 | 		read_unlock(&vcc_sklist_lock); | 
 | 		DPRINTK("(itf %d) got service entry 0x%X for nonexistent " | 
 | 		    "vcc %d\n", lanai->number, (unsigned int) s, vci); | 
 | 		if (s & SERVICE_TX) | 
 | 			lanai->stats.service_notx++; | 
 | 		else | 
 | 			lanai->stats.service_norx++; | 
 | 		return 0; | 
 | 	} | 
 | 	if (s & SERVICE_TX) {			/* segmentation interrupt */ | 
 | 		if (unlikely(lvcc->tx.atmvcc == NULL)) { | 
 | 			read_unlock(&vcc_sklist_lock); | 
 | 			DPRINTK("(itf %d) got service entry 0x%X for non-TX " | 
 | 			    "vcc %d\n", lanai->number, (unsigned int) s, vci); | 
 | 			lanai->stats.service_notx++; | 
 | 			return 0; | 
 | 		} | 
 | 		__set_bit(vci, lanai->transmit_ready); | 
 | 		lvcc->tx.endptr = SERVICE_GET_END(s); | 
 | 		read_unlock(&vcc_sklist_lock); | 
 | 		return 1; | 
 | 	} | 
 | 	if (unlikely(lvcc->rx.atmvcc == NULL)) { | 
 | 		read_unlock(&vcc_sklist_lock); | 
 | 		DPRINTK("(itf %d) got service entry 0x%X for non-RX " | 
 | 		    "vcc %d\n", lanai->number, (unsigned int) s, vci); | 
 | 		lanai->stats.service_norx++; | 
 | 		return 0; | 
 | 	} | 
 | 	if (unlikely(lvcc->rx.atmvcc->qos.aal != ATM_AAL5)) { | 
 | 		read_unlock(&vcc_sklist_lock); | 
 | 		DPRINTK("(itf %d) got RX service entry 0x%X for non-AAL5 " | 
 | 		    "vcc %d\n", lanai->number, (unsigned int) s, vci); | 
 | 		lanai->stats.service_rxnotaal5++; | 
 | 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); | 
 | 		return 0; | 
 | 	} | 
 | 	if (likely(!(s & (SERVICE_TRASH | SERVICE_STREAM | SERVICE_CRCERR)))) { | 
 | 		vcc_rx_aal5(lvcc, SERVICE_GET_END(s)); | 
 | 		read_unlock(&vcc_sklist_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	if (s & SERVICE_TRASH) { | 
 | 		int bytes; | 
 | 		read_unlock(&vcc_sklist_lock); | 
 | 		DPRINTK("got trashed rx pdu on vci %d\n", vci); | 
 | 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); | 
 | 		lvcc->stats.x.aal5.service_trash++; | 
 | 		bytes = (SERVICE_GET_END(s) * 16) - | 
 | 		    (((unsigned long) lvcc->rx.buf.ptr) - | 
 | 		    ((unsigned long) lvcc->rx.buf.start)) + 47; | 
 | 		if (bytes < 0) | 
 | 			bytes += lanai_buf_size(&lvcc->rx.buf); | 
 | 		lanai->stats.ovfl_trash += (bytes / 48); | 
 | 		return 0; | 
 | 	} | 
 | 	if (s & SERVICE_STREAM) { | 
 | 		read_unlock(&vcc_sklist_lock); | 
 | 		atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); | 
 | 		lvcc->stats.x.aal5.service_stream++; | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): Got AAL5 stream " | 
 | 		    "PDU on VCI %d!\n", lanai->number, vci); | 
 | 		lanai_reset(lanai); | 
 | 		return 0; | 
 | 	} | 
 | 	DPRINTK("got rx crc error on vci %d\n", vci); | 
 | 	atomic_inc(&lvcc->rx.atmvcc->stats->rx_err); | 
 | 	lvcc->stats.x.aal5.service_rxcrc++; | 
 | 	lvcc->rx.buf.ptr = &lvcc->rx.buf.start[SERVICE_GET_END(s) * 4]; | 
 | 	cardvcc_write(lvcc, SERVICE_GET_END(s), vcc_rxreadptr); | 
 | 	read_unlock(&vcc_sklist_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Try transmitting on all VCIs that we marked ready to serve */ | 
 | static void iter_transmit(struct lanai_dev *lanai, vci_t vci) | 
 | { | 
 | 	struct lanai_vcc *lvcc = lanai->vccs[vci]; | 
 | 	if (vcc_is_backlogged(lvcc)) | 
 | 		lvcc->tx.unqueue(lanai, lvcc, lvcc->tx.endptr); | 
 | } | 
 |  | 
 | /* Run service queue -- called from interrupt context or with | 
 |  * interrupts otherwise disabled and with the lanai->servicelock | 
 |  * lock held | 
 |  */ | 
 | static void run_service(struct lanai_dev *lanai) | 
 | { | 
 | 	int ntx = 0; | 
 | 	u32 wreg = reg_read(lanai, ServWrite_Reg); | 
 | 	const u32 *end = lanai->service.start + wreg; | 
 | 	while (lanai->service.ptr != end) { | 
 | 		ntx += handle_service(lanai, | 
 | 		    le32_to_cpup(lanai->service.ptr++)); | 
 | 		if (lanai->service.ptr >= lanai->service.end) | 
 | 			lanai->service.ptr = lanai->service.start; | 
 | 	} | 
 | 	reg_write(lanai, wreg, ServRead_Reg); | 
 | 	if (ntx != 0) { | 
 | 		read_lock(&vcc_sklist_lock); | 
 | 		vci_bitfield_iterate(lanai, lanai->transmit_ready, | 
 | 		    iter_transmit); | 
 | 		bitmap_zero(lanai->transmit_ready, NUM_VCI); | 
 | 		read_unlock(&vcc_sklist_lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* -------------------- GATHER STATISTICS: */ | 
 |  | 
 | static void get_statistics(struct lanai_dev *lanai) | 
 | { | 
 | 	u32 statreg = reg_read(lanai, Statistics_Reg); | 
 | 	lanai->stats.atm_ovfl += STATS_GET_FIFO_OVFL(statreg); | 
 | 	lanai->stats.hec_err += STATS_GET_HEC_ERR(statreg); | 
 | 	lanai->stats.vci_trash += STATS_GET_BAD_VCI(statreg); | 
 | 	lanai->stats.ovfl_trash += STATS_GET_BUF_OVFL(statreg); | 
 | } | 
 |  | 
 | /* -------------------- POLLING TIMER: */ | 
 |  | 
 | #ifndef DEBUG_RW | 
 | /* Try to undequeue 1 backlogged vcc */ | 
 | static void iter_dequeue(struct lanai_dev *lanai, vci_t vci) | 
 | { | 
 | 	struct lanai_vcc *lvcc = lanai->vccs[vci]; | 
 | 	int endptr; | 
 | 	if (lvcc == NULL || lvcc->tx.atmvcc == NULL || | 
 | 	    !vcc_is_backlogged(lvcc)) { | 
 | 		__clear_bit(vci, lanai->backlog_vccs); | 
 | 		return; | 
 | 	} | 
 | 	endptr = TXREADPTR_GET_PTR(cardvcc_read(lvcc, vcc_txreadptr)); | 
 | 	lvcc->tx.unqueue(lanai, lvcc, endptr); | 
 | } | 
 | #endif /* !DEBUG_RW */ | 
 |  | 
 | static void lanai_timed_poll(struct timer_list *t) | 
 | { | 
 | 	struct lanai_dev *lanai = from_timer(lanai, t, timer); | 
 | #ifndef DEBUG_RW | 
 | 	unsigned long flags; | 
 | #ifdef USE_POWERDOWN | 
 | 	if (lanai->conf1 & CONFIG1_POWERDOWN) | 
 | 		return; | 
 | #endif /* USE_POWERDOWN */ | 
 | 	local_irq_save(flags); | 
 | 	/* If we can grab the spinlock, check if any services need to be run */ | 
 | 	if (spin_trylock(&lanai->servicelock)) { | 
 | 		run_service(lanai); | 
 | 		spin_unlock(&lanai->servicelock); | 
 | 	} | 
 | 	/* ...and see if any backlogged VCs can make progress */ | 
 | 	/* unfortunately linux has no read_trylock() currently */ | 
 | 	read_lock(&vcc_sklist_lock); | 
 | 	vci_bitfield_iterate(lanai, lanai->backlog_vccs, iter_dequeue); | 
 | 	read_unlock(&vcc_sklist_lock); | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	get_statistics(lanai); | 
 | #endif /* !DEBUG_RW */ | 
 | 	mod_timer(&lanai->timer, jiffies + LANAI_POLL_PERIOD); | 
 | } | 
 |  | 
 | static inline void lanai_timed_poll_start(struct lanai_dev *lanai) | 
 | { | 
 | 	timer_setup(&lanai->timer, lanai_timed_poll, 0); | 
 | 	lanai->timer.expires = jiffies + LANAI_POLL_PERIOD; | 
 | 	add_timer(&lanai->timer); | 
 | } | 
 |  | 
 | static inline void lanai_timed_poll_stop(struct lanai_dev *lanai) | 
 | { | 
 | 	del_timer_sync(&lanai->timer); | 
 | } | 
 |  | 
 | /* -------------------- INTERRUPT SERVICE: */ | 
 |  | 
 | static inline void lanai_int_1(struct lanai_dev *lanai, u32 reason) | 
 | { | 
 | 	u32 ack = 0; | 
 | 	if (reason & INT_SERVICE) { | 
 | 		ack = INT_SERVICE; | 
 | 		spin_lock(&lanai->servicelock); | 
 | 		run_service(lanai); | 
 | 		spin_unlock(&lanai->servicelock); | 
 | 	} | 
 | 	if (reason & (INT_AAL0_STR | INT_AAL0)) { | 
 | 		ack |= reason & (INT_AAL0_STR | INT_AAL0); | 
 | 		vcc_rx_aal0(lanai); | 
 | 	} | 
 | 	/* The rest of the interrupts are pretty rare */ | 
 | 	if (ack == reason) | 
 | 		goto done; | 
 | 	if (reason & INT_STATS) { | 
 | 		reason &= ~INT_STATS;	/* No need to ack */ | 
 | 		get_statistics(lanai); | 
 | 	} | 
 | 	if (reason & INT_STATUS) { | 
 | 		ack |= reason & INT_STATUS; | 
 | 		lanai_check_status(lanai); | 
 | 	} | 
 | 	if (unlikely(reason & INT_DMASHUT)) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - DMA " | 
 | 		    "shutdown, reason=0x%08X, address=0x%08X\n", | 
 | 		    lanai->number, (unsigned int) (reason & INT_DMASHUT), | 
 | 		    (unsigned int) reg_read(lanai, DMA_Addr_Reg)); | 
 | 		if (reason & INT_TABORTBM) { | 
 | 			lanai_reset(lanai); | 
 | 			return; | 
 | 		} | 
 | 		ack |= (reason & INT_DMASHUT); | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): re-enabling DMA\n", | 
 | 		    lanai->number); | 
 | 		conf1_write(lanai); | 
 | 		lanai->stats.dma_reenable++; | 
 | 		pcistatus_check(lanai, 0); | 
 | 	} | 
 | 	if (unlikely(reason & INT_TABORTSENT)) { | 
 | 		ack |= (reason & INT_TABORTSENT); | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): sent PCI target abort\n", | 
 | 		    lanai->number); | 
 | 		pcistatus_check(lanai, 0); | 
 | 	} | 
 | 	if (unlikely(reason & INT_SEGSHUT)) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - " | 
 | 		    "segmentation shutdown, reason=0x%08X\n", lanai->number, | 
 | 		    (unsigned int) (reason & INT_SEGSHUT)); | 
 | 		lanai_reset(lanai); | 
 | 		return; | 
 | 	} | 
 | 	if (unlikely(reason & (INT_PING | INT_WAKE))) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): driver error - " | 
 | 		    "unexpected interrupt 0x%08X, resetting\n", | 
 | 		    lanai->number, | 
 | 		    (unsigned int) (reason & (INT_PING | INT_WAKE))); | 
 | 		lanai_reset(lanai); | 
 | 		return; | 
 | 	} | 
 | #ifdef DEBUG | 
 | 	if (unlikely(ack != reason)) { | 
 | 		DPRINTK("unacked ints: 0x%08X\n", | 
 | 		    (unsigned int) (reason & ~ack)); | 
 | 		ack = reason; | 
 | 	} | 
 | #endif | 
 |    done: | 
 | 	if (ack != 0) | 
 | 		reg_write(lanai, ack, IntAck_Reg); | 
 | } | 
 |  | 
 | static irqreturn_t lanai_int(int irq, void *devid) | 
 | { | 
 | 	struct lanai_dev *lanai = devid; | 
 | 	u32 reason; | 
 |  | 
 | #ifdef USE_POWERDOWN | 
 | 	/* | 
 | 	 * If we're powered down we shouldn't be generating any interrupts - | 
 | 	 * so assume that this is a shared interrupt line and it's for someone | 
 | 	 * else | 
 | 	 */ | 
 | 	if (unlikely(lanai->conf1 & CONFIG1_POWERDOWN)) | 
 | 		return IRQ_NONE; | 
 | #endif | 
 |  | 
 | 	reason = intr_pending(lanai); | 
 | 	if (reason == 0) | 
 | 		return IRQ_NONE;	/* Must be for someone else */ | 
 |  | 
 | 	do { | 
 | 		if (unlikely(reason == 0xFFFFFFFF)) | 
 | 			break;		/* Maybe we've been unplugged? */ | 
 | 		lanai_int_1(lanai, reason); | 
 | 		reason = intr_pending(lanai); | 
 | 	} while (reason != 0); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* TODO - it would be nice if we could use the "delayed interrupt" system | 
 |  *   to some advantage | 
 |  */ | 
 |  | 
 | /* -------------------- CHECK BOARD ID/REV: */ | 
 |  | 
 | /* | 
 |  * The board id and revision are stored both in the reset register and | 
 |  * in the PCI configuration space - the documentation says to check | 
 |  * each of them.  If revp!=NULL we store the revision there | 
 |  */ | 
 | static int check_board_id_and_rev(const char *name, u32 val, int *revp) | 
 | { | 
 | 	DPRINTK("%s says board_id=%d, board_rev=%d\n", name, | 
 | 		(int) RESET_GET_BOARD_ID(val), | 
 | 		(int) RESET_GET_BOARD_REV(val)); | 
 | 	if (RESET_GET_BOARD_ID(val) != BOARD_ID_LANAI256) { | 
 | 		printk(KERN_ERR DEV_LABEL ": Found %s board-id %d -- not a " | 
 | 		    "Lanai 25.6\n", name, (int) RESET_GET_BOARD_ID(val)); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	if (revp != NULL) | 
 | 		*revp = RESET_GET_BOARD_REV(val); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* -------------------- PCI INITIALIZATION/SHUTDOWN: */ | 
 |  | 
 | static int lanai_pci_start(struct lanai_dev *lanai) | 
 | { | 
 | 	struct pci_dev *pci = lanai->pci; | 
 | 	int result; | 
 |  | 
 | 	if (pci_enable_device(pci) != 0) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): can't enable " | 
 | 		    "PCI device", lanai->number); | 
 | 		return -ENXIO; | 
 | 	} | 
 | 	pci_set_master(pci); | 
 | 	if (dma_set_mask_and_coherent(&pci->dev, DMA_BIT_MASK(32)) != 0) { | 
 | 		printk(KERN_WARNING DEV_LABEL | 
 | 		    "(itf %d): No suitable DMA available.\n", lanai->number); | 
 | 		return -EBUSY; | 
 | 	} | 
 | 	result = check_board_id_and_rev("PCI", pci->subsystem_device, NULL); | 
 | 	if (result != 0) | 
 | 		return result; | 
 | 	/* Set latency timer to zero as per lanai docs */ | 
 | 	result = pci_write_config_byte(pci, PCI_LATENCY_TIMER, 0); | 
 | 	if (result != PCIBIOS_SUCCESSFUL) { | 
 | 		printk(KERN_ERR DEV_LABEL "(itf %d): can't write " | 
 | 		    "PCI_LATENCY_TIMER: %d\n", lanai->number, result); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	pcistatus_check(lanai, 1); | 
 | 	pcistatus_check(lanai, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* -------------------- VPI/VCI ALLOCATION: */ | 
 |  | 
 | /* | 
 |  * We _can_ use VCI==0 for normal traffic, but only for UBR (or we'll | 
 |  * get a CBRZERO interrupt), and we can use it only if no one is receiving | 
 |  * AAL0 traffic (since they will use the same queue) - according to the | 
 |  * docs we shouldn't even use it for AAL0 traffic | 
 |  */ | 
 | static inline int vci0_is_ok(struct lanai_dev *lanai, | 
 | 	const struct atm_qos *qos) | 
 | { | 
 | 	if (qos->txtp.traffic_class == ATM_CBR || qos->aal == ATM_AAL0) | 
 | 		return 0; | 
 | 	if (qos->rxtp.traffic_class != ATM_NONE) { | 
 | 		if (lanai->naal0 != 0) | 
 | 			return 0; | 
 | 		lanai->conf2 |= CONFIG2_VCI0_NORMAL; | 
 | 		conf2_write_if_powerup(lanai); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* return true if vci is currently unused, or if requested qos is | 
 |  * compatible | 
 |  */ | 
 | static int vci_is_ok(struct lanai_dev *lanai, vci_t vci, | 
 | 	const struct atm_vcc *atmvcc) | 
 | { | 
 | 	const struct atm_qos *qos = &atmvcc->qos; | 
 | 	const struct lanai_vcc *lvcc = lanai->vccs[vci]; | 
 | 	if (vci == 0 && !vci0_is_ok(lanai, qos)) | 
 | 		return 0; | 
 | 	if (unlikely(lvcc != NULL)) { | 
 | 		if (qos->rxtp.traffic_class != ATM_NONE && | 
 | 		    lvcc->rx.atmvcc != NULL && lvcc->rx.atmvcc != atmvcc) | 
 | 			return 0; | 
 | 		if (qos->txtp.traffic_class != ATM_NONE && | 
 | 		    lvcc->tx.atmvcc != NULL && lvcc->tx.atmvcc != atmvcc) | 
 | 			return 0; | 
 | 		if (qos->txtp.traffic_class == ATM_CBR && | 
 | 		    lanai->cbrvcc != NULL && lanai->cbrvcc != atmvcc) | 
 | 			return 0; | 
 | 	} | 
 | 	if (qos->aal == ATM_AAL0 && lanai->naal0 == 0 && | 
 | 	    qos->rxtp.traffic_class != ATM_NONE) { | 
 | 		const struct lanai_vcc *vci0 = lanai->vccs[0]; | 
 | 		if (vci0 != NULL && vci0->rx.atmvcc != NULL) | 
 | 			return 0; | 
 | 		lanai->conf2 &= ~CONFIG2_VCI0_NORMAL; | 
 | 		conf2_write_if_powerup(lanai); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int lanai_normalize_ci(struct lanai_dev *lanai, | 
 | 	const struct atm_vcc *atmvcc, short *vpip, vci_t *vcip) | 
 | { | 
 | 	switch (*vpip) { | 
 | 		case ATM_VPI_ANY: | 
 | 			*vpip = 0; | 
 | 			/* FALLTHROUGH */ | 
 | 		case 0: | 
 | 			break; | 
 | 		default: | 
 | 			return -EADDRINUSE; | 
 | 	} | 
 | 	switch (*vcip) { | 
 | 		case ATM_VCI_ANY: | 
 | 			for (*vcip = ATM_NOT_RSV_VCI; *vcip < lanai->num_vci; | 
 | 			    (*vcip)++) | 
 | 				if (vci_is_ok(lanai, *vcip, atmvcc)) | 
 | 					return 0; | 
 | 			return -EADDRINUSE; | 
 | 		default: | 
 | 			if (*vcip >= lanai->num_vci || *vcip < 0 || | 
 | 			    !vci_is_ok(lanai, *vcip, atmvcc)) | 
 | 				return -EADDRINUSE; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* -------------------- MANAGE CBR: */ | 
 |  | 
 | /* | 
 |  * CBR ICG is stored as a fixed-point number with 4 fractional bits. | 
 |  * Note that storing a number greater than 2046.0 will result in | 
 |  * incorrect shaping | 
 |  */ | 
 | #define CBRICG_FRAC_BITS	(4) | 
 | #define CBRICG_MAX		(2046 << CBRICG_FRAC_BITS) | 
 |  | 
 | /* | 
 |  * ICG is related to PCR with the formula PCR = MAXPCR / (ICG + 1) | 
 |  * where MAXPCR is (according to the docs) 25600000/(54*8), | 
 |  * which is equal to (3125<<9)/27. | 
 |  * | 
 |  * Solving for ICG, we get: | 
 |  *    ICG = MAXPCR/PCR - 1 | 
 |  *    ICG = (3125<<9)/(27*PCR) - 1 | 
 |  *    ICG = ((3125<<9) - (27*PCR)) / (27*PCR) | 
 |  * | 
 |  * The end result is supposed to be a fixed-point number with FRAC_BITS | 
 |  * bits of a fractional part, so we keep everything in the numerator | 
 |  * shifted by that much as we compute | 
 |  * | 
 |  */ | 
 | static int pcr_to_cbricg(const struct atm_qos *qos) | 
 | { | 
 | 	int rounddown = 0;	/* 1 = Round PCR down, i.e. round ICG _up_ */ | 
 | 	int x, icg, pcr = atm_pcr_goal(&qos->txtp); | 
 | 	if (pcr == 0)		/* Use maximum bandwidth */ | 
 | 		return 0; | 
 | 	if (pcr < 0) { | 
 | 		rounddown = 1; | 
 | 		pcr = -pcr; | 
 | 	} | 
 | 	x = pcr * 27; | 
 | 	icg = (3125 << (9 + CBRICG_FRAC_BITS)) - (x << CBRICG_FRAC_BITS); | 
 | 	if (rounddown) | 
 | 		icg += x - 1; | 
 | 	icg /= x; | 
 | 	if (icg > CBRICG_MAX) | 
 | 		icg = CBRICG_MAX; | 
 | 	DPRINTK("pcr_to_cbricg: pcr=%d rounddown=%c icg=%d\n", | 
 | 	    pcr, rounddown ? 'Y' : 'N', icg); | 
 | 	return icg; | 
 | } | 
 |  | 
 | static inline void lanai_cbr_setup(struct lanai_dev *lanai) | 
 | { | 
 | 	reg_write(lanai, pcr_to_cbricg(&lanai->cbrvcc->qos), CBR_ICG_Reg); | 
 | 	reg_write(lanai, lanai->cbrvcc->vci, CBR_PTR_Reg); | 
 | 	lanai->conf2 |= CONFIG2_CBR_ENABLE; | 
 | 	conf2_write(lanai); | 
 | } | 
 |  | 
 | static inline void lanai_cbr_shutdown(struct lanai_dev *lanai) | 
 | { | 
 | 	lanai->conf2 &= ~CONFIG2_CBR_ENABLE; | 
 | 	conf2_write(lanai); | 
 | } | 
 |  | 
 | /* -------------------- OPERATIONS: */ | 
 |  | 
 | /* setup a newly detected device */ | 
 | static int lanai_dev_open(struct atm_dev *atmdev) | 
 | { | 
 | 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; | 
 | 	unsigned long raw_base; | 
 | 	int result; | 
 |  | 
 | 	DPRINTK("In lanai_dev_open()\n"); | 
 | 	/* Basic device fields */ | 
 | 	lanai->number = atmdev->number; | 
 | 	lanai->num_vci = NUM_VCI; | 
 | 	bitmap_zero(lanai->backlog_vccs, NUM_VCI); | 
 | 	bitmap_zero(lanai->transmit_ready, NUM_VCI); | 
 | 	lanai->naal0 = 0; | 
 | #ifdef USE_POWERDOWN | 
 | 	lanai->nbound = 0; | 
 | #endif | 
 | 	lanai->cbrvcc = NULL; | 
 | 	memset(&lanai->stats, 0, sizeof lanai->stats); | 
 | 	spin_lock_init(&lanai->endtxlock); | 
 | 	spin_lock_init(&lanai->servicelock); | 
 | 	atmdev->ci_range.vpi_bits = 0; | 
 | 	atmdev->ci_range.vci_bits = 0; | 
 | 	while (1 << atmdev->ci_range.vci_bits < lanai->num_vci) | 
 | 		atmdev->ci_range.vci_bits++; | 
 | 	atmdev->link_rate = ATM_25_PCR; | 
 |  | 
 | 	/* 3.2: PCI initialization */ | 
 | 	if ((result = lanai_pci_start(lanai)) != 0) | 
 | 		goto error; | 
 | 	raw_base = lanai->pci->resource[0].start; | 
 | 	lanai->base = (bus_addr_t) ioremap(raw_base, LANAI_MAPPING_SIZE); | 
 | 	if (lanai->base == NULL) { | 
 | 		printk(KERN_ERR DEV_LABEL ": couldn't remap I/O space\n"); | 
 | 		result = -ENOMEM; | 
 | 		goto error_pci; | 
 | 	} | 
 | 	/* 3.3: Reset lanai and PHY */ | 
 | 	reset_board(lanai); | 
 | 	lanai->conf1 = reg_read(lanai, Config1_Reg); | 
 | 	lanai->conf1 &= ~(CONFIG1_GPOUT1 | CONFIG1_POWERDOWN | | 
 | 	    CONFIG1_MASK_LEDMODE); | 
 | 	lanai->conf1 |= CONFIG1_SET_LEDMODE(LEDMODE_NOT_SOOL); | 
 | 	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg); | 
 | 	udelay(1000); | 
 | 	conf1_write(lanai); | 
 |  | 
 | 	/* | 
 | 	 * 3.4: Turn on endian mode for big-endian hardware | 
 | 	 *   We don't actually want to do this - the actual bit fields | 
 | 	 *   in the endian register are not documented anywhere. | 
 | 	 *   Instead we do the bit-flipping ourselves on big-endian | 
 | 	 *   hardware. | 
 | 	 * | 
 | 	 * 3.5: get the board ID/rev by reading the reset register | 
 | 	 */ | 
 | 	result = check_board_id_and_rev("register", | 
 | 	    reg_read(lanai, Reset_Reg), &lanai->board_rev); | 
 | 	if (result != 0) | 
 | 		goto error_unmap; | 
 |  | 
 | 	/* 3.6: read EEPROM */ | 
 | 	if ((result = eeprom_read(lanai)) != 0) | 
 | 		goto error_unmap; | 
 | 	if ((result = eeprom_validate(lanai)) != 0) | 
 | 		goto error_unmap; | 
 |  | 
 | 	/* 3.7: re-reset PHY, do loopback tests, setup PHY */ | 
 | 	reg_write(lanai, lanai->conf1 | CONFIG1_GPOUT1, Config1_Reg); | 
 | 	udelay(1000); | 
 | 	conf1_write(lanai); | 
 | 	/* TODO - loopback tests */ | 
 | 	lanai->conf1 |= (CONFIG1_GPOUT2 | CONFIG1_GPOUT3 | CONFIG1_DMA_ENABLE); | 
 | 	conf1_write(lanai); | 
 |  | 
 | 	/* 3.8/3.9: test and initialize card SRAM */ | 
 | 	if ((result = sram_test_and_clear(lanai)) != 0) | 
 | 		goto error_unmap; | 
 |  | 
 | 	/* 3.10: initialize lanai registers */ | 
 | 	lanai->conf1 |= CONFIG1_DMA_ENABLE; | 
 | 	conf1_write(lanai); | 
 | 	if ((result = service_buffer_allocate(lanai)) != 0) | 
 | 		goto error_unmap; | 
 | 	if ((result = vcc_table_allocate(lanai)) != 0) | 
 | 		goto error_service; | 
 | 	lanai->conf2 = (lanai->num_vci >= 512 ? CONFIG2_HOWMANY : 0) | | 
 | 	    CONFIG2_HEC_DROP |	/* ??? */ CONFIG2_PTI7_MODE; | 
 | 	conf2_write(lanai); | 
 | 	reg_write(lanai, TX_FIFO_DEPTH, TxDepth_Reg); | 
 | 	reg_write(lanai, 0, CBR_ICG_Reg);	/* CBR defaults to no limit */ | 
 | 	if ((result = request_irq(lanai->pci->irq, lanai_int, IRQF_SHARED, | 
 | 	    DEV_LABEL, lanai)) != 0) { | 
 | 		printk(KERN_ERR DEV_LABEL ": can't allocate interrupt\n"); | 
 | 		goto error_vcctable; | 
 | 	} | 
 | 	mb();				/* Make sure that all that made it */ | 
 | 	intr_enable(lanai, INT_ALL & ~(INT_PING | INT_WAKE)); | 
 | 	/* 3.11: initialize loop mode (i.e. turn looping off) */ | 
 | 	lanai->conf1 = (lanai->conf1 & ~CONFIG1_MASK_LOOPMODE) | | 
 | 	    CONFIG1_SET_LOOPMODE(LOOPMODE_NORMAL) | | 
 | 	    CONFIG1_GPOUT2 | CONFIG1_GPOUT3; | 
 | 	conf1_write(lanai); | 
 | 	lanai->status = reg_read(lanai, Status_Reg); | 
 | 	/* We're now done initializing this card */ | 
 | #ifdef USE_POWERDOWN | 
 | 	lanai->conf1 |= CONFIG1_POWERDOWN; | 
 | 	conf1_write(lanai); | 
 | #endif | 
 | 	memcpy(atmdev->esi, eeprom_mac(lanai), ESI_LEN); | 
 | 	lanai_timed_poll_start(lanai); | 
 | 	printk(KERN_NOTICE DEV_LABEL "(itf %d): rev.%d, base=%p, irq=%u " | 
 | 		"(%pMF)\n", lanai->number, (int) lanai->pci->revision, | 
 | 		lanai->base, lanai->pci->irq, atmdev->esi); | 
 | 	printk(KERN_NOTICE DEV_LABEL "(itf %d): LANAI%s, serialno=%u(0x%X), " | 
 | 	    "board_rev=%d\n", lanai->number, | 
 | 	    lanai->type==lanai2 ? "2" : "HB", (unsigned int) lanai->serialno, | 
 | 	    (unsigned int) lanai->serialno, lanai->board_rev); | 
 | 	return 0; | 
 |  | 
 |     error_vcctable: | 
 | 	vcc_table_deallocate(lanai); | 
 |     error_service: | 
 | 	service_buffer_deallocate(lanai); | 
 |     error_unmap: | 
 | 	reset_board(lanai); | 
 | #ifdef USE_POWERDOWN | 
 | 	lanai->conf1 = reg_read(lanai, Config1_Reg) | CONFIG1_POWERDOWN; | 
 | 	conf1_write(lanai); | 
 | #endif | 
 | 	iounmap(lanai->base); | 
 |     error_pci: | 
 | 	pci_disable_device(lanai->pci); | 
 |     error: | 
 | 	return result; | 
 | } | 
 |  | 
 | /* called when device is being shutdown, and all vcc's are gone - higher | 
 |  * levels will deallocate the atm device for us | 
 |  */ | 
 | static void lanai_dev_close(struct atm_dev *atmdev) | 
 | { | 
 | 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; | 
 | 	printk(KERN_INFO DEV_LABEL "(itf %d): shutting down interface\n", | 
 | 	    lanai->number); | 
 | 	lanai_timed_poll_stop(lanai); | 
 | #ifdef USE_POWERDOWN | 
 | 	lanai->conf1 = reg_read(lanai, Config1_Reg) & ~CONFIG1_POWERDOWN; | 
 | 	conf1_write(lanai); | 
 | #endif | 
 | 	intr_disable(lanai, INT_ALL); | 
 | 	free_irq(lanai->pci->irq, lanai); | 
 | 	reset_board(lanai); | 
 | #ifdef USE_POWERDOWN | 
 | 	lanai->conf1 |= CONFIG1_POWERDOWN; | 
 | 	conf1_write(lanai); | 
 | #endif | 
 | 	pci_disable_device(lanai->pci); | 
 | 	vcc_table_deallocate(lanai); | 
 | 	service_buffer_deallocate(lanai); | 
 | 	iounmap(lanai->base); | 
 | 	kfree(lanai); | 
 | } | 
 |  | 
 | /* close a vcc */ | 
 | static void lanai_close(struct atm_vcc *atmvcc) | 
 | { | 
 | 	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data; | 
 | 	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data; | 
 | 	if (lvcc == NULL) | 
 | 		return; | 
 | 	clear_bit(ATM_VF_READY, &atmvcc->flags); | 
 | 	clear_bit(ATM_VF_PARTIAL, &atmvcc->flags); | 
 | 	if (lvcc->rx.atmvcc == atmvcc) { | 
 | 		lanai_shutdown_rx_vci(lvcc); | 
 | 		if (atmvcc->qos.aal == ATM_AAL0) { | 
 | 			if (--lanai->naal0 <= 0) | 
 | 				aal0_buffer_free(lanai); | 
 | 		} else | 
 | 			lanai_buf_deallocate(&lvcc->rx.buf, lanai->pci); | 
 | 		lvcc->rx.atmvcc = NULL; | 
 | 	} | 
 | 	if (lvcc->tx.atmvcc == atmvcc) { | 
 | 		if (atmvcc == lanai->cbrvcc) { | 
 | 			if (lvcc->vbase != NULL) | 
 | 				lanai_cbr_shutdown(lanai); | 
 | 			lanai->cbrvcc = NULL; | 
 | 		} | 
 | 		lanai_shutdown_tx_vci(lanai, lvcc); | 
 | 		lanai_buf_deallocate(&lvcc->tx.buf, lanai->pci); | 
 | 		lvcc->tx.atmvcc = NULL; | 
 | 	} | 
 | 	if (--lvcc->nref == 0) { | 
 | 		host_vcc_unbind(lanai, lvcc); | 
 | 		kfree(lvcc); | 
 | 	} | 
 | 	atmvcc->dev_data = NULL; | 
 | 	clear_bit(ATM_VF_ADDR, &atmvcc->flags); | 
 | } | 
 |  | 
 | /* open a vcc on the card to vpi/vci */ | 
 | static int lanai_open(struct atm_vcc *atmvcc) | 
 | { | 
 | 	struct lanai_dev *lanai; | 
 | 	struct lanai_vcc *lvcc; | 
 | 	int result = 0; | 
 | 	int vci = atmvcc->vci; | 
 | 	short vpi = atmvcc->vpi; | 
 | 	/* we don't support partial open - it's not really useful anyway */ | 
 | 	if ((test_bit(ATM_VF_PARTIAL, &atmvcc->flags)) || | 
 | 	    (vpi == ATM_VPI_UNSPEC) || (vci == ATM_VCI_UNSPEC)) | 
 | 		return -EINVAL; | 
 | 	lanai = (struct lanai_dev *) atmvcc->dev->dev_data; | 
 | 	result = lanai_normalize_ci(lanai, atmvcc, &vpi, &vci); | 
 | 	if (unlikely(result != 0)) | 
 | 		goto out; | 
 | 	set_bit(ATM_VF_ADDR, &atmvcc->flags); | 
 | 	if (atmvcc->qos.aal != ATM_AAL0 && atmvcc->qos.aal != ATM_AAL5) | 
 | 		return -EINVAL; | 
 | 	DPRINTK(DEV_LABEL "(itf %d): open %d.%d\n", lanai->number, | 
 | 	    (int) vpi, vci); | 
 | 	lvcc = lanai->vccs[vci]; | 
 | 	if (lvcc == NULL) { | 
 | 		lvcc = new_lanai_vcc(); | 
 | 		if (unlikely(lvcc == NULL)) | 
 | 			return -ENOMEM; | 
 | 		atmvcc->dev_data = lvcc; | 
 | 	} | 
 | 	lvcc->nref++; | 
 | 	if (atmvcc->qos.rxtp.traffic_class != ATM_NONE) { | 
 | 		APRINTK(lvcc->rx.atmvcc == NULL, "rx.atmvcc!=NULL, vci=%d\n", | 
 | 		    vci); | 
 | 		if (atmvcc->qos.aal == ATM_AAL0) { | 
 | 			if (lanai->naal0 == 0) | 
 | 				result = aal0_buffer_allocate(lanai); | 
 | 		} else | 
 | 			result = lanai_setup_rx_vci_aal5( | 
 | 			    lanai, lvcc, &atmvcc->qos); | 
 | 		if (unlikely(result != 0)) | 
 | 			goto out_free; | 
 | 		lvcc->rx.atmvcc = atmvcc; | 
 | 		lvcc->stats.rx_nomem = 0; | 
 | 		lvcc->stats.x.aal5.rx_badlen = 0; | 
 | 		lvcc->stats.x.aal5.service_trash = 0; | 
 | 		lvcc->stats.x.aal5.service_stream = 0; | 
 | 		lvcc->stats.x.aal5.service_rxcrc = 0; | 
 | 		if (atmvcc->qos.aal == ATM_AAL0) | 
 | 			lanai->naal0++; | 
 | 	} | 
 | 	if (atmvcc->qos.txtp.traffic_class != ATM_NONE) { | 
 | 		APRINTK(lvcc->tx.atmvcc == NULL, "tx.atmvcc!=NULL, vci=%d\n", | 
 | 		    vci); | 
 | 		result = lanai_setup_tx_vci(lanai, lvcc, &atmvcc->qos); | 
 | 		if (unlikely(result != 0)) | 
 | 			goto out_free; | 
 | 		lvcc->tx.atmvcc = atmvcc; | 
 | 		if (atmvcc->qos.txtp.traffic_class == ATM_CBR) { | 
 | 			APRINTK(lanai->cbrvcc == NULL, | 
 | 			    "cbrvcc!=NULL, vci=%d\n", vci); | 
 | 			lanai->cbrvcc = atmvcc; | 
 | 		} | 
 | 	} | 
 | 	host_vcc_bind(lanai, lvcc, vci); | 
 | 	/* | 
 | 	 * Make sure everything made it to RAM before we tell the card about | 
 | 	 * the VCC | 
 | 	 */ | 
 | 	wmb(); | 
 | 	if (atmvcc == lvcc->rx.atmvcc) | 
 | 		host_vcc_start_rx(lvcc); | 
 | 	if (atmvcc == lvcc->tx.atmvcc) { | 
 | 		host_vcc_start_tx(lvcc); | 
 | 		if (lanai->cbrvcc == atmvcc) | 
 | 			lanai_cbr_setup(lanai); | 
 | 	} | 
 | 	set_bit(ATM_VF_READY, &atmvcc->flags); | 
 | 	return 0; | 
 |     out_free: | 
 | 	lanai_close(atmvcc); | 
 |     out: | 
 | 	return result; | 
 | } | 
 |  | 
 | static int lanai_send(struct atm_vcc *atmvcc, struct sk_buff *skb) | 
 | { | 
 | 	struct lanai_vcc *lvcc = (struct lanai_vcc *) atmvcc->dev_data; | 
 | 	struct lanai_dev *lanai = (struct lanai_dev *) atmvcc->dev->dev_data; | 
 | 	unsigned long flags; | 
 | 	if (unlikely(lvcc == NULL || lvcc->vbase == NULL || | 
 | 	      lvcc->tx.atmvcc != atmvcc)) | 
 | 		goto einval; | 
 | #ifdef DEBUG | 
 | 	if (unlikely(skb == NULL)) { | 
 | 		DPRINTK("lanai_send: skb==NULL for vci=%d\n", atmvcc->vci); | 
 | 		goto einval; | 
 | 	} | 
 | 	if (unlikely(lanai == NULL)) { | 
 | 		DPRINTK("lanai_send: lanai==NULL for vci=%d\n", atmvcc->vci); | 
 | 		goto einval; | 
 | 	} | 
 | #endif | 
 | 	ATM_SKB(skb)->vcc = atmvcc; | 
 | 	switch (atmvcc->qos.aal) { | 
 | 		case ATM_AAL5: | 
 | 			read_lock_irqsave(&vcc_sklist_lock, flags); | 
 | 			vcc_tx_aal5(lanai, lvcc, skb); | 
 | 			read_unlock_irqrestore(&vcc_sklist_lock, flags); | 
 | 			return 0; | 
 | 		case ATM_AAL0: | 
 | 			if (unlikely(skb->len != ATM_CELL_SIZE-1)) | 
 | 				goto einval; | 
 |   /* NOTE - this next line is technically invalid - we haven't unshared skb */ | 
 | 			cpu_to_be32s((u32 *) skb->data); | 
 | 			read_lock_irqsave(&vcc_sklist_lock, flags); | 
 | 			vcc_tx_aal0(lanai, lvcc, skb); | 
 | 			read_unlock_irqrestore(&vcc_sklist_lock, flags); | 
 | 			return 0; | 
 | 	} | 
 | 	DPRINTK("lanai_send: bad aal=%d on vci=%d\n", (int) atmvcc->qos.aal, | 
 | 	    atmvcc->vci); | 
 |     einval: | 
 | 	lanai_free_skb(atmvcc, skb); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int lanai_change_qos(struct atm_vcc *atmvcc, | 
 | 	/*const*/ struct atm_qos *qos, int flags) | 
 | { | 
 | 	return -EBUSY;		/* TODO: need to write this */ | 
 | } | 
 |  | 
 | #ifndef CONFIG_PROC_FS | 
 | #define lanai_proc_read NULL | 
 | #else | 
 | static int lanai_proc_read(struct atm_dev *atmdev, loff_t *pos, char *page) | 
 | { | 
 | 	struct lanai_dev *lanai = (struct lanai_dev *) atmdev->dev_data; | 
 | 	loff_t left = *pos; | 
 | 	struct lanai_vcc *lvcc; | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, DEV_LABEL "(itf %d): chip=LANAI%s, " | 
 | 		    "serial=%u, magic=0x%08X, num_vci=%d\n", | 
 | 		    atmdev->number, lanai->type==lanai2 ? "2" : "HB", | 
 | 		    (unsigned int) lanai->serialno, | 
 | 		    (unsigned int) lanai->magicno, lanai->num_vci); | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, "revision: board=%d, pci_if=%d\n", | 
 | 		    lanai->board_rev, (int) lanai->pci->revision); | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, "EEPROM ESI: %pM\n", | 
 | 		    &lanai->eeprom[EEPROM_MAC]); | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, "status: SOOL=%d, LOCD=%d, LED=%d, " | 
 | 		    "GPIN=%d\n", (lanai->status & STATUS_SOOL) ? 1 : 0, | 
 | 		    (lanai->status & STATUS_LOCD) ? 1 : 0, | 
 | 		    (lanai->status & STATUS_LED) ? 1 : 0, | 
 | 		    (lanai->status & STATUS_GPIN) ? 1 : 0); | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, "global buffer sizes: service=%zu, " | 
 | 		    "aal0_rx=%zu\n", lanai_buf_size(&lanai->service), | 
 | 		    lanai->naal0 ? lanai_buf_size(&lanai->aal0buf) : 0); | 
 | 	if (left-- == 0) { | 
 | 		get_statistics(lanai); | 
 | 		return sprintf(page, "cells in error: overflow=%u, " | 
 | 		    "closed_vci=%u, bad_HEC=%u, rx_fifo=%u\n", | 
 | 		    lanai->stats.ovfl_trash, lanai->stats.vci_trash, | 
 | 		    lanai->stats.hec_err, lanai->stats.atm_ovfl); | 
 | 	} | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, "PCI errors: parity_detect=%u, " | 
 | 		    "master_abort=%u, master_target_abort=%u,\n", | 
 | 		    lanai->stats.pcierr_parity_detect, | 
 | 		    lanai->stats.pcierr_serr_set, | 
 | 		    lanai->stats.pcierr_m_target_abort); | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, "            slave_target_abort=%u, " | 
 | 		    "master_parity=%u\n", lanai->stats.pcierr_s_target_abort, | 
 | 		    lanai->stats.pcierr_master_parity); | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, "                     no_tx=%u, " | 
 | 		    "no_rx=%u, bad_rx_aal=%u\n", lanai->stats.service_norx, | 
 | 		    lanai->stats.service_notx, | 
 | 		    lanai->stats.service_rxnotaal5); | 
 | 	if (left-- == 0) | 
 | 		return sprintf(page, "resets: dma=%u, card=%u\n", | 
 | 		    lanai->stats.dma_reenable, lanai->stats.card_reset); | 
 | 	/* At this point, "left" should be the VCI we're looking for */ | 
 | 	read_lock(&vcc_sklist_lock); | 
 | 	for (; ; left++) { | 
 | 		if (left >= NUM_VCI) { | 
 | 			left = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if ((lvcc = lanai->vccs[left]) != NULL) | 
 | 			break; | 
 | 		(*pos)++; | 
 | 	} | 
 | 	/* Note that we re-use "left" here since we're done with it */ | 
 | 	left = sprintf(page, "VCI %4d: nref=%d, rx_nomem=%u",  (vci_t) left, | 
 | 	    lvcc->nref, lvcc->stats.rx_nomem); | 
 | 	if (lvcc->rx.atmvcc != NULL) { | 
 | 		left += sprintf(&page[left], ",\n          rx_AAL=%d", | 
 | 		    lvcc->rx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0); | 
 | 		if (lvcc->rx.atmvcc->qos.aal == ATM_AAL5) | 
 | 			left += sprintf(&page[left], ", rx_buf_size=%zu, " | 
 | 			    "rx_bad_len=%u,\n          rx_service_trash=%u, " | 
 | 			    "rx_service_stream=%u, rx_bad_crc=%u", | 
 | 			    lanai_buf_size(&lvcc->rx.buf), | 
 | 			    lvcc->stats.x.aal5.rx_badlen, | 
 | 			    lvcc->stats.x.aal5.service_trash, | 
 | 			    lvcc->stats.x.aal5.service_stream, | 
 | 			    lvcc->stats.x.aal5.service_rxcrc); | 
 | 	} | 
 | 	if (lvcc->tx.atmvcc != NULL) | 
 | 		left += sprintf(&page[left], ",\n          tx_AAL=%d, " | 
 | 		    "tx_buf_size=%zu, tx_qos=%cBR, tx_backlogged=%c", | 
 | 		    lvcc->tx.atmvcc->qos.aal == ATM_AAL5 ? 5 : 0, | 
 | 		    lanai_buf_size(&lvcc->tx.buf), | 
 | 		    lvcc->tx.atmvcc == lanai->cbrvcc ? 'C' : 'U', | 
 | 		    vcc_is_backlogged(lvcc) ? 'Y' : 'N'); | 
 | 	page[left++] = '\n'; | 
 | 	page[left] = '\0'; | 
 |     out: | 
 | 	read_unlock(&vcc_sklist_lock); | 
 | 	return left; | 
 | } | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | /* -------------------- HOOKS: */ | 
 |  | 
 | static const struct atmdev_ops ops = { | 
 | 	.dev_close	= lanai_dev_close, | 
 | 	.open		= lanai_open, | 
 | 	.close		= lanai_close, | 
 | 	.getsockopt	= NULL, | 
 | 	.setsockopt	= NULL, | 
 | 	.send		= lanai_send, | 
 | 	.phy_put	= NULL, | 
 | 	.phy_get	= NULL, | 
 | 	.change_qos	= lanai_change_qos, | 
 | 	.proc_read	= lanai_proc_read, | 
 | 	.owner		= THIS_MODULE | 
 | }; | 
 |  | 
 | /* initialize one probed card */ | 
 | static int lanai_init_one(struct pci_dev *pci, | 
 | 			  const struct pci_device_id *ident) | 
 | { | 
 | 	struct lanai_dev *lanai; | 
 | 	struct atm_dev *atmdev; | 
 | 	int result; | 
 |  | 
 | 	lanai = kmalloc(sizeof(*lanai), GFP_KERNEL); | 
 | 	if (lanai == NULL) { | 
 | 		printk(KERN_ERR DEV_LABEL | 
 | 		       ": couldn't allocate dev_data structure!\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	atmdev = atm_dev_register(DEV_LABEL, &pci->dev, &ops, -1, NULL); | 
 | 	if (atmdev == NULL) { | 
 | 		printk(KERN_ERR DEV_LABEL | 
 | 		    ": couldn't register atm device!\n"); | 
 | 		kfree(lanai); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	atmdev->dev_data = lanai; | 
 | 	lanai->pci = pci; | 
 | 	lanai->type = (enum lanai_type) ident->device; | 
 |  | 
 | 	result = lanai_dev_open(atmdev); | 
 | 	if (result != 0) { | 
 | 		DPRINTK("lanai_start() failed, err=%d\n", -result); | 
 | 		atm_dev_deregister(atmdev); | 
 | 		kfree(lanai); | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | static const struct pci_device_id lanai_pci_tbl[] = { | 
 | 	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAI2) }, | 
 | 	{ PCI_VDEVICE(EF, PCI_DEVICE_ID_EF_ATM_LANAIHB) }, | 
 | 	{ 0, }	/* terminal entry */ | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, lanai_pci_tbl); | 
 |  | 
 | static struct pci_driver lanai_driver = { | 
 | 	.name     = DEV_LABEL, | 
 | 	.id_table = lanai_pci_tbl, | 
 | 	.probe    = lanai_init_one, | 
 | }; | 
 |  | 
 | module_pci_driver(lanai_driver); | 
 |  | 
 | MODULE_AUTHOR("Mitchell Blank Jr <mitch@sfgoth.com>"); | 
 | MODULE_DESCRIPTION("Efficient Networks Speedstream 3010 driver"); | 
 | MODULE_LICENSE("GPL"); |