|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Manage cache of swap slots to be used for and returned from | 
|  | * swap. | 
|  | * | 
|  | * Copyright(c) 2016 Intel Corporation. | 
|  | * | 
|  | * Author: Tim Chen <tim.c.chen@linux.intel.com> | 
|  | * | 
|  | * We allocate the swap slots from the global pool and put | 
|  | * it into local per cpu caches.  This has the advantage | 
|  | * of no needing to acquire the swap_info lock every time | 
|  | * we need a new slot. | 
|  | * | 
|  | * There is also opportunity to simply return the slot | 
|  | * to local caches without needing to acquire swap_info | 
|  | * lock.  We do not reuse the returned slots directly but | 
|  | * move them back to the global pool in a batch.  This | 
|  | * allows the slots to coaellesce and reduce fragmentation. | 
|  | * | 
|  | * The swap entry allocated is marked with SWAP_HAS_CACHE | 
|  | * flag in map_count that prevents it from being allocated | 
|  | * again from the global pool. | 
|  | * | 
|  | * The swap slots cache is protected by a mutex instead of | 
|  | * a spin lock as when we search for slots with scan_swap_map, | 
|  | * we can possibly sleep. | 
|  | */ | 
|  |  | 
|  | #include <linux/swap_slots.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots); | 
|  | static bool	swap_slot_cache_active; | 
|  | bool	swap_slot_cache_enabled; | 
|  | static bool	swap_slot_cache_initialized; | 
|  | static DEFINE_MUTEX(swap_slots_cache_mutex); | 
|  | /* Serialize swap slots cache enable/disable operations */ | 
|  | static DEFINE_MUTEX(swap_slots_cache_enable_mutex); | 
|  |  | 
|  | static void __drain_swap_slots_cache(unsigned int type); | 
|  | static void deactivate_swap_slots_cache(void); | 
|  | static void reactivate_swap_slots_cache(void); | 
|  |  | 
|  | #define use_swap_slot_cache (swap_slot_cache_active && \ | 
|  | swap_slot_cache_enabled && swap_slot_cache_initialized) | 
|  | #define SLOTS_CACHE 0x1 | 
|  | #define SLOTS_CACHE_RET 0x2 | 
|  |  | 
|  | static void deactivate_swap_slots_cache(void) | 
|  | { | 
|  | mutex_lock(&swap_slots_cache_mutex); | 
|  | swap_slot_cache_active = false; | 
|  | __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); | 
|  | mutex_unlock(&swap_slots_cache_mutex); | 
|  | } | 
|  |  | 
|  | static void reactivate_swap_slots_cache(void) | 
|  | { | 
|  | mutex_lock(&swap_slots_cache_mutex); | 
|  | swap_slot_cache_active = true; | 
|  | mutex_unlock(&swap_slots_cache_mutex); | 
|  | } | 
|  |  | 
|  | /* Must not be called with cpu hot plug lock */ | 
|  | void disable_swap_slots_cache_lock(void) | 
|  | { | 
|  | mutex_lock(&swap_slots_cache_enable_mutex); | 
|  | swap_slot_cache_enabled = false; | 
|  | if (swap_slot_cache_initialized) { | 
|  | /* serialize with cpu hotplug operations */ | 
|  | get_online_cpus(); | 
|  | __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET); | 
|  | put_online_cpus(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __reenable_swap_slots_cache(void) | 
|  | { | 
|  | swap_slot_cache_enabled = has_usable_swap(); | 
|  | } | 
|  |  | 
|  | void reenable_swap_slots_cache_unlock(void) | 
|  | { | 
|  | __reenable_swap_slots_cache(); | 
|  | mutex_unlock(&swap_slots_cache_enable_mutex); | 
|  | } | 
|  |  | 
|  | static bool check_cache_active(void) | 
|  | { | 
|  | long pages; | 
|  |  | 
|  | if (!swap_slot_cache_enabled || !swap_slot_cache_initialized) | 
|  | return false; | 
|  |  | 
|  | pages = get_nr_swap_pages(); | 
|  | if (!swap_slot_cache_active) { | 
|  | if (pages > num_online_cpus() * | 
|  | THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE) | 
|  | reactivate_swap_slots_cache(); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* if global pool of slot caches too low, deactivate cache */ | 
|  | if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE) | 
|  | deactivate_swap_slots_cache(); | 
|  | out: | 
|  | return swap_slot_cache_active; | 
|  | } | 
|  |  | 
|  | static int alloc_swap_slot_cache(unsigned int cpu) | 
|  | { | 
|  | struct swap_slots_cache *cache; | 
|  | swp_entry_t *slots, *slots_ret; | 
|  |  | 
|  | /* | 
|  | * Do allocation outside swap_slots_cache_mutex | 
|  | * as kvzalloc could trigger reclaim and get_swap_page, | 
|  | * which can lock swap_slots_cache_mutex. | 
|  | */ | 
|  | slots = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), | 
|  | GFP_KERNEL); | 
|  | if (!slots) | 
|  | return -ENOMEM; | 
|  |  | 
|  | slots_ret = kvcalloc(SWAP_SLOTS_CACHE_SIZE, sizeof(swp_entry_t), | 
|  | GFP_KERNEL); | 
|  | if (!slots_ret) { | 
|  | kvfree(slots); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | mutex_lock(&swap_slots_cache_mutex); | 
|  | cache = &per_cpu(swp_slots, cpu); | 
|  | if (cache->slots || cache->slots_ret) | 
|  | /* cache already allocated */ | 
|  | goto out; | 
|  | if (!cache->lock_initialized) { | 
|  | mutex_init(&cache->alloc_lock); | 
|  | spin_lock_init(&cache->free_lock); | 
|  | cache->lock_initialized = true; | 
|  | } | 
|  | cache->nr = 0; | 
|  | cache->cur = 0; | 
|  | cache->n_ret = 0; | 
|  | /* | 
|  | * We initialized alloc_lock and free_lock earlier.  We use | 
|  | * !cache->slots or !cache->slots_ret to know if it is safe to acquire | 
|  | * the corresponding lock and use the cache.  Memory barrier below | 
|  | * ensures the assumption. | 
|  | */ | 
|  | mb(); | 
|  | cache->slots = slots; | 
|  | slots = NULL; | 
|  | cache->slots_ret = slots_ret; | 
|  | slots_ret = NULL; | 
|  | out: | 
|  | mutex_unlock(&swap_slots_cache_mutex); | 
|  | if (slots) | 
|  | kvfree(slots); | 
|  | if (slots_ret) | 
|  | kvfree(slots_ret); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type, | 
|  | bool free_slots) | 
|  | { | 
|  | struct swap_slots_cache *cache; | 
|  | swp_entry_t *slots = NULL; | 
|  |  | 
|  | cache = &per_cpu(swp_slots, cpu); | 
|  | if ((type & SLOTS_CACHE) && cache->slots) { | 
|  | mutex_lock(&cache->alloc_lock); | 
|  | swapcache_free_entries(cache->slots + cache->cur, cache->nr); | 
|  | cache->cur = 0; | 
|  | cache->nr = 0; | 
|  | if (free_slots && cache->slots) { | 
|  | kvfree(cache->slots); | 
|  | cache->slots = NULL; | 
|  | } | 
|  | mutex_unlock(&cache->alloc_lock); | 
|  | } | 
|  | if ((type & SLOTS_CACHE_RET) && cache->slots_ret) { | 
|  | spin_lock_irq(&cache->free_lock); | 
|  | swapcache_free_entries(cache->slots_ret, cache->n_ret); | 
|  | cache->n_ret = 0; | 
|  | if (free_slots && cache->slots_ret) { | 
|  | slots = cache->slots_ret; | 
|  | cache->slots_ret = NULL; | 
|  | } | 
|  | spin_unlock_irq(&cache->free_lock); | 
|  | if (slots) | 
|  | kvfree(slots); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __drain_swap_slots_cache(unsigned int type) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | /* | 
|  | * This function is called during | 
|  | *	1) swapoff, when we have to make sure no | 
|  | *	   left over slots are in cache when we remove | 
|  | *	   a swap device; | 
|  | *      2) disabling of swap slot cache, when we run low | 
|  | *	   on swap slots when allocating memory and need | 
|  | *	   to return swap slots to global pool. | 
|  | * | 
|  | * We cannot acquire cpu hot plug lock here as | 
|  | * this function can be invoked in the cpu | 
|  | * hot plug path: | 
|  | * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback | 
|  | *   -> memory allocation -> direct reclaim -> get_swap_page | 
|  | *   -> drain_swap_slots_cache | 
|  | * | 
|  | * Hence the loop over current online cpu below could miss cpu that | 
|  | * is being brought online but not yet marked as online. | 
|  | * That is okay as we do not schedule and run anything on a | 
|  | * cpu before it has been marked online. Hence, we will not | 
|  | * fill any swap slots in slots cache of such cpu. | 
|  | * There are no slots on such cpu that need to be drained. | 
|  | */ | 
|  | for_each_online_cpu(cpu) | 
|  | drain_slots_cache_cpu(cpu, type, false); | 
|  | } | 
|  |  | 
|  | static int free_slot_cache(unsigned int cpu) | 
|  | { | 
|  | mutex_lock(&swap_slots_cache_mutex); | 
|  | drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true); | 
|  | mutex_unlock(&swap_slots_cache_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int enable_swap_slots_cache(void) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | mutex_lock(&swap_slots_cache_enable_mutex); | 
|  | if (swap_slot_cache_initialized) { | 
|  | __reenable_swap_slots_cache(); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache", | 
|  | alloc_swap_slot_cache, free_slot_cache); | 
|  | if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating " | 
|  | "without swap slots cache.\n", __func__)) | 
|  | goto out_unlock; | 
|  |  | 
|  | swap_slot_cache_initialized = true; | 
|  | __reenable_swap_slots_cache(); | 
|  | out_unlock: | 
|  | mutex_unlock(&swap_slots_cache_enable_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* called with swap slot cache's alloc lock held */ | 
|  | static int refill_swap_slots_cache(struct swap_slots_cache *cache) | 
|  | { | 
|  | if (!use_swap_slot_cache || cache->nr) | 
|  | return 0; | 
|  |  | 
|  | cache->cur = 0; | 
|  | if (swap_slot_cache_active) | 
|  | cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, | 
|  | cache->slots, 1); | 
|  |  | 
|  | return cache->nr; | 
|  | } | 
|  |  | 
|  | int free_swap_slot(swp_entry_t entry) | 
|  | { | 
|  | struct swap_slots_cache *cache; | 
|  |  | 
|  | cache = raw_cpu_ptr(&swp_slots); | 
|  | if (likely(use_swap_slot_cache && cache->slots_ret)) { | 
|  | spin_lock_irq(&cache->free_lock); | 
|  | /* Swap slots cache may be deactivated before acquiring lock */ | 
|  | if (!use_swap_slot_cache || !cache->slots_ret) { | 
|  | spin_unlock_irq(&cache->free_lock); | 
|  | goto direct_free; | 
|  | } | 
|  | if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) { | 
|  | /* | 
|  | * Return slots to global pool. | 
|  | * The current swap_map value is SWAP_HAS_CACHE. | 
|  | * Set it to 0 to indicate it is available for | 
|  | * allocation in global pool | 
|  | */ | 
|  | swapcache_free_entries(cache->slots_ret, cache->n_ret); | 
|  | cache->n_ret = 0; | 
|  | } | 
|  | cache->slots_ret[cache->n_ret++] = entry; | 
|  | spin_unlock_irq(&cache->free_lock); | 
|  | } else { | 
|  | direct_free: | 
|  | swapcache_free_entries(&entry, 1); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | swp_entry_t get_swap_page(struct page *page) | 
|  | { | 
|  | swp_entry_t entry, *pentry; | 
|  | struct swap_slots_cache *cache; | 
|  |  | 
|  | entry.val = 0; | 
|  |  | 
|  | if (PageTransHuge(page)) { | 
|  | if (IS_ENABLED(CONFIG_THP_SWAP)) | 
|  | get_swap_pages(1, &entry, HPAGE_PMD_NR); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Preemption is allowed here, because we may sleep | 
|  | * in refill_swap_slots_cache().  But it is safe, because | 
|  | * accesses to the per-CPU data structure are protected by the | 
|  | * mutex cache->alloc_lock. | 
|  | * | 
|  | * The alloc path here does not touch cache->slots_ret | 
|  | * so cache->free_lock is not taken. | 
|  | */ | 
|  | cache = raw_cpu_ptr(&swp_slots); | 
|  |  | 
|  | if (likely(check_cache_active() && cache->slots)) { | 
|  | mutex_lock(&cache->alloc_lock); | 
|  | if (cache->slots) { | 
|  | repeat: | 
|  | if (cache->nr) { | 
|  | pentry = &cache->slots[cache->cur++]; | 
|  | entry = *pentry; | 
|  | pentry->val = 0; | 
|  | cache->nr--; | 
|  | } else { | 
|  | if (refill_swap_slots_cache(cache)) | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | mutex_unlock(&cache->alloc_lock); | 
|  | if (entry.val) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | get_swap_pages(1, &entry, 1); | 
|  | out: | 
|  | if (mem_cgroup_try_charge_swap(page, entry)) { | 
|  | put_swap_page(page, entry); | 
|  | entry.val = 0; | 
|  | } | 
|  | return entry; | 
|  | } |