| /* | 
 |  * mm/truncate.c - code for taking down pages from address_spaces | 
 |  * | 
 |  * Copyright (C) 2002, Linus Torvalds | 
 |  * | 
 |  * 10Sep2002	Andrew Morton | 
 |  *		Initial version. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/dax.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/export.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/task_io_accounting_ops.h> | 
 | #include <linux/buffer_head.h>	/* grr. try_to_release_page, | 
 | 				   do_invalidatepage */ | 
 | #include <linux/shmem_fs.h> | 
 | #include <linux/cleancache.h> | 
 | #include <linux/rmap.h> | 
 | #include "internal.h" | 
 |  | 
 | /* | 
 |  * Regular page slots are stabilized by the page lock even without the tree | 
 |  * itself locked.  These unlocked entries need verification under the tree | 
 |  * lock. | 
 |  */ | 
 | static inline void __clear_shadow_entry(struct address_space *mapping, | 
 | 				pgoff_t index, void *entry) | 
 | { | 
 | 	struct radix_tree_node *node; | 
 | 	void **slot; | 
 |  | 
 | 	if (!__radix_tree_lookup(&mapping->i_pages, index, &node, &slot)) | 
 | 		return; | 
 | 	if (*slot != entry) | 
 | 		return; | 
 | 	__radix_tree_replace(&mapping->i_pages, node, slot, NULL, | 
 | 			     workingset_update_node); | 
 | 	mapping->nrexceptional--; | 
 | } | 
 |  | 
 | static void clear_shadow_entry(struct address_space *mapping, pgoff_t index, | 
 | 			       void *entry) | 
 | { | 
 | 	xa_lock_irq(&mapping->i_pages); | 
 | 	__clear_shadow_entry(mapping, index, entry); | 
 | 	xa_unlock_irq(&mapping->i_pages); | 
 | } | 
 |  | 
 | /* | 
 |  * Unconditionally remove exceptional entries. Usually called from truncate | 
 |  * path. Note that the pagevec may be altered by this function by removing | 
 |  * exceptional entries similar to what pagevec_remove_exceptionals does. | 
 |  */ | 
 | static void truncate_exceptional_pvec_entries(struct address_space *mapping, | 
 | 				struct pagevec *pvec, pgoff_t *indices, | 
 | 				pgoff_t end) | 
 | { | 
 | 	int i, j; | 
 | 	bool dax, lock; | 
 |  | 
 | 	/* Handled by shmem itself */ | 
 | 	if (shmem_mapping(mapping)) | 
 | 		return; | 
 |  | 
 | 	for (j = 0; j < pagevec_count(pvec); j++) | 
 | 		if (radix_tree_exceptional_entry(pvec->pages[j])) | 
 | 			break; | 
 |  | 
 | 	if (j == pagevec_count(pvec)) | 
 | 		return; | 
 |  | 
 | 	dax = dax_mapping(mapping); | 
 | 	lock = !dax && indices[j] < end; | 
 | 	if (lock) | 
 | 		xa_lock_irq(&mapping->i_pages); | 
 |  | 
 | 	for (i = j; i < pagevec_count(pvec); i++) { | 
 | 		struct page *page = pvec->pages[i]; | 
 | 		pgoff_t index = indices[i]; | 
 |  | 
 | 		if (!radix_tree_exceptional_entry(page)) { | 
 | 			pvec->pages[j++] = page; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (index >= end) | 
 | 			continue; | 
 |  | 
 | 		if (unlikely(dax)) { | 
 | 			dax_delete_mapping_entry(mapping, index); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		__clear_shadow_entry(mapping, index, page); | 
 | 	} | 
 |  | 
 | 	if (lock) | 
 | 		xa_unlock_irq(&mapping->i_pages); | 
 | 	pvec->nr = j; | 
 | } | 
 |  | 
 | /* | 
 |  * Invalidate exceptional entry if easily possible. This handles exceptional | 
 |  * entries for invalidate_inode_pages(). | 
 |  */ | 
 | static int invalidate_exceptional_entry(struct address_space *mapping, | 
 | 					pgoff_t index, void *entry) | 
 | { | 
 | 	/* Handled by shmem itself, or for DAX we do nothing. */ | 
 | 	if (shmem_mapping(mapping) || dax_mapping(mapping)) | 
 | 		return 1; | 
 | 	clear_shadow_entry(mapping, index, entry); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Invalidate exceptional entry if clean. This handles exceptional entries for | 
 |  * invalidate_inode_pages2() so for DAX it evicts only clean entries. | 
 |  */ | 
 | static int invalidate_exceptional_entry2(struct address_space *mapping, | 
 | 					 pgoff_t index, void *entry) | 
 | { | 
 | 	/* Handled by shmem itself */ | 
 | 	if (shmem_mapping(mapping)) | 
 | 		return 1; | 
 | 	if (dax_mapping(mapping)) | 
 | 		return dax_invalidate_mapping_entry_sync(mapping, index); | 
 | 	clear_shadow_entry(mapping, index, entry); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /** | 
 |  * do_invalidatepage - invalidate part or all of a page | 
 |  * @page: the page which is affected | 
 |  * @offset: start of the range to invalidate | 
 |  * @length: length of the range to invalidate | 
 |  * | 
 |  * do_invalidatepage() is called when all or part of the page has become | 
 |  * invalidated by a truncate operation. | 
 |  * | 
 |  * do_invalidatepage() does not have to release all buffers, but it must | 
 |  * ensure that no dirty buffer is left outside @offset and that no I/O | 
 |  * is underway against any of the blocks which are outside the truncation | 
 |  * point.  Because the caller is about to free (and possibly reuse) those | 
 |  * blocks on-disk. | 
 |  */ | 
 | void do_invalidatepage(struct page *page, unsigned int offset, | 
 | 		       unsigned int length) | 
 | { | 
 | 	void (*invalidatepage)(struct page *, unsigned int, unsigned int); | 
 |  | 
 | 	invalidatepage = page->mapping->a_ops->invalidatepage; | 
 | #ifdef CONFIG_BLOCK | 
 | 	if (!invalidatepage) | 
 | 		invalidatepage = block_invalidatepage; | 
 | #endif | 
 | 	if (invalidatepage) | 
 | 		(*invalidatepage)(page, offset, length); | 
 | } | 
 |  | 
 | /* | 
 |  * If truncate cannot remove the fs-private metadata from the page, the page | 
 |  * becomes orphaned.  It will be left on the LRU and may even be mapped into | 
 |  * user pagetables if we're racing with filemap_fault(). | 
 |  * | 
 |  * We need to bale out if page->mapping is no longer equal to the original | 
 |  * mapping.  This happens a) when the VM reclaimed the page while we waited on | 
 |  * its lock, b) when a concurrent invalidate_mapping_pages got there first and | 
 |  * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space. | 
 |  */ | 
 | static void | 
 | truncate_cleanup_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	if (page_mapped(page)) { | 
 | 		pgoff_t nr = PageTransHuge(page) ? HPAGE_PMD_NR : 1; | 
 | 		unmap_mapping_pages(mapping, page->index, nr, false); | 
 | 	} | 
 |  | 
 | 	if (page_has_private(page)) | 
 | 		do_invalidatepage(page, 0, PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * Some filesystems seem to re-dirty the page even after | 
 | 	 * the VM has canceled the dirty bit (eg ext3 journaling). | 
 | 	 * Hence dirty accounting check is placed after invalidation. | 
 | 	 */ | 
 | 	cancel_dirty_page(page); | 
 | 	ClearPageMappedToDisk(page); | 
 | } | 
 |  | 
 | /* | 
 |  * This is for invalidate_mapping_pages().  That function can be called at | 
 |  * any time, and is not supposed to throw away dirty pages.  But pages can | 
 |  * be marked dirty at any time too, so use remove_mapping which safely | 
 |  * discards clean, unused pages. | 
 |  * | 
 |  * Returns non-zero if the page was successfully invalidated. | 
 |  */ | 
 | static int | 
 | invalidate_complete_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (page->mapping != mapping) | 
 | 		return 0; | 
 |  | 
 | 	if (page_has_private(page) && !try_to_release_page(page, 0)) | 
 | 		return 0; | 
 |  | 
 | 	ret = remove_mapping(mapping, page); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int truncate_inode_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(PageTail(page), page); | 
 |  | 
 | 	if (page->mapping != mapping) | 
 | 		return -EIO; | 
 |  | 
 | 	truncate_cleanup_page(mapping, page); | 
 | 	delete_from_page_cache(page); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Used to get rid of pages on hardware memory corruption. | 
 |  */ | 
 | int generic_error_remove_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	if (!mapping) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * Only punch for normal data pages for now. | 
 | 	 * Handling other types like directories would need more auditing. | 
 | 	 */ | 
 | 	if (!S_ISREG(mapping->host->i_mode)) | 
 | 		return -EIO; | 
 | 	return truncate_inode_page(mapping, page); | 
 | } | 
 | EXPORT_SYMBOL(generic_error_remove_page); | 
 |  | 
 | /* | 
 |  * Safely invalidate one page from its pagecache mapping. | 
 |  * It only drops clean, unused pages. The page must be locked. | 
 |  * | 
 |  * Returns 1 if the page is successfully invalidated, otherwise 0. | 
 |  */ | 
 | int invalidate_inode_page(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page_mapping(page); | 
 | 	if (!mapping) | 
 | 		return 0; | 
 | 	if (PageDirty(page) || PageWriteback(page)) | 
 | 		return 0; | 
 | 	if (page_mapped(page)) | 
 | 		return 0; | 
 | 	return invalidate_complete_page(mapping, page); | 
 | } | 
 |  | 
 | /** | 
 |  * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets | 
 |  * @mapping: mapping to truncate | 
 |  * @lstart: offset from which to truncate | 
 |  * @lend: offset to which to truncate (inclusive) | 
 |  * | 
 |  * Truncate the page cache, removing the pages that are between | 
 |  * specified offsets (and zeroing out partial pages | 
 |  * if lstart or lend + 1 is not page aligned). | 
 |  * | 
 |  * Truncate takes two passes - the first pass is nonblocking.  It will not | 
 |  * block on page locks and it will not block on writeback.  The second pass | 
 |  * will wait.  This is to prevent as much IO as possible in the affected region. | 
 |  * The first pass will remove most pages, so the search cost of the second pass | 
 |  * is low. | 
 |  * | 
 |  * We pass down the cache-hot hint to the page freeing code.  Even if the | 
 |  * mapping is large, it is probably the case that the final pages are the most | 
 |  * recently touched, and freeing happens in ascending file offset order. | 
 |  * | 
 |  * Note that since ->invalidatepage() accepts range to invalidate | 
 |  * truncate_inode_pages_range is able to handle cases where lend + 1 is not | 
 |  * page aligned properly. | 
 |  */ | 
 | void truncate_inode_pages_range(struct address_space *mapping, | 
 | 				loff_t lstart, loff_t lend) | 
 | { | 
 | 	pgoff_t		start;		/* inclusive */ | 
 | 	pgoff_t		end;		/* exclusive */ | 
 | 	unsigned int	partial_start;	/* inclusive */ | 
 | 	unsigned int	partial_end;	/* exclusive */ | 
 | 	struct pagevec	pvec; | 
 | 	pgoff_t		indices[PAGEVEC_SIZE]; | 
 | 	pgoff_t		index; | 
 | 	int		i; | 
 |  | 
 | 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0) | 
 | 		goto out; | 
 |  | 
 | 	/* Offsets within partial pages */ | 
 | 	partial_start = lstart & (PAGE_SIZE - 1); | 
 | 	partial_end = (lend + 1) & (PAGE_SIZE - 1); | 
 |  | 
 | 	/* | 
 | 	 * 'start' and 'end' always covers the range of pages to be fully | 
 | 	 * truncated. Partial pages are covered with 'partial_start' at the | 
 | 	 * start of the range and 'partial_end' at the end of the range. | 
 | 	 * Note that 'end' is exclusive while 'lend' is inclusive. | 
 | 	 */ | 
 | 	start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 	if (lend == -1) | 
 | 		/* | 
 | 		 * lend == -1 indicates end-of-file so we have to set 'end' | 
 | 		 * to the highest possible pgoff_t and since the type is | 
 | 		 * unsigned we're using -1. | 
 | 		 */ | 
 | 		end = -1; | 
 | 	else | 
 | 		end = (lend + 1) >> PAGE_SHIFT; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | 	index = start; | 
 | 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index, | 
 | 			min(end - index, (pgoff_t)PAGEVEC_SIZE), | 
 | 			indices)) { | 
 | 		/* | 
 | 		 * Pagevec array has exceptional entries and we may also fail | 
 | 		 * to lock some pages. So we store pages that can be deleted | 
 | 		 * in a new pagevec. | 
 | 		 */ | 
 | 		struct pagevec locked_pvec; | 
 |  | 
 | 		pagevec_init(&locked_pvec); | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* We rely upon deletion not changing page->index */ | 
 | 			index = indices[i]; | 
 | 			if (index >= end) | 
 | 				break; | 
 |  | 
 | 			if (radix_tree_exceptional_entry(page)) | 
 | 				continue; | 
 |  | 
 | 			if (!trylock_page(page)) | 
 | 				continue; | 
 | 			WARN_ON(page_to_index(page) != index); | 
 | 			if (PageWriteback(page)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 | 			if (page->mapping != mapping) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 | 			pagevec_add(&locked_pvec, page); | 
 | 		} | 
 | 		for (i = 0; i < pagevec_count(&locked_pvec); i++) | 
 | 			truncate_cleanup_page(mapping, locked_pvec.pages[i]); | 
 | 		delete_from_page_cache_batch(mapping, &locked_pvec); | 
 | 		for (i = 0; i < pagevec_count(&locked_pvec); i++) | 
 | 			unlock_page(locked_pvec.pages[i]); | 
 | 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 		index++; | 
 | 	} | 
 | 	if (partial_start) { | 
 | 		struct page *page = find_lock_page(mapping, start - 1); | 
 | 		if (page) { | 
 | 			unsigned int top = PAGE_SIZE; | 
 | 			if (start > end) { | 
 | 				/* Truncation within a single page */ | 
 | 				top = partial_end; | 
 | 				partial_end = 0; | 
 | 			} | 
 | 			wait_on_page_writeback(page); | 
 | 			zero_user_segment(page, partial_start, top); | 
 | 			cleancache_invalidate_page(mapping, page); | 
 | 			if (page_has_private(page)) | 
 | 				do_invalidatepage(page, partial_start, | 
 | 						  top - partial_start); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 		} | 
 | 	} | 
 | 	if (partial_end) { | 
 | 		struct page *page = find_lock_page(mapping, end); | 
 | 		if (page) { | 
 | 			wait_on_page_writeback(page); | 
 | 			zero_user_segment(page, 0, partial_end); | 
 | 			cleancache_invalidate_page(mapping, page); | 
 | 			if (page_has_private(page)) | 
 | 				do_invalidatepage(page, 0, | 
 | 						  partial_end); | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 		} | 
 | 	} | 
 | 	/* | 
 | 	 * If the truncation happened within a single page no pages | 
 | 	 * will be released, just zeroed, so we can bail out now. | 
 | 	 */ | 
 | 	if (start >= end) | 
 | 		goto out; | 
 |  | 
 | 	index = start; | 
 | 	for ( ; ; ) { | 
 | 		cond_resched(); | 
 | 		if (!pagevec_lookup_entries(&pvec, mapping, index, | 
 | 			min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) { | 
 | 			/* If all gone from start onwards, we're done */ | 
 | 			if (index == start) | 
 | 				break; | 
 | 			/* Otherwise restart to make sure all gone */ | 
 | 			index = start; | 
 | 			continue; | 
 | 		} | 
 | 		if (index == start && indices[0] >= end) { | 
 | 			/* All gone out of hole to be punched, we're done */ | 
 | 			pagevec_remove_exceptionals(&pvec); | 
 | 			pagevec_release(&pvec); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* We rely upon deletion not changing page->index */ | 
 | 			index = indices[i]; | 
 | 			if (index >= end) { | 
 | 				/* Restart punch to make sure all gone */ | 
 | 				index = start - 1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (radix_tree_exceptional_entry(page)) | 
 | 				continue; | 
 |  | 
 | 			lock_page(page); | 
 | 			WARN_ON(page_to_index(page) != index); | 
 | 			wait_on_page_writeback(page); | 
 | 			truncate_inode_page(mapping, page); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		truncate_exceptional_pvec_entries(mapping, &pvec, indices, end); | 
 | 		pagevec_release(&pvec); | 
 | 		index++; | 
 | 	} | 
 |  | 
 | out: | 
 | 	cleancache_invalidate_inode(mapping); | 
 | } | 
 | EXPORT_SYMBOL(truncate_inode_pages_range); | 
 |  | 
 | /** | 
 |  * truncate_inode_pages - truncate *all* the pages from an offset | 
 |  * @mapping: mapping to truncate | 
 |  * @lstart: offset from which to truncate | 
 |  * | 
 |  * Called under (and serialised by) inode->i_mutex. | 
 |  * | 
 |  * Note: When this function returns, there can be a page in the process of | 
 |  * deletion (inside __delete_from_page_cache()) in the specified range.  Thus | 
 |  * mapping->nrpages can be non-zero when this function returns even after | 
 |  * truncation of the whole mapping. | 
 |  */ | 
 | void truncate_inode_pages(struct address_space *mapping, loff_t lstart) | 
 | { | 
 | 	truncate_inode_pages_range(mapping, lstart, (loff_t)-1); | 
 | } | 
 | EXPORT_SYMBOL(truncate_inode_pages); | 
 |  | 
 | /** | 
 |  * truncate_inode_pages_final - truncate *all* pages before inode dies | 
 |  * @mapping: mapping to truncate | 
 |  * | 
 |  * Called under (and serialized by) inode->i_mutex. | 
 |  * | 
 |  * Filesystems have to use this in the .evict_inode path to inform the | 
 |  * VM that this is the final truncate and the inode is going away. | 
 |  */ | 
 | void truncate_inode_pages_final(struct address_space *mapping) | 
 | { | 
 | 	unsigned long nrexceptional; | 
 | 	unsigned long nrpages; | 
 |  | 
 | 	/* | 
 | 	 * Page reclaim can not participate in regular inode lifetime | 
 | 	 * management (can't call iput()) and thus can race with the | 
 | 	 * inode teardown.  Tell it when the address space is exiting, | 
 | 	 * so that it does not install eviction information after the | 
 | 	 * final truncate has begun. | 
 | 	 */ | 
 | 	mapping_set_exiting(mapping); | 
 |  | 
 | 	/* | 
 | 	 * When reclaim installs eviction entries, it increases | 
 | 	 * nrexceptional first, then decreases nrpages.  Make sure we see | 
 | 	 * this in the right order or we might miss an entry. | 
 | 	 */ | 
 | 	nrpages = mapping->nrpages; | 
 | 	smp_rmb(); | 
 | 	nrexceptional = mapping->nrexceptional; | 
 |  | 
 | 	if (nrpages || nrexceptional) { | 
 | 		/* | 
 | 		 * As truncation uses a lockless tree lookup, cycle | 
 | 		 * the tree lock to make sure any ongoing tree | 
 | 		 * modification that does not see AS_EXITING is | 
 | 		 * completed before starting the final truncate. | 
 | 		 */ | 
 | 		xa_lock_irq(&mapping->i_pages); | 
 | 		xa_unlock_irq(&mapping->i_pages); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Cleancache needs notification even if there are no pages or shadow | 
 | 	 * entries. | 
 | 	 */ | 
 | 	truncate_inode_pages(mapping, 0); | 
 | } | 
 | EXPORT_SYMBOL(truncate_inode_pages_final); | 
 |  | 
 | /** | 
 |  * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode | 
 |  * @mapping: the address_space which holds the pages to invalidate | 
 |  * @start: the offset 'from' which to invalidate | 
 |  * @end: the offset 'to' which to invalidate (inclusive) | 
 |  * | 
 |  * This function only removes the unlocked pages, if you want to | 
 |  * remove all the pages of one inode, you must call truncate_inode_pages. | 
 |  * | 
 |  * invalidate_mapping_pages() will not block on IO activity. It will not | 
 |  * invalidate pages which are dirty, locked, under writeback or mapped into | 
 |  * pagetables. | 
 |  */ | 
 | unsigned long invalidate_mapping_pages(struct address_space *mapping, | 
 | 		pgoff_t start, pgoff_t end) | 
 | { | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t index = start; | 
 | 	unsigned long ret; | 
 | 	unsigned long count = 0; | 
 | 	int i; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, | 
 | 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, | 
 | 			indices)) { | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* We rely upon deletion not changing page->index */ | 
 | 			index = indices[i]; | 
 | 			if (index > end) | 
 | 				break; | 
 |  | 
 | 			if (radix_tree_exceptional_entry(page)) { | 
 | 				invalidate_exceptional_entry(mapping, index, | 
 | 							     page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (!trylock_page(page)) | 
 | 				continue; | 
 |  | 
 | 			WARN_ON(page_to_index(page) != index); | 
 |  | 
 | 			/* Middle of THP: skip */ | 
 | 			if (PageTransTail(page)) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} else if (PageTransHuge(page)) { | 
 | 				index += HPAGE_PMD_NR - 1; | 
 | 				i += HPAGE_PMD_NR - 1; | 
 | 				/* | 
 | 				 * 'end' is in the middle of THP. Don't | 
 | 				 * invalidate the page as the part outside of | 
 | 				 * 'end' could be still useful. | 
 | 				 */ | 
 | 				if (index > end) { | 
 | 					unlock_page(page); | 
 | 					continue; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			ret = invalidate_inode_page(page); | 
 | 			unlock_page(page); | 
 | 			/* | 
 | 			 * Invalidation is a hint that the page is no longer | 
 | 			 * of interest and try to speed up its reclaim. | 
 | 			 */ | 
 | 			if (!ret) | 
 | 				deactivate_file_page(page); | 
 | 			count += ret; | 
 | 		} | 
 | 		pagevec_remove_exceptionals(&pvec); | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 		index++; | 
 | 	} | 
 | 	return count; | 
 | } | 
 | EXPORT_SYMBOL(invalidate_mapping_pages); | 
 |  | 
 | /* | 
 |  * This is like invalidate_complete_page(), except it ignores the page's | 
 |  * refcount.  We do this because invalidate_inode_pages2() needs stronger | 
 |  * invalidation guarantees, and cannot afford to leave pages behind because | 
 |  * shrink_page_list() has a temp ref on them, or because they're transiently | 
 |  * sitting in the lru_cache_add() pagevecs. | 
 |  */ | 
 | static int | 
 | invalidate_complete_page2(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (page->mapping != mapping) | 
 | 		return 0; | 
 |  | 
 | 	if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL)) | 
 | 		return 0; | 
 |  | 
 | 	xa_lock_irqsave(&mapping->i_pages, flags); | 
 | 	if (PageDirty(page)) | 
 | 		goto failed; | 
 |  | 
 | 	BUG_ON(page_has_private(page)); | 
 | 	__delete_from_page_cache(page, NULL); | 
 | 	xa_unlock_irqrestore(&mapping->i_pages, flags); | 
 |  | 
 | 	if (mapping->a_ops->freepage) | 
 | 		mapping->a_ops->freepage(page); | 
 |  | 
 | 	put_page(page);	/* pagecache ref */ | 
 | 	return 1; | 
 | failed: | 
 | 	xa_unlock_irqrestore(&mapping->i_pages, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int do_launder_page(struct address_space *mapping, struct page *page) | 
 | { | 
 | 	if (!PageDirty(page)) | 
 | 		return 0; | 
 | 	if (page->mapping != mapping || mapping->a_ops->launder_page == NULL) | 
 | 		return 0; | 
 | 	return mapping->a_ops->launder_page(page); | 
 | } | 
 |  | 
 | /** | 
 |  * invalidate_inode_pages2_range - remove range of pages from an address_space | 
 |  * @mapping: the address_space | 
 |  * @start: the page offset 'from' which to invalidate | 
 |  * @end: the page offset 'to' which to invalidate (inclusive) | 
 |  * | 
 |  * Any pages which are found to be mapped into pagetables are unmapped prior to | 
 |  * invalidation. | 
 |  * | 
 |  * Returns -EBUSY if any pages could not be invalidated. | 
 |  */ | 
 | int invalidate_inode_pages2_range(struct address_space *mapping, | 
 | 				  pgoff_t start, pgoff_t end) | 
 | { | 
 | 	pgoff_t indices[PAGEVEC_SIZE]; | 
 | 	struct pagevec pvec; | 
 | 	pgoff_t index; | 
 | 	int i; | 
 | 	int ret = 0; | 
 | 	int ret2 = 0; | 
 | 	int did_range_unmap = 0; | 
 |  | 
 | 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0) | 
 | 		goto out; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | 	index = start; | 
 | 	while (index <= end && pagevec_lookup_entries(&pvec, mapping, index, | 
 | 			min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1, | 
 | 			indices)) { | 
 | 		for (i = 0; i < pagevec_count(&pvec); i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			/* We rely upon deletion not changing page->index */ | 
 | 			index = indices[i]; | 
 | 			if (index > end) | 
 | 				break; | 
 |  | 
 | 			if (radix_tree_exceptional_entry(page)) { | 
 | 				if (!invalidate_exceptional_entry2(mapping, | 
 | 								   index, page)) | 
 | 					ret = -EBUSY; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			lock_page(page); | 
 | 			WARN_ON(page_to_index(page) != index); | 
 | 			if (page->mapping != mapping) { | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 | 			wait_on_page_writeback(page); | 
 | 			if (page_mapped(page)) { | 
 | 				if (!did_range_unmap) { | 
 | 					/* | 
 | 					 * Zap the rest of the file in one hit. | 
 | 					 */ | 
 | 					unmap_mapping_pages(mapping, index, | 
 | 						(1 + end - index), false); | 
 | 					did_range_unmap = 1; | 
 | 				} else { | 
 | 					/* | 
 | 					 * Just zap this page | 
 | 					 */ | 
 | 					unmap_mapping_pages(mapping, index, | 
 | 								1, false); | 
 | 				} | 
 | 			} | 
 | 			BUG_ON(page_mapped(page)); | 
 | 			ret2 = do_launder_page(mapping, page); | 
 | 			if (ret2 == 0) { | 
 | 				if (!invalidate_complete_page2(mapping, page)) | 
 | 					ret2 = -EBUSY; | 
 | 			} | 
 | 			if (ret2 < 0) | 
 | 				ret = ret2; | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_remove_exceptionals(&pvec); | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 		index++; | 
 | 	} | 
 | 	/* | 
 | 	 * For DAX we invalidate page tables after invalidating radix tree.  We | 
 | 	 * could invalidate page tables while invalidating each entry however | 
 | 	 * that would be expensive. And doing range unmapping before doesn't | 
 | 	 * work as we have no cheap way to find whether radix tree entry didn't | 
 | 	 * get remapped later. | 
 | 	 */ | 
 | 	if (dax_mapping(mapping)) { | 
 | 		unmap_mapping_pages(mapping, start, end - start + 1, false); | 
 | 	} | 
 | out: | 
 | 	cleancache_invalidate_inode(mapping); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range); | 
 |  | 
 | /** | 
 |  * invalidate_inode_pages2 - remove all pages from an address_space | 
 |  * @mapping: the address_space | 
 |  * | 
 |  * Any pages which are found to be mapped into pagetables are unmapped prior to | 
 |  * invalidation. | 
 |  * | 
 |  * Returns -EBUSY if any pages could not be invalidated. | 
 |  */ | 
 | int invalidate_inode_pages2(struct address_space *mapping) | 
 | { | 
 | 	return invalidate_inode_pages2_range(mapping, 0, -1); | 
 | } | 
 | EXPORT_SYMBOL_GPL(invalidate_inode_pages2); | 
 |  | 
 | /** | 
 |  * truncate_pagecache - unmap and remove pagecache that has been truncated | 
 |  * @inode: inode | 
 |  * @newsize: new file size | 
 |  * | 
 |  * inode's new i_size must already be written before truncate_pagecache | 
 |  * is called. | 
 |  * | 
 |  * This function should typically be called before the filesystem | 
 |  * releases resources associated with the freed range (eg. deallocates | 
 |  * blocks). This way, pagecache will always stay logically coherent | 
 |  * with on-disk format, and the filesystem would not have to deal with | 
 |  * situations such as writepage being called for a page that has already | 
 |  * had its underlying blocks deallocated. | 
 |  */ | 
 | void truncate_pagecache(struct inode *inode, loff_t newsize) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	loff_t holebegin = round_up(newsize, PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * unmap_mapping_range is called twice, first simply for | 
 | 	 * efficiency so that truncate_inode_pages does fewer | 
 | 	 * single-page unmaps.  However after this first call, and | 
 | 	 * before truncate_inode_pages finishes, it is possible for | 
 | 	 * private pages to be COWed, which remain after | 
 | 	 * truncate_inode_pages finishes, hence the second | 
 | 	 * unmap_mapping_range call must be made for correctness. | 
 | 	 */ | 
 | 	unmap_mapping_range(mapping, holebegin, 0, 1); | 
 | 	truncate_inode_pages(mapping, newsize); | 
 | 	unmap_mapping_range(mapping, holebegin, 0, 1); | 
 | } | 
 | EXPORT_SYMBOL(truncate_pagecache); | 
 |  | 
 | /** | 
 |  * truncate_setsize - update inode and pagecache for a new file size | 
 |  * @inode: inode | 
 |  * @newsize: new file size | 
 |  * | 
 |  * truncate_setsize updates i_size and performs pagecache truncation (if | 
 |  * necessary) to @newsize. It will be typically be called from the filesystem's | 
 |  * setattr function when ATTR_SIZE is passed in. | 
 |  * | 
 |  * Must be called with a lock serializing truncates and writes (generally | 
 |  * i_mutex but e.g. xfs uses a different lock) and before all filesystem | 
 |  * specific block truncation has been performed. | 
 |  */ | 
 | void truncate_setsize(struct inode *inode, loff_t newsize) | 
 | { | 
 | 	loff_t oldsize = inode->i_size; | 
 |  | 
 | 	i_size_write(inode, newsize); | 
 | 	if (newsize > oldsize) | 
 | 		pagecache_isize_extended(inode, oldsize, newsize); | 
 | 	truncate_pagecache(inode, newsize); | 
 | } | 
 | EXPORT_SYMBOL(truncate_setsize); | 
 |  | 
 | /** | 
 |  * pagecache_isize_extended - update pagecache after extension of i_size | 
 |  * @inode:	inode for which i_size was extended | 
 |  * @from:	original inode size | 
 |  * @to:		new inode size | 
 |  * | 
 |  * Handle extension of inode size either caused by extending truncate or by | 
 |  * write starting after current i_size. We mark the page straddling current | 
 |  * i_size RO so that page_mkwrite() is called on the nearest write access to | 
 |  * the page.  This way filesystem can be sure that page_mkwrite() is called on | 
 |  * the page before user writes to the page via mmap after the i_size has been | 
 |  * changed. | 
 |  * | 
 |  * The function must be called after i_size is updated so that page fault | 
 |  * coming after we unlock the page will already see the new i_size. | 
 |  * The function must be called while we still hold i_mutex - this not only | 
 |  * makes sure i_size is stable but also that userspace cannot observe new | 
 |  * i_size value before we are prepared to store mmap writes at new inode size. | 
 |  */ | 
 | void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to) | 
 | { | 
 | 	int bsize = i_blocksize(inode); | 
 | 	loff_t rounded_from; | 
 | 	struct page *page; | 
 | 	pgoff_t index; | 
 |  | 
 | 	WARN_ON(to > inode->i_size); | 
 |  | 
 | 	if (from >= to || bsize == PAGE_SIZE) | 
 | 		return; | 
 | 	/* Page straddling @from will not have any hole block created? */ | 
 | 	rounded_from = round_up(from, bsize); | 
 | 	if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1))) | 
 | 		return; | 
 |  | 
 | 	index = from >> PAGE_SHIFT; | 
 | 	page = find_lock_page(inode->i_mapping, index); | 
 | 	/* Page not cached? Nothing to do */ | 
 | 	if (!page) | 
 | 		return; | 
 | 	/* | 
 | 	 * See clear_page_dirty_for_io() for details why set_page_dirty() | 
 | 	 * is needed. | 
 | 	 */ | 
 | 	if (page_mkclean(page)) | 
 | 		set_page_dirty(page); | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 | } | 
 | EXPORT_SYMBOL(pagecache_isize_extended); | 
 |  | 
 | /** | 
 |  * truncate_pagecache_range - unmap and remove pagecache that is hole-punched | 
 |  * @inode: inode | 
 |  * @lstart: offset of beginning of hole | 
 |  * @lend: offset of last byte of hole | 
 |  * | 
 |  * This function should typically be called before the filesystem | 
 |  * releases resources associated with the freed range (eg. deallocates | 
 |  * blocks). This way, pagecache will always stay logically coherent | 
 |  * with on-disk format, and the filesystem would not have to deal with | 
 |  * situations such as writepage being called for a page that has already | 
 |  * had its underlying blocks deallocated. | 
 |  */ | 
 | void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend) | 
 | { | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	loff_t unmap_start = round_up(lstart, PAGE_SIZE); | 
 | 	loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1; | 
 | 	/* | 
 | 	 * This rounding is currently just for example: unmap_mapping_range | 
 | 	 * expands its hole outwards, whereas we want it to contract the hole | 
 | 	 * inwards.  However, existing callers of truncate_pagecache_range are | 
 | 	 * doing their own page rounding first.  Note that unmap_mapping_range | 
 | 	 * allows holelen 0 for all, and we allow lend -1 for end of file. | 
 | 	 */ | 
 |  | 
 | 	/* | 
 | 	 * Unlike in truncate_pagecache, unmap_mapping_range is called only | 
 | 	 * once (before truncating pagecache), and without "even_cows" flag: | 
 | 	 * hole-punching should not remove private COWed pages from the hole. | 
 | 	 */ | 
 | 	if ((u64)unmap_end > (u64)unmap_start) | 
 | 		unmap_mapping_range(mapping, unmap_start, | 
 | 				    1 + unmap_end - unmap_start, 0); | 
 | 	truncate_inode_pages_range(mapping, lstart, lend); | 
 | } | 
 | EXPORT_SYMBOL(truncate_pagecache_range); |