| // SPDX-License-Identifier: GPL-2.0+ | 
 | /* | 
 |  * PowerPC Memory Protection Keys management | 
 |  * | 
 |  * Copyright 2017, Ram Pai, IBM Corporation. | 
 |  */ | 
 |  | 
 | #include <asm/mman.h> | 
 | #include <asm/setup.h> | 
 | #include <linux/pkeys.h> | 
 | #include <linux/of_device.h> | 
 |  | 
 | DEFINE_STATIC_KEY_TRUE(pkey_disabled); | 
 | bool pkey_execute_disable_supported; | 
 | int  pkeys_total;		/* Total pkeys as per device tree */ | 
 | bool pkeys_devtree_defined;	/* pkey property exported by device tree */ | 
 | u32  initial_allocation_mask;   /* Bits set for the initially allocated keys */ | 
 | u32  reserved_allocation_mask;  /* Bits set for reserved keys */ | 
 | u64  pkey_amr_mask;		/* Bits in AMR not to be touched */ | 
 | u64  pkey_iamr_mask;		/* Bits in AMR not to be touched */ | 
 | u64  pkey_uamor_mask;		/* Bits in UMOR not to be touched */ | 
 | int  execute_only_key = 2; | 
 |  | 
 | #define AMR_BITS_PER_PKEY 2 | 
 | #define AMR_RD_BIT 0x1UL | 
 | #define AMR_WR_BIT 0x2UL | 
 | #define IAMR_EX_BIT 0x1UL | 
 | #define PKEY_REG_BITS (sizeof(u64)*8) | 
 | #define pkeyshift(pkey) (PKEY_REG_BITS - ((pkey+1) * AMR_BITS_PER_PKEY)) | 
 |  | 
 | static void scan_pkey_feature(void) | 
 | { | 
 | 	u32 vals[2]; | 
 | 	struct device_node *cpu; | 
 |  | 
 | 	cpu = of_find_node_by_type(NULL, "cpu"); | 
 | 	if (!cpu) | 
 | 		return; | 
 |  | 
 | 	if (of_property_read_u32_array(cpu, | 
 | 			"ibm,processor-storage-keys", vals, 2)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Since any pkey can be used for data or execute, we will just treat | 
 | 	 * all keys as equal and track them as one entity. | 
 | 	 */ | 
 | 	pkeys_total = vals[0]; | 
 | 	pkeys_devtree_defined = true; | 
 | } | 
 |  | 
 | static inline bool pkey_mmu_enabled(void) | 
 | { | 
 | 	if (firmware_has_feature(FW_FEATURE_LPAR)) | 
 | 		return pkeys_total; | 
 | 	else | 
 | 		return cpu_has_feature(CPU_FTR_PKEY); | 
 | } | 
 |  | 
 | int pkey_initialize(void) | 
 | { | 
 | 	int os_reserved, i; | 
 |  | 
 | 	/* | 
 | 	 * We define PKEY_DISABLE_EXECUTE in addition to the arch-neutral | 
 | 	 * generic defines for PKEY_DISABLE_ACCESS and PKEY_DISABLE_WRITE. | 
 | 	 * Ensure that the bits a distinct. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(PKEY_DISABLE_EXECUTE & | 
 | 		     (PKEY_DISABLE_ACCESS | PKEY_DISABLE_WRITE)); | 
 |  | 
 | 	/* | 
 | 	 * pkey_to_vmflag_bits() assumes that the pkey bits are contiguous | 
 | 	 * in the vmaflag. Make sure that is really the case. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(__builtin_clzl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) + | 
 | 		     __builtin_popcountl(ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT) | 
 | 				!= (sizeof(u64) * BITS_PER_BYTE)); | 
 |  | 
 | 	/* scan the device tree for pkey feature */ | 
 | 	scan_pkey_feature(); | 
 |  | 
 | 	/* | 
 | 	 * Let's assume 32 pkeys on P8 bare metal, if its not defined by device | 
 | 	 * tree. We make this exception since skiboot forgot to expose this | 
 | 	 * property on power8. | 
 | 	 */ | 
 | 	if (!pkeys_devtree_defined && !firmware_has_feature(FW_FEATURE_LPAR) && | 
 | 			cpu_has_feature(CPU_FTRS_POWER8)) | 
 | 		pkeys_total = 32; | 
 |  | 
 | 	/* | 
 | 	 * Adjust the upper limit, based on the number of bits supported by | 
 | 	 * arch-neutral code. | 
 | 	 */ | 
 | 	pkeys_total = min_t(int, pkeys_total, | 
 | 			((ARCH_VM_PKEY_FLAGS >> VM_PKEY_SHIFT)+1)); | 
 |  | 
 | 	if (!pkey_mmu_enabled() || radix_enabled() || !pkeys_total) | 
 | 		static_branch_enable(&pkey_disabled); | 
 | 	else | 
 | 		static_branch_disable(&pkey_disabled); | 
 |  | 
 | 	if (static_branch_likely(&pkey_disabled)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The device tree cannot be relied to indicate support for | 
 | 	 * execute_disable support. Instead we use a PVR check. | 
 | 	 */ | 
 | 	if (pvr_version_is(PVR_POWER7) || pvr_version_is(PVR_POWER7p)) | 
 | 		pkey_execute_disable_supported = false; | 
 | 	else | 
 | 		pkey_execute_disable_supported = true; | 
 |  | 
 | #ifdef CONFIG_PPC_4K_PAGES | 
 | 	/* | 
 | 	 * The OS can manage only 8 pkeys due to its inability to represent them | 
 | 	 * in the Linux 4K PTE. | 
 | 	 */ | 
 | 	os_reserved = pkeys_total - 8; | 
 | #else | 
 | 	os_reserved = 0; | 
 | #endif | 
 | 	/* Bits are in LE format. */ | 
 | 	reserved_allocation_mask = (0x1 << 1) | (0x1 << execute_only_key); | 
 |  | 
 | 	/* register mask is in BE format */ | 
 | 	pkey_amr_mask = ~0x0ul; | 
 | 	pkey_amr_mask &= ~(0x3ul << pkeyshift(0)); | 
 |  | 
 | 	pkey_iamr_mask = ~0x0ul; | 
 | 	pkey_iamr_mask &= ~(0x3ul << pkeyshift(0)); | 
 | 	pkey_iamr_mask &= ~(0x3ul << pkeyshift(execute_only_key)); | 
 |  | 
 | 	pkey_uamor_mask = ~0x0ul; | 
 | 	pkey_uamor_mask &= ~(0x3ul << pkeyshift(0)); | 
 | 	pkey_uamor_mask &= ~(0x3ul << pkeyshift(execute_only_key)); | 
 |  | 
 | 	/* mark the rest of the keys as reserved and hence unavailable */ | 
 | 	for (i = (pkeys_total - os_reserved); i < pkeys_total; i++) { | 
 | 		reserved_allocation_mask |= (0x1 << i); | 
 | 		pkey_uamor_mask &= ~(0x3ul << pkeyshift(i)); | 
 | 	} | 
 | 	initial_allocation_mask = reserved_allocation_mask | (0x1 << 0); | 
 |  | 
 | 	if (unlikely((pkeys_total - os_reserved) <= execute_only_key)) { | 
 | 		/* | 
 | 		 * Insufficient number of keys to support | 
 | 		 * execute only key. Mark it unavailable. | 
 | 		 * Any AMR, UAMOR, IAMR bit set for | 
 | 		 * this key is irrelevant since this key | 
 | 		 * can never be allocated. | 
 | 		 */ | 
 | 		execute_only_key = -1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | arch_initcall(pkey_initialize); | 
 |  | 
 | void pkey_mm_init(struct mm_struct *mm) | 
 | { | 
 | 	if (static_branch_likely(&pkey_disabled)) | 
 | 		return; | 
 | 	mm_pkey_allocation_map(mm) = initial_allocation_mask; | 
 | 	mm->context.execute_only_pkey = execute_only_key; | 
 | } | 
 |  | 
 | static inline u64 read_amr(void) | 
 | { | 
 | 	return mfspr(SPRN_AMR); | 
 | } | 
 |  | 
 | static inline void write_amr(u64 value) | 
 | { | 
 | 	mtspr(SPRN_AMR, value); | 
 | } | 
 |  | 
 | static inline u64 read_iamr(void) | 
 | { | 
 | 	if (!likely(pkey_execute_disable_supported)) | 
 | 		return 0x0UL; | 
 |  | 
 | 	return mfspr(SPRN_IAMR); | 
 | } | 
 |  | 
 | static inline void write_iamr(u64 value) | 
 | { | 
 | 	if (!likely(pkey_execute_disable_supported)) | 
 | 		return; | 
 |  | 
 | 	mtspr(SPRN_IAMR, value); | 
 | } | 
 |  | 
 | static inline u64 read_uamor(void) | 
 | { | 
 | 	return mfspr(SPRN_UAMOR); | 
 | } | 
 |  | 
 | static inline void write_uamor(u64 value) | 
 | { | 
 | 	mtspr(SPRN_UAMOR, value); | 
 | } | 
 |  | 
 | static bool is_pkey_enabled(int pkey) | 
 | { | 
 | 	u64 uamor = read_uamor(); | 
 | 	u64 pkey_bits = 0x3ul << pkeyshift(pkey); | 
 | 	u64 uamor_pkey_bits = (uamor & pkey_bits); | 
 |  | 
 | 	/* | 
 | 	 * Both the bits in UAMOR corresponding to the key should be set or | 
 | 	 * reset. | 
 | 	 */ | 
 | 	WARN_ON(uamor_pkey_bits && (uamor_pkey_bits != pkey_bits)); | 
 | 	return !!(uamor_pkey_bits); | 
 | } | 
 |  | 
 | static inline void init_amr(int pkey, u8 init_bits) | 
 | { | 
 | 	u64 new_amr_bits = (((u64)init_bits & 0x3UL) << pkeyshift(pkey)); | 
 | 	u64 old_amr = read_amr() & ~((u64)(0x3ul) << pkeyshift(pkey)); | 
 |  | 
 | 	write_amr(old_amr | new_amr_bits); | 
 | } | 
 |  | 
 | static inline void init_iamr(int pkey, u8 init_bits) | 
 | { | 
 | 	u64 new_iamr_bits = (((u64)init_bits & 0x1UL) << pkeyshift(pkey)); | 
 | 	u64 old_iamr = read_iamr() & ~((u64)(0x1ul) << pkeyshift(pkey)); | 
 |  | 
 | 	write_iamr(old_iamr | new_iamr_bits); | 
 | } | 
 |  | 
 | /* | 
 |  * Set the access rights in AMR IAMR and UAMOR registers for @pkey to that | 
 |  * specified in @init_val. | 
 |  */ | 
 | int __arch_set_user_pkey_access(struct task_struct *tsk, int pkey, | 
 | 				unsigned long init_val) | 
 | { | 
 | 	u64 new_amr_bits = 0x0ul; | 
 | 	u64 new_iamr_bits = 0x0ul; | 
 |  | 
 | 	if (!is_pkey_enabled(pkey)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (init_val & PKEY_DISABLE_EXECUTE) { | 
 | 		if (!pkey_execute_disable_supported) | 
 | 			return -EINVAL; | 
 | 		new_iamr_bits |= IAMR_EX_BIT; | 
 | 	} | 
 | 	init_iamr(pkey, new_iamr_bits); | 
 |  | 
 | 	/* Set the bits we need in AMR: */ | 
 | 	if (init_val & PKEY_DISABLE_ACCESS) | 
 | 		new_amr_bits |= AMR_RD_BIT | AMR_WR_BIT; | 
 | 	else if (init_val & PKEY_DISABLE_WRITE) | 
 | 		new_amr_bits |= AMR_WR_BIT; | 
 |  | 
 | 	init_amr(pkey, new_amr_bits); | 
 | 	return 0; | 
 | } | 
 |  | 
 | void thread_pkey_regs_save(struct thread_struct *thread) | 
 | { | 
 | 	if (static_branch_likely(&pkey_disabled)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * TODO: Skip saving registers if @thread hasn't used any keys yet. | 
 | 	 */ | 
 | 	thread->amr = read_amr(); | 
 | 	thread->iamr = read_iamr(); | 
 | 	thread->uamor = read_uamor(); | 
 | } | 
 |  | 
 | void thread_pkey_regs_restore(struct thread_struct *new_thread, | 
 | 			      struct thread_struct *old_thread) | 
 | { | 
 | 	if (static_branch_likely(&pkey_disabled)) | 
 | 		return; | 
 |  | 
 | 	if (old_thread->amr != new_thread->amr) | 
 | 		write_amr(new_thread->amr); | 
 | 	if (old_thread->iamr != new_thread->iamr) | 
 | 		write_iamr(new_thread->iamr); | 
 | 	if (old_thread->uamor != new_thread->uamor) | 
 | 		write_uamor(new_thread->uamor); | 
 | } | 
 |  | 
 | void thread_pkey_regs_init(struct thread_struct *thread) | 
 | { | 
 | 	if (static_branch_likely(&pkey_disabled)) | 
 | 		return; | 
 |  | 
 | 	thread->amr = pkey_amr_mask; | 
 | 	thread->iamr = pkey_iamr_mask; | 
 | 	thread->uamor = pkey_uamor_mask; | 
 |  | 
 | 	write_uamor(pkey_uamor_mask); | 
 | 	write_amr(pkey_amr_mask); | 
 | 	write_iamr(pkey_iamr_mask); | 
 | } | 
 |  | 
 | static inline bool pkey_allows_readwrite(int pkey) | 
 | { | 
 | 	int pkey_shift = pkeyshift(pkey); | 
 |  | 
 | 	if (!is_pkey_enabled(pkey)) | 
 | 		return true; | 
 |  | 
 | 	return !(read_amr() & ((AMR_RD_BIT|AMR_WR_BIT) << pkey_shift)); | 
 | } | 
 |  | 
 | int __execute_only_pkey(struct mm_struct *mm) | 
 | { | 
 | 	return mm->context.execute_only_pkey; | 
 | } | 
 |  | 
 | static inline bool vma_is_pkey_exec_only(struct vm_area_struct *vma) | 
 | { | 
 | 	/* Do this check first since the vm_flags should be hot */ | 
 | 	if ((vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC)) != VM_EXEC) | 
 | 		return false; | 
 |  | 
 | 	return (vma_pkey(vma) == vma->vm_mm->context.execute_only_pkey); | 
 | } | 
 |  | 
 | /* | 
 |  * This should only be called for *plain* mprotect calls. | 
 |  */ | 
 | int __arch_override_mprotect_pkey(struct vm_area_struct *vma, int prot, | 
 | 				  int pkey) | 
 | { | 
 | 	/* | 
 | 	 * If the currently associated pkey is execute-only, but the requested | 
 | 	 * protection is not execute-only, move it back to the default pkey. | 
 | 	 */ | 
 | 	if (vma_is_pkey_exec_only(vma) && (prot != PROT_EXEC)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The requested protection is execute-only. Hence let's use an | 
 | 	 * execute-only pkey. | 
 | 	 */ | 
 | 	if (prot == PROT_EXEC) { | 
 | 		pkey = execute_only_pkey(vma->vm_mm); | 
 | 		if (pkey > 0) | 
 | 			return pkey; | 
 | 	} | 
 |  | 
 | 	/* Nothing to override. */ | 
 | 	return vma_pkey(vma); | 
 | } | 
 |  | 
 | static bool pkey_access_permitted(int pkey, bool write, bool execute) | 
 | { | 
 | 	int pkey_shift; | 
 | 	u64 amr; | 
 |  | 
 | 	if (!is_pkey_enabled(pkey)) | 
 | 		return true; | 
 |  | 
 | 	pkey_shift = pkeyshift(pkey); | 
 | 	if (execute && !(read_iamr() & (IAMR_EX_BIT << pkey_shift))) | 
 | 		return true; | 
 |  | 
 | 	amr = read_amr(); /* Delay reading amr until absolutely needed */ | 
 | 	return ((!write && !(amr & (AMR_RD_BIT << pkey_shift))) || | 
 | 		(write &&  !(amr & (AMR_WR_BIT << pkey_shift)))); | 
 | } | 
 |  | 
 | bool arch_pte_access_permitted(u64 pte, bool write, bool execute) | 
 | { | 
 | 	if (static_branch_likely(&pkey_disabled)) | 
 | 		return true; | 
 |  | 
 | 	return pkey_access_permitted(pte_to_pkey_bits(pte), write, execute); | 
 | } | 
 |  | 
 | /* | 
 |  * We only want to enforce protection keys on the current thread because we | 
 |  * effectively have no access to AMR/IAMR for other threads or any way to tell | 
 |  * which AMR/IAMR in a threaded process we could use. | 
 |  * | 
 |  * So do not enforce things if the VMA is not from the current mm, or if we are | 
 |  * in a kernel thread. | 
 |  */ | 
 | static inline bool vma_is_foreign(struct vm_area_struct *vma) | 
 | { | 
 | 	if (!current->mm) | 
 | 		return true; | 
 |  | 
 | 	/* if it is not our ->mm, it has to be foreign */ | 
 | 	if (current->mm != vma->vm_mm) | 
 | 		return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | bool arch_vma_access_permitted(struct vm_area_struct *vma, bool write, | 
 | 			       bool execute, bool foreign) | 
 | { | 
 | 	if (static_branch_likely(&pkey_disabled)) | 
 | 		return true; | 
 | 	/* | 
 | 	 * Do not enforce our key-permissions on a foreign vma. | 
 | 	 */ | 
 | 	if (foreign || vma_is_foreign(vma)) | 
 | 		return true; | 
 |  | 
 | 	return pkey_access_permitted(vma_pkey(vma), write, execute); | 
 | } | 
 |  | 
 | void arch_dup_pkeys(struct mm_struct *oldmm, struct mm_struct *mm) | 
 | { | 
 | 	if (static_branch_likely(&pkey_disabled)) | 
 | 		return; | 
 |  | 
 | 	/* Duplicate the oldmm pkey state in mm: */ | 
 | 	mm_pkey_allocation_map(mm) = mm_pkey_allocation_map(oldmm); | 
 | 	mm->context.execute_only_pkey = oldmm->context.execute_only_pkey; | 
 | } |