| /* | 
 |  * Copyright (C) 2012 Red Hat. All rights reserved. | 
 |  * | 
 |  * This file is released under the GPL. | 
 |  */ | 
 |  | 
 | #include "dm.h" | 
 | #include "dm-bio-prison-v2.h" | 
 | #include "dm-bio-record.h" | 
 | #include "dm-cache-metadata.h" | 
 |  | 
 | #include <linux/dm-io.h> | 
 | #include <linux/dm-kcopyd.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mempool.h> | 
 | #include <linux/module.h> | 
 | #include <linux/rwsem.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/vmalloc.h> | 
 |  | 
 | #define DM_MSG_PREFIX "cache" | 
 |  | 
 | DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle, | 
 | 	"A percentage of time allocated for copying to and/or from cache"); | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Glossary: | 
 |  * | 
 |  * oblock: index of an origin block | 
 |  * cblock: index of a cache block | 
 |  * promotion: movement of a block from origin to cache | 
 |  * demotion: movement of a block from cache to origin | 
 |  * migration: movement of a block between the origin and cache device, | 
 |  *	      either direction | 
 |  */ | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | struct io_tracker { | 
 | 	spinlock_t lock; | 
 |  | 
 | 	/* | 
 | 	 * Sectors of in-flight IO. | 
 | 	 */ | 
 | 	sector_t in_flight; | 
 |  | 
 | 	/* | 
 | 	 * The time, in jiffies, when this device became idle (if it is | 
 | 	 * indeed idle). | 
 | 	 */ | 
 | 	unsigned long idle_time; | 
 | 	unsigned long last_update_time; | 
 | }; | 
 |  | 
 | static void iot_init(struct io_tracker *iot) | 
 | { | 
 | 	spin_lock_init(&iot->lock); | 
 | 	iot->in_flight = 0ul; | 
 | 	iot->idle_time = 0ul; | 
 | 	iot->last_update_time = jiffies; | 
 | } | 
 |  | 
 | static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs) | 
 | { | 
 | 	if (iot->in_flight) | 
 | 		return false; | 
 |  | 
 | 	return time_after(jiffies, iot->idle_time + jifs); | 
 | } | 
 |  | 
 | static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs) | 
 | { | 
 | 	bool r; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iot->lock, flags); | 
 | 	r = __iot_idle_for(iot, jifs); | 
 | 	spin_unlock_irqrestore(&iot->lock, flags); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void iot_io_begin(struct io_tracker *iot, sector_t len) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iot->lock, flags); | 
 | 	iot->in_flight += len; | 
 | 	spin_unlock_irqrestore(&iot->lock, flags); | 
 | } | 
 |  | 
 | static void __iot_io_end(struct io_tracker *iot, sector_t len) | 
 | { | 
 | 	if (!len) | 
 | 		return; | 
 |  | 
 | 	iot->in_flight -= len; | 
 | 	if (!iot->in_flight) | 
 | 		iot->idle_time = jiffies; | 
 | } | 
 |  | 
 | static void iot_io_end(struct io_tracker *iot, sector_t len) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&iot->lock, flags); | 
 | 	__iot_io_end(iot, len); | 
 | 	spin_unlock_irqrestore(&iot->lock, flags); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Represents a chunk of future work.  'input' allows continuations to pass | 
 |  * values between themselves, typically error values. | 
 |  */ | 
 | struct continuation { | 
 | 	struct work_struct ws; | 
 | 	blk_status_t input; | 
 | }; | 
 |  | 
 | static inline void init_continuation(struct continuation *k, | 
 | 				     void (*fn)(struct work_struct *)) | 
 | { | 
 | 	INIT_WORK(&k->ws, fn); | 
 | 	k->input = 0; | 
 | } | 
 |  | 
 | static inline void queue_continuation(struct workqueue_struct *wq, | 
 | 				      struct continuation *k) | 
 | { | 
 | 	queue_work(wq, &k->ws); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * The batcher collects together pieces of work that need a particular | 
 |  * operation to occur before they can proceed (typically a commit). | 
 |  */ | 
 | struct batcher { | 
 | 	/* | 
 | 	 * The operation that everyone is waiting for. | 
 | 	 */ | 
 | 	blk_status_t (*commit_op)(void *context); | 
 | 	void *commit_context; | 
 |  | 
 | 	/* | 
 | 	 * This is how bios should be issued once the commit op is complete | 
 | 	 * (accounted_request). | 
 | 	 */ | 
 | 	void (*issue_op)(struct bio *bio, void *context); | 
 | 	void *issue_context; | 
 |  | 
 | 	/* | 
 | 	 * Queued work gets put on here after commit. | 
 | 	 */ | 
 | 	struct workqueue_struct *wq; | 
 |  | 
 | 	spinlock_t lock; | 
 | 	struct list_head work_items; | 
 | 	struct bio_list bios; | 
 | 	struct work_struct commit_work; | 
 |  | 
 | 	bool commit_scheduled; | 
 | }; | 
 |  | 
 | static void __commit(struct work_struct *_ws) | 
 | { | 
 | 	struct batcher *b = container_of(_ws, struct batcher, commit_work); | 
 | 	blk_status_t r; | 
 | 	unsigned long flags; | 
 | 	struct list_head work_items; | 
 | 	struct work_struct *ws, *tmp; | 
 | 	struct continuation *k; | 
 | 	struct bio *bio; | 
 | 	struct bio_list bios; | 
 |  | 
 | 	INIT_LIST_HEAD(&work_items); | 
 | 	bio_list_init(&bios); | 
 |  | 
 | 	/* | 
 | 	 * We have to grab these before the commit_op to avoid a race | 
 | 	 * condition. | 
 | 	 */ | 
 | 	spin_lock_irqsave(&b->lock, flags); | 
 | 	list_splice_init(&b->work_items, &work_items); | 
 | 	bio_list_merge(&bios, &b->bios); | 
 | 	bio_list_init(&b->bios); | 
 | 	b->commit_scheduled = false; | 
 | 	spin_unlock_irqrestore(&b->lock, flags); | 
 |  | 
 | 	r = b->commit_op(b->commit_context); | 
 |  | 
 | 	list_for_each_entry_safe(ws, tmp, &work_items, entry) { | 
 | 		k = container_of(ws, struct continuation, ws); | 
 | 		k->input = r; | 
 | 		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */ | 
 | 		queue_work(b->wq, ws); | 
 | 	} | 
 |  | 
 | 	while ((bio = bio_list_pop(&bios))) { | 
 | 		if (r) { | 
 | 			bio->bi_status = r; | 
 | 			bio_endio(bio); | 
 | 		} else | 
 | 			b->issue_op(bio, b->issue_context); | 
 | 	} | 
 | } | 
 |  | 
 | static void batcher_init(struct batcher *b, | 
 | 			 blk_status_t (*commit_op)(void *), | 
 | 			 void *commit_context, | 
 | 			 void (*issue_op)(struct bio *bio, void *), | 
 | 			 void *issue_context, | 
 | 			 struct workqueue_struct *wq) | 
 | { | 
 | 	b->commit_op = commit_op; | 
 | 	b->commit_context = commit_context; | 
 | 	b->issue_op = issue_op; | 
 | 	b->issue_context = issue_context; | 
 | 	b->wq = wq; | 
 |  | 
 | 	spin_lock_init(&b->lock); | 
 | 	INIT_LIST_HEAD(&b->work_items); | 
 | 	bio_list_init(&b->bios); | 
 | 	INIT_WORK(&b->commit_work, __commit); | 
 | 	b->commit_scheduled = false; | 
 | } | 
 |  | 
 | static void async_commit(struct batcher *b) | 
 | { | 
 | 	queue_work(b->wq, &b->commit_work); | 
 | } | 
 |  | 
 | static void continue_after_commit(struct batcher *b, struct continuation *k) | 
 | { | 
 | 	unsigned long flags; | 
 | 	bool commit_scheduled; | 
 |  | 
 | 	spin_lock_irqsave(&b->lock, flags); | 
 | 	commit_scheduled = b->commit_scheduled; | 
 | 	list_add_tail(&k->ws.entry, &b->work_items); | 
 | 	spin_unlock_irqrestore(&b->lock, flags); | 
 |  | 
 | 	if (commit_scheduled) | 
 | 		async_commit(b); | 
 | } | 
 |  | 
 | /* | 
 |  * Bios are errored if commit failed. | 
 |  */ | 
 | static void issue_after_commit(struct batcher *b, struct bio *bio) | 
 | { | 
 |        unsigned long flags; | 
 |        bool commit_scheduled; | 
 |  | 
 |        spin_lock_irqsave(&b->lock, flags); | 
 |        commit_scheduled = b->commit_scheduled; | 
 |        bio_list_add(&b->bios, bio); | 
 |        spin_unlock_irqrestore(&b->lock, flags); | 
 |  | 
 |        if (commit_scheduled) | 
 | 	       async_commit(b); | 
 | } | 
 |  | 
 | /* | 
 |  * Call this if some urgent work is waiting for the commit to complete. | 
 |  */ | 
 | static void schedule_commit(struct batcher *b) | 
 | { | 
 | 	bool immediate; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&b->lock, flags); | 
 | 	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios); | 
 | 	b->commit_scheduled = true; | 
 | 	spin_unlock_irqrestore(&b->lock, flags); | 
 |  | 
 | 	if (immediate) | 
 | 		async_commit(b); | 
 | } | 
 |  | 
 | /* | 
 |  * There are a couple of places where we let a bio run, but want to do some | 
 |  * work before calling its endio function.  We do this by temporarily | 
 |  * changing the endio fn. | 
 |  */ | 
 | struct dm_hook_info { | 
 | 	bio_end_io_t *bi_end_io; | 
 | }; | 
 |  | 
 | static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio, | 
 | 			bio_end_io_t *bi_end_io, void *bi_private) | 
 | { | 
 | 	h->bi_end_io = bio->bi_end_io; | 
 |  | 
 | 	bio->bi_end_io = bi_end_io; | 
 | 	bio->bi_private = bi_private; | 
 | } | 
 |  | 
 | static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio) | 
 | { | 
 | 	bio->bi_end_io = h->bi_end_io; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | #define MIGRATION_POOL_SIZE 128 | 
 | #define COMMIT_PERIOD HZ | 
 | #define MIGRATION_COUNT_WINDOW 10 | 
 |  | 
 | /* | 
 |  * The block size of the device holding cache data must be | 
 |  * between 32KB and 1GB. | 
 |  */ | 
 | #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT) | 
 | #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT) | 
 |  | 
 | enum cache_metadata_mode { | 
 | 	CM_WRITE,		/* metadata may be changed */ | 
 | 	CM_READ_ONLY,		/* metadata may not be changed */ | 
 | 	CM_FAIL | 
 | }; | 
 |  | 
 | enum cache_io_mode { | 
 | 	/* | 
 | 	 * Data is written to cached blocks only.  These blocks are marked | 
 | 	 * dirty.  If you lose the cache device you will lose data. | 
 | 	 * Potential performance increase for both reads and writes. | 
 | 	 */ | 
 | 	CM_IO_WRITEBACK, | 
 |  | 
 | 	/* | 
 | 	 * Data is written to both cache and origin.  Blocks are never | 
 | 	 * dirty.  Potential performance benfit for reads only. | 
 | 	 */ | 
 | 	CM_IO_WRITETHROUGH, | 
 |  | 
 | 	/* | 
 | 	 * A degraded mode useful for various cache coherency situations | 
 | 	 * (eg, rolling back snapshots).  Reads and writes always go to the | 
 | 	 * origin.  If a write goes to a cached oblock, then the cache | 
 | 	 * block is invalidated. | 
 | 	 */ | 
 | 	CM_IO_PASSTHROUGH | 
 | }; | 
 |  | 
 | struct cache_features { | 
 | 	enum cache_metadata_mode mode; | 
 | 	enum cache_io_mode io_mode; | 
 | 	unsigned metadata_version; | 
 | }; | 
 |  | 
 | struct cache_stats { | 
 | 	atomic_t read_hit; | 
 | 	atomic_t read_miss; | 
 | 	atomic_t write_hit; | 
 | 	atomic_t write_miss; | 
 | 	atomic_t demotion; | 
 | 	atomic_t promotion; | 
 | 	atomic_t writeback; | 
 | 	atomic_t copies_avoided; | 
 | 	atomic_t cache_cell_clash; | 
 | 	atomic_t commit_count; | 
 | 	atomic_t discard_count; | 
 | }; | 
 |  | 
 | struct cache { | 
 | 	struct dm_target *ti; | 
 | 	spinlock_t lock; | 
 |  | 
 | 	/* | 
 | 	 * Fields for converting from sectors to blocks. | 
 | 	 */ | 
 | 	int sectors_per_block_shift; | 
 | 	sector_t sectors_per_block; | 
 |  | 
 | 	struct dm_cache_metadata *cmd; | 
 |  | 
 | 	/* | 
 | 	 * Metadata is written to this device. | 
 | 	 */ | 
 | 	struct dm_dev *metadata_dev; | 
 |  | 
 | 	/* | 
 | 	 * The slower of the two data devices.  Typically a spindle. | 
 | 	 */ | 
 | 	struct dm_dev *origin_dev; | 
 |  | 
 | 	/* | 
 | 	 * The faster of the two data devices.  Typically an SSD. | 
 | 	 */ | 
 | 	struct dm_dev *cache_dev; | 
 |  | 
 | 	/* | 
 | 	 * Size of the origin device in _complete_ blocks and native sectors. | 
 | 	 */ | 
 | 	dm_oblock_t origin_blocks; | 
 | 	sector_t origin_sectors; | 
 |  | 
 | 	/* | 
 | 	 * Size of the cache device in blocks. | 
 | 	 */ | 
 | 	dm_cblock_t cache_size; | 
 |  | 
 | 	/* | 
 | 	 * Invalidation fields. | 
 | 	 */ | 
 | 	spinlock_t invalidation_lock; | 
 | 	struct list_head invalidation_requests; | 
 |  | 
 | 	sector_t migration_threshold; | 
 | 	wait_queue_head_t migration_wait; | 
 | 	atomic_t nr_allocated_migrations; | 
 |  | 
 | 	/* | 
 | 	 * The number of in flight migrations that are performing | 
 | 	 * background io. eg, promotion, writeback. | 
 | 	 */ | 
 | 	atomic_t nr_io_migrations; | 
 |  | 
 | 	struct bio_list deferred_bios; | 
 |  | 
 | 	struct rw_semaphore quiesce_lock; | 
 |  | 
 | 	struct dm_target_callbacks callbacks; | 
 |  | 
 | 	/* | 
 | 	 * origin_blocks entries, discarded if set. | 
 | 	 */ | 
 | 	dm_dblock_t discard_nr_blocks; | 
 | 	unsigned long *discard_bitset; | 
 | 	uint32_t discard_block_size; /* a power of 2 times sectors per block */ | 
 |  | 
 | 	/* | 
 | 	 * Rather than reconstructing the table line for the status we just | 
 | 	 * save it and regurgitate. | 
 | 	 */ | 
 | 	unsigned nr_ctr_args; | 
 | 	const char **ctr_args; | 
 |  | 
 | 	struct dm_kcopyd_client *copier; | 
 | 	struct work_struct deferred_bio_worker; | 
 | 	struct work_struct migration_worker; | 
 | 	struct workqueue_struct *wq; | 
 | 	struct delayed_work waker; | 
 | 	struct dm_bio_prison_v2 *prison; | 
 |  | 
 | 	/* | 
 | 	 * cache_size entries, dirty if set | 
 | 	 */ | 
 | 	unsigned long *dirty_bitset; | 
 | 	atomic_t nr_dirty; | 
 |  | 
 | 	unsigned policy_nr_args; | 
 | 	struct dm_cache_policy *policy; | 
 |  | 
 | 	/* | 
 | 	 * Cache features such as write-through. | 
 | 	 */ | 
 | 	struct cache_features features; | 
 |  | 
 | 	struct cache_stats stats; | 
 |  | 
 | 	bool need_tick_bio:1; | 
 | 	bool sized:1; | 
 | 	bool invalidate:1; | 
 | 	bool commit_requested:1; | 
 | 	bool loaded_mappings:1; | 
 | 	bool loaded_discards:1; | 
 |  | 
 | 	struct rw_semaphore background_work_lock; | 
 |  | 
 | 	struct batcher committer; | 
 | 	struct work_struct commit_ws; | 
 |  | 
 | 	struct io_tracker tracker; | 
 |  | 
 | 	mempool_t migration_pool; | 
 |  | 
 | 	struct bio_set bs; | 
 | }; | 
 |  | 
 | struct per_bio_data { | 
 | 	bool tick:1; | 
 | 	unsigned req_nr:2; | 
 | 	struct dm_bio_prison_cell_v2 *cell; | 
 | 	struct dm_hook_info hook_info; | 
 | 	sector_t len; | 
 | }; | 
 |  | 
 | struct dm_cache_migration { | 
 | 	struct continuation k; | 
 | 	struct cache *cache; | 
 |  | 
 | 	struct policy_work *op; | 
 | 	struct bio *overwrite_bio; | 
 | 	struct dm_bio_prison_cell_v2 *cell; | 
 |  | 
 | 	dm_cblock_t invalidate_cblock; | 
 | 	dm_oblock_t invalidate_oblock; | 
 | }; | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static bool writethrough_mode(struct cache *cache) | 
 | { | 
 | 	return cache->features.io_mode == CM_IO_WRITETHROUGH; | 
 | } | 
 |  | 
 | static bool writeback_mode(struct cache *cache) | 
 | { | 
 | 	return cache->features.io_mode == CM_IO_WRITEBACK; | 
 | } | 
 |  | 
 | static inline bool passthrough_mode(struct cache *cache) | 
 | { | 
 | 	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static void wake_deferred_bio_worker(struct cache *cache) | 
 | { | 
 | 	queue_work(cache->wq, &cache->deferred_bio_worker); | 
 | } | 
 |  | 
 | static void wake_migration_worker(struct cache *cache) | 
 | { | 
 | 	if (passthrough_mode(cache)) | 
 | 		return; | 
 |  | 
 | 	queue_work(cache->wq, &cache->migration_worker); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache) | 
 | { | 
 | 	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO); | 
 | } | 
 |  | 
 | static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell) | 
 | { | 
 | 	dm_bio_prison_free_cell_v2(cache->prison, cell); | 
 | } | 
 |  | 
 | static struct dm_cache_migration *alloc_migration(struct cache *cache) | 
 | { | 
 | 	struct dm_cache_migration *mg; | 
 |  | 
 | 	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO); | 
 |  | 
 | 	memset(mg, 0, sizeof(*mg)); | 
 |  | 
 | 	mg->cache = cache; | 
 | 	atomic_inc(&cache->nr_allocated_migrations); | 
 |  | 
 | 	return mg; | 
 | } | 
 |  | 
 | static void free_migration(struct dm_cache_migration *mg) | 
 | { | 
 | 	struct cache *cache = mg->cache; | 
 |  | 
 | 	if (atomic_dec_and_test(&cache->nr_allocated_migrations)) | 
 | 		wake_up(&cache->migration_wait); | 
 |  | 
 | 	mempool_free(mg, &cache->migration_pool); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static inline dm_oblock_t oblock_succ(dm_oblock_t b) | 
 | { | 
 | 	return to_oblock(from_oblock(b) + 1ull); | 
 | } | 
 |  | 
 | static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key) | 
 | { | 
 | 	key->virtual = 0; | 
 | 	key->dev = 0; | 
 | 	key->block_begin = from_oblock(begin); | 
 | 	key->block_end = from_oblock(end); | 
 | } | 
 |  | 
 | /* | 
 |  * We have two lock levels.  Level 0, which is used to prevent WRITEs, and | 
 |  * level 1 which prevents *both* READs and WRITEs. | 
 |  */ | 
 | #define WRITE_LOCK_LEVEL 0 | 
 | #define READ_WRITE_LOCK_LEVEL 1 | 
 |  | 
 | static unsigned lock_level(struct bio *bio) | 
 | { | 
 | 	return bio_data_dir(bio) == WRITE ? | 
 | 		WRITE_LOCK_LEVEL : | 
 | 		READ_WRITE_LOCK_LEVEL; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------- | 
 |  * Per bio data | 
 |  *--------------------------------------------------------------*/ | 
 |  | 
 | static struct per_bio_data *get_per_bio_data(struct bio *bio) | 
 | { | 
 | 	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data)); | 
 | 	BUG_ON(!pb); | 
 | 	return pb; | 
 | } | 
 |  | 
 | static struct per_bio_data *init_per_bio_data(struct bio *bio) | 
 | { | 
 | 	struct per_bio_data *pb = get_per_bio_data(bio); | 
 |  | 
 | 	pb->tick = false; | 
 | 	pb->req_nr = dm_bio_get_target_bio_nr(bio); | 
 | 	pb->cell = NULL; | 
 | 	pb->len = 0; | 
 |  | 
 | 	return pb; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static void defer_bio(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&cache->lock, flags); | 
 | 	bio_list_add(&cache->deferred_bios, bio); | 
 | 	spin_unlock_irqrestore(&cache->lock, flags); | 
 |  | 
 | 	wake_deferred_bio_worker(cache); | 
 | } | 
 |  | 
 | static void defer_bios(struct cache *cache, struct bio_list *bios) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&cache->lock, flags); | 
 | 	bio_list_merge(&cache->deferred_bios, bios); | 
 | 	bio_list_init(bios); | 
 | 	spin_unlock_irqrestore(&cache->lock, flags); | 
 |  | 
 | 	wake_deferred_bio_worker(cache); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio) | 
 | { | 
 | 	bool r; | 
 | 	struct per_bio_data *pb; | 
 | 	struct dm_cell_key_v2 key; | 
 | 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL); | 
 | 	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell; | 
 |  | 
 | 	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */ | 
 |  | 
 | 	build_key(oblock, end, &key); | 
 | 	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell); | 
 | 	if (!r) { | 
 | 		/* | 
 | 		 * Failed to get the lock. | 
 | 		 */ | 
 | 		free_prison_cell(cache, cell_prealloc); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	if (cell != cell_prealloc) | 
 | 		free_prison_cell(cache, cell_prealloc); | 
 |  | 
 | 	pb = get_per_bio_data(bio); | 
 | 	pb->cell = cell; | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static bool is_dirty(struct cache *cache, dm_cblock_t b) | 
 | { | 
 | 	return test_bit(from_cblock(b), cache->dirty_bitset); | 
 | } | 
 |  | 
 | static void set_dirty(struct cache *cache, dm_cblock_t cblock) | 
 | { | 
 | 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) { | 
 | 		atomic_inc(&cache->nr_dirty); | 
 | 		policy_set_dirty(cache->policy, cblock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * These two are called when setting after migrations to force the policy | 
 |  * and dirty bitset to be in sync. | 
 |  */ | 
 | static void force_set_dirty(struct cache *cache, dm_cblock_t cblock) | 
 | { | 
 | 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) | 
 | 		atomic_inc(&cache->nr_dirty); | 
 | 	policy_set_dirty(cache->policy, cblock); | 
 | } | 
 |  | 
 | static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock) | 
 | { | 
 | 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) { | 
 | 		if (atomic_dec_return(&cache->nr_dirty) == 0) | 
 | 			dm_table_event(cache->ti->table); | 
 | 	} | 
 |  | 
 | 	policy_clear_dirty(cache->policy, cblock); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static bool block_size_is_power_of_two(struct cache *cache) | 
 | { | 
 | 	return cache->sectors_per_block_shift >= 0; | 
 | } | 
 |  | 
 | /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */ | 
 | #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6 | 
 | __always_inline | 
 | #endif | 
 | static dm_block_t block_div(dm_block_t b, uint32_t n) | 
 | { | 
 | 	do_div(b, n); | 
 |  | 
 | 	return b; | 
 | } | 
 |  | 
 | static dm_block_t oblocks_per_dblock(struct cache *cache) | 
 | { | 
 | 	dm_block_t oblocks = cache->discard_block_size; | 
 |  | 
 | 	if (block_size_is_power_of_two(cache)) | 
 | 		oblocks >>= cache->sectors_per_block_shift; | 
 | 	else | 
 | 		oblocks = block_div(oblocks, cache->sectors_per_block); | 
 |  | 
 | 	return oblocks; | 
 | } | 
 |  | 
 | static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock) | 
 | { | 
 | 	return to_dblock(block_div(from_oblock(oblock), | 
 | 				   oblocks_per_dblock(cache))); | 
 | } | 
 |  | 
 | static void set_discard(struct cache *cache, dm_dblock_t b) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks)); | 
 | 	atomic_inc(&cache->stats.discard_count); | 
 |  | 
 | 	spin_lock_irqsave(&cache->lock, flags); | 
 | 	set_bit(from_dblock(b), cache->discard_bitset); | 
 | 	spin_unlock_irqrestore(&cache->lock, flags); | 
 | } | 
 |  | 
 | static void clear_discard(struct cache *cache, dm_dblock_t b) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&cache->lock, flags); | 
 | 	clear_bit(from_dblock(b), cache->discard_bitset); | 
 | 	spin_unlock_irqrestore(&cache->lock, flags); | 
 | } | 
 |  | 
 | static bool is_discarded(struct cache *cache, dm_dblock_t b) | 
 | { | 
 | 	int r; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&cache->lock, flags); | 
 | 	r = test_bit(from_dblock(b), cache->discard_bitset); | 
 | 	spin_unlock_irqrestore(&cache->lock, flags); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b) | 
 | { | 
 | 	int r; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&cache->lock, flags); | 
 | 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)), | 
 | 		     cache->discard_bitset); | 
 | 	spin_unlock_irqrestore(&cache->lock, flags); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------- | 
 |  * Remapping | 
 |  *--------------------------------------------------------------*/ | 
 | static void remap_to_origin(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	bio_set_dev(bio, cache->origin_dev->bdev); | 
 | } | 
 |  | 
 | static void remap_to_cache(struct cache *cache, struct bio *bio, | 
 | 			   dm_cblock_t cblock) | 
 | { | 
 | 	sector_t bi_sector = bio->bi_iter.bi_sector; | 
 | 	sector_t block = from_cblock(cblock); | 
 |  | 
 | 	bio_set_dev(bio, cache->cache_dev->bdev); | 
 | 	if (!block_size_is_power_of_two(cache)) | 
 | 		bio->bi_iter.bi_sector = | 
 | 			(block * cache->sectors_per_block) + | 
 | 			sector_div(bi_sector, cache->sectors_per_block); | 
 | 	else | 
 | 		bio->bi_iter.bi_sector = | 
 | 			(block << cache->sectors_per_block_shift) | | 
 | 			(bi_sector & (cache->sectors_per_block - 1)); | 
 | } | 
 |  | 
 | static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct per_bio_data *pb; | 
 |  | 
 | 	spin_lock_irqsave(&cache->lock, flags); | 
 | 	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) && | 
 | 	    bio_op(bio) != REQ_OP_DISCARD) { | 
 | 		pb = get_per_bio_data(bio); | 
 | 		pb->tick = true; | 
 | 		cache->need_tick_bio = false; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&cache->lock, flags); | 
 | } | 
 |  | 
 | static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, | 
 | 					    dm_oblock_t oblock, bool bio_has_pbd) | 
 | { | 
 | 	if (bio_has_pbd) | 
 | 		check_if_tick_bio_needed(cache, bio); | 
 | 	remap_to_origin(cache, bio); | 
 | 	if (bio_data_dir(bio) == WRITE) | 
 | 		clear_discard(cache, oblock_to_dblock(cache, oblock)); | 
 | } | 
 |  | 
 | static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio, | 
 | 					  dm_oblock_t oblock) | 
 | { | 
 | 	// FIXME: check_if_tick_bio_needed() is called way too much through this interface | 
 | 	__remap_to_origin_clear_discard(cache, bio, oblock, true); | 
 | } | 
 |  | 
 | static void remap_to_cache_dirty(struct cache *cache, struct bio *bio, | 
 | 				 dm_oblock_t oblock, dm_cblock_t cblock) | 
 | { | 
 | 	check_if_tick_bio_needed(cache, bio); | 
 | 	remap_to_cache(cache, bio, cblock); | 
 | 	if (bio_data_dir(bio) == WRITE) { | 
 | 		set_dirty(cache, cblock); | 
 | 		clear_discard(cache, oblock_to_dblock(cache, oblock)); | 
 | 	} | 
 | } | 
 |  | 
 | static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	sector_t block_nr = bio->bi_iter.bi_sector; | 
 |  | 
 | 	if (!block_size_is_power_of_two(cache)) | 
 | 		(void) sector_div(block_nr, cache->sectors_per_block); | 
 | 	else | 
 | 		block_nr >>= cache->sectors_per_block_shift; | 
 |  | 
 | 	return to_oblock(block_nr); | 
 | } | 
 |  | 
 | static bool accountable_bio(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	return bio_op(bio) != REQ_OP_DISCARD; | 
 | } | 
 |  | 
 | static void accounted_begin(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	struct per_bio_data *pb; | 
 |  | 
 | 	if (accountable_bio(cache, bio)) { | 
 | 		pb = get_per_bio_data(bio); | 
 | 		pb->len = bio_sectors(bio); | 
 | 		iot_io_begin(&cache->tracker, pb->len); | 
 | 	} | 
 | } | 
 |  | 
 | static void accounted_complete(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	struct per_bio_data *pb = get_per_bio_data(bio); | 
 |  | 
 | 	iot_io_end(&cache->tracker, pb->len); | 
 | } | 
 |  | 
 | static void accounted_request(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	accounted_begin(cache, bio); | 
 | 	generic_make_request(bio); | 
 | } | 
 |  | 
 | static void issue_op(struct bio *bio, void *context) | 
 | { | 
 | 	struct cache *cache = context; | 
 | 	accounted_request(cache, bio); | 
 | } | 
 |  | 
 | /* | 
 |  * When running in writethrough mode we need to send writes to clean blocks | 
 |  * to both the cache and origin devices.  Clone the bio and send them in parallel. | 
 |  */ | 
 | static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio, | 
 | 				      dm_oblock_t oblock, dm_cblock_t cblock) | 
 | { | 
 | 	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs); | 
 |  | 
 | 	BUG_ON(!origin_bio); | 
 |  | 
 | 	bio_chain(origin_bio, bio); | 
 | 	/* | 
 | 	 * Passing false to __remap_to_origin_clear_discard() skips | 
 | 	 * all code that might use per_bio_data (since clone doesn't have it) | 
 | 	 */ | 
 | 	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false); | 
 | 	submit_bio(origin_bio); | 
 |  | 
 | 	remap_to_cache(cache, bio, cblock); | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------- | 
 |  * Failure modes | 
 |  *--------------------------------------------------------------*/ | 
 | static enum cache_metadata_mode get_cache_mode(struct cache *cache) | 
 | { | 
 | 	return cache->features.mode; | 
 | } | 
 |  | 
 | static const char *cache_device_name(struct cache *cache) | 
 | { | 
 | 	return dm_device_name(dm_table_get_md(cache->ti->table)); | 
 | } | 
 |  | 
 | static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode) | 
 | { | 
 | 	const char *descs[] = { | 
 | 		"write", | 
 | 		"read-only", | 
 | 		"fail" | 
 | 	}; | 
 |  | 
 | 	dm_table_event(cache->ti->table); | 
 | 	DMINFO("%s: switching cache to %s mode", | 
 | 	       cache_device_name(cache), descs[(int)mode]); | 
 | } | 
 |  | 
 | static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode) | 
 | { | 
 | 	bool needs_check; | 
 | 	enum cache_metadata_mode old_mode = get_cache_mode(cache); | 
 |  | 
 | 	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) { | 
 | 		DMERR("%s: unable to read needs_check flag, setting failure mode.", | 
 | 		      cache_device_name(cache)); | 
 | 		new_mode = CM_FAIL; | 
 | 	} | 
 |  | 
 | 	if (new_mode == CM_WRITE && needs_check) { | 
 | 		DMERR("%s: unable to switch cache to write mode until repaired.", | 
 | 		      cache_device_name(cache)); | 
 | 		if (old_mode != new_mode) | 
 | 			new_mode = old_mode; | 
 | 		else | 
 | 			new_mode = CM_READ_ONLY; | 
 | 	} | 
 |  | 
 | 	/* Never move out of fail mode */ | 
 | 	if (old_mode == CM_FAIL) | 
 | 		new_mode = CM_FAIL; | 
 |  | 
 | 	switch (new_mode) { | 
 | 	case CM_FAIL: | 
 | 	case CM_READ_ONLY: | 
 | 		dm_cache_metadata_set_read_only(cache->cmd); | 
 | 		break; | 
 |  | 
 | 	case CM_WRITE: | 
 | 		dm_cache_metadata_set_read_write(cache->cmd); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	cache->features.mode = new_mode; | 
 |  | 
 | 	if (new_mode != old_mode) | 
 | 		notify_mode_switch(cache, new_mode); | 
 | } | 
 |  | 
 | static void abort_transaction(struct cache *cache) | 
 | { | 
 | 	const char *dev_name = cache_device_name(cache); | 
 |  | 
 | 	if (get_cache_mode(cache) >= CM_READ_ONLY) | 
 | 		return; | 
 |  | 
 | 	if (dm_cache_metadata_set_needs_check(cache->cmd)) { | 
 | 		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name); | 
 | 		set_cache_mode(cache, CM_FAIL); | 
 | 	} | 
 |  | 
 | 	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name); | 
 | 	if (dm_cache_metadata_abort(cache->cmd)) { | 
 | 		DMERR("%s: failed to abort metadata transaction", dev_name); | 
 | 		set_cache_mode(cache, CM_FAIL); | 
 | 	} | 
 | } | 
 |  | 
 | static void metadata_operation_failed(struct cache *cache, const char *op, int r) | 
 | { | 
 | 	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d", | 
 | 		    cache_device_name(cache), op, r); | 
 | 	abort_transaction(cache); | 
 | 	set_cache_mode(cache, CM_READ_ONLY); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static void load_stats(struct cache *cache) | 
 | { | 
 | 	struct dm_cache_statistics stats; | 
 |  | 
 | 	dm_cache_metadata_get_stats(cache->cmd, &stats); | 
 | 	atomic_set(&cache->stats.read_hit, stats.read_hits); | 
 | 	atomic_set(&cache->stats.read_miss, stats.read_misses); | 
 | 	atomic_set(&cache->stats.write_hit, stats.write_hits); | 
 | 	atomic_set(&cache->stats.write_miss, stats.write_misses); | 
 | } | 
 |  | 
 | static void save_stats(struct cache *cache) | 
 | { | 
 | 	struct dm_cache_statistics stats; | 
 |  | 
 | 	if (get_cache_mode(cache) >= CM_READ_ONLY) | 
 | 		return; | 
 |  | 
 | 	stats.read_hits = atomic_read(&cache->stats.read_hit); | 
 | 	stats.read_misses = atomic_read(&cache->stats.read_miss); | 
 | 	stats.write_hits = atomic_read(&cache->stats.write_hit); | 
 | 	stats.write_misses = atomic_read(&cache->stats.write_miss); | 
 |  | 
 | 	dm_cache_metadata_set_stats(cache->cmd, &stats); | 
 | } | 
 |  | 
 | static void update_stats(struct cache_stats *stats, enum policy_operation op) | 
 | { | 
 | 	switch (op) { | 
 | 	case POLICY_PROMOTE: | 
 | 		atomic_inc(&stats->promotion); | 
 | 		break; | 
 |  | 
 | 	case POLICY_DEMOTE: | 
 | 		atomic_inc(&stats->demotion); | 
 | 		break; | 
 |  | 
 | 	case POLICY_WRITEBACK: | 
 | 		atomic_inc(&stats->writeback); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------- | 
 |  * Migration processing | 
 |  * | 
 |  * Migration covers moving data from the origin device to the cache, or | 
 |  * vice versa. | 
 |  *--------------------------------------------------------------*/ | 
 |  | 
 | static void inc_io_migrations(struct cache *cache) | 
 | { | 
 | 	atomic_inc(&cache->nr_io_migrations); | 
 | } | 
 |  | 
 | static void dec_io_migrations(struct cache *cache) | 
 | { | 
 | 	atomic_dec(&cache->nr_io_migrations); | 
 | } | 
 |  | 
 | static bool discard_or_flush(struct bio *bio) | 
 | { | 
 | 	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf); | 
 | } | 
 |  | 
 | static void calc_discard_block_range(struct cache *cache, struct bio *bio, | 
 | 				     dm_dblock_t *b, dm_dblock_t *e) | 
 | { | 
 | 	sector_t sb = bio->bi_iter.bi_sector; | 
 | 	sector_t se = bio_end_sector(bio); | 
 |  | 
 | 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size)); | 
 |  | 
 | 	if (se - sb < cache->discard_block_size) | 
 | 		*e = *b; | 
 | 	else | 
 | 		*e = to_dblock(block_div(se, cache->discard_block_size)); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static void prevent_background_work(struct cache *cache) | 
 | { | 
 | 	lockdep_off(); | 
 | 	down_write(&cache->background_work_lock); | 
 | 	lockdep_on(); | 
 | } | 
 |  | 
 | static void allow_background_work(struct cache *cache) | 
 | { | 
 | 	lockdep_off(); | 
 | 	up_write(&cache->background_work_lock); | 
 | 	lockdep_on(); | 
 | } | 
 |  | 
 | static bool background_work_begin(struct cache *cache) | 
 | { | 
 | 	bool r; | 
 |  | 
 | 	lockdep_off(); | 
 | 	r = down_read_trylock(&cache->background_work_lock); | 
 | 	lockdep_on(); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void background_work_end(struct cache *cache) | 
 | { | 
 | 	lockdep_off(); | 
 | 	up_read(&cache->background_work_lock); | 
 | 	lockdep_on(); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static bool bio_writes_complete_block(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	return (bio_data_dir(bio) == WRITE) && | 
 | 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT)); | 
 | } | 
 |  | 
 | static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block) | 
 | { | 
 | 	return writeback_mode(cache) && | 
 | 		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio)); | 
 | } | 
 |  | 
 | static void quiesce(struct dm_cache_migration *mg, | 
 | 		    void (*continuation)(struct work_struct *)) | 
 | { | 
 | 	init_continuation(&mg->k, continuation); | 
 | 	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws); | 
 | } | 
 |  | 
 | static struct dm_cache_migration *ws_to_mg(struct work_struct *ws) | 
 | { | 
 | 	struct continuation *k = container_of(ws, struct continuation, ws); | 
 | 	return container_of(k, struct dm_cache_migration, k); | 
 | } | 
 |  | 
 | static void copy_complete(int read_err, unsigned long write_err, void *context) | 
 | { | 
 | 	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k); | 
 |  | 
 | 	if (read_err || write_err) | 
 | 		mg->k.input = BLK_STS_IOERR; | 
 |  | 
 | 	queue_continuation(mg->cache->wq, &mg->k); | 
 | } | 
 |  | 
 | static void copy(struct dm_cache_migration *mg, bool promote) | 
 | { | 
 | 	struct dm_io_region o_region, c_region; | 
 | 	struct cache *cache = mg->cache; | 
 |  | 
 | 	o_region.bdev = cache->origin_dev->bdev; | 
 | 	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block; | 
 | 	o_region.count = cache->sectors_per_block; | 
 |  | 
 | 	c_region.bdev = cache->cache_dev->bdev; | 
 | 	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block; | 
 | 	c_region.count = cache->sectors_per_block; | 
 |  | 
 | 	if (promote) | 
 | 		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k); | 
 | 	else | 
 | 		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k); | 
 | } | 
 |  | 
 | static void bio_drop_shared_lock(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	struct per_bio_data *pb = get_per_bio_data(bio); | 
 |  | 
 | 	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell)) | 
 | 		free_prison_cell(cache, pb->cell); | 
 | 	pb->cell = NULL; | 
 | } | 
 |  | 
 | static void overwrite_endio(struct bio *bio) | 
 | { | 
 | 	struct dm_cache_migration *mg = bio->bi_private; | 
 | 	struct cache *cache = mg->cache; | 
 | 	struct per_bio_data *pb = get_per_bio_data(bio); | 
 |  | 
 | 	dm_unhook_bio(&pb->hook_info, bio); | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		mg->k.input = bio->bi_status; | 
 |  | 
 | 	queue_continuation(cache->wq, &mg->k); | 
 | } | 
 |  | 
 | static void overwrite(struct dm_cache_migration *mg, | 
 | 		      void (*continuation)(struct work_struct *)) | 
 | { | 
 | 	struct bio *bio = mg->overwrite_bio; | 
 | 	struct per_bio_data *pb = get_per_bio_data(bio); | 
 |  | 
 | 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg); | 
 |  | 
 | 	/* | 
 | 	 * The overwrite bio is part of the copy operation, as such it does | 
 | 	 * not set/clear discard or dirty flags. | 
 | 	 */ | 
 | 	if (mg->op->op == POLICY_PROMOTE) | 
 | 		remap_to_cache(mg->cache, bio, mg->op->cblock); | 
 | 	else | 
 | 		remap_to_origin(mg->cache, bio); | 
 |  | 
 | 	init_continuation(&mg->k, continuation); | 
 | 	accounted_request(mg->cache, bio); | 
 | } | 
 |  | 
 | /* | 
 |  * Migration steps: | 
 |  * | 
 |  * 1) exclusive lock preventing WRITEs | 
 |  * 2) quiesce | 
 |  * 3) copy or issue overwrite bio | 
 |  * 4) upgrade to exclusive lock preventing READs and WRITEs | 
 |  * 5) quiesce | 
 |  * 6) update metadata and commit | 
 |  * 7) unlock | 
 |  */ | 
 | static void mg_complete(struct dm_cache_migration *mg, bool success) | 
 | { | 
 | 	struct bio_list bios; | 
 | 	struct cache *cache = mg->cache; | 
 | 	struct policy_work *op = mg->op; | 
 | 	dm_cblock_t cblock = op->cblock; | 
 |  | 
 | 	if (success) | 
 | 		update_stats(&cache->stats, op->op); | 
 |  | 
 | 	switch (op->op) { | 
 | 	case POLICY_PROMOTE: | 
 | 		clear_discard(cache, oblock_to_dblock(cache, op->oblock)); | 
 | 		policy_complete_background_work(cache->policy, op, success); | 
 |  | 
 | 		if (mg->overwrite_bio) { | 
 | 			if (success) | 
 | 				force_set_dirty(cache, cblock); | 
 | 			else if (mg->k.input) | 
 | 				mg->overwrite_bio->bi_status = mg->k.input; | 
 | 			else | 
 | 				mg->overwrite_bio->bi_status = BLK_STS_IOERR; | 
 | 			bio_endio(mg->overwrite_bio); | 
 | 		} else { | 
 | 			if (success) | 
 | 				force_clear_dirty(cache, cblock); | 
 | 			dec_io_migrations(cache); | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case POLICY_DEMOTE: | 
 | 		/* | 
 | 		 * We clear dirty here to update the nr_dirty counter. | 
 | 		 */ | 
 | 		if (success) | 
 | 			force_clear_dirty(cache, cblock); | 
 | 		policy_complete_background_work(cache->policy, op, success); | 
 | 		dec_io_migrations(cache); | 
 | 		break; | 
 |  | 
 | 	case POLICY_WRITEBACK: | 
 | 		if (success) | 
 | 			force_clear_dirty(cache, cblock); | 
 | 		policy_complete_background_work(cache->policy, op, success); | 
 | 		dec_io_migrations(cache); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	bio_list_init(&bios); | 
 | 	if (mg->cell) { | 
 | 		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) | 
 | 			free_prison_cell(cache, mg->cell); | 
 | 	} | 
 |  | 
 | 	free_migration(mg); | 
 | 	defer_bios(cache, &bios); | 
 | 	wake_migration_worker(cache); | 
 |  | 
 | 	background_work_end(cache); | 
 | } | 
 |  | 
 | static void mg_success(struct work_struct *ws) | 
 | { | 
 | 	struct dm_cache_migration *mg = ws_to_mg(ws); | 
 | 	mg_complete(mg, mg->k.input == 0); | 
 | } | 
 |  | 
 | static void mg_update_metadata(struct work_struct *ws) | 
 | { | 
 | 	int r; | 
 | 	struct dm_cache_migration *mg = ws_to_mg(ws); | 
 | 	struct cache *cache = mg->cache; | 
 | 	struct policy_work *op = mg->op; | 
 |  | 
 | 	switch (op->op) { | 
 | 	case POLICY_PROMOTE: | 
 | 		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock); | 
 | 		if (r) { | 
 | 			DMERR_LIMIT("%s: migration failed; couldn't insert mapping", | 
 | 				    cache_device_name(cache)); | 
 | 			metadata_operation_failed(cache, "dm_cache_insert_mapping", r); | 
 |  | 
 | 			mg_complete(mg, false); | 
 | 			return; | 
 | 		} | 
 | 		mg_complete(mg, true); | 
 | 		break; | 
 |  | 
 | 	case POLICY_DEMOTE: | 
 | 		r = dm_cache_remove_mapping(cache->cmd, op->cblock); | 
 | 		if (r) { | 
 | 			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata", | 
 | 				    cache_device_name(cache)); | 
 | 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r); | 
 |  | 
 | 			mg_complete(mg, false); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * It would be nice if we only had to commit when a REQ_FLUSH | 
 | 		 * comes through.  But there's one scenario that we have to | 
 | 		 * look out for: | 
 | 		 * | 
 | 		 * - vblock x in a cache block | 
 | 		 * - domotion occurs | 
 | 		 * - cache block gets reallocated and over written | 
 | 		 * - crash | 
 | 		 * | 
 | 		 * When we recover, because there was no commit the cache will | 
 | 		 * rollback to having the data for vblock x in the cache block. | 
 | 		 * But the cache block has since been overwritten, so it'll end | 
 | 		 * up pointing to data that was never in 'x' during the history | 
 | 		 * of the device. | 
 | 		 * | 
 | 		 * To avoid this issue we require a commit as part of the | 
 | 		 * demotion operation. | 
 | 		 */ | 
 | 		init_continuation(&mg->k, mg_success); | 
 | 		continue_after_commit(&cache->committer, &mg->k); | 
 | 		schedule_commit(&cache->committer); | 
 | 		break; | 
 |  | 
 | 	case POLICY_WRITEBACK: | 
 | 		mg_complete(mg, true); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void mg_update_metadata_after_copy(struct work_struct *ws) | 
 | { | 
 | 	struct dm_cache_migration *mg = ws_to_mg(ws); | 
 |  | 
 | 	/* | 
 | 	 * Did the copy succeed? | 
 | 	 */ | 
 | 	if (mg->k.input) | 
 | 		mg_complete(mg, false); | 
 | 	else | 
 | 		mg_update_metadata(ws); | 
 | } | 
 |  | 
 | static void mg_upgrade_lock(struct work_struct *ws) | 
 | { | 
 | 	int r; | 
 | 	struct dm_cache_migration *mg = ws_to_mg(ws); | 
 |  | 
 | 	/* | 
 | 	 * Did the copy succeed? | 
 | 	 */ | 
 | 	if (mg->k.input) | 
 | 		mg_complete(mg, false); | 
 |  | 
 | 	else { | 
 | 		/* | 
 | 		 * Now we want the lock to prevent both reads and writes. | 
 | 		 */ | 
 | 		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell, | 
 | 					    READ_WRITE_LOCK_LEVEL); | 
 | 		if (r < 0) | 
 | 			mg_complete(mg, false); | 
 |  | 
 | 		else if (r) | 
 | 			quiesce(mg, mg_update_metadata); | 
 |  | 
 | 		else | 
 | 			mg_update_metadata(ws); | 
 | 	} | 
 | } | 
 |  | 
 | static void mg_full_copy(struct work_struct *ws) | 
 | { | 
 | 	struct dm_cache_migration *mg = ws_to_mg(ws); | 
 | 	struct cache *cache = mg->cache; | 
 | 	struct policy_work *op = mg->op; | 
 | 	bool is_policy_promote = (op->op == POLICY_PROMOTE); | 
 |  | 
 | 	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) || | 
 | 	    is_discarded_oblock(cache, op->oblock)) { | 
 | 		mg_upgrade_lock(ws); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	init_continuation(&mg->k, mg_upgrade_lock); | 
 | 	copy(mg, is_policy_promote); | 
 | } | 
 |  | 
 | static void mg_copy(struct work_struct *ws) | 
 | { | 
 | 	struct dm_cache_migration *mg = ws_to_mg(ws); | 
 |  | 
 | 	if (mg->overwrite_bio) { | 
 | 		/* | 
 | 		 * No exclusive lock was held when we last checked if the bio | 
 | 		 * was optimisable.  So we have to check again in case things | 
 | 		 * have changed (eg, the block may no longer be discarded). | 
 | 		 */ | 
 | 		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) { | 
 | 			/* | 
 | 			 * Fallback to a real full copy after doing some tidying up. | 
 | 			 */ | 
 | 			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio); | 
 | 			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */ | 
 | 			mg->overwrite_bio = NULL; | 
 | 			inc_io_migrations(mg->cache); | 
 | 			mg_full_copy(ws); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * It's safe to do this here, even though it's new data | 
 | 		 * because all IO has been locked out of the block. | 
 | 		 * | 
 | 		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL | 
 | 		 * so _not_ using mg_upgrade_lock() as continutation. | 
 | 		 */ | 
 | 		overwrite(mg, mg_update_metadata_after_copy); | 
 |  | 
 | 	} else | 
 | 		mg_full_copy(ws); | 
 | } | 
 |  | 
 | static int mg_lock_writes(struct dm_cache_migration *mg) | 
 | { | 
 | 	int r; | 
 | 	struct dm_cell_key_v2 key; | 
 | 	struct cache *cache = mg->cache; | 
 | 	struct dm_bio_prison_cell_v2 *prealloc; | 
 |  | 
 | 	prealloc = alloc_prison_cell(cache); | 
 |  | 
 | 	/* | 
 | 	 * Prevent writes to the block, but allow reads to continue. | 
 | 	 * Unless we're using an overwrite bio, in which case we lock | 
 | 	 * everything. | 
 | 	 */ | 
 | 	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key); | 
 | 	r = dm_cell_lock_v2(cache->prison, &key, | 
 | 			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL, | 
 | 			    prealloc, &mg->cell); | 
 | 	if (r < 0) { | 
 | 		free_prison_cell(cache, prealloc); | 
 | 		mg_complete(mg, false); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	if (mg->cell != prealloc) | 
 | 		free_prison_cell(cache, prealloc); | 
 |  | 
 | 	if (r == 0) | 
 | 		mg_copy(&mg->k.ws); | 
 | 	else | 
 | 		quiesce(mg, mg_copy); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio) | 
 | { | 
 | 	struct dm_cache_migration *mg; | 
 |  | 
 | 	if (!background_work_begin(cache)) { | 
 | 		policy_complete_background_work(cache->policy, op, false); | 
 | 		return -EPERM; | 
 | 	} | 
 |  | 
 | 	mg = alloc_migration(cache); | 
 |  | 
 | 	mg->op = op; | 
 | 	mg->overwrite_bio = bio; | 
 |  | 
 | 	if (!bio) | 
 | 		inc_io_migrations(cache); | 
 |  | 
 | 	return mg_lock_writes(mg); | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------- | 
 |  * invalidation processing | 
 |  *--------------------------------------------------------------*/ | 
 |  | 
 | static void invalidate_complete(struct dm_cache_migration *mg, bool success) | 
 | { | 
 | 	struct bio_list bios; | 
 | 	struct cache *cache = mg->cache; | 
 |  | 
 | 	bio_list_init(&bios); | 
 | 	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios)) | 
 | 		free_prison_cell(cache, mg->cell); | 
 |  | 
 | 	if (!success && mg->overwrite_bio) | 
 | 		bio_io_error(mg->overwrite_bio); | 
 |  | 
 | 	free_migration(mg); | 
 | 	defer_bios(cache, &bios); | 
 |  | 
 | 	background_work_end(cache); | 
 | } | 
 |  | 
 | static void invalidate_completed(struct work_struct *ws) | 
 | { | 
 | 	struct dm_cache_migration *mg = ws_to_mg(ws); | 
 | 	invalidate_complete(mg, !mg->k.input); | 
 | } | 
 |  | 
 | static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock) | 
 | { | 
 | 	int r = policy_invalidate_mapping(cache->policy, cblock); | 
 | 	if (!r) { | 
 | 		r = dm_cache_remove_mapping(cache->cmd, cblock); | 
 | 		if (r) { | 
 | 			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata", | 
 | 				    cache_device_name(cache)); | 
 | 			metadata_operation_failed(cache, "dm_cache_remove_mapping", r); | 
 | 		} | 
 |  | 
 | 	} else if (r == -ENODATA) { | 
 | 		/* | 
 | 		 * Harmless, already unmapped. | 
 | 		 */ | 
 | 		r = 0; | 
 |  | 
 | 	} else | 
 | 		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache)); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void invalidate_remove(struct work_struct *ws) | 
 | { | 
 | 	int r; | 
 | 	struct dm_cache_migration *mg = ws_to_mg(ws); | 
 | 	struct cache *cache = mg->cache; | 
 |  | 
 | 	r = invalidate_cblock(cache, mg->invalidate_cblock); | 
 | 	if (r) { | 
 | 		invalidate_complete(mg, false); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	init_continuation(&mg->k, invalidate_completed); | 
 | 	continue_after_commit(&cache->committer, &mg->k); | 
 | 	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock); | 
 | 	mg->overwrite_bio = NULL; | 
 | 	schedule_commit(&cache->committer); | 
 | } | 
 |  | 
 | static int invalidate_lock(struct dm_cache_migration *mg) | 
 | { | 
 | 	int r; | 
 | 	struct dm_cell_key_v2 key; | 
 | 	struct cache *cache = mg->cache; | 
 | 	struct dm_bio_prison_cell_v2 *prealloc; | 
 |  | 
 | 	prealloc = alloc_prison_cell(cache); | 
 |  | 
 | 	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key); | 
 | 	r = dm_cell_lock_v2(cache->prison, &key, | 
 | 			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell); | 
 | 	if (r < 0) { | 
 | 		free_prison_cell(cache, prealloc); | 
 | 		invalidate_complete(mg, false); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	if (mg->cell != prealloc) | 
 | 		free_prison_cell(cache, prealloc); | 
 |  | 
 | 	if (r) | 
 | 		quiesce(mg, invalidate_remove); | 
 |  | 
 | 	else { | 
 | 		/* | 
 | 		 * We can't call invalidate_remove() directly here because we | 
 | 		 * might still be in request context. | 
 | 		 */ | 
 | 		init_continuation(&mg->k, invalidate_remove); | 
 | 		queue_work(cache->wq, &mg->k.ws); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int invalidate_start(struct cache *cache, dm_cblock_t cblock, | 
 | 			    dm_oblock_t oblock, struct bio *bio) | 
 | { | 
 | 	struct dm_cache_migration *mg; | 
 |  | 
 | 	if (!background_work_begin(cache)) | 
 | 		return -EPERM; | 
 |  | 
 | 	mg = alloc_migration(cache); | 
 |  | 
 | 	mg->overwrite_bio = bio; | 
 | 	mg->invalidate_cblock = cblock; | 
 | 	mg->invalidate_oblock = oblock; | 
 |  | 
 | 	return invalidate_lock(mg); | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------- | 
 |  * bio processing | 
 |  *--------------------------------------------------------------*/ | 
 |  | 
 | enum busy { | 
 | 	IDLE, | 
 | 	BUSY | 
 | }; | 
 |  | 
 | static enum busy spare_migration_bandwidth(struct cache *cache) | 
 | { | 
 | 	bool idle = iot_idle_for(&cache->tracker, HZ); | 
 | 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) * | 
 | 		cache->sectors_per_block; | 
 |  | 
 | 	if (idle && current_volume <= cache->migration_threshold) | 
 | 		return IDLE; | 
 | 	else | 
 | 		return BUSY; | 
 | } | 
 |  | 
 | static void inc_hit_counter(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	atomic_inc(bio_data_dir(bio) == READ ? | 
 | 		   &cache->stats.read_hit : &cache->stats.write_hit); | 
 | } | 
 |  | 
 | static void inc_miss_counter(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	atomic_inc(bio_data_dir(bio) == READ ? | 
 | 		   &cache->stats.read_miss : &cache->stats.write_miss); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block, | 
 | 		   bool *commit_needed) | 
 | { | 
 | 	int r, data_dir; | 
 | 	bool rb, background_queued; | 
 | 	dm_cblock_t cblock; | 
 |  | 
 | 	*commit_needed = false; | 
 |  | 
 | 	rb = bio_detain_shared(cache, block, bio); | 
 | 	if (!rb) { | 
 | 		/* | 
 | 		 * An exclusive lock is held for this block, so we have to | 
 | 		 * wait.  We set the commit_needed flag so the current | 
 | 		 * transaction will be committed asap, allowing this lock | 
 | 		 * to be dropped. | 
 | 		 */ | 
 | 		*commit_needed = true; | 
 | 		return DM_MAPIO_SUBMITTED; | 
 | 	} | 
 |  | 
 | 	data_dir = bio_data_dir(bio); | 
 |  | 
 | 	if (optimisable_bio(cache, bio, block)) { | 
 | 		struct policy_work *op = NULL; | 
 |  | 
 | 		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op); | 
 | 		if (unlikely(r && r != -ENOENT)) { | 
 | 			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d", | 
 | 				    cache_device_name(cache), r); | 
 | 			bio_io_error(bio); | 
 | 			return DM_MAPIO_SUBMITTED; | 
 | 		} | 
 |  | 
 | 		if (r == -ENOENT && op) { | 
 | 			bio_drop_shared_lock(cache, bio); | 
 | 			BUG_ON(op->op != POLICY_PROMOTE); | 
 | 			mg_start(cache, op, bio); | 
 | 			return DM_MAPIO_SUBMITTED; | 
 | 		} | 
 | 	} else { | 
 | 		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued); | 
 | 		if (unlikely(r && r != -ENOENT)) { | 
 | 			DMERR_LIMIT("%s: policy_lookup() failed with r = %d", | 
 | 				    cache_device_name(cache), r); | 
 | 			bio_io_error(bio); | 
 | 			return DM_MAPIO_SUBMITTED; | 
 | 		} | 
 |  | 
 | 		if (background_queued) | 
 | 			wake_migration_worker(cache); | 
 | 	} | 
 |  | 
 | 	if (r == -ENOENT) { | 
 | 		struct per_bio_data *pb = get_per_bio_data(bio); | 
 |  | 
 | 		/* | 
 | 		 * Miss. | 
 | 		 */ | 
 | 		inc_miss_counter(cache, bio); | 
 | 		if (pb->req_nr == 0) { | 
 | 			accounted_begin(cache, bio); | 
 | 			remap_to_origin_clear_discard(cache, bio, block); | 
 | 		} else { | 
 | 			/* | 
 | 			 * This is a duplicate writethrough io that is no | 
 | 			 * longer needed because the block has been demoted. | 
 | 			 */ | 
 | 			bio_endio(bio); | 
 | 			return DM_MAPIO_SUBMITTED; | 
 | 		} | 
 | 	} else { | 
 | 		/* | 
 | 		 * Hit. | 
 | 		 */ | 
 | 		inc_hit_counter(cache, bio); | 
 |  | 
 | 		/* | 
 | 		 * Passthrough always maps to the origin, invalidating any | 
 | 		 * cache blocks that are written to. | 
 | 		 */ | 
 | 		if (passthrough_mode(cache)) { | 
 | 			if (bio_data_dir(bio) == WRITE) { | 
 | 				bio_drop_shared_lock(cache, bio); | 
 | 				atomic_inc(&cache->stats.demotion); | 
 | 				invalidate_start(cache, cblock, block, bio); | 
 | 			} else | 
 | 				remap_to_origin_clear_discard(cache, bio, block); | 
 | 		} else { | 
 | 			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) && | 
 | 			    !is_dirty(cache, cblock)) { | 
 | 				remap_to_origin_and_cache(cache, bio, block, cblock); | 
 | 				accounted_begin(cache, bio); | 
 | 			} else | 
 | 				remap_to_cache_dirty(cache, bio, block, cblock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * dm core turns FUA requests into a separate payload and FLUSH req. | 
 | 	 */ | 
 | 	if (bio->bi_opf & REQ_FUA) { | 
 | 		/* | 
 | 		 * issue_after_commit will call accounted_begin a second time.  So | 
 | 		 * we call accounted_complete() to avoid double accounting. | 
 | 		 */ | 
 | 		accounted_complete(cache, bio); | 
 | 		issue_after_commit(&cache->committer, bio); | 
 | 		*commit_needed = true; | 
 | 		return DM_MAPIO_SUBMITTED; | 
 | 	} | 
 |  | 
 | 	return DM_MAPIO_REMAPPED; | 
 | } | 
 |  | 
 | static bool process_bio(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	bool commit_needed; | 
 |  | 
 | 	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED) | 
 | 		generic_make_request(bio); | 
 |  | 
 | 	return commit_needed; | 
 | } | 
 |  | 
 | /* | 
 |  * A non-zero return indicates read_only or fail_io mode. | 
 |  */ | 
 | static int commit(struct cache *cache, bool clean_shutdown) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (get_cache_mode(cache) >= CM_READ_ONLY) | 
 | 		return -EINVAL; | 
 |  | 
 | 	atomic_inc(&cache->stats.commit_count); | 
 | 	r = dm_cache_commit(cache->cmd, clean_shutdown); | 
 | 	if (r) | 
 | 		metadata_operation_failed(cache, "dm_cache_commit", r); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Used by the batcher. | 
 |  */ | 
 | static blk_status_t commit_op(void *context) | 
 | { | 
 | 	struct cache *cache = context; | 
 |  | 
 | 	if (dm_cache_changed_this_transaction(cache->cmd)) | 
 | 		return errno_to_blk_status(commit(cache, false)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static bool process_flush_bio(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	struct per_bio_data *pb = get_per_bio_data(bio); | 
 |  | 
 | 	if (!pb->req_nr) | 
 | 		remap_to_origin(cache, bio); | 
 | 	else | 
 | 		remap_to_cache(cache, bio, 0); | 
 |  | 
 | 	issue_after_commit(&cache->committer, bio); | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool process_discard_bio(struct cache *cache, struct bio *bio) | 
 | { | 
 | 	dm_dblock_t b, e; | 
 |  | 
 | 	// FIXME: do we need to lock the region?  Or can we just assume the | 
 | 	// user wont be so foolish as to issue discard concurrently with | 
 | 	// other IO? | 
 | 	calc_discard_block_range(cache, bio, &b, &e); | 
 | 	while (b != e) { | 
 | 		set_discard(cache, b); | 
 | 		b = to_dblock(from_dblock(b) + 1); | 
 | 	} | 
 |  | 
 | 	bio_endio(bio); | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void process_deferred_bios(struct work_struct *ws) | 
 | { | 
 | 	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker); | 
 |  | 
 | 	unsigned long flags; | 
 | 	bool commit_needed = false; | 
 | 	struct bio_list bios; | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio_list_init(&bios); | 
 |  | 
 | 	spin_lock_irqsave(&cache->lock, flags); | 
 | 	bio_list_merge(&bios, &cache->deferred_bios); | 
 | 	bio_list_init(&cache->deferred_bios); | 
 | 	spin_unlock_irqrestore(&cache->lock, flags); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bios))) { | 
 | 		if (bio->bi_opf & REQ_PREFLUSH) | 
 | 			commit_needed = process_flush_bio(cache, bio) || commit_needed; | 
 |  | 
 | 		else if (bio_op(bio) == REQ_OP_DISCARD) | 
 | 			commit_needed = process_discard_bio(cache, bio) || commit_needed; | 
 |  | 
 | 		else | 
 | 			commit_needed = process_bio(cache, bio) || commit_needed; | 
 | 	} | 
 |  | 
 | 	if (commit_needed) | 
 | 		schedule_commit(&cache->committer); | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------- | 
 |  * Main worker loop | 
 |  *--------------------------------------------------------------*/ | 
 |  | 
 | static void requeue_deferred_bios(struct cache *cache) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct bio_list bios; | 
 |  | 
 | 	bio_list_init(&bios); | 
 | 	bio_list_merge(&bios, &cache->deferred_bios); | 
 | 	bio_list_init(&cache->deferred_bios); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bios))) { | 
 | 		bio->bi_status = BLK_STS_DM_REQUEUE; | 
 | 		bio_endio(bio); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * We want to commit periodically so that not too much | 
 |  * unwritten metadata builds up. | 
 |  */ | 
 | static void do_waker(struct work_struct *ws) | 
 | { | 
 | 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker); | 
 |  | 
 | 	policy_tick(cache->policy, true); | 
 | 	wake_migration_worker(cache); | 
 | 	schedule_commit(&cache->committer); | 
 | 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD); | 
 | } | 
 |  | 
 | static void check_migrations(struct work_struct *ws) | 
 | { | 
 | 	int r; | 
 | 	struct policy_work *op; | 
 | 	struct cache *cache = container_of(ws, struct cache, migration_worker); | 
 | 	enum busy b; | 
 |  | 
 | 	for (;;) { | 
 | 		b = spare_migration_bandwidth(cache); | 
 |  | 
 | 		r = policy_get_background_work(cache->policy, b == IDLE, &op); | 
 | 		if (r == -ENODATA) | 
 | 			break; | 
 |  | 
 | 		if (r) { | 
 | 			DMERR_LIMIT("%s: policy_background_work failed", | 
 | 				    cache_device_name(cache)); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		r = mg_start(cache, op, NULL); | 
 | 		if (r) | 
 | 			break; | 
 | 	} | 
 | } | 
 |  | 
 | /*---------------------------------------------------------------- | 
 |  * Target methods | 
 |  *--------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * This function gets called on the error paths of the constructor, so we | 
 |  * have to cope with a partially initialised struct. | 
 |  */ | 
 | static void destroy(struct cache *cache) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	mempool_exit(&cache->migration_pool); | 
 |  | 
 | 	if (cache->prison) | 
 | 		dm_bio_prison_destroy_v2(cache->prison); | 
 |  | 
 | 	if (cache->wq) | 
 | 		destroy_workqueue(cache->wq); | 
 |  | 
 | 	if (cache->dirty_bitset) | 
 | 		free_bitset(cache->dirty_bitset); | 
 |  | 
 | 	if (cache->discard_bitset) | 
 | 		free_bitset(cache->discard_bitset); | 
 |  | 
 | 	if (cache->copier) | 
 | 		dm_kcopyd_client_destroy(cache->copier); | 
 |  | 
 | 	if (cache->cmd) | 
 | 		dm_cache_metadata_close(cache->cmd); | 
 |  | 
 | 	if (cache->metadata_dev) | 
 | 		dm_put_device(cache->ti, cache->metadata_dev); | 
 |  | 
 | 	if (cache->origin_dev) | 
 | 		dm_put_device(cache->ti, cache->origin_dev); | 
 |  | 
 | 	if (cache->cache_dev) | 
 | 		dm_put_device(cache->ti, cache->cache_dev); | 
 |  | 
 | 	if (cache->policy) | 
 | 		dm_cache_policy_destroy(cache->policy); | 
 |  | 
 | 	for (i = 0; i < cache->nr_ctr_args ; i++) | 
 | 		kfree(cache->ctr_args[i]); | 
 | 	kfree(cache->ctr_args); | 
 |  | 
 | 	bioset_exit(&cache->bs); | 
 |  | 
 | 	kfree(cache); | 
 | } | 
 |  | 
 | static void cache_dtr(struct dm_target *ti) | 
 | { | 
 | 	struct cache *cache = ti->private; | 
 |  | 
 | 	destroy(cache); | 
 | } | 
 |  | 
 | static sector_t get_dev_size(struct dm_dev *dev) | 
 | { | 
 | 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | /* | 
 |  * Construct a cache device mapping. | 
 |  * | 
 |  * cache <metadata dev> <cache dev> <origin dev> <block size> | 
 |  *       <#feature args> [<feature arg>]* | 
 |  *       <policy> <#policy args> [<policy arg>]* | 
 |  * | 
 |  * metadata dev    : fast device holding the persistent metadata | 
 |  * cache dev	   : fast device holding cached data blocks | 
 |  * origin dev	   : slow device holding original data blocks | 
 |  * block size	   : cache unit size in sectors | 
 |  * | 
 |  * #feature args   : number of feature arguments passed | 
 |  * feature args    : writethrough.  (The default is writeback.) | 
 |  * | 
 |  * policy	   : the replacement policy to use | 
 |  * #policy args    : an even number of policy arguments corresponding | 
 |  *		     to key/value pairs passed to the policy | 
 |  * policy args	   : key/value pairs passed to the policy | 
 |  *		     E.g. 'sequential_threshold 1024' | 
 |  *		     See cache-policies.txt for details. | 
 |  * | 
 |  * Optional feature arguments are: | 
 |  *   writethrough  : write through caching that prohibits cache block | 
 |  *		     content from being different from origin block content. | 
 |  *		     Without this argument, the default behaviour is to write | 
 |  *		     back cache block contents later for performance reasons, | 
 |  *		     so they may differ from the corresponding origin blocks. | 
 |  */ | 
 | struct cache_args { | 
 | 	struct dm_target *ti; | 
 |  | 
 | 	struct dm_dev *metadata_dev; | 
 |  | 
 | 	struct dm_dev *cache_dev; | 
 | 	sector_t cache_sectors; | 
 |  | 
 | 	struct dm_dev *origin_dev; | 
 | 	sector_t origin_sectors; | 
 |  | 
 | 	uint32_t block_size; | 
 |  | 
 | 	const char *policy_name; | 
 | 	int policy_argc; | 
 | 	const char **policy_argv; | 
 |  | 
 | 	struct cache_features features; | 
 | }; | 
 |  | 
 | static void destroy_cache_args(struct cache_args *ca) | 
 | { | 
 | 	if (ca->metadata_dev) | 
 | 		dm_put_device(ca->ti, ca->metadata_dev); | 
 |  | 
 | 	if (ca->cache_dev) | 
 | 		dm_put_device(ca->ti, ca->cache_dev); | 
 |  | 
 | 	if (ca->origin_dev) | 
 | 		dm_put_device(ca->ti, ca->origin_dev); | 
 |  | 
 | 	kfree(ca); | 
 | } | 
 |  | 
 | static bool at_least_one_arg(struct dm_arg_set *as, char **error) | 
 | { | 
 | 	if (!as->argc) { | 
 | 		*error = "Insufficient args"; | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as, | 
 | 			      char **error) | 
 | { | 
 | 	int r; | 
 | 	sector_t metadata_dev_size; | 
 | 	char b[BDEVNAME_SIZE]; | 
 |  | 
 | 	if (!at_least_one_arg(as, error)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, | 
 | 			  &ca->metadata_dev); | 
 | 	if (r) { | 
 | 		*error = "Error opening metadata device"; | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	metadata_dev_size = get_dev_size(ca->metadata_dev); | 
 | 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING) | 
 | 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.", | 
 | 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as, | 
 | 			   char **error) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (!at_least_one_arg(as, error)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, | 
 | 			  &ca->cache_dev); | 
 | 	if (r) { | 
 | 		*error = "Error opening cache device"; | 
 | 		return r; | 
 | 	} | 
 | 	ca->cache_sectors = get_dev_size(ca->cache_dev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as, | 
 | 			    char **error) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (!at_least_one_arg(as, error)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE, | 
 | 			  &ca->origin_dev); | 
 | 	if (r) { | 
 | 		*error = "Error opening origin device"; | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	ca->origin_sectors = get_dev_size(ca->origin_dev); | 
 | 	if (ca->ti->len > ca->origin_sectors) { | 
 | 		*error = "Device size larger than cached device"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as, | 
 | 			    char **error) | 
 | { | 
 | 	unsigned long block_size; | 
 |  | 
 | 	if (!at_least_one_arg(as, error)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size || | 
 | 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS || | 
 | 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS || | 
 | 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) { | 
 | 		*error = "Invalid data block size"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (block_size > ca->cache_sectors) { | 
 | 		*error = "Data block size is larger than the cache device"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ca->block_size = block_size; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void init_features(struct cache_features *cf) | 
 | { | 
 | 	cf->mode = CM_WRITE; | 
 | 	cf->io_mode = CM_IO_WRITEBACK; | 
 | 	cf->metadata_version = 1; | 
 | } | 
 |  | 
 | static int parse_features(struct cache_args *ca, struct dm_arg_set *as, | 
 | 			  char **error) | 
 | { | 
 | 	static const struct dm_arg _args[] = { | 
 | 		{0, 2, "Invalid number of cache feature arguments"}, | 
 | 	}; | 
 |  | 
 | 	int r, mode_ctr = 0; | 
 | 	unsigned argc; | 
 | 	const char *arg; | 
 | 	struct cache_features *cf = &ca->features; | 
 |  | 
 | 	init_features(cf); | 
 |  | 
 | 	r = dm_read_arg_group(_args, as, &argc, error); | 
 | 	if (r) | 
 | 		return -EINVAL; | 
 |  | 
 | 	while (argc--) { | 
 | 		arg = dm_shift_arg(as); | 
 |  | 
 | 		if (!strcasecmp(arg, "writeback")) { | 
 | 			cf->io_mode = CM_IO_WRITEBACK; | 
 | 			mode_ctr++; | 
 | 		} | 
 |  | 
 | 		else if (!strcasecmp(arg, "writethrough")) { | 
 | 			cf->io_mode = CM_IO_WRITETHROUGH; | 
 | 			mode_ctr++; | 
 | 		} | 
 |  | 
 | 		else if (!strcasecmp(arg, "passthrough")) { | 
 | 			cf->io_mode = CM_IO_PASSTHROUGH; | 
 | 			mode_ctr++; | 
 | 		} | 
 |  | 
 | 		else if (!strcasecmp(arg, "metadata2")) | 
 | 			cf->metadata_version = 2; | 
 |  | 
 | 		else { | 
 | 			*error = "Unrecognised cache feature requested"; | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (mode_ctr > 1) { | 
 | 		*error = "Duplicate cache io_mode features requested"; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_policy(struct cache_args *ca, struct dm_arg_set *as, | 
 | 			char **error) | 
 | { | 
 | 	static const struct dm_arg _args[] = { | 
 | 		{0, 1024, "Invalid number of policy arguments"}, | 
 | 	}; | 
 |  | 
 | 	int r; | 
 |  | 
 | 	if (!at_least_one_arg(as, error)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ca->policy_name = dm_shift_arg(as); | 
 |  | 
 | 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error); | 
 | 	if (r) | 
 | 		return -EINVAL; | 
 |  | 
 | 	ca->policy_argv = (const char **)as->argv; | 
 | 	dm_consume_args(as, ca->policy_argc); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_cache_args(struct cache_args *ca, int argc, char **argv, | 
 | 			    char **error) | 
 | { | 
 | 	int r; | 
 | 	struct dm_arg_set as; | 
 |  | 
 | 	as.argc = argc; | 
 | 	as.argv = argv; | 
 |  | 
 | 	r = parse_metadata_dev(ca, &as, error); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = parse_cache_dev(ca, &as, error); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = parse_origin_dev(ca, &as, error); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = parse_block_size(ca, &as, error); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = parse_features(ca, &as, error); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	r = parse_policy(ca, &as, error); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static struct kmem_cache *migration_cache; | 
 |  | 
 | #define NOT_CORE_OPTION 1 | 
 |  | 
 | static int process_config_option(struct cache *cache, const char *key, const char *value) | 
 | { | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (!strcasecmp(key, "migration_threshold")) { | 
 | 		if (kstrtoul(value, 10, &tmp)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		cache->migration_threshold = tmp; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return NOT_CORE_OPTION; | 
 | } | 
 |  | 
 | static int set_config_value(struct cache *cache, const char *key, const char *value) | 
 | { | 
 | 	int r = process_config_option(cache, key, value); | 
 |  | 
 | 	if (r == NOT_CORE_OPTION) | 
 | 		r = policy_set_config_value(cache->policy, key, value); | 
 |  | 
 | 	if (r) | 
 | 		DMWARN("bad config value for %s: %s", key, value); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int set_config_values(struct cache *cache, int argc, const char **argv) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	if (argc & 1) { | 
 | 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs."); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	while (argc) { | 
 | 		r = set_config_value(cache, argv[0], argv[1]); | 
 | 		if (r) | 
 | 			break; | 
 |  | 
 | 		argc -= 2; | 
 | 		argv += 2; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int create_cache_policy(struct cache *cache, struct cache_args *ca, | 
 | 			       char **error) | 
 | { | 
 | 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name, | 
 | 							   cache->cache_size, | 
 | 							   cache->origin_sectors, | 
 | 							   cache->sectors_per_block); | 
 | 	if (IS_ERR(p)) { | 
 | 		*error = "Error creating cache's policy"; | 
 | 		return PTR_ERR(p); | 
 | 	} | 
 | 	cache->policy = p; | 
 | 	BUG_ON(!cache->policy); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We want the discard block size to be at least the size of the cache | 
 |  * block size and have no more than 2^14 discard blocks across the origin. | 
 |  */ | 
 | #define MAX_DISCARD_BLOCKS (1 << 14) | 
 |  | 
 | static bool too_many_discard_blocks(sector_t discard_block_size, | 
 | 				    sector_t origin_size) | 
 | { | 
 | 	(void) sector_div(origin_size, discard_block_size); | 
 |  | 
 | 	return origin_size > MAX_DISCARD_BLOCKS; | 
 | } | 
 |  | 
 | static sector_t calculate_discard_block_size(sector_t cache_block_size, | 
 | 					     sector_t origin_size) | 
 | { | 
 | 	sector_t discard_block_size = cache_block_size; | 
 |  | 
 | 	if (origin_size) | 
 | 		while (too_many_discard_blocks(discard_block_size, origin_size)) | 
 | 			discard_block_size *= 2; | 
 |  | 
 | 	return discard_block_size; | 
 | } | 
 |  | 
 | static void set_cache_size(struct cache *cache, dm_cblock_t size) | 
 | { | 
 | 	dm_block_t nr_blocks = from_cblock(size); | 
 |  | 
 | 	if (nr_blocks > (1 << 20) && cache->cache_size != size) | 
 | 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n" | 
 | 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n" | 
 | 			     "Please consider increasing the cache block size to reduce the overall cache block count.", | 
 | 			     (unsigned long long) nr_blocks); | 
 |  | 
 | 	cache->cache_size = size; | 
 | } | 
 |  | 
 | static int is_congested(struct dm_dev *dev, int bdi_bits) | 
 | { | 
 | 	struct request_queue *q = bdev_get_queue(dev->bdev); | 
 | 	return bdi_congested(q->backing_dev_info, bdi_bits); | 
 | } | 
 |  | 
 | static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits) | 
 | { | 
 | 	struct cache *cache = container_of(cb, struct cache, callbacks); | 
 |  | 
 | 	return is_congested(cache->origin_dev, bdi_bits) || | 
 | 		is_congested(cache->cache_dev, bdi_bits); | 
 | } | 
 |  | 
 | #define DEFAULT_MIGRATION_THRESHOLD 2048 | 
 |  | 
 | static int cache_create(struct cache_args *ca, struct cache **result) | 
 | { | 
 | 	int r = 0; | 
 | 	char **error = &ca->ti->error; | 
 | 	struct cache *cache; | 
 | 	struct dm_target *ti = ca->ti; | 
 | 	dm_block_t origin_blocks; | 
 | 	struct dm_cache_metadata *cmd; | 
 | 	bool may_format = ca->features.mode == CM_WRITE; | 
 |  | 
 | 	cache = kzalloc(sizeof(*cache), GFP_KERNEL); | 
 | 	if (!cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	cache->ti = ca->ti; | 
 | 	ti->private = cache; | 
 | 	ti->num_flush_bios = 2; | 
 | 	ti->flush_supported = true; | 
 |  | 
 | 	ti->num_discard_bios = 1; | 
 | 	ti->discards_supported = true; | 
 | 	ti->split_discard_bios = false; | 
 |  | 
 | 	ti->per_io_data_size = sizeof(struct per_bio_data); | 
 |  | 
 | 	cache->features = ca->features; | 
 | 	if (writethrough_mode(cache)) { | 
 | 		/* Create bioset for writethrough bios issued to origin */ | 
 | 		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0); | 
 | 		if (r) | 
 | 			goto bad; | 
 | 	} | 
 |  | 
 | 	cache->callbacks.congested_fn = cache_is_congested; | 
 | 	dm_table_add_target_callbacks(ti->table, &cache->callbacks); | 
 |  | 
 | 	cache->metadata_dev = ca->metadata_dev; | 
 | 	cache->origin_dev = ca->origin_dev; | 
 | 	cache->cache_dev = ca->cache_dev; | 
 |  | 
 | 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL; | 
 |  | 
 | 	origin_blocks = cache->origin_sectors = ca->origin_sectors; | 
 | 	origin_blocks = block_div(origin_blocks, ca->block_size); | 
 | 	cache->origin_blocks = to_oblock(origin_blocks); | 
 |  | 
 | 	cache->sectors_per_block = ca->block_size; | 
 | 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) { | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (ca->block_size & (ca->block_size - 1)) { | 
 | 		dm_block_t cache_size = ca->cache_sectors; | 
 |  | 
 | 		cache->sectors_per_block_shift = -1; | 
 | 		cache_size = block_div(cache_size, ca->block_size); | 
 | 		set_cache_size(cache, to_cblock(cache_size)); | 
 | 	} else { | 
 | 		cache->sectors_per_block_shift = __ffs(ca->block_size); | 
 | 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift)); | 
 | 	} | 
 |  | 
 | 	r = create_cache_policy(cache, ca, error); | 
 | 	if (r) | 
 | 		goto bad; | 
 |  | 
 | 	cache->policy_nr_args = ca->policy_argc; | 
 | 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD; | 
 |  | 
 | 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv); | 
 | 	if (r) { | 
 | 		*error = "Error setting cache policy's config values"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev, | 
 | 				     ca->block_size, may_format, | 
 | 				     dm_cache_policy_get_hint_size(cache->policy), | 
 | 				     ca->features.metadata_version); | 
 | 	if (IS_ERR(cmd)) { | 
 | 		*error = "Error creating metadata object"; | 
 | 		r = PTR_ERR(cmd); | 
 | 		goto bad; | 
 | 	} | 
 | 	cache->cmd = cmd; | 
 | 	set_cache_mode(cache, CM_WRITE); | 
 | 	if (get_cache_mode(cache) != CM_WRITE) { | 
 | 		*error = "Unable to get write access to metadata, please check/repair metadata."; | 
 | 		r = -EINVAL; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	if (passthrough_mode(cache)) { | 
 | 		bool all_clean; | 
 |  | 
 | 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean); | 
 | 		if (r) { | 
 | 			*error = "dm_cache_metadata_all_clean() failed"; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		if (!all_clean) { | 
 | 			*error = "Cannot enter passthrough mode unless all blocks are clean"; | 
 | 			r = -EINVAL; | 
 | 			goto bad; | 
 | 		} | 
 |  | 
 | 		policy_allow_migrations(cache->policy, false); | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&cache->lock); | 
 | 	bio_list_init(&cache->deferred_bios); | 
 | 	atomic_set(&cache->nr_allocated_migrations, 0); | 
 | 	atomic_set(&cache->nr_io_migrations, 0); | 
 | 	init_waitqueue_head(&cache->migration_wait); | 
 |  | 
 | 	r = -ENOMEM; | 
 | 	atomic_set(&cache->nr_dirty, 0); | 
 | 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size)); | 
 | 	if (!cache->dirty_bitset) { | 
 | 		*error = "could not allocate dirty bitset"; | 
 | 		goto bad; | 
 | 	} | 
 | 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size)); | 
 |  | 
 | 	cache->discard_block_size = | 
 | 		calculate_discard_block_size(cache->sectors_per_block, | 
 | 					     cache->origin_sectors); | 
 | 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors, | 
 | 							      cache->discard_block_size)); | 
 | 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks)); | 
 | 	if (!cache->discard_bitset) { | 
 | 		*error = "could not allocate discard bitset"; | 
 | 		goto bad; | 
 | 	} | 
 | 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); | 
 |  | 
 | 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle); | 
 | 	if (IS_ERR(cache->copier)) { | 
 | 		*error = "could not create kcopyd client"; | 
 | 		r = PTR_ERR(cache->copier); | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0); | 
 | 	if (!cache->wq) { | 
 | 		*error = "could not create workqueue for metadata object"; | 
 | 		goto bad; | 
 | 	} | 
 | 	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios); | 
 | 	INIT_WORK(&cache->migration_worker, check_migrations); | 
 | 	INIT_DELAYED_WORK(&cache->waker, do_waker); | 
 |  | 
 | 	cache->prison = dm_bio_prison_create_v2(cache->wq); | 
 | 	if (!cache->prison) { | 
 | 		*error = "could not create bio prison"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE, | 
 | 				   migration_cache); | 
 | 	if (r) { | 
 | 		*error = "Error creating cache's migration mempool"; | 
 | 		goto bad; | 
 | 	} | 
 |  | 
 | 	cache->need_tick_bio = true; | 
 | 	cache->sized = false; | 
 | 	cache->invalidate = false; | 
 | 	cache->commit_requested = false; | 
 | 	cache->loaded_mappings = false; | 
 | 	cache->loaded_discards = false; | 
 |  | 
 | 	load_stats(cache); | 
 |  | 
 | 	atomic_set(&cache->stats.demotion, 0); | 
 | 	atomic_set(&cache->stats.promotion, 0); | 
 | 	atomic_set(&cache->stats.copies_avoided, 0); | 
 | 	atomic_set(&cache->stats.cache_cell_clash, 0); | 
 | 	atomic_set(&cache->stats.commit_count, 0); | 
 | 	atomic_set(&cache->stats.discard_count, 0); | 
 |  | 
 | 	spin_lock_init(&cache->invalidation_lock); | 
 | 	INIT_LIST_HEAD(&cache->invalidation_requests); | 
 |  | 
 | 	batcher_init(&cache->committer, commit_op, cache, | 
 | 		     issue_op, cache, cache->wq); | 
 | 	iot_init(&cache->tracker); | 
 |  | 
 | 	init_rwsem(&cache->background_work_lock); | 
 | 	prevent_background_work(cache); | 
 |  | 
 | 	*result = cache; | 
 | 	return 0; | 
 | bad: | 
 | 	destroy(cache); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int copy_ctr_args(struct cache *cache, int argc, const char **argv) | 
 | { | 
 | 	unsigned i; | 
 | 	const char **copy; | 
 |  | 
 | 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL); | 
 | 	if (!copy) | 
 | 		return -ENOMEM; | 
 | 	for (i = 0; i < argc; i++) { | 
 | 		copy[i] = kstrdup(argv[i], GFP_KERNEL); | 
 | 		if (!copy[i]) { | 
 | 			while (i--) | 
 | 				kfree(copy[i]); | 
 | 			kfree(copy); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	cache->nr_ctr_args = argc; | 
 | 	cache->ctr_args = copy; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv) | 
 | { | 
 | 	int r = -EINVAL; | 
 | 	struct cache_args *ca; | 
 | 	struct cache *cache = NULL; | 
 |  | 
 | 	ca = kzalloc(sizeof(*ca), GFP_KERNEL); | 
 | 	if (!ca) { | 
 | 		ti->error = "Error allocating memory for cache"; | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	ca->ti = ti; | 
 |  | 
 | 	r = parse_cache_args(ca, argc, argv, &ti->error); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	r = cache_create(ca, &cache); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3); | 
 | 	if (r) { | 
 | 		destroy(cache); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ti->private = cache; | 
 | out: | 
 | 	destroy_cache_args(ca); | 
 | 	return r; | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static int cache_map(struct dm_target *ti, struct bio *bio) | 
 | { | 
 | 	struct cache *cache = ti->private; | 
 |  | 
 | 	int r; | 
 | 	bool commit_needed; | 
 | 	dm_oblock_t block = get_bio_block(cache, bio); | 
 |  | 
 | 	init_per_bio_data(bio); | 
 | 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) { | 
 | 		/* | 
 | 		 * This can only occur if the io goes to a partial block at | 
 | 		 * the end of the origin device.  We don't cache these. | 
 | 		 * Just remap to the origin and carry on. | 
 | 		 */ | 
 | 		remap_to_origin(cache, bio); | 
 | 		accounted_begin(cache, bio); | 
 | 		return DM_MAPIO_REMAPPED; | 
 | 	} | 
 |  | 
 | 	if (discard_or_flush(bio)) { | 
 | 		defer_bio(cache, bio); | 
 | 		return DM_MAPIO_SUBMITTED; | 
 | 	} | 
 |  | 
 | 	r = map_bio(cache, bio, block, &commit_needed); | 
 | 	if (commit_needed) | 
 | 		schedule_commit(&cache->committer); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error) | 
 | { | 
 | 	struct cache *cache = ti->private; | 
 | 	unsigned long flags; | 
 | 	struct per_bio_data *pb = get_per_bio_data(bio); | 
 |  | 
 | 	if (pb->tick) { | 
 | 		policy_tick(cache->policy, false); | 
 |  | 
 | 		spin_lock_irqsave(&cache->lock, flags); | 
 | 		cache->need_tick_bio = true; | 
 | 		spin_unlock_irqrestore(&cache->lock, flags); | 
 | 	} | 
 |  | 
 | 	bio_drop_shared_lock(cache, bio); | 
 | 	accounted_complete(cache, bio); | 
 |  | 
 | 	return DM_ENDIO_DONE; | 
 | } | 
 |  | 
 | static int write_dirty_bitset(struct cache *cache) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (get_cache_mode(cache) >= CM_READ_ONLY) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset); | 
 | 	if (r) | 
 | 		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int write_discard_bitset(struct cache *cache) | 
 | { | 
 | 	unsigned i, r; | 
 |  | 
 | 	if (get_cache_mode(cache) >= CM_READ_ONLY) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size, | 
 | 					   cache->discard_nr_blocks); | 
 | 	if (r) { | 
 | 		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache)); | 
 | 		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) { | 
 | 		r = dm_cache_set_discard(cache->cmd, to_dblock(i), | 
 | 					 is_discarded(cache, to_dblock(i))); | 
 | 		if (r) { | 
 | 			metadata_operation_failed(cache, "dm_cache_set_discard", r); | 
 | 			return r; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int write_hints(struct cache *cache) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if (get_cache_mode(cache) >= CM_READ_ONLY) | 
 | 		return -EINVAL; | 
 |  | 
 | 	r = dm_cache_write_hints(cache->cmd, cache->policy); | 
 | 	if (r) { | 
 | 		metadata_operation_failed(cache, "dm_cache_write_hints", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * returns true on success | 
 |  */ | 
 | static bool sync_metadata(struct cache *cache) | 
 | { | 
 | 	int r1, r2, r3, r4; | 
 |  | 
 | 	r1 = write_dirty_bitset(cache); | 
 | 	if (r1) | 
 | 		DMERR("%s: could not write dirty bitset", cache_device_name(cache)); | 
 |  | 
 | 	r2 = write_discard_bitset(cache); | 
 | 	if (r2) | 
 | 		DMERR("%s: could not write discard bitset", cache_device_name(cache)); | 
 |  | 
 | 	save_stats(cache); | 
 |  | 
 | 	r3 = write_hints(cache); | 
 | 	if (r3) | 
 | 		DMERR("%s: could not write hints", cache_device_name(cache)); | 
 |  | 
 | 	/* | 
 | 	 * If writing the above metadata failed, we still commit, but don't | 
 | 	 * set the clean shutdown flag.  This will effectively force every | 
 | 	 * dirty bit to be set on reload. | 
 | 	 */ | 
 | 	r4 = commit(cache, !r1 && !r2 && !r3); | 
 | 	if (r4) | 
 | 		DMERR("%s: could not write cache metadata", cache_device_name(cache)); | 
 |  | 
 | 	return !r1 && !r2 && !r3 && !r4; | 
 | } | 
 |  | 
 | static void cache_postsuspend(struct dm_target *ti) | 
 | { | 
 | 	struct cache *cache = ti->private; | 
 |  | 
 | 	prevent_background_work(cache); | 
 | 	BUG_ON(atomic_read(&cache->nr_io_migrations)); | 
 |  | 
 | 	cancel_delayed_work(&cache->waker); | 
 | 	flush_workqueue(cache->wq); | 
 | 	WARN_ON(cache->tracker.in_flight); | 
 |  | 
 | 	/* | 
 | 	 * If it's a flush suspend there won't be any deferred bios, so this | 
 | 	 * call is harmless. | 
 | 	 */ | 
 | 	requeue_deferred_bios(cache); | 
 |  | 
 | 	if (get_cache_mode(cache) == CM_WRITE) | 
 | 		(void) sync_metadata(cache); | 
 | } | 
 |  | 
 | static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock, | 
 | 			bool dirty, uint32_t hint, bool hint_valid) | 
 | { | 
 | 	int r; | 
 | 	struct cache *cache = context; | 
 |  | 
 | 	if (dirty) { | 
 | 		set_bit(from_cblock(cblock), cache->dirty_bitset); | 
 | 		atomic_inc(&cache->nr_dirty); | 
 | 	} else | 
 | 		clear_bit(from_cblock(cblock), cache->dirty_bitset); | 
 |  | 
 | 	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The discard block size in the on disk metadata is not | 
 |  * neccessarily the same as we're currently using.  So we have to | 
 |  * be careful to only set the discarded attribute if we know it | 
 |  * covers a complete block of the new size. | 
 |  */ | 
 | struct discard_load_info { | 
 | 	struct cache *cache; | 
 |  | 
 | 	/* | 
 | 	 * These blocks are sized using the on disk dblock size, rather | 
 | 	 * than the current one. | 
 | 	 */ | 
 | 	dm_block_t block_size; | 
 | 	dm_block_t discard_begin, discard_end; | 
 | }; | 
 |  | 
 | static void discard_load_info_init(struct cache *cache, | 
 | 				   struct discard_load_info *li) | 
 | { | 
 | 	li->cache = cache; | 
 | 	li->discard_begin = li->discard_end = 0; | 
 | } | 
 |  | 
 | static void set_discard_range(struct discard_load_info *li) | 
 | { | 
 | 	sector_t b, e; | 
 |  | 
 | 	if (li->discard_begin == li->discard_end) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Convert to sectors. | 
 | 	 */ | 
 | 	b = li->discard_begin * li->block_size; | 
 | 	e = li->discard_end * li->block_size; | 
 |  | 
 | 	/* | 
 | 	 * Then convert back to the current dblock size. | 
 | 	 */ | 
 | 	b = dm_sector_div_up(b, li->cache->discard_block_size); | 
 | 	sector_div(e, li->cache->discard_block_size); | 
 |  | 
 | 	/* | 
 | 	 * The origin may have shrunk, so we need to check we're still in | 
 | 	 * bounds. | 
 | 	 */ | 
 | 	if (e > from_dblock(li->cache->discard_nr_blocks)) | 
 | 		e = from_dblock(li->cache->discard_nr_blocks); | 
 |  | 
 | 	for (; b < e; b++) | 
 | 		set_discard(li->cache, to_dblock(b)); | 
 | } | 
 |  | 
 | static int load_discard(void *context, sector_t discard_block_size, | 
 | 			dm_dblock_t dblock, bool discard) | 
 | { | 
 | 	struct discard_load_info *li = context; | 
 |  | 
 | 	li->block_size = discard_block_size; | 
 |  | 
 | 	if (discard) { | 
 | 		if (from_dblock(dblock) == li->discard_end) | 
 | 			/* | 
 | 			 * We're already in a discard range, just extend it. | 
 | 			 */ | 
 | 			li->discard_end = li->discard_end + 1ULL; | 
 |  | 
 | 		else { | 
 | 			/* | 
 | 			 * Emit the old range and start a new one. | 
 | 			 */ | 
 | 			set_discard_range(li); | 
 | 			li->discard_begin = from_dblock(dblock); | 
 | 			li->discard_end = li->discard_begin + 1ULL; | 
 | 		} | 
 | 	} else { | 
 | 		set_discard_range(li); | 
 | 		li->discard_begin = li->discard_end = 0; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static dm_cblock_t get_cache_dev_size(struct cache *cache) | 
 | { | 
 | 	sector_t size = get_dev_size(cache->cache_dev); | 
 | 	(void) sector_div(size, cache->sectors_per_block); | 
 | 	return to_cblock(size); | 
 | } | 
 |  | 
 | static bool can_resize(struct cache *cache, dm_cblock_t new_size) | 
 | { | 
 | 	if (from_cblock(new_size) > from_cblock(cache->cache_size)) { | 
 | 		if (cache->sized) { | 
 | 			DMERR("%s: unable to extend cache due to missing cache table reload", | 
 | 			      cache_device_name(cache)); | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can't drop a dirty block when shrinking the cache. | 
 | 	 */ | 
 | 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) { | 
 | 		new_size = to_cblock(from_cblock(new_size) + 1); | 
 | 		if (is_dirty(cache, new_size)) { | 
 | 			DMERR("%s: unable to shrink cache; cache block %llu is dirty", | 
 | 			      cache_device_name(cache), | 
 | 			      (unsigned long long) from_cblock(new_size)); | 
 | 			return false; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = dm_cache_resize(cache->cmd, new_size); | 
 | 	if (r) { | 
 | 		DMERR("%s: could not resize cache metadata", cache_device_name(cache)); | 
 | 		metadata_operation_failed(cache, "dm_cache_resize", r); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	set_cache_size(cache, new_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int cache_preresume(struct dm_target *ti) | 
 | { | 
 | 	int r = 0; | 
 | 	struct cache *cache = ti->private; | 
 | 	dm_cblock_t csize = get_cache_dev_size(cache); | 
 |  | 
 | 	/* | 
 | 	 * Check to see if the cache has resized. | 
 | 	 */ | 
 | 	if (!cache->sized) { | 
 | 		r = resize_cache_dev(cache, csize); | 
 | 		if (r) | 
 | 			return r; | 
 |  | 
 | 		cache->sized = true; | 
 |  | 
 | 	} else if (csize != cache->cache_size) { | 
 | 		if (!can_resize(cache, csize)) | 
 | 			return -EINVAL; | 
 |  | 
 | 		r = resize_cache_dev(cache, csize); | 
 | 		if (r) | 
 | 			return r; | 
 | 	} | 
 |  | 
 | 	if (!cache->loaded_mappings) { | 
 | 		r = dm_cache_load_mappings(cache->cmd, cache->policy, | 
 | 					   load_mapping, cache); | 
 | 		if (r) { | 
 | 			DMERR("%s: could not load cache mappings", cache_device_name(cache)); | 
 | 			metadata_operation_failed(cache, "dm_cache_load_mappings", r); | 
 | 			return r; | 
 | 		} | 
 |  | 
 | 		cache->loaded_mappings = true; | 
 | 	} | 
 |  | 
 | 	if (!cache->loaded_discards) { | 
 | 		struct discard_load_info li; | 
 |  | 
 | 		/* | 
 | 		 * The discard bitset could have been resized, or the | 
 | 		 * discard block size changed.  To be safe we start by | 
 | 		 * setting every dblock to not discarded. | 
 | 		 */ | 
 | 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks)); | 
 |  | 
 | 		discard_load_info_init(cache, &li); | 
 | 		r = dm_cache_load_discards(cache->cmd, load_discard, &li); | 
 | 		if (r) { | 
 | 			DMERR("%s: could not load origin discards", cache_device_name(cache)); | 
 | 			metadata_operation_failed(cache, "dm_cache_load_discards", r); | 
 | 			return r; | 
 | 		} | 
 | 		set_discard_range(&li); | 
 |  | 
 | 		cache->loaded_discards = true; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void cache_resume(struct dm_target *ti) | 
 | { | 
 | 	struct cache *cache = ti->private; | 
 |  | 
 | 	cache->need_tick_bio = true; | 
 | 	allow_background_work(cache); | 
 | 	do_waker(&cache->waker.work); | 
 | } | 
 |  | 
 | /* | 
 |  * Status format: | 
 |  * | 
 |  * <metadata block size> <#used metadata blocks>/<#total metadata blocks> | 
 |  * <cache block size> <#used cache blocks>/<#total cache blocks> | 
 |  * <#read hits> <#read misses> <#write hits> <#write misses> | 
 |  * <#demotions> <#promotions> <#dirty> | 
 |  * <#features> <features>* | 
 |  * <#core args> <core args> | 
 |  * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check> | 
 |  */ | 
 | static void cache_status(struct dm_target *ti, status_type_t type, | 
 | 			 unsigned status_flags, char *result, unsigned maxlen) | 
 | { | 
 | 	int r = 0; | 
 | 	unsigned i; | 
 | 	ssize_t sz = 0; | 
 | 	dm_block_t nr_free_blocks_metadata = 0; | 
 | 	dm_block_t nr_blocks_metadata = 0; | 
 | 	char buf[BDEVNAME_SIZE]; | 
 | 	struct cache *cache = ti->private; | 
 | 	dm_cblock_t residency; | 
 | 	bool needs_check; | 
 |  | 
 | 	switch (type) { | 
 | 	case STATUSTYPE_INFO: | 
 | 		if (get_cache_mode(cache) == CM_FAIL) { | 
 | 			DMEMIT("Fail"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Commit to ensure statistics aren't out-of-date */ | 
 | 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) | 
 | 			(void) commit(cache, false); | 
 |  | 
 | 		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata); | 
 | 		if (r) { | 
 | 			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d", | 
 | 			      cache_device_name(cache), r); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata); | 
 | 		if (r) { | 
 | 			DMERR("%s: dm_cache_get_metadata_dev_size returned %d", | 
 | 			      cache_device_name(cache), r); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		residency = policy_residency(cache->policy); | 
 |  | 
 | 		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ", | 
 | 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE, | 
 | 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata), | 
 | 		       (unsigned long long)nr_blocks_metadata, | 
 | 		       (unsigned long long)cache->sectors_per_block, | 
 | 		       (unsigned long long) from_cblock(residency), | 
 | 		       (unsigned long long) from_cblock(cache->cache_size), | 
 | 		       (unsigned) atomic_read(&cache->stats.read_hit), | 
 | 		       (unsigned) atomic_read(&cache->stats.read_miss), | 
 | 		       (unsigned) atomic_read(&cache->stats.write_hit), | 
 | 		       (unsigned) atomic_read(&cache->stats.write_miss), | 
 | 		       (unsigned) atomic_read(&cache->stats.demotion), | 
 | 		       (unsigned) atomic_read(&cache->stats.promotion), | 
 | 		       (unsigned long) atomic_read(&cache->nr_dirty)); | 
 |  | 
 | 		if (cache->features.metadata_version == 2) | 
 | 			DMEMIT("2 metadata2 "); | 
 | 		else | 
 | 			DMEMIT("1 "); | 
 |  | 
 | 		if (writethrough_mode(cache)) | 
 | 			DMEMIT("writethrough "); | 
 |  | 
 | 		else if (passthrough_mode(cache)) | 
 | 			DMEMIT("passthrough "); | 
 |  | 
 | 		else if (writeback_mode(cache)) | 
 | 			DMEMIT("writeback "); | 
 |  | 
 | 		else { | 
 | 			DMERR("%s: internal error: unknown io mode: %d", | 
 | 			      cache_device_name(cache), (int) cache->features.io_mode); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold); | 
 |  | 
 | 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy)); | 
 | 		if (sz < maxlen) { | 
 | 			r = policy_emit_config_values(cache->policy, result, maxlen, &sz); | 
 | 			if (r) | 
 | 				DMERR("%s: policy_emit_config_values returned %d", | 
 | 				      cache_device_name(cache), r); | 
 | 		} | 
 |  | 
 | 		if (get_cache_mode(cache) == CM_READ_ONLY) | 
 | 			DMEMIT("ro "); | 
 | 		else | 
 | 			DMEMIT("rw "); | 
 |  | 
 | 		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check); | 
 |  | 
 | 		if (r || needs_check) | 
 | 			DMEMIT("needs_check "); | 
 | 		else | 
 | 			DMEMIT("- "); | 
 |  | 
 | 		break; | 
 |  | 
 | 	case STATUSTYPE_TABLE: | 
 | 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev); | 
 | 		DMEMIT("%s ", buf); | 
 | 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev); | 
 | 		DMEMIT("%s ", buf); | 
 | 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev); | 
 | 		DMEMIT("%s", buf); | 
 |  | 
 | 		for (i = 0; i < cache->nr_ctr_args - 1; i++) | 
 | 			DMEMIT(" %s", cache->ctr_args[i]); | 
 | 		if (cache->nr_ctr_args) | 
 | 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]); | 
 | 	} | 
 |  | 
 | 	return; | 
 |  | 
 | err: | 
 | 	DMEMIT("Error"); | 
 | } | 
 |  | 
 | /* | 
 |  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is | 
 |  * the one-past-the-end value. | 
 |  */ | 
 | struct cblock_range { | 
 | 	dm_cblock_t begin; | 
 | 	dm_cblock_t end; | 
 | }; | 
 |  | 
 | /* | 
 |  * A cache block range can take two forms: | 
 |  * | 
 |  * i) A single cblock, eg. '3456' | 
 |  * ii) A begin and end cblock with a dash between, eg. 123-234 | 
 |  */ | 
 | static int parse_cblock_range(struct cache *cache, const char *str, | 
 | 			      struct cblock_range *result) | 
 | { | 
 | 	char dummy; | 
 | 	uint64_t b, e; | 
 | 	int r; | 
 |  | 
 | 	/* | 
 | 	 * Try and parse form (ii) first. | 
 | 	 */ | 
 | 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy); | 
 | 	if (r < 0) | 
 | 		return r; | 
 |  | 
 | 	if (r == 2) { | 
 | 		result->begin = to_cblock(b); | 
 | 		result->end = to_cblock(e); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * That didn't work, try form (i). | 
 | 	 */ | 
 | 	r = sscanf(str, "%llu%c", &b, &dummy); | 
 | 	if (r < 0) | 
 | 		return r; | 
 |  | 
 | 	if (r == 1) { | 
 | 		result->begin = to_cblock(b); | 
 | 		result->end = to_cblock(from_cblock(result->begin) + 1u); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int validate_cblock_range(struct cache *cache, struct cblock_range *range) | 
 | { | 
 | 	uint64_t b = from_cblock(range->begin); | 
 | 	uint64_t e = from_cblock(range->end); | 
 | 	uint64_t n = from_cblock(cache->cache_size); | 
 |  | 
 | 	if (b >= n) { | 
 | 		DMERR("%s: begin cblock out of range: %llu >= %llu", | 
 | 		      cache_device_name(cache), b, n); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (e > n) { | 
 | 		DMERR("%s: end cblock out of range: %llu > %llu", | 
 | 		      cache_device_name(cache), e, n); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (b >= e) { | 
 | 		DMERR("%s: invalid cblock range: %llu >= %llu", | 
 | 		      cache_device_name(cache), b, e); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline dm_cblock_t cblock_succ(dm_cblock_t b) | 
 | { | 
 | 	return to_cblock(from_cblock(b) + 1); | 
 | } | 
 |  | 
 | static int request_invalidation(struct cache *cache, struct cblock_range *range) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	/* | 
 | 	 * We don't need to do any locking here because we know we're in | 
 | 	 * passthrough mode.  There's is potential for a race between an | 
 | 	 * invalidation triggered by an io and an invalidation message.  This | 
 | 	 * is harmless, we must not worry if the policy call fails. | 
 | 	 */ | 
 | 	while (range->begin != range->end) { | 
 | 		r = invalidate_cblock(cache, range->begin); | 
 | 		if (r) | 
 | 			return r; | 
 |  | 
 | 		range->begin = cblock_succ(range->begin); | 
 | 	} | 
 |  | 
 | 	cache->commit_requested = true; | 
 | 	return r; | 
 | } | 
 |  | 
 | static int process_invalidate_cblocks_message(struct cache *cache, unsigned count, | 
 | 					      const char **cblock_ranges) | 
 | { | 
 | 	int r = 0; | 
 | 	unsigned i; | 
 | 	struct cblock_range range; | 
 |  | 
 | 	if (!passthrough_mode(cache)) { | 
 | 		DMERR("%s: cache has to be in passthrough mode for invalidation", | 
 | 		      cache_device_name(cache)); | 
 | 		return -EPERM; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < count; i++) { | 
 | 		r = parse_cblock_range(cache, cblock_ranges[i], &range); | 
 | 		if (r) | 
 | 			break; | 
 |  | 
 | 		r = validate_cblock_range(cache, &range); | 
 | 		if (r) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Pass begin and end origin blocks to the worker and wake it. | 
 | 		 */ | 
 | 		r = request_invalidation(cache, &range); | 
 | 		if (r) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Supports | 
 |  *	"<key> <value>" | 
 |  * and | 
 |  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]* | 
 |  * | 
 |  * The key migration_threshold is supported by the cache target core. | 
 |  */ | 
 | static int cache_message(struct dm_target *ti, unsigned argc, char **argv, | 
 | 			 char *result, unsigned maxlen) | 
 | { | 
 | 	struct cache *cache = ti->private; | 
 |  | 
 | 	if (!argc) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (get_cache_mode(cache) >= CM_READ_ONLY) { | 
 | 		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode", | 
 | 		      cache_device_name(cache)); | 
 | 		return -EOPNOTSUPP; | 
 | 	} | 
 |  | 
 | 	if (!strcasecmp(argv[0], "invalidate_cblocks")) | 
 | 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1); | 
 |  | 
 | 	if (argc != 2) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return set_config_value(cache, argv[0], argv[1]); | 
 | } | 
 |  | 
 | static int cache_iterate_devices(struct dm_target *ti, | 
 | 				 iterate_devices_callout_fn fn, void *data) | 
 | { | 
 | 	int r = 0; | 
 | 	struct cache *cache = ti->private; | 
 |  | 
 | 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data); | 
 | 	if (!r) | 
 | 		r = fn(ti, cache->origin_dev, 0, ti->len, data); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void set_discard_limits(struct cache *cache, struct queue_limits *limits) | 
 | { | 
 | 	/* | 
 | 	 * FIXME: these limits may be incompatible with the cache device | 
 | 	 */ | 
 | 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024, | 
 | 					    cache->origin_sectors); | 
 | 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT; | 
 | } | 
 |  | 
 | static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits) | 
 | { | 
 | 	struct cache *cache = ti->private; | 
 | 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT; | 
 |  | 
 | 	/* | 
 | 	 * If the system-determined stacked limits are compatible with the | 
 | 	 * cache's blocksize (io_opt is a factor) do not override them. | 
 | 	 */ | 
 | 	if (io_opt_sectors < cache->sectors_per_block || | 
 | 	    do_div(io_opt_sectors, cache->sectors_per_block)) { | 
 | 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT); | 
 | 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT); | 
 | 	} | 
 | 	set_discard_limits(cache, limits); | 
 | } | 
 |  | 
 | /*----------------------------------------------------------------*/ | 
 |  | 
 | static struct target_type cache_target = { | 
 | 	.name = "cache", | 
 | 	.version = {2, 0, 0}, | 
 | 	.module = THIS_MODULE, | 
 | 	.ctr = cache_ctr, | 
 | 	.dtr = cache_dtr, | 
 | 	.map = cache_map, | 
 | 	.end_io = cache_end_io, | 
 | 	.postsuspend = cache_postsuspend, | 
 | 	.preresume = cache_preresume, | 
 | 	.resume = cache_resume, | 
 | 	.status = cache_status, | 
 | 	.message = cache_message, | 
 | 	.iterate_devices = cache_iterate_devices, | 
 | 	.io_hints = cache_io_hints, | 
 | }; | 
 |  | 
 | static int __init dm_cache_init(void) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	migration_cache = KMEM_CACHE(dm_cache_migration, 0); | 
 | 	if (!migration_cache) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	r = dm_register_target(&cache_target); | 
 | 	if (r) { | 
 | 		DMERR("cache target registration failed: %d", r); | 
 | 		kmem_cache_destroy(migration_cache); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __exit dm_cache_exit(void) | 
 | { | 
 | 	dm_unregister_target(&cache_target); | 
 | 	kmem_cache_destroy(migration_cache); | 
 | } | 
 |  | 
 | module_init(dm_cache_init); | 
 | module_exit(dm_cache_exit); | 
 |  | 
 | MODULE_DESCRIPTION(DM_NAME " cache target"); | 
 | MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>"); | 
 | MODULE_LICENSE("GPL"); |