| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/file.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/time.h> | 
 | #include <linux/init.h> | 
 | #include <linux/string.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/xattr.h> | 
 | #include <linux/posix_acl.h> | 
 | #include <linux/falloc.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/btrfs.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/posix_acl_xattr.h> | 
 | #include <linux/uio.h> | 
 | #include <linux/magic.h> | 
 | #include <linux/iversion.h> | 
 | #include <asm/unaligned.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "print-tree.h" | 
 | #include "ordered-data.h" | 
 | #include "xattr.h" | 
 | #include "tree-log.h" | 
 | #include "volumes.h" | 
 | #include "compression.h" | 
 | #include "locking.h" | 
 | #include "free-space-cache.h" | 
 | #include "inode-map.h" | 
 | #include "backref.h" | 
 | #include "props.h" | 
 | #include "qgroup.h" | 
 | #include "dedupe.h" | 
 |  | 
 | struct btrfs_iget_args { | 
 | 	struct btrfs_key *location; | 
 | 	struct btrfs_root *root; | 
 | }; | 
 |  | 
 | struct btrfs_dio_data { | 
 | 	u64 reserve; | 
 | 	u64 unsubmitted_oe_range_start; | 
 | 	u64 unsubmitted_oe_range_end; | 
 | 	int overwrite; | 
 | }; | 
 |  | 
 | static const struct inode_operations btrfs_dir_inode_operations; | 
 | static const struct inode_operations btrfs_symlink_inode_operations; | 
 | static const struct inode_operations btrfs_dir_ro_inode_operations; | 
 | static const struct inode_operations btrfs_special_inode_operations; | 
 | static const struct inode_operations btrfs_file_inode_operations; | 
 | static const struct address_space_operations btrfs_aops; | 
 | static const struct address_space_operations btrfs_symlink_aops; | 
 | static const struct file_operations btrfs_dir_file_operations; | 
 | static const struct extent_io_ops btrfs_extent_io_ops; | 
 |  | 
 | static struct kmem_cache *btrfs_inode_cachep; | 
 | struct kmem_cache *btrfs_trans_handle_cachep; | 
 | struct kmem_cache *btrfs_path_cachep; | 
 | struct kmem_cache *btrfs_free_space_cachep; | 
 | struct kmem_cache *btrfs_free_space_bitmap_cachep; | 
 |  | 
 | #define S_SHIFT 12 | 
 | static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = { | 
 | 	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE, | 
 | 	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR, | 
 | 	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV, | 
 | 	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV, | 
 | 	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO, | 
 | 	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK, | 
 | 	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK, | 
 | }; | 
 |  | 
 | static int btrfs_setsize(struct inode *inode, struct iattr *attr); | 
 | static int btrfs_truncate(struct inode *inode, bool skip_writeback); | 
 | static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent); | 
 | static noinline int cow_file_range(struct inode *inode, | 
 | 				   struct page *locked_page, | 
 | 				   u64 start, u64 end, u64 delalloc_end, | 
 | 				   int *page_started, unsigned long *nr_written, | 
 | 				   int unlock, struct btrfs_dedupe_hash *hash); | 
 | static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, | 
 | 				       u64 orig_start, u64 block_start, | 
 | 				       u64 block_len, u64 orig_block_len, | 
 | 				       u64 ram_bytes, int compress_type, | 
 | 				       int type); | 
 |  | 
 | static void __endio_write_update_ordered(struct inode *inode, | 
 | 					 const u64 offset, const u64 bytes, | 
 | 					 const bool uptodate); | 
 |  | 
 | /* | 
 |  * Cleanup all submitted ordered extents in specified range to handle errors | 
 |  * from the fill_dellaloc() callback. | 
 |  * | 
 |  * NOTE: caller must ensure that when an error happens, it can not call | 
 |  * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING | 
 |  * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata | 
 |  * to be released, which we want to happen only when finishing the ordered | 
 |  * extent (btrfs_finish_ordered_io()). | 
 |  */ | 
 | static inline void btrfs_cleanup_ordered_extents(struct inode *inode, | 
 | 						 struct page *locked_page, | 
 | 						 u64 offset, u64 bytes) | 
 | { | 
 | 	unsigned long index = offset >> PAGE_SHIFT; | 
 | 	unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT; | 
 | 	u64 page_start = page_offset(locked_page); | 
 | 	u64 page_end = page_start + PAGE_SIZE - 1; | 
 |  | 
 | 	struct page *page; | 
 |  | 
 | 	while (index <= end_index) { | 
 | 		page = find_get_page(inode->i_mapping, index); | 
 | 		index++; | 
 | 		if (!page) | 
 | 			continue; | 
 | 		ClearPagePrivate2(page); | 
 | 		put_page(page); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In case this page belongs to the delalloc range being instantiated | 
 | 	 * then skip it, since the first page of a range is going to be | 
 | 	 * properly cleaned up by the caller of run_delalloc_range | 
 | 	 */ | 
 | 	if (page_start >= offset && page_end <= (offset + bytes - 1)) { | 
 | 		offset += PAGE_SIZE; | 
 | 		bytes -= PAGE_SIZE; | 
 | 	} | 
 |  | 
 | 	return __endio_write_update_ordered(inode, offset, bytes, false); | 
 | } | 
 |  | 
 | static int btrfs_dirty_inode(struct inode *inode); | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | void btrfs_test_inode_set_ops(struct inode *inode) | 
 | { | 
 | 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; | 
 | } | 
 | #endif | 
 |  | 
 | static int btrfs_init_inode_security(struct btrfs_trans_handle *trans, | 
 | 				     struct inode *inode,  struct inode *dir, | 
 | 				     const struct qstr *qstr) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = btrfs_init_acl(trans, inode, dir); | 
 | 	if (!err) | 
 | 		err = btrfs_xattr_security_init(trans, inode, dir, qstr); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * this does all the hard work for inserting an inline extent into | 
 |  * the btree.  The caller should have done a btrfs_drop_extents so that | 
 |  * no overlapping inline items exist in the btree | 
 |  */ | 
 | static int insert_inline_extent(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_path *path, int extent_inserted, | 
 | 				struct btrfs_root *root, struct inode *inode, | 
 | 				u64 start, size_t size, size_t compressed_size, | 
 | 				int compress_type, | 
 | 				struct page **compressed_pages) | 
 | { | 
 | 	struct extent_buffer *leaf; | 
 | 	struct page *page = NULL; | 
 | 	char *kaddr; | 
 | 	unsigned long ptr; | 
 | 	struct btrfs_file_extent_item *ei; | 
 | 	int ret; | 
 | 	size_t cur_size = size; | 
 | 	unsigned long offset; | 
 |  | 
 | 	if (compressed_size && compressed_pages) | 
 | 		cur_size = compressed_size; | 
 |  | 
 | 	inode_add_bytes(inode, size); | 
 |  | 
 | 	if (!extent_inserted) { | 
 | 		struct btrfs_key key; | 
 | 		size_t datasize; | 
 |  | 
 | 		key.objectid = btrfs_ino(BTRFS_I(inode)); | 
 | 		key.offset = start; | 
 | 		key.type = BTRFS_EXTENT_DATA_KEY; | 
 |  | 
 | 		datasize = btrfs_file_extent_calc_inline_size(cur_size); | 
 | 		path->leave_spinning = 1; | 
 | 		ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 					      datasize); | 
 | 		if (ret) | 
 | 			goto fail; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	ei = btrfs_item_ptr(leaf, path->slots[0], | 
 | 			    struct btrfs_file_extent_item); | 
 | 	btrfs_set_file_extent_generation(leaf, ei, trans->transid); | 
 | 	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE); | 
 | 	btrfs_set_file_extent_encryption(leaf, ei, 0); | 
 | 	btrfs_set_file_extent_other_encoding(leaf, ei, 0); | 
 | 	btrfs_set_file_extent_ram_bytes(leaf, ei, size); | 
 | 	ptr = btrfs_file_extent_inline_start(ei); | 
 |  | 
 | 	if (compress_type != BTRFS_COMPRESS_NONE) { | 
 | 		struct page *cpage; | 
 | 		int i = 0; | 
 | 		while (compressed_size > 0) { | 
 | 			cpage = compressed_pages[i]; | 
 | 			cur_size = min_t(unsigned long, compressed_size, | 
 | 				       PAGE_SIZE); | 
 |  | 
 | 			kaddr = kmap_atomic(cpage); | 
 | 			write_extent_buffer(leaf, kaddr, ptr, cur_size); | 
 | 			kunmap_atomic(kaddr); | 
 |  | 
 | 			i++; | 
 | 			ptr += cur_size; | 
 | 			compressed_size -= cur_size; | 
 | 		} | 
 | 		btrfs_set_file_extent_compression(leaf, ei, | 
 | 						  compress_type); | 
 | 	} else { | 
 | 		page = find_get_page(inode->i_mapping, | 
 | 				     start >> PAGE_SHIFT); | 
 | 		btrfs_set_file_extent_compression(leaf, ei, 0); | 
 | 		kaddr = kmap_atomic(page); | 
 | 		offset = start & (PAGE_SIZE - 1); | 
 | 		write_extent_buffer(leaf, kaddr + offset, ptr, size); | 
 | 		kunmap_atomic(kaddr); | 
 | 		put_page(page); | 
 | 	} | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * we're an inline extent, so nobody can | 
 | 	 * extend the file past i_size without locking | 
 | 	 * a page we already have locked. | 
 | 	 * | 
 | 	 * We must do any isize and inode updates | 
 | 	 * before we unlock the pages.  Otherwise we | 
 | 	 * could end up racing with unlink. | 
 | 	 */ | 
 | 	BTRFS_I(inode)->disk_i_size = inode->i_size; | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 |  | 
 | fail: | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * conditionally insert an inline extent into the file.  This | 
 |  * does the checks required to make sure the data is small enough | 
 |  * to fit as an inline extent. | 
 |  */ | 
 | static noinline int cow_file_range_inline(struct inode *inode, u64 start, | 
 | 					  u64 end, size_t compressed_size, | 
 | 					  int compress_type, | 
 | 					  struct page **compressed_pages) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	u64 isize = i_size_read(inode); | 
 | 	u64 actual_end = min(end + 1, isize); | 
 | 	u64 inline_len = actual_end - start; | 
 | 	u64 aligned_end = ALIGN(end, fs_info->sectorsize); | 
 | 	u64 data_len = inline_len; | 
 | 	int ret; | 
 | 	struct btrfs_path *path; | 
 | 	int extent_inserted = 0; | 
 | 	u32 extent_item_size; | 
 |  | 
 | 	if (compressed_size) | 
 | 		data_len = compressed_size; | 
 |  | 
 | 	if (start > 0 || | 
 | 	    actual_end > fs_info->sectorsize || | 
 | 	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) || | 
 | 	    (!compressed_size && | 
 | 	    (actual_end & (fs_info->sectorsize - 1)) == 0) || | 
 | 	    end + 1 < isize || | 
 | 	    data_len > fs_info->max_inline) { | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		btrfs_free_path(path); | 
 | 		return PTR_ERR(trans); | 
 | 	} | 
 | 	trans->block_rsv = &BTRFS_I(inode)->block_rsv; | 
 |  | 
 | 	if (compressed_size && compressed_pages) | 
 | 		extent_item_size = btrfs_file_extent_calc_inline_size( | 
 | 		   compressed_size); | 
 | 	else | 
 | 		extent_item_size = btrfs_file_extent_calc_inline_size( | 
 | 		    inline_len); | 
 |  | 
 | 	ret = __btrfs_drop_extents(trans, root, inode, path, | 
 | 				   start, aligned_end, NULL, | 
 | 				   1, 1, extent_item_size, &extent_inserted); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (isize > actual_end) | 
 | 		inline_len = min_t(u64, isize, actual_end); | 
 | 	ret = insert_inline_extent(trans, path, extent_inserted, | 
 | 				   root, inode, start, | 
 | 				   inline_len, compressed_size, | 
 | 				   compress_type, compressed_pages); | 
 | 	if (ret && ret != -ENOSPC) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} else if (ret == -ENOSPC) { | 
 | 		ret = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); | 
 | 	btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0); | 
 | out: | 
 | 	/* | 
 | 	 * Don't forget to free the reserved space, as for inlined extent | 
 | 	 * it won't count as data extent, free them directly here. | 
 | 	 * And at reserve time, it's always aligned to page size, so | 
 | 	 * just free one page here. | 
 | 	 */ | 
 | 	btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE); | 
 | 	btrfs_free_path(path); | 
 | 	btrfs_end_transaction(trans); | 
 | 	return ret; | 
 | } | 
 |  | 
 | struct async_extent { | 
 | 	u64 start; | 
 | 	u64 ram_size; | 
 | 	u64 compressed_size; | 
 | 	struct page **pages; | 
 | 	unsigned long nr_pages; | 
 | 	int compress_type; | 
 | 	struct list_head list; | 
 | }; | 
 |  | 
 | struct async_cow { | 
 | 	struct inode *inode; | 
 | 	struct btrfs_root *root; | 
 | 	struct page *locked_page; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	unsigned int write_flags; | 
 | 	struct list_head extents; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | static noinline int add_async_extent(struct async_cow *cow, | 
 | 				     u64 start, u64 ram_size, | 
 | 				     u64 compressed_size, | 
 | 				     struct page **pages, | 
 | 				     unsigned long nr_pages, | 
 | 				     int compress_type) | 
 | { | 
 | 	struct async_extent *async_extent; | 
 |  | 
 | 	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS); | 
 | 	BUG_ON(!async_extent); /* -ENOMEM */ | 
 | 	async_extent->start = start; | 
 | 	async_extent->ram_size = ram_size; | 
 | 	async_extent->compressed_size = compressed_size; | 
 | 	async_extent->pages = pages; | 
 | 	async_extent->nr_pages = nr_pages; | 
 | 	async_extent->compress_type = compress_type; | 
 | 	list_add_tail(&async_extent->list, &cow->extents); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if the inode has flags compatible with compression | 
 |  */ | 
 | static inline bool inode_can_compress(struct inode *inode) | 
 | { | 
 | 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW || | 
 | 	    BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Check if the inode needs to be submitted to compression, based on mount | 
 |  * options, defragmentation, properties or heuristics. | 
 |  */ | 
 | static inline int inode_need_compress(struct inode *inode, u64 start, u64 end) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 |  | 
 | 	if (!inode_can_compress(inode)) { | 
 | 		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG), | 
 | 			KERN_ERR "BTRFS: unexpected compression for ino %llu\n", | 
 | 			btrfs_ino(BTRFS_I(inode))); | 
 | 		return 0; | 
 | 	} | 
 | 	/* force compress */ | 
 | 	if (btrfs_test_opt(fs_info, FORCE_COMPRESS)) | 
 | 		return 1; | 
 | 	/* defrag ioctl */ | 
 | 	if (BTRFS_I(inode)->defrag_compress) | 
 | 		return 1; | 
 | 	/* bad compression ratios */ | 
 | 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) | 
 | 		return 0; | 
 | 	if (btrfs_test_opt(fs_info, COMPRESS) || | 
 | 	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS || | 
 | 	    BTRFS_I(inode)->prop_compress) | 
 | 		return btrfs_compress_heuristic(inode, start, end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void inode_should_defrag(struct btrfs_inode *inode, | 
 | 		u64 start, u64 end, u64 num_bytes, u64 small_write) | 
 | { | 
 | 	/* If this is a small write inside eof, kick off a defrag */ | 
 | 	if (num_bytes < small_write && | 
 | 	    (start > 0 || end + 1 < inode->disk_i_size)) | 
 | 		btrfs_add_inode_defrag(NULL, inode); | 
 | } | 
 |  | 
 | /* | 
 |  * we create compressed extents in two phases.  The first | 
 |  * phase compresses a range of pages that have already been | 
 |  * locked (both pages and state bits are locked). | 
 |  * | 
 |  * This is done inside an ordered work queue, and the compression | 
 |  * is spread across many cpus.  The actual IO submission is step | 
 |  * two, and the ordered work queue takes care of making sure that | 
 |  * happens in the same order things were put onto the queue by | 
 |  * writepages and friends. | 
 |  * | 
 |  * If this code finds it can't get good compression, it puts an | 
 |  * entry onto the work queue to write the uncompressed bytes.  This | 
 |  * makes sure that both compressed inodes and uncompressed inodes | 
 |  * are written in the same order that the flusher thread sent them | 
 |  * down. | 
 |  */ | 
 | static noinline void compress_file_range(struct inode *inode, | 
 | 					struct page *locked_page, | 
 | 					u64 start, u64 end, | 
 | 					struct async_cow *async_cow, | 
 | 					int *num_added) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	u64 blocksize = fs_info->sectorsize; | 
 | 	u64 actual_end; | 
 | 	u64 isize = i_size_read(inode); | 
 | 	int ret = 0; | 
 | 	struct page **pages = NULL; | 
 | 	unsigned long nr_pages; | 
 | 	unsigned long total_compressed = 0; | 
 | 	unsigned long total_in = 0; | 
 | 	int i; | 
 | 	int will_compress; | 
 | 	int compress_type = fs_info->compress_type; | 
 | 	int redirty = 0; | 
 |  | 
 | 	inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1, | 
 | 			SZ_16K); | 
 |  | 
 | 	actual_end = min_t(u64, isize, end + 1); | 
 | again: | 
 | 	will_compress = 0; | 
 | 	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1; | 
 | 	BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0); | 
 | 	nr_pages = min_t(unsigned long, nr_pages, | 
 | 			BTRFS_MAX_COMPRESSED / PAGE_SIZE); | 
 |  | 
 | 	/* | 
 | 	 * we don't want to send crud past the end of i_size through | 
 | 	 * compression, that's just a waste of CPU time.  So, if the | 
 | 	 * end of the file is before the start of our current | 
 | 	 * requested range of bytes, we bail out to the uncompressed | 
 | 	 * cleanup code that can deal with all of this. | 
 | 	 * | 
 | 	 * It isn't really the fastest way to fix things, but this is a | 
 | 	 * very uncommon corner. | 
 | 	 */ | 
 | 	if (actual_end <= start) | 
 | 		goto cleanup_and_bail_uncompressed; | 
 |  | 
 | 	total_compressed = actual_end - start; | 
 |  | 
 | 	/* | 
 | 	 * skip compression for a small file range(<=blocksize) that | 
 | 	 * isn't an inline extent, since it doesn't save disk space at all. | 
 | 	 */ | 
 | 	if (total_compressed <= blocksize && | 
 | 	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size)) | 
 | 		goto cleanup_and_bail_uncompressed; | 
 |  | 
 | 	total_compressed = min_t(unsigned long, total_compressed, | 
 | 			BTRFS_MAX_UNCOMPRESSED); | 
 | 	total_in = 0; | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * we do compression for mount -o compress and when the | 
 | 	 * inode has not been flagged as nocompress.  This flag can | 
 | 	 * change at any time if we discover bad compression ratios. | 
 | 	 */ | 
 | 	if (inode_need_compress(inode, start, end)) { | 
 | 		WARN_ON(pages); | 
 | 		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS); | 
 | 		if (!pages) { | 
 | 			/* just bail out to the uncompressed code */ | 
 | 			nr_pages = 0; | 
 | 			goto cont; | 
 | 		} | 
 |  | 
 | 		if (BTRFS_I(inode)->defrag_compress) | 
 | 			compress_type = BTRFS_I(inode)->defrag_compress; | 
 | 		else if (BTRFS_I(inode)->prop_compress) | 
 | 			compress_type = BTRFS_I(inode)->prop_compress; | 
 |  | 
 | 		/* | 
 | 		 * we need to call clear_page_dirty_for_io on each | 
 | 		 * page in the range.  Otherwise applications with the file | 
 | 		 * mmap'd can wander in and change the page contents while | 
 | 		 * we are compressing them. | 
 | 		 * | 
 | 		 * If the compression fails for any reason, we set the pages | 
 | 		 * dirty again later on. | 
 | 		 * | 
 | 		 * Note that the remaining part is redirtied, the start pointer | 
 | 		 * has moved, the end is the original one. | 
 | 		 */ | 
 | 		if (!redirty) { | 
 | 			extent_range_clear_dirty_for_io(inode, start, end); | 
 | 			redirty = 1; | 
 | 		} | 
 |  | 
 | 		/* Compression level is applied here and only here */ | 
 | 		ret = btrfs_compress_pages( | 
 | 			compress_type | (fs_info->compress_level << 4), | 
 | 					   inode->i_mapping, start, | 
 | 					   pages, | 
 | 					   &nr_pages, | 
 | 					   &total_in, | 
 | 					   &total_compressed); | 
 |  | 
 | 		if (!ret) { | 
 | 			unsigned long offset = total_compressed & | 
 | 				(PAGE_SIZE - 1); | 
 | 			struct page *page = pages[nr_pages - 1]; | 
 | 			char *kaddr; | 
 |  | 
 | 			/* zero the tail end of the last page, we might be | 
 | 			 * sending it down to disk | 
 | 			 */ | 
 | 			if (offset) { | 
 | 				kaddr = kmap_atomic(page); | 
 | 				memset(kaddr + offset, 0, | 
 | 				       PAGE_SIZE - offset); | 
 | 				kunmap_atomic(kaddr); | 
 | 			} | 
 | 			will_compress = 1; | 
 | 		} | 
 | 	} | 
 | cont: | 
 | 	if (start == 0) { | 
 | 		/* lets try to make an inline extent */ | 
 | 		if (ret || total_in < actual_end) { | 
 | 			/* we didn't compress the entire range, try | 
 | 			 * to make an uncompressed inline extent. | 
 | 			 */ | 
 | 			ret = cow_file_range_inline(inode, start, end, 0, | 
 | 						    BTRFS_COMPRESS_NONE, NULL); | 
 | 		} else { | 
 | 			/* try making a compressed inline extent */ | 
 | 			ret = cow_file_range_inline(inode, start, end, | 
 | 						    total_compressed, | 
 | 						    compress_type, pages); | 
 | 		} | 
 | 		if (ret <= 0) { | 
 | 			unsigned long clear_flags = EXTENT_DELALLOC | | 
 | 				EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | | 
 | 				EXTENT_DO_ACCOUNTING; | 
 | 			unsigned long page_error_op; | 
 |  | 
 | 			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0; | 
 |  | 
 | 			/* | 
 | 			 * inline extent creation worked or returned error, | 
 | 			 * we don't need to create any more async work items. | 
 | 			 * Unlock and free up our temp pages. | 
 | 			 * | 
 | 			 * We use DO_ACCOUNTING here because we need the | 
 | 			 * delalloc_release_metadata to be done _after_ we drop | 
 | 			 * our outstanding extent for clearing delalloc for this | 
 | 			 * range. | 
 | 			 */ | 
 | 			extent_clear_unlock_delalloc(inode, start, end, end, | 
 | 						     NULL, clear_flags, | 
 | 						     PAGE_UNLOCK | | 
 | 						     PAGE_CLEAR_DIRTY | | 
 | 						     PAGE_SET_WRITEBACK | | 
 | 						     page_error_op | | 
 | 						     PAGE_END_WRITEBACK); | 
 | 			goto free_pages_out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (will_compress) { | 
 | 		/* | 
 | 		 * we aren't doing an inline extent round the compressed size | 
 | 		 * up to a block size boundary so the allocator does sane | 
 | 		 * things | 
 | 		 */ | 
 | 		total_compressed = ALIGN(total_compressed, blocksize); | 
 |  | 
 | 		/* | 
 | 		 * one last check to make sure the compression is really a | 
 | 		 * win, compare the page count read with the blocks on disk, | 
 | 		 * compression must free at least one sector size | 
 | 		 */ | 
 | 		total_in = ALIGN(total_in, PAGE_SIZE); | 
 | 		if (total_compressed + blocksize <= total_in) { | 
 | 			*num_added += 1; | 
 |  | 
 | 			/* | 
 | 			 * The async work queues will take care of doing actual | 
 | 			 * allocation on disk for these compressed pages, and | 
 | 			 * will submit them to the elevator. | 
 | 			 */ | 
 | 			add_async_extent(async_cow, start, total_in, | 
 | 					total_compressed, pages, nr_pages, | 
 | 					compress_type); | 
 |  | 
 | 			if (start + total_in < end) { | 
 | 				start += total_in; | 
 | 				pages = NULL; | 
 | 				cond_resched(); | 
 | 				goto again; | 
 | 			} | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	if (pages) { | 
 | 		/* | 
 | 		 * the compression code ran but failed to make things smaller, | 
 | 		 * free any pages it allocated and our page pointer array | 
 | 		 */ | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			WARN_ON(pages[i]->mapping); | 
 | 			put_page(pages[i]); | 
 | 		} | 
 | 		kfree(pages); | 
 | 		pages = NULL; | 
 | 		total_compressed = 0; | 
 | 		nr_pages = 0; | 
 |  | 
 | 		/* flag the file so we don't compress in the future */ | 
 | 		if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) && | 
 | 		    !(BTRFS_I(inode)->prop_compress)) { | 
 | 			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; | 
 | 		} | 
 | 	} | 
 | cleanup_and_bail_uncompressed: | 
 | 	/* | 
 | 	 * No compression, but we still need to write the pages in the file | 
 | 	 * we've been given so far.  redirty the locked page if it corresponds | 
 | 	 * to our extent and set things up for the async work queue to run | 
 | 	 * cow_file_range to do the normal delalloc dance. | 
 | 	 */ | 
 | 	if (page_offset(locked_page) >= start && | 
 | 	    page_offset(locked_page) <= end) | 
 | 		__set_page_dirty_nobuffers(locked_page); | 
 | 		/* unlocked later on in the async handlers */ | 
 |  | 
 | 	if (redirty) | 
 | 		extent_range_redirty_for_io(inode, start, end); | 
 | 	add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0, | 
 | 			 BTRFS_COMPRESS_NONE); | 
 | 	*num_added += 1; | 
 |  | 
 | 	return; | 
 |  | 
 | free_pages_out: | 
 | 	for (i = 0; i < nr_pages; i++) { | 
 | 		WARN_ON(pages[i]->mapping); | 
 | 		put_page(pages[i]); | 
 | 	} | 
 | 	kfree(pages); | 
 | } | 
 |  | 
 | static void free_async_extent_pages(struct async_extent *async_extent) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!async_extent->pages) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < async_extent->nr_pages; i++) { | 
 | 		WARN_ON(async_extent->pages[i]->mapping); | 
 | 		put_page(async_extent->pages[i]); | 
 | 	} | 
 | 	kfree(async_extent->pages); | 
 | 	async_extent->nr_pages = 0; | 
 | 	async_extent->pages = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * phase two of compressed writeback.  This is the ordered portion | 
 |  * of the code, which only gets called in the order the work was | 
 |  * queued.  We walk all the async extents created by compress_file_range | 
 |  * and send them down to the disk. | 
 |  */ | 
 | static noinline void submit_compressed_extents(struct inode *inode, | 
 | 					      struct async_cow *async_cow) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct async_extent *async_extent; | 
 | 	u64 alloc_hint = 0; | 
 | 	struct btrfs_key ins; | 
 | 	struct extent_map *em; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_io_tree *io_tree; | 
 | 	int ret = 0; | 
 |  | 
 | again: | 
 | 	while (!list_empty(&async_cow->extents)) { | 
 | 		async_extent = list_entry(async_cow->extents.next, | 
 | 					  struct async_extent, list); | 
 | 		list_del(&async_extent->list); | 
 |  | 
 | 		io_tree = &BTRFS_I(inode)->io_tree; | 
 |  | 
 | retry: | 
 | 		/* did the compression code fall back to uncompressed IO? */ | 
 | 		if (!async_extent->pages) { | 
 | 			int page_started = 0; | 
 | 			unsigned long nr_written = 0; | 
 |  | 
 | 			lock_extent(io_tree, async_extent->start, | 
 | 					 async_extent->start + | 
 | 					 async_extent->ram_size - 1); | 
 |  | 
 | 			/* allocate blocks */ | 
 | 			ret = cow_file_range(inode, async_cow->locked_page, | 
 | 					     async_extent->start, | 
 | 					     async_extent->start + | 
 | 					     async_extent->ram_size - 1, | 
 | 					     async_extent->start + | 
 | 					     async_extent->ram_size - 1, | 
 | 					     &page_started, &nr_written, 0, | 
 | 					     NULL); | 
 |  | 
 | 			/* JDM XXX */ | 
 |  | 
 | 			/* | 
 | 			 * if page_started, cow_file_range inserted an | 
 | 			 * inline extent and took care of all the unlocking | 
 | 			 * and IO for us.  Otherwise, we need to submit | 
 | 			 * all those pages down to the drive. | 
 | 			 */ | 
 | 			if (!page_started && !ret) | 
 | 				extent_write_locked_range(inode, | 
 | 						  async_extent->start, | 
 | 						  async_extent->start + | 
 | 						  async_extent->ram_size - 1, | 
 | 						  WB_SYNC_ALL); | 
 | 			else if (ret) | 
 | 				unlock_page(async_cow->locked_page); | 
 | 			kfree(async_extent); | 
 | 			cond_resched(); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		lock_extent(io_tree, async_extent->start, | 
 | 			    async_extent->start + async_extent->ram_size - 1); | 
 |  | 
 | 		ret = btrfs_reserve_extent(root, async_extent->ram_size, | 
 | 					   async_extent->compressed_size, | 
 | 					   async_extent->compressed_size, | 
 | 					   0, alloc_hint, &ins, 1, 1); | 
 | 		if (ret) { | 
 | 			free_async_extent_pages(async_extent); | 
 |  | 
 | 			if (ret == -ENOSPC) { | 
 | 				unlock_extent(io_tree, async_extent->start, | 
 | 					      async_extent->start + | 
 | 					      async_extent->ram_size - 1); | 
 |  | 
 | 				/* | 
 | 				 * we need to redirty the pages if we decide to | 
 | 				 * fallback to uncompressed IO, otherwise we | 
 | 				 * will not submit these pages down to lower | 
 | 				 * layers. | 
 | 				 */ | 
 | 				extent_range_redirty_for_io(inode, | 
 | 						async_extent->start, | 
 | 						async_extent->start + | 
 | 						async_extent->ram_size - 1); | 
 |  | 
 | 				goto retry; | 
 | 			} | 
 | 			goto out_free; | 
 | 		} | 
 | 		/* | 
 | 		 * here we're doing allocation and writeback of the | 
 | 		 * compressed pages | 
 | 		 */ | 
 | 		em = create_io_em(inode, async_extent->start, | 
 | 				  async_extent->ram_size, /* len */ | 
 | 				  async_extent->start, /* orig_start */ | 
 | 				  ins.objectid, /* block_start */ | 
 | 				  ins.offset, /* block_len */ | 
 | 				  ins.offset, /* orig_block_len */ | 
 | 				  async_extent->ram_size, /* ram_bytes */ | 
 | 				  async_extent->compress_type, | 
 | 				  BTRFS_ORDERED_COMPRESSED); | 
 | 		if (IS_ERR(em)) | 
 | 			/* ret value is not necessary due to void function */ | 
 | 			goto out_free_reserve; | 
 | 		free_extent_map(em); | 
 |  | 
 | 		ret = btrfs_add_ordered_extent_compress(inode, | 
 | 						async_extent->start, | 
 | 						ins.objectid, | 
 | 						async_extent->ram_size, | 
 | 						ins.offset, | 
 | 						BTRFS_ORDERED_COMPRESSED, | 
 | 						async_extent->compress_type); | 
 | 		if (ret) { | 
 | 			btrfs_drop_extent_cache(BTRFS_I(inode), | 
 | 						async_extent->start, | 
 | 						async_extent->start + | 
 | 						async_extent->ram_size - 1, 0); | 
 | 			goto out_free_reserve; | 
 | 		} | 
 | 		btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
 |  | 
 | 		/* | 
 | 		 * clear dirty, set writeback and unlock the pages. | 
 | 		 */ | 
 | 		extent_clear_unlock_delalloc(inode, async_extent->start, | 
 | 				async_extent->start + | 
 | 				async_extent->ram_size - 1, | 
 | 				async_extent->start + | 
 | 				async_extent->ram_size - 1, | 
 | 				NULL, EXTENT_LOCKED | EXTENT_DELALLOC, | 
 | 				PAGE_UNLOCK | PAGE_CLEAR_DIRTY | | 
 | 				PAGE_SET_WRITEBACK); | 
 | 		if (btrfs_submit_compressed_write(inode, | 
 | 				    async_extent->start, | 
 | 				    async_extent->ram_size, | 
 | 				    ins.objectid, | 
 | 				    ins.offset, async_extent->pages, | 
 | 				    async_extent->nr_pages, | 
 | 				    async_cow->write_flags)) { | 
 | 			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; | 
 | 			struct page *p = async_extent->pages[0]; | 
 | 			const u64 start = async_extent->start; | 
 | 			const u64 end = start + async_extent->ram_size - 1; | 
 |  | 
 | 			p->mapping = inode->i_mapping; | 
 | 			tree->ops->writepage_end_io_hook(p, start, end, | 
 | 							 NULL, 0); | 
 | 			p->mapping = NULL; | 
 | 			extent_clear_unlock_delalloc(inode, start, end, end, | 
 | 						     NULL, 0, | 
 | 						     PAGE_END_WRITEBACK | | 
 | 						     PAGE_SET_ERROR); | 
 | 			free_async_extent_pages(async_extent); | 
 | 		} | 
 | 		alloc_hint = ins.objectid + ins.offset; | 
 | 		kfree(async_extent); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return; | 
 | out_free_reserve: | 
 | 	btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
 | 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); | 
 | out_free: | 
 | 	extent_clear_unlock_delalloc(inode, async_extent->start, | 
 | 				     async_extent->start + | 
 | 				     async_extent->ram_size - 1, | 
 | 				     async_extent->start + | 
 | 				     async_extent->ram_size - 1, | 
 | 				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC | | 
 | 				     EXTENT_DELALLOC_NEW | | 
 | 				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING, | 
 | 				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY | | 
 | 				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK | | 
 | 				     PAGE_SET_ERROR); | 
 | 	free_async_extent_pages(async_extent); | 
 | 	kfree(async_extent); | 
 | 	goto again; | 
 | } | 
 |  | 
 | static u64 get_extent_allocation_hint(struct inode *inode, u64 start, | 
 | 				      u64 num_bytes) | 
 | { | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	struct extent_map *em; | 
 | 	u64 alloc_hint = 0; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = search_extent_mapping(em_tree, start, num_bytes); | 
 | 	if (em) { | 
 | 		/* | 
 | 		 * if block start isn't an actual block number then find the | 
 | 		 * first block in this inode and use that as a hint.  If that | 
 | 		 * block is also bogus then just don't worry about it. | 
 | 		 */ | 
 | 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) { | 
 | 			free_extent_map(em); | 
 | 			em = search_extent_mapping(em_tree, 0, 0); | 
 | 			if (em && em->block_start < EXTENT_MAP_LAST_BYTE) | 
 | 				alloc_hint = em->block_start; | 
 | 			if (em) | 
 | 				free_extent_map(em); | 
 | 		} else { | 
 | 			alloc_hint = em->block_start; | 
 | 			free_extent_map(em); | 
 | 		} | 
 | 	} | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	return alloc_hint; | 
 | } | 
 |  | 
 | /* | 
 |  * when extent_io.c finds a delayed allocation range in the file, | 
 |  * the call backs end up in this code.  The basic idea is to | 
 |  * allocate extents on disk for the range, and create ordered data structs | 
 |  * in ram to track those extents. | 
 |  * | 
 |  * locked_page is the page that writepage had locked already.  We use | 
 |  * it to make sure we don't do extra locks or unlocks. | 
 |  * | 
 |  * *page_started is set to one if we unlock locked_page and do everything | 
 |  * required to start IO on it.  It may be clean and already done with | 
 |  * IO when we return. | 
 |  */ | 
 | static noinline int cow_file_range(struct inode *inode, | 
 | 				   struct page *locked_page, | 
 | 				   u64 start, u64 end, u64 delalloc_end, | 
 | 				   int *page_started, unsigned long *nr_written, | 
 | 				   int unlock, struct btrfs_dedupe_hash *hash) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	u64 alloc_hint = 0; | 
 | 	u64 num_bytes; | 
 | 	unsigned long ram_size; | 
 | 	u64 cur_alloc_size = 0; | 
 | 	u64 blocksize = fs_info->sectorsize; | 
 | 	struct btrfs_key ins; | 
 | 	struct extent_map *em; | 
 | 	unsigned clear_bits; | 
 | 	unsigned long page_ops; | 
 | 	bool extent_reserved = false; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) { | 
 | 		WARN_ON_ONCE(1); | 
 | 		ret = -EINVAL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	num_bytes = ALIGN(end - start + 1, blocksize); | 
 | 	num_bytes = max(blocksize,  num_bytes); | 
 | 	ASSERT(num_bytes <= btrfs_super_total_bytes(fs_info->super_copy)); | 
 |  | 
 | 	inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K); | 
 |  | 
 | 	if (start == 0) { | 
 | 		/* lets try to make an inline extent */ | 
 | 		ret = cow_file_range_inline(inode, start, end, 0, | 
 | 					    BTRFS_COMPRESS_NONE, NULL); | 
 | 		if (ret == 0) { | 
 | 			/* | 
 | 			 * We use DO_ACCOUNTING here because we need the | 
 | 			 * delalloc_release_metadata to be run _after_ we drop | 
 | 			 * our outstanding extent for clearing delalloc for this | 
 | 			 * range. | 
 | 			 */ | 
 | 			extent_clear_unlock_delalloc(inode, start, end, | 
 | 				     delalloc_end, NULL, | 
 | 				     EXTENT_LOCKED | EXTENT_DELALLOC | | 
 | 				     EXTENT_DELALLOC_NEW | EXTENT_DEFRAG | | 
 | 				     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | | 
 | 				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | | 
 | 				     PAGE_END_WRITEBACK); | 
 | 			*nr_written = *nr_written + | 
 | 			     (end - start + PAGE_SIZE) / PAGE_SIZE; | 
 | 			*page_started = 1; | 
 | 			goto out; | 
 | 		} else if (ret < 0) { | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes); | 
 | 	btrfs_drop_extent_cache(BTRFS_I(inode), start, | 
 | 			start + num_bytes - 1, 0); | 
 |  | 
 | 	while (num_bytes > 0) { | 
 | 		cur_alloc_size = num_bytes; | 
 | 		ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size, | 
 | 					   fs_info->sectorsize, 0, alloc_hint, | 
 | 					   &ins, 1, 1); | 
 | 		if (ret < 0) | 
 | 			goto out_unlock; | 
 | 		cur_alloc_size = ins.offset; | 
 | 		extent_reserved = true; | 
 |  | 
 | 		ram_size = ins.offset; | 
 | 		em = create_io_em(inode, start, ins.offset, /* len */ | 
 | 				  start, /* orig_start */ | 
 | 				  ins.objectid, /* block_start */ | 
 | 				  ins.offset, /* block_len */ | 
 | 				  ins.offset, /* orig_block_len */ | 
 | 				  ram_size, /* ram_bytes */ | 
 | 				  BTRFS_COMPRESS_NONE, /* compress_type */ | 
 | 				  BTRFS_ORDERED_REGULAR /* type */); | 
 | 		if (IS_ERR(em)) { | 
 | 			ret = PTR_ERR(em); | 
 | 			goto out_reserve; | 
 | 		} | 
 | 		free_extent_map(em); | 
 |  | 
 | 		ret = btrfs_add_ordered_extent(inode, start, ins.objectid, | 
 | 					       ram_size, cur_alloc_size, 0); | 
 | 		if (ret) | 
 | 			goto out_drop_extent_cache; | 
 |  | 
 | 		if (root->root_key.objectid == | 
 | 		    BTRFS_DATA_RELOC_TREE_OBJECTID) { | 
 | 			ret = btrfs_reloc_clone_csums(inode, start, | 
 | 						      cur_alloc_size); | 
 | 			/* | 
 | 			 * Only drop cache here, and process as normal. | 
 | 			 * | 
 | 			 * We must not allow extent_clear_unlock_delalloc() | 
 | 			 * at out_unlock label to free meta of this ordered | 
 | 			 * extent, as its meta should be freed by | 
 | 			 * btrfs_finish_ordered_io(). | 
 | 			 * | 
 | 			 * So we must continue until @start is increased to | 
 | 			 * skip current ordered extent. | 
 | 			 */ | 
 | 			if (ret) | 
 | 				btrfs_drop_extent_cache(BTRFS_I(inode), start, | 
 | 						start + ram_size - 1, 0); | 
 | 		} | 
 |  | 
 | 		btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
 |  | 
 | 		/* we're not doing compressed IO, don't unlock the first | 
 | 		 * page (which the caller expects to stay locked), don't | 
 | 		 * clear any dirty bits and don't set any writeback bits | 
 | 		 * | 
 | 		 * Do set the Private2 bit so we know this page was properly | 
 | 		 * setup for writepage | 
 | 		 */ | 
 | 		page_ops = unlock ? PAGE_UNLOCK : 0; | 
 | 		page_ops |= PAGE_SET_PRIVATE2; | 
 |  | 
 | 		extent_clear_unlock_delalloc(inode, start, | 
 | 					     start + ram_size - 1, | 
 | 					     delalloc_end, locked_page, | 
 | 					     EXTENT_LOCKED | EXTENT_DELALLOC, | 
 | 					     page_ops); | 
 | 		if (num_bytes < cur_alloc_size) | 
 | 			num_bytes = 0; | 
 | 		else | 
 | 			num_bytes -= cur_alloc_size; | 
 | 		alloc_hint = ins.objectid + ins.offset; | 
 | 		start += cur_alloc_size; | 
 | 		extent_reserved = false; | 
 |  | 
 | 		/* | 
 | 		 * btrfs_reloc_clone_csums() error, since start is increased | 
 | 		 * extent_clear_unlock_delalloc() at out_unlock label won't | 
 | 		 * free metadata of current ordered extent, we're OK to exit. | 
 | 		 */ | 
 | 		if (ret) | 
 | 			goto out_unlock; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 |  | 
 | out_drop_extent_cache: | 
 | 	btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0); | 
 | out_reserve: | 
 | 	btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
 | 	btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1); | 
 | out_unlock: | 
 | 	clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | | 
 | 		EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV; | 
 | 	page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK | | 
 | 		PAGE_END_WRITEBACK; | 
 | 	/* | 
 | 	 * If we reserved an extent for our delalloc range (or a subrange) and | 
 | 	 * failed to create the respective ordered extent, then it means that | 
 | 	 * when we reserved the extent we decremented the extent's size from | 
 | 	 * the data space_info's bytes_may_use counter and incremented the | 
 | 	 * space_info's bytes_reserved counter by the same amount. We must make | 
 | 	 * sure extent_clear_unlock_delalloc() does not try to decrement again | 
 | 	 * the data space_info's bytes_may_use counter, therefore we do not pass | 
 | 	 * it the flag EXTENT_CLEAR_DATA_RESV. | 
 | 	 */ | 
 | 	if (extent_reserved) { | 
 | 		extent_clear_unlock_delalloc(inode, start, | 
 | 					     start + cur_alloc_size, | 
 | 					     start + cur_alloc_size, | 
 | 					     locked_page, | 
 | 					     clear_bits, | 
 | 					     page_ops); | 
 | 		start += cur_alloc_size; | 
 | 		if (start >= end) | 
 | 			goto out; | 
 | 	} | 
 | 	extent_clear_unlock_delalloc(inode, start, end, delalloc_end, | 
 | 				     locked_page, | 
 | 				     clear_bits | EXTENT_CLEAR_DATA_RESV, | 
 | 				     page_ops); | 
 | 	goto out; | 
 | } | 
 |  | 
 | /* | 
 |  * work queue call back to started compression on a file and pages | 
 |  */ | 
 | static noinline void async_cow_start(struct btrfs_work *work) | 
 | { | 
 | 	struct async_cow *async_cow; | 
 | 	int num_added = 0; | 
 | 	async_cow = container_of(work, struct async_cow, work); | 
 |  | 
 | 	compress_file_range(async_cow->inode, async_cow->locked_page, | 
 | 			    async_cow->start, async_cow->end, async_cow, | 
 | 			    &num_added); | 
 | 	if (num_added == 0) { | 
 | 		btrfs_add_delayed_iput(async_cow->inode); | 
 | 		async_cow->inode = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * work queue call back to submit previously compressed pages | 
 |  */ | 
 | static noinline void async_cow_submit(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct async_cow *async_cow; | 
 | 	struct btrfs_root *root; | 
 | 	unsigned long nr_pages; | 
 |  | 
 | 	async_cow = container_of(work, struct async_cow, work); | 
 |  | 
 | 	root = async_cow->root; | 
 | 	fs_info = root->fs_info; | 
 | 	nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >> | 
 | 		PAGE_SHIFT; | 
 |  | 
 | 	/* atomic_sub_return implies a barrier */ | 
 | 	if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) < | 
 | 	    5 * SZ_1M) | 
 | 		cond_wake_up_nomb(&fs_info->async_submit_wait); | 
 |  | 
 | 	if (async_cow->inode) | 
 | 		submit_compressed_extents(async_cow->inode, async_cow); | 
 | } | 
 |  | 
 | static noinline void async_cow_free(struct btrfs_work *work) | 
 | { | 
 | 	struct async_cow *async_cow; | 
 | 	async_cow = container_of(work, struct async_cow, work); | 
 | 	if (async_cow->inode) | 
 | 		btrfs_add_delayed_iput(async_cow->inode); | 
 | 	kfree(async_cow); | 
 | } | 
 |  | 
 | static int cow_file_range_async(struct inode *inode, struct page *locked_page, | 
 | 				u64 start, u64 end, int *page_started, | 
 | 				unsigned long *nr_written, | 
 | 				unsigned int write_flags) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct async_cow *async_cow; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	unsigned long nr_pages; | 
 | 	u64 cur_end; | 
 |  | 
 | 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED, | 
 | 			 1, 0, NULL); | 
 | 	while (start < end) { | 
 | 		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS); | 
 | 		BUG_ON(!async_cow); /* -ENOMEM */ | 
 | 		async_cow->inode = igrab(inode); | 
 | 		async_cow->root = root; | 
 | 		async_cow->locked_page = locked_page; | 
 | 		async_cow->start = start; | 
 | 		async_cow->write_flags = write_flags; | 
 |  | 
 | 		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS && | 
 | 		    !btrfs_test_opt(fs_info, FORCE_COMPRESS)) | 
 | 			cur_end = end; | 
 | 		else | 
 | 			cur_end = min(end, start + SZ_512K - 1); | 
 |  | 
 | 		async_cow->end = cur_end; | 
 | 		INIT_LIST_HEAD(&async_cow->extents); | 
 |  | 
 | 		btrfs_init_work(&async_cow->work, | 
 | 				btrfs_delalloc_helper, | 
 | 				async_cow_start, async_cow_submit, | 
 | 				async_cow_free); | 
 |  | 
 | 		nr_pages = (cur_end - start + PAGE_SIZE) >> | 
 | 			PAGE_SHIFT; | 
 | 		atomic_add(nr_pages, &fs_info->async_delalloc_pages); | 
 |  | 
 | 		btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work); | 
 |  | 
 | 		*nr_written += nr_pages; | 
 | 		start = cur_end + 1; | 
 | 	} | 
 | 	*page_started = 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info, | 
 | 					u64 bytenr, u64 num_bytes) | 
 | { | 
 | 	int ret; | 
 | 	struct btrfs_ordered_sum *sums; | 
 | 	LIST_HEAD(list); | 
 |  | 
 | 	ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr, | 
 | 				       bytenr + num_bytes - 1, &list, 0); | 
 | 	if (ret == 0 && list_empty(&list)) | 
 | 		return 0; | 
 |  | 
 | 	while (!list_empty(&list)) { | 
 | 		sums = list_entry(list.next, struct btrfs_ordered_sum, list); | 
 | 		list_del(&sums->list); | 
 | 		kfree(sums); | 
 | 	} | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * when nowcow writeback call back.  This checks for snapshots or COW copies | 
 |  * of the extents that exist in the file, and COWs the file as required. | 
 |  * | 
 |  * If no cow copies or snapshots exist, we write directly to the existing | 
 |  * blocks on disk | 
 |  */ | 
 | static noinline int run_delalloc_nocow(struct inode *inode, | 
 | 				       struct page *locked_page, | 
 | 			      u64 start, u64 end, int *page_started, int force, | 
 | 			      unsigned long *nr_written) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_map *em; | 
 | 	u64 cow_start; | 
 | 	u64 cur_offset; | 
 | 	u64 extent_end; | 
 | 	u64 extent_offset; | 
 | 	u64 disk_bytenr; | 
 | 	u64 num_bytes; | 
 | 	u64 disk_num_bytes; | 
 | 	u64 ram_bytes; | 
 | 	int extent_type; | 
 | 	int ret; | 
 | 	int type; | 
 | 	int nocow; | 
 | 	int check_prev = 1; | 
 | 	bool nolock; | 
 | 	u64 ino = btrfs_ino(BTRFS_I(inode)); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		extent_clear_unlock_delalloc(inode, start, end, end, | 
 | 					     locked_page, | 
 | 					     EXTENT_LOCKED | EXTENT_DELALLOC | | 
 | 					     EXTENT_DO_ACCOUNTING | | 
 | 					     EXTENT_DEFRAG, PAGE_UNLOCK | | 
 | 					     PAGE_CLEAR_DIRTY | | 
 | 					     PAGE_SET_WRITEBACK | | 
 | 					     PAGE_END_WRITEBACK); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); | 
 |  | 
 | 	cow_start = (u64)-1; | 
 | 	cur_offset = start; | 
 | 	while (1) { | 
 | 		ret = btrfs_lookup_file_extent(NULL, root, path, ino, | 
 | 					       cur_offset, 0); | 
 | 		if (ret < 0) | 
 | 			goto error; | 
 | 		if (ret > 0 && path->slots[0] > 0 && check_prev) { | 
 | 			leaf = path->nodes[0]; | 
 | 			btrfs_item_key_to_cpu(leaf, &found_key, | 
 | 					      path->slots[0] - 1); | 
 | 			if (found_key.objectid == ino && | 
 | 			    found_key.type == BTRFS_EXTENT_DATA_KEY) | 
 | 				path->slots[0]--; | 
 | 		} | 
 | 		check_prev = 0; | 
 | next_slot: | 
 | 		leaf = path->nodes[0]; | 
 | 		if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) { | 
 | 				if (cow_start != (u64)-1) | 
 | 					cur_offset = cow_start; | 
 | 				goto error; | 
 | 			} | 
 | 			if (ret > 0) | 
 | 				break; | 
 | 			leaf = path->nodes[0]; | 
 | 		} | 
 |  | 
 | 		nocow = 0; | 
 | 		disk_bytenr = 0; | 
 | 		num_bytes = 0; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 |  | 
 | 		if (found_key.objectid > ino) | 
 | 			break; | 
 | 		if (WARN_ON_ONCE(found_key.objectid < ino) || | 
 | 		    found_key.type < BTRFS_EXTENT_DATA_KEY) { | 
 | 			path->slots[0]++; | 
 | 			goto next_slot; | 
 | 		} | 
 | 		if (found_key.type > BTRFS_EXTENT_DATA_KEY || | 
 | 		    found_key.offset > end) | 
 | 			break; | 
 |  | 
 | 		if (found_key.offset > cur_offset) { | 
 | 			extent_end = found_key.offset; | 
 | 			extent_type = 0; | 
 | 			goto out_check; | 
 | 		} | 
 |  | 
 | 		fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_file_extent_item); | 
 | 		extent_type = btrfs_file_extent_type(leaf, fi); | 
 |  | 
 | 		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); | 
 | 		if (extent_type == BTRFS_FILE_EXTENT_REG || | 
 | 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
 | 			extent_offset = btrfs_file_extent_offset(leaf, fi); | 
 | 			extent_end = found_key.offset + | 
 | 				btrfs_file_extent_num_bytes(leaf, fi); | 
 | 			disk_num_bytes = | 
 | 				btrfs_file_extent_disk_num_bytes(leaf, fi); | 
 | 			if (extent_end <= start) { | 
 | 				path->slots[0]++; | 
 | 				goto next_slot; | 
 | 			} | 
 | 			if (disk_bytenr == 0) | 
 | 				goto out_check; | 
 | 			if (btrfs_file_extent_compression(leaf, fi) || | 
 | 			    btrfs_file_extent_encryption(leaf, fi) || | 
 | 			    btrfs_file_extent_other_encoding(leaf, fi)) | 
 | 				goto out_check; | 
 | 			/* | 
 | 			 * Do the same check as in btrfs_cross_ref_exist but | 
 | 			 * without the unnecessary search. | 
 | 			 */ | 
 | 			if (!nolock && | 
 | 			    btrfs_file_extent_generation(leaf, fi) <= | 
 | 			    btrfs_root_last_snapshot(&root->root_item)) | 
 | 				goto out_check; | 
 | 			if (extent_type == BTRFS_FILE_EXTENT_REG && !force) | 
 | 				goto out_check; | 
 | 			if (btrfs_extent_readonly(fs_info, disk_bytenr)) | 
 | 				goto out_check; | 
 | 			ret = btrfs_cross_ref_exist(root, ino, | 
 | 						    found_key.offset - | 
 | 						    extent_offset, disk_bytenr); | 
 | 			if (ret) { | 
 | 				/* | 
 | 				 * ret could be -EIO if the above fails to read | 
 | 				 * metadata. | 
 | 				 */ | 
 | 				if (ret < 0) { | 
 | 					if (cow_start != (u64)-1) | 
 | 						cur_offset = cow_start; | 
 | 					goto error; | 
 | 				} | 
 |  | 
 | 				WARN_ON_ONCE(nolock); | 
 | 				goto out_check; | 
 | 			} | 
 | 			disk_bytenr += extent_offset; | 
 | 			disk_bytenr += cur_offset - found_key.offset; | 
 | 			num_bytes = min(end + 1, extent_end) - cur_offset; | 
 | 			/* | 
 | 			 * if there are pending snapshots for this root, | 
 | 			 * we fall into common COW way. | 
 | 			 */ | 
 | 			if (!nolock && atomic_read(&root->snapshot_force_cow)) | 
 | 				goto out_check; | 
 | 			/* | 
 | 			 * force cow if csum exists in the range. | 
 | 			 * this ensure that csum for a given extent are | 
 | 			 * either valid or do not exist. | 
 | 			 */ | 
 | 			ret = csum_exist_in_range(fs_info, disk_bytenr, | 
 | 						  num_bytes); | 
 | 			if (ret) { | 
 | 				/* | 
 | 				 * ret could be -EIO if the above fails to read | 
 | 				 * metadata. | 
 | 				 */ | 
 | 				if (ret < 0) { | 
 | 					if (cow_start != (u64)-1) | 
 | 						cur_offset = cow_start; | 
 | 					goto error; | 
 | 				} | 
 | 				WARN_ON_ONCE(nolock); | 
 | 				goto out_check; | 
 | 			} | 
 | 			if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) | 
 | 				goto out_check; | 
 | 			nocow = 1; | 
 | 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 			extent_end = found_key.offset + | 
 | 				btrfs_file_extent_ram_bytes(leaf, fi); | 
 | 			extent_end = ALIGN(extent_end, | 
 | 					   fs_info->sectorsize); | 
 | 		} else { | 
 | 			BUG_ON(1); | 
 | 		} | 
 | out_check: | 
 | 		if (extent_end <= start) { | 
 | 			path->slots[0]++; | 
 | 			if (nocow) | 
 | 				btrfs_dec_nocow_writers(fs_info, disk_bytenr); | 
 | 			goto next_slot; | 
 | 		} | 
 | 		if (!nocow) { | 
 | 			if (cow_start == (u64)-1) | 
 | 				cow_start = cur_offset; | 
 | 			cur_offset = extent_end; | 
 | 			if (cur_offset > end) | 
 | 				break; | 
 | 			path->slots[0]++; | 
 | 			goto next_slot; | 
 | 		} | 
 |  | 
 | 		btrfs_release_path(path); | 
 | 		if (cow_start != (u64)-1) { | 
 | 			ret = cow_file_range(inode, locked_page, | 
 | 					     cow_start, found_key.offset - 1, | 
 | 					     end, page_started, nr_written, 1, | 
 | 					     NULL); | 
 | 			if (ret) { | 
 | 				if (nocow) | 
 | 					btrfs_dec_nocow_writers(fs_info, | 
 | 								disk_bytenr); | 
 | 				goto error; | 
 | 			} | 
 | 			cow_start = (u64)-1; | 
 | 		} | 
 |  | 
 | 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 			u64 orig_start = found_key.offset - extent_offset; | 
 |  | 
 | 			em = create_io_em(inode, cur_offset, num_bytes, | 
 | 					  orig_start, | 
 | 					  disk_bytenr, /* block_start */ | 
 | 					  num_bytes, /* block_len */ | 
 | 					  disk_num_bytes, /* orig_block_len */ | 
 | 					  ram_bytes, BTRFS_COMPRESS_NONE, | 
 | 					  BTRFS_ORDERED_PREALLOC); | 
 | 			if (IS_ERR(em)) { | 
 | 				if (nocow) | 
 | 					btrfs_dec_nocow_writers(fs_info, | 
 | 								disk_bytenr); | 
 | 				ret = PTR_ERR(em); | 
 | 				goto error; | 
 | 			} | 
 | 			free_extent_map(em); | 
 | 		} | 
 |  | 
 | 		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 			type = BTRFS_ORDERED_PREALLOC; | 
 | 		} else { | 
 | 			type = BTRFS_ORDERED_NOCOW; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr, | 
 | 					       num_bytes, num_bytes, type); | 
 | 		if (nocow) | 
 | 			btrfs_dec_nocow_writers(fs_info, disk_bytenr); | 
 | 		BUG_ON(ret); /* -ENOMEM */ | 
 |  | 
 | 		if (root->root_key.objectid == | 
 | 		    BTRFS_DATA_RELOC_TREE_OBJECTID) | 
 | 			/* | 
 | 			 * Error handled later, as we must prevent | 
 | 			 * extent_clear_unlock_delalloc() in error handler | 
 | 			 * from freeing metadata of created ordered extent. | 
 | 			 */ | 
 | 			ret = btrfs_reloc_clone_csums(inode, cur_offset, | 
 | 						      num_bytes); | 
 |  | 
 | 		extent_clear_unlock_delalloc(inode, cur_offset, | 
 | 					     cur_offset + num_bytes - 1, end, | 
 | 					     locked_page, EXTENT_LOCKED | | 
 | 					     EXTENT_DELALLOC | | 
 | 					     EXTENT_CLEAR_DATA_RESV, | 
 | 					     PAGE_UNLOCK | PAGE_SET_PRIVATE2); | 
 |  | 
 | 		cur_offset = extent_end; | 
 |  | 
 | 		/* | 
 | 		 * btrfs_reloc_clone_csums() error, now we're OK to call error | 
 | 		 * handler, as metadata for created ordered extent will only | 
 | 		 * be freed by btrfs_finish_ordered_io(). | 
 | 		 */ | 
 | 		if (ret) | 
 | 			goto error; | 
 | 		if (cur_offset > end) | 
 | 			break; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (cur_offset <= end && cow_start == (u64)-1) | 
 | 		cow_start = cur_offset; | 
 |  | 
 | 	if (cow_start != (u64)-1) { | 
 | 		cur_offset = end; | 
 | 		ret = cow_file_range(inode, locked_page, cow_start, end, end, | 
 | 				     page_started, nr_written, 1, NULL); | 
 | 		if (ret) | 
 | 			goto error; | 
 | 	} | 
 |  | 
 | error: | 
 | 	if (ret && cur_offset < end) | 
 | 		extent_clear_unlock_delalloc(inode, cur_offset, end, end, | 
 | 					     locked_page, EXTENT_LOCKED | | 
 | 					     EXTENT_DELALLOC | EXTENT_DEFRAG | | 
 | 					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK | | 
 | 					     PAGE_CLEAR_DIRTY | | 
 | 					     PAGE_SET_WRITEBACK | | 
 | 					     PAGE_END_WRITEBACK); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int need_force_cow(struct inode *inode, u64 start, u64 end) | 
 | { | 
 |  | 
 | 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && | 
 | 	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * @defrag_bytes is a hint value, no spinlock held here, | 
 | 	 * if is not zero, it means the file is defragging. | 
 | 	 * Force cow if given extent needs to be defragged. | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->defrag_bytes && | 
 | 	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end, | 
 | 			   EXTENT_DEFRAG, 0, NULL)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Function to process delayed allocation (create CoW) for ranges which are | 
 |  * being touched for the first time. | 
 |  */ | 
 | int btrfs_run_delalloc_range(void *private_data, struct page *locked_page, | 
 | 		u64 start, u64 end, int *page_started, unsigned long *nr_written, | 
 | 		struct writeback_control *wbc) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 | 	int ret; | 
 | 	int force_cow = need_force_cow(inode, start, end); | 
 | 	unsigned int write_flags = wbc_to_write_flags(wbc); | 
 |  | 
 | 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) { | 
 | 		ret = run_delalloc_nocow(inode, locked_page, start, end, | 
 | 					 page_started, 1, nr_written); | 
 | 	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) { | 
 | 		ret = run_delalloc_nocow(inode, locked_page, start, end, | 
 | 					 page_started, 0, nr_written); | 
 | 	} else if (!inode_can_compress(inode) || | 
 | 		   !inode_need_compress(inode, start, end)) { | 
 | 		ret = cow_file_range(inode, locked_page, start, end, end, | 
 | 				      page_started, nr_written, 1, NULL); | 
 | 	} else { | 
 | 		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, | 
 | 			&BTRFS_I(inode)->runtime_flags); | 
 | 		ret = cow_file_range_async(inode, locked_page, start, end, | 
 | 					   page_started, nr_written, | 
 | 					   write_flags); | 
 | 	} | 
 | 	if (ret) | 
 | 		btrfs_cleanup_ordered_extents(inode, locked_page, start, | 
 | 					      end - start + 1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void btrfs_split_extent_hook(void *private_data, | 
 | 				    struct extent_state *orig, u64 split) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 | 	u64 size; | 
 |  | 
 | 	/* not delalloc, ignore it */ | 
 | 	if (!(orig->state & EXTENT_DELALLOC)) | 
 | 		return; | 
 |  | 
 | 	size = orig->end - orig->start + 1; | 
 | 	if (size > BTRFS_MAX_EXTENT_SIZE) { | 
 | 		u32 num_extents; | 
 | 		u64 new_size; | 
 |  | 
 | 		/* | 
 | 		 * See the explanation in btrfs_merge_extent_hook, the same | 
 | 		 * applies here, just in reverse. | 
 | 		 */ | 
 | 		new_size = orig->end - split + 1; | 
 | 		num_extents = count_max_extents(new_size); | 
 | 		new_size = split - orig->start; | 
 | 		num_extents += count_max_extents(new_size); | 
 | 		if (count_max_extents(size) >= num_extents) | 
 | 			return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&BTRFS_I(inode)->lock); | 
 | 	btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); | 
 | 	spin_unlock(&BTRFS_I(inode)->lock); | 
 | } | 
 |  | 
 | /* | 
 |  * extent_io.c merge_extent_hook, used to track merged delayed allocation | 
 |  * extents so we can keep track of new extents that are just merged onto old | 
 |  * extents, such as when we are doing sequential writes, so we can properly | 
 |  * account for the metadata space we'll need. | 
 |  */ | 
 | static void btrfs_merge_extent_hook(void *private_data, | 
 | 				    struct extent_state *new, | 
 | 				    struct extent_state *other) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 | 	u64 new_size, old_size; | 
 | 	u32 num_extents; | 
 |  | 
 | 	/* not delalloc, ignore it */ | 
 | 	if (!(other->state & EXTENT_DELALLOC)) | 
 | 		return; | 
 |  | 
 | 	if (new->start > other->start) | 
 | 		new_size = new->end - other->start + 1; | 
 | 	else | 
 | 		new_size = other->end - new->start + 1; | 
 |  | 
 | 	/* we're not bigger than the max, unreserve the space and go */ | 
 | 	if (new_size <= BTRFS_MAX_EXTENT_SIZE) { | 
 | 		spin_lock(&BTRFS_I(inode)->lock); | 
 | 		btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); | 
 | 		spin_unlock(&BTRFS_I(inode)->lock); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We have to add up either side to figure out how many extents were | 
 | 	 * accounted for before we merged into one big extent.  If the number of | 
 | 	 * extents we accounted for is <= the amount we need for the new range | 
 | 	 * then we can return, otherwise drop.  Think of it like this | 
 | 	 * | 
 | 	 * [ 4k][MAX_SIZE] | 
 | 	 * | 
 | 	 * So we've grown the extent by a MAX_SIZE extent, this would mean we | 
 | 	 * need 2 outstanding extents, on one side we have 1 and the other side | 
 | 	 * we have 1 so they are == and we can return.  But in this case | 
 | 	 * | 
 | 	 * [MAX_SIZE+4k][MAX_SIZE+4k] | 
 | 	 * | 
 | 	 * Each range on their own accounts for 2 extents, but merged together | 
 | 	 * they are only 3 extents worth of accounting, so we need to drop in | 
 | 	 * this case. | 
 | 	 */ | 
 | 	old_size = other->end - other->start + 1; | 
 | 	num_extents = count_max_extents(old_size); | 
 | 	old_size = new->end - new->start + 1; | 
 | 	num_extents += count_max_extents(old_size); | 
 | 	if (count_max_extents(new_size) >= num_extents) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&BTRFS_I(inode)->lock); | 
 | 	btrfs_mod_outstanding_extents(BTRFS_I(inode), -1); | 
 | 	spin_unlock(&BTRFS_I(inode)->lock); | 
 | } | 
 |  | 
 | static void btrfs_add_delalloc_inodes(struct btrfs_root *root, | 
 | 				      struct inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 |  | 
 | 	spin_lock(&root->delalloc_lock); | 
 | 	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) { | 
 | 		list_add_tail(&BTRFS_I(inode)->delalloc_inodes, | 
 | 			      &root->delalloc_inodes); | 
 | 		set_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
 | 			&BTRFS_I(inode)->runtime_flags); | 
 | 		root->nr_delalloc_inodes++; | 
 | 		if (root->nr_delalloc_inodes == 1) { | 
 | 			spin_lock(&fs_info->delalloc_root_lock); | 
 | 			BUG_ON(!list_empty(&root->delalloc_root)); | 
 | 			list_add_tail(&root->delalloc_root, | 
 | 				      &fs_info->delalloc_roots); | 
 | 			spin_unlock(&fs_info->delalloc_root_lock); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&root->delalloc_lock); | 
 | } | 
 |  | 
 |  | 
 | void __btrfs_del_delalloc_inode(struct btrfs_root *root, | 
 | 				struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	if (!list_empty(&inode->delalloc_inodes)) { | 
 | 		list_del_init(&inode->delalloc_inodes); | 
 | 		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
 | 			  &inode->runtime_flags); | 
 | 		root->nr_delalloc_inodes--; | 
 | 		if (!root->nr_delalloc_inodes) { | 
 | 			ASSERT(list_empty(&root->delalloc_inodes)); | 
 | 			spin_lock(&fs_info->delalloc_root_lock); | 
 | 			BUG_ON(list_empty(&root->delalloc_root)); | 
 | 			list_del_init(&root->delalloc_root); | 
 | 			spin_unlock(&fs_info->delalloc_root_lock); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_del_delalloc_inode(struct btrfs_root *root, | 
 | 				     struct btrfs_inode *inode) | 
 | { | 
 | 	spin_lock(&root->delalloc_lock); | 
 | 	__btrfs_del_delalloc_inode(root, inode); | 
 | 	spin_unlock(&root->delalloc_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * extent_io.c set_bit_hook, used to track delayed allocation | 
 |  * bytes in this file, and to maintain the list of inodes that | 
 |  * have pending delalloc work to be done. | 
 |  */ | 
 | static void btrfs_set_bit_hook(void *private_data, | 
 | 			       struct extent_state *state, unsigned *bits) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 |  | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 |  | 
 | 	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC)) | 
 | 		WARN_ON(1); | 
 | 	/* | 
 | 	 * set_bit and clear bit hooks normally require _irqsave/restore | 
 | 	 * but in this case, we are only testing for the DELALLOC | 
 | 	 * bit, which is only set or cleared with irqs on | 
 | 	 */ | 
 | 	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { | 
 | 		struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 		u64 len = state->end + 1 - state->start; | 
 | 		u32 num_extents = count_max_extents(len); | 
 | 		bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode)); | 
 |  | 
 | 		spin_lock(&BTRFS_I(inode)->lock); | 
 | 		btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents); | 
 | 		spin_unlock(&BTRFS_I(inode)->lock); | 
 |  | 
 | 		/* For sanity tests */ | 
 | 		if (btrfs_is_testing(fs_info)) | 
 | 			return; | 
 |  | 
 | 		percpu_counter_add_batch(&fs_info->delalloc_bytes, len, | 
 | 					 fs_info->delalloc_batch); | 
 | 		spin_lock(&BTRFS_I(inode)->lock); | 
 | 		BTRFS_I(inode)->delalloc_bytes += len; | 
 | 		if (*bits & EXTENT_DEFRAG) | 
 | 			BTRFS_I(inode)->defrag_bytes += len; | 
 | 		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
 | 					 &BTRFS_I(inode)->runtime_flags)) | 
 | 			btrfs_add_delalloc_inodes(root, inode); | 
 | 		spin_unlock(&BTRFS_I(inode)->lock); | 
 | 	} | 
 |  | 
 | 	if (!(state->state & EXTENT_DELALLOC_NEW) && | 
 | 	    (*bits & EXTENT_DELALLOC_NEW)) { | 
 | 		spin_lock(&BTRFS_I(inode)->lock); | 
 | 		BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 - | 
 | 			state->start; | 
 | 		spin_unlock(&BTRFS_I(inode)->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * extent_io.c clear_bit_hook, see set_bit_hook for why | 
 |  */ | 
 | static void btrfs_clear_bit_hook(void *private_data, | 
 | 				 struct extent_state *state, | 
 | 				 unsigned *bits) | 
 | { | 
 | 	struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data); | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb); | 
 | 	u64 len = state->end + 1 - state->start; | 
 | 	u32 num_extents = count_max_extents(len); | 
 |  | 
 | 	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) { | 
 | 		spin_lock(&inode->lock); | 
 | 		inode->defrag_bytes -= len; | 
 | 		spin_unlock(&inode->lock); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * set_bit and clear bit hooks normally require _irqsave/restore | 
 | 	 * but in this case, we are only testing for the DELALLOC | 
 | 	 * bit, which is only set or cleared with irqs on | 
 | 	 */ | 
 | 	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) { | 
 | 		struct btrfs_root *root = inode->root; | 
 | 		bool do_list = !btrfs_is_free_space_inode(inode); | 
 |  | 
 | 		spin_lock(&inode->lock); | 
 | 		btrfs_mod_outstanding_extents(inode, -num_extents); | 
 | 		spin_unlock(&inode->lock); | 
 |  | 
 | 		/* | 
 | 		 * We don't reserve metadata space for space cache inodes so we | 
 | 		 * don't need to call dellalloc_release_metadata if there is an | 
 | 		 * error. | 
 | 		 */ | 
 | 		if (*bits & EXTENT_CLEAR_META_RESV && | 
 | 		    root != fs_info->tree_root) | 
 | 			btrfs_delalloc_release_metadata(inode, len, false); | 
 |  | 
 | 		/* For sanity tests. */ | 
 | 		if (btrfs_is_testing(fs_info)) | 
 | 			return; | 
 |  | 
 | 		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID && | 
 | 		    do_list && !(state->state & EXTENT_NORESERVE) && | 
 | 		    (*bits & EXTENT_CLEAR_DATA_RESV)) | 
 | 			btrfs_free_reserved_data_space_noquota( | 
 | 					&inode->vfs_inode, | 
 | 					state->start, len); | 
 |  | 
 | 		percpu_counter_add_batch(&fs_info->delalloc_bytes, -len, | 
 | 					 fs_info->delalloc_batch); | 
 | 		spin_lock(&inode->lock); | 
 | 		inode->delalloc_bytes -= len; | 
 | 		if (do_list && inode->delalloc_bytes == 0 && | 
 | 		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST, | 
 | 					&inode->runtime_flags)) | 
 | 			btrfs_del_delalloc_inode(root, inode); | 
 | 		spin_unlock(&inode->lock); | 
 | 	} | 
 |  | 
 | 	if ((state->state & EXTENT_DELALLOC_NEW) && | 
 | 	    (*bits & EXTENT_DELALLOC_NEW)) { | 
 | 		spin_lock(&inode->lock); | 
 | 		ASSERT(inode->new_delalloc_bytes >= len); | 
 | 		inode->new_delalloc_bytes -= len; | 
 | 		spin_unlock(&inode->lock); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Merge bio hook, this must check the chunk tree to make sure we don't create | 
 |  * bios that span stripes or chunks | 
 |  * | 
 |  * return 1 if page cannot be merged to bio | 
 |  * return 0 if page can be merged to bio | 
 |  * return error otherwise | 
 |  */ | 
 | int btrfs_merge_bio_hook(struct page *page, unsigned long offset, | 
 | 			 size_t size, struct bio *bio, | 
 | 			 unsigned long bio_flags) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	u64 logical = (u64)bio->bi_iter.bi_sector << 9; | 
 | 	u64 length = 0; | 
 | 	u64 map_length; | 
 | 	int ret; | 
 |  | 
 | 	if (bio_flags & EXTENT_BIO_COMPRESSED) | 
 | 		return 0; | 
 |  | 
 | 	length = bio->bi_iter.bi_size; | 
 | 	map_length = length; | 
 | 	ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, | 
 | 			      NULL, 0); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 | 	if (map_length < length + size) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * in order to insert checksums into the metadata in large chunks, | 
 |  * we wait until bio submission time.   All the pages in the bio are | 
 |  * checksummed and sums are attached onto the ordered extent record. | 
 |  * | 
 |  * At IO completion time the cums attached on the ordered extent record | 
 |  * are inserted into the btree | 
 |  */ | 
 | static blk_status_t btrfs_submit_bio_start(void *private_data, struct bio *bio, | 
 | 				    u64 bio_offset) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 | 	blk_status_t ret = 0; | 
 |  | 
 | 	ret = btrfs_csum_one_bio(inode, bio, 0, 0); | 
 | 	BUG_ON(ret); /* -ENOMEM */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * in order to insert checksums into the metadata in large chunks, | 
 |  * we wait until bio submission time.   All the pages in the bio are | 
 |  * checksummed and sums are attached onto the ordered extent record. | 
 |  * | 
 |  * At IO completion time the cums attached on the ordered extent record | 
 |  * are inserted into the btree | 
 |  */ | 
 | blk_status_t btrfs_submit_bio_done(void *private_data, struct bio *bio, | 
 | 			  int mirror_num) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	blk_status_t ret; | 
 |  | 
 | 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 1); | 
 | 	if (ret) { | 
 | 		bio->bi_status = ret; | 
 | 		bio_endio(bio); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * extent_io.c submission hook. This does the right thing for csum calculation | 
 |  * on write, or reading the csums from the tree before a read. | 
 |  * | 
 |  * Rules about async/sync submit, | 
 |  * a) read:				sync submit | 
 |  * | 
 |  * b) write without checksum:		sync submit | 
 |  * | 
 |  * c) write with checksum: | 
 |  *    c-1) if bio is issued by fsync:	sync submit | 
 |  *         (sync_writers != 0) | 
 |  * | 
 |  *    c-2) if root is reloc root:	sync submit | 
 |  *         (only in case of buffered IO) | 
 |  * | 
 |  *    c-3) otherwise:			async submit | 
 |  */ | 
 | static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio, | 
 | 				 int mirror_num, unsigned long bio_flags, | 
 | 				 u64 bio_offset) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA; | 
 | 	blk_status_t ret = 0; | 
 | 	int skip_sum; | 
 | 	int async = !atomic_read(&BTRFS_I(inode)->sync_writers); | 
 |  | 
 | 	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; | 
 |  | 
 | 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) | 
 | 		metadata = BTRFS_WQ_ENDIO_FREE_SPACE; | 
 |  | 
 | 	if (bio_op(bio) != REQ_OP_WRITE) { | 
 | 		ret = btrfs_bio_wq_end_io(fs_info, bio, metadata); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		if (bio_flags & EXTENT_BIO_COMPRESSED) { | 
 | 			ret = btrfs_submit_compressed_read(inode, bio, | 
 | 							   mirror_num, | 
 | 							   bio_flags); | 
 | 			goto out; | 
 | 		} else if (!skip_sum) { | 
 | 			ret = btrfs_lookup_bio_sums(inode, bio, NULL); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 		goto mapit; | 
 | 	} else if (async && !skip_sum) { | 
 | 		/* csum items have already been cloned */ | 
 | 		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
 | 			goto mapit; | 
 | 		/* we're doing a write, do the async checksumming */ | 
 | 		ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags, | 
 | 					  bio_offset, inode, | 
 | 					  btrfs_submit_bio_start); | 
 | 		goto out; | 
 | 	} else if (!skip_sum) { | 
 | 		ret = btrfs_csum_one_bio(inode, bio, 0, 0); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | mapit: | 
 | 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); | 
 |  | 
 | out: | 
 | 	if (ret) { | 
 | 		bio->bi_status = ret; | 
 | 		bio_endio(bio); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * given a list of ordered sums record them in the inode.  This happens | 
 |  * at IO completion time based on sums calculated at bio submission time. | 
 |  */ | 
 | static noinline int add_pending_csums(struct btrfs_trans_handle *trans, | 
 | 			     struct inode *inode, struct list_head *list) | 
 | { | 
 | 	struct btrfs_ordered_sum *sum; | 
 | 	int ret; | 
 |  | 
 | 	list_for_each_entry(sum, list, list) { | 
 | 		trans->adding_csums = true; | 
 | 		ret = btrfs_csum_file_blocks(trans, | 
 | 		       BTRFS_I(inode)->root->fs_info->csum_root, sum); | 
 | 		trans->adding_csums = false; | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end, | 
 | 			      unsigned int extra_bits, | 
 | 			      struct extent_state **cached_state, int dedupe) | 
 | { | 
 | 	WARN_ON((end & (PAGE_SIZE - 1)) == 0); | 
 | 	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end, | 
 | 				   extra_bits, cached_state); | 
 | } | 
 |  | 
 | /* see btrfs_writepage_start_hook for details on why this is required */ | 
 | struct btrfs_writepage_fixup { | 
 | 	struct page *page; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | static void btrfs_writepage_fixup_worker(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_writepage_fixup *fixup; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct extent_changeset *data_reserved = NULL; | 
 | 	struct page *page; | 
 | 	struct inode *inode; | 
 | 	u64 page_start; | 
 | 	u64 page_end; | 
 | 	int ret; | 
 |  | 
 | 	fixup = container_of(work, struct btrfs_writepage_fixup, work); | 
 | 	page = fixup->page; | 
 | again: | 
 | 	lock_page(page); | 
 | 	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) { | 
 | 		ClearPageChecked(page); | 
 | 		goto out_page; | 
 | 	} | 
 |  | 
 | 	inode = page->mapping->host; | 
 | 	page_start = page_offset(page); | 
 | 	page_end = page_offset(page) + PAGE_SIZE - 1; | 
 |  | 
 | 	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, | 
 | 			 &cached_state); | 
 |  | 
 | 	/* already ordered? We're done */ | 
 | 	if (PagePrivate2(page)) | 
 | 		goto out; | 
 |  | 
 | 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, | 
 | 					PAGE_SIZE); | 
 | 	if (ordered) { | 
 | 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, | 
 | 				     page_end, &cached_state); | 
 | 		unlock_page(page); | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, | 
 | 					   PAGE_SIZE); | 
 | 	if (ret) { | 
 | 		mapping_set_error(page->mapping, ret); | 
 | 		end_extent_writepage(page, ret, page_start, page_end); | 
 | 		ClearPageChecked(page); | 
 | 		goto out; | 
 | 	 } | 
 |  | 
 | 	ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, | 
 | 					&cached_state, 0); | 
 | 	if (ret) { | 
 | 		mapping_set_error(page->mapping, ret); | 
 | 		end_extent_writepage(page, ret, page_start, page_end); | 
 | 		ClearPageChecked(page); | 
 | 		goto out_reserved; | 
 | 	} | 
 |  | 
 | 	ClearPageChecked(page); | 
 | 	set_page_dirty(page); | 
 | out_reserved: | 
 | 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); | 
 | 	if (ret) | 
 | 		btrfs_delalloc_release_space(inode, data_reserved, page_start, | 
 | 					     PAGE_SIZE, true); | 
 | out: | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end, | 
 | 			     &cached_state); | 
 | out_page: | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 | 	kfree(fixup); | 
 | 	extent_changeset_free(data_reserved); | 
 | } | 
 |  | 
 | /* | 
 |  * There are a few paths in the higher layers of the kernel that directly | 
 |  * set the page dirty bit without asking the filesystem if it is a | 
 |  * good idea.  This causes problems because we want to make sure COW | 
 |  * properly happens and the data=ordered rules are followed. | 
 |  * | 
 |  * In our case any range that doesn't have the ORDERED bit set | 
 |  * hasn't been properly setup for IO.  We kick off an async process | 
 |  * to fix it up.  The async helper will wait for ordered extents, set | 
 |  * the delalloc bit and make it safe to write the page. | 
 |  */ | 
 | static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_writepage_fixup *fixup; | 
 |  | 
 | 	/* this page is properly in the ordered list */ | 
 | 	if (TestClearPagePrivate2(page)) | 
 | 		return 0; | 
 |  | 
 | 	if (PageChecked(page)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	fixup = kzalloc(sizeof(*fixup), GFP_NOFS); | 
 | 	if (!fixup) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	SetPageChecked(page); | 
 | 	get_page(page); | 
 | 	btrfs_init_work(&fixup->work, btrfs_fixup_helper, | 
 | 			btrfs_writepage_fixup_worker, NULL, NULL); | 
 | 	fixup->page = page; | 
 | 	btrfs_queue_work(fs_info->fixup_workers, &fixup->work); | 
 | 	return -EBUSY; | 
 | } | 
 |  | 
 | static int insert_reserved_file_extent(struct btrfs_trans_handle *trans, | 
 | 				       struct inode *inode, u64 file_pos, | 
 | 				       u64 disk_bytenr, u64 disk_num_bytes, | 
 | 				       u64 num_bytes, u64 ram_bytes, | 
 | 				       u8 compression, u8 encryption, | 
 | 				       u16 other_encoding, int extent_type) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key ins; | 
 | 	u64 qg_released; | 
 | 	int extent_inserted = 0; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * we may be replacing one extent in the tree with another. | 
 | 	 * The new extent is pinned in the extent map, and we don't want | 
 | 	 * to drop it from the cache until it is completely in the btree. | 
 | 	 * | 
 | 	 * So, tell btrfs_drop_extents to leave this extent in the cache. | 
 | 	 * the caller is expected to unpin it and allow it to be merged | 
 | 	 * with the others. | 
 | 	 */ | 
 | 	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos, | 
 | 				   file_pos + num_bytes, NULL, 0, | 
 | 				   1, sizeof(*fi), &extent_inserted); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (!extent_inserted) { | 
 | 		ins.objectid = btrfs_ino(BTRFS_I(inode)); | 
 | 		ins.offset = file_pos; | 
 | 		ins.type = BTRFS_EXTENT_DATA_KEY; | 
 |  | 
 | 		path->leave_spinning = 1; | 
 | 		ret = btrfs_insert_empty_item(trans, root, path, &ins, | 
 | 					      sizeof(*fi)); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 			    struct btrfs_file_extent_item); | 
 | 	btrfs_set_file_extent_generation(leaf, fi, trans->transid); | 
 | 	btrfs_set_file_extent_type(leaf, fi, extent_type); | 
 | 	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr); | 
 | 	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes); | 
 | 	btrfs_set_file_extent_offset(leaf, fi, 0); | 
 | 	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes); | 
 | 	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes); | 
 | 	btrfs_set_file_extent_compression(leaf, fi, compression); | 
 | 	btrfs_set_file_extent_encryption(leaf, fi, encryption); | 
 | 	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding); | 
 |  | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	inode_add_bytes(inode, num_bytes); | 
 |  | 
 | 	ins.objectid = disk_bytenr; | 
 | 	ins.offset = disk_num_bytes; | 
 | 	ins.type = BTRFS_EXTENT_ITEM_KEY; | 
 |  | 
 | 	/* | 
 | 	 * Release the reserved range from inode dirty range map, as it is | 
 | 	 * already moved into delayed_ref_head | 
 | 	 */ | 
 | 	ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	qg_released = ret; | 
 | 	ret = btrfs_alloc_reserved_file_extent(trans, root, | 
 | 					       btrfs_ino(BTRFS_I(inode)), | 
 | 					       file_pos, qg_released, &ins); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* snapshot-aware defrag */ | 
 | struct sa_defrag_extent_backref { | 
 | 	struct rb_node node; | 
 | 	struct old_sa_defrag_extent *old; | 
 | 	u64 root_id; | 
 | 	u64 inum; | 
 | 	u64 file_pos; | 
 | 	u64 extent_offset; | 
 | 	u64 num_bytes; | 
 | 	u64 generation; | 
 | }; | 
 |  | 
 | struct old_sa_defrag_extent { | 
 | 	struct list_head list; | 
 | 	struct new_sa_defrag_extent *new; | 
 |  | 
 | 	u64 extent_offset; | 
 | 	u64 bytenr; | 
 | 	u64 offset; | 
 | 	u64 len; | 
 | 	int count; | 
 | }; | 
 |  | 
 | struct new_sa_defrag_extent { | 
 | 	struct rb_root root; | 
 | 	struct list_head head; | 
 | 	struct btrfs_path *path; | 
 | 	struct inode *inode; | 
 | 	u64 file_pos; | 
 | 	u64 len; | 
 | 	u64 bytenr; | 
 | 	u64 disk_len; | 
 | 	u8 compress_type; | 
 | }; | 
 |  | 
 | static int backref_comp(struct sa_defrag_extent_backref *b1, | 
 | 			struct sa_defrag_extent_backref *b2) | 
 | { | 
 | 	if (b1->root_id < b2->root_id) | 
 | 		return -1; | 
 | 	else if (b1->root_id > b2->root_id) | 
 | 		return 1; | 
 |  | 
 | 	if (b1->inum < b2->inum) | 
 | 		return -1; | 
 | 	else if (b1->inum > b2->inum) | 
 | 		return 1; | 
 |  | 
 | 	if (b1->file_pos < b2->file_pos) | 
 | 		return -1; | 
 | 	else if (b1->file_pos > b2->file_pos) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * [------------------------------] ===> (a range of space) | 
 | 	 *     |<--->|   |<---->| =============> (fs/file tree A) | 
 | 	 * |<---------------------------->| ===> (fs/file tree B) | 
 | 	 * | 
 | 	 * A range of space can refer to two file extents in one tree while | 
 | 	 * refer to only one file extent in another tree. | 
 | 	 * | 
 | 	 * So we may process a disk offset more than one time(two extents in A) | 
 | 	 * and locate at the same extent(one extent in B), then insert two same | 
 | 	 * backrefs(both refer to the extent in B). | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void backref_insert(struct rb_root *root, | 
 | 			   struct sa_defrag_extent_backref *backref) | 
 | { | 
 | 	struct rb_node **p = &root->rb_node; | 
 | 	struct rb_node *parent = NULL; | 
 | 	struct sa_defrag_extent_backref *entry; | 
 | 	int ret; | 
 |  | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct sa_defrag_extent_backref, node); | 
 |  | 
 | 		ret = backref_comp(backref, entry); | 
 | 		if (ret < 0) | 
 | 			p = &(*p)->rb_left; | 
 | 		else | 
 | 			p = &(*p)->rb_right; | 
 | 	} | 
 |  | 
 | 	rb_link_node(&backref->node, parent, p); | 
 | 	rb_insert_color(&backref->node, root); | 
 | } | 
 |  | 
 | /* | 
 |  * Note the backref might has changed, and in this case we just return 0. | 
 |  */ | 
 | static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id, | 
 | 				       void *ctx) | 
 | { | 
 | 	struct btrfs_file_extent_item *extent; | 
 | 	struct old_sa_defrag_extent *old = ctx; | 
 | 	struct new_sa_defrag_extent *new = old->new; | 
 | 	struct btrfs_path *path = new->path; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root; | 
 | 	struct sa_defrag_extent_backref *backref; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct inode *inode = new->inode; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	int slot; | 
 | 	int ret; | 
 | 	u64 extent_offset; | 
 | 	u64 num_bytes; | 
 |  | 
 | 	if (BTRFS_I(inode)->root->root_key.objectid == root_id && | 
 | 	    inum == btrfs_ino(BTRFS_I(inode))) | 
 | 		return 0; | 
 |  | 
 | 	key.objectid = root_id; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	root = btrfs_read_fs_root_no_name(fs_info, &key); | 
 | 	if (IS_ERR(root)) { | 
 | 		if (PTR_ERR(root) == -ENOENT) | 
 | 			return 0; | 
 | 		WARN_ON(1); | 
 | 		btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu", | 
 | 			 inum, offset, root_id); | 
 | 		return PTR_ERR(root); | 
 | 	} | 
 |  | 
 | 	key.objectid = inum; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	if (offset > (u64)-1 << 32) | 
 | 		key.offset = 0; | 
 | 	else | 
 | 		key.offset = offset; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (WARN_ON(ret < 0)) | 
 | 		return ret; | 
 | 	ret = 0; | 
 |  | 
 | 	while (1) { | 
 | 		cond_resched(); | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) { | 
 | 				goto out; | 
 | 			} else if (ret > 0) { | 
 | 				ret = 0; | 
 | 				goto out; | 
 | 			} | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		path->slots[0]++; | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &key, slot); | 
 |  | 
 | 		if (key.objectid > inum) | 
 | 			goto out; | 
 |  | 
 | 		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			continue; | 
 |  | 
 | 		extent = btrfs_item_ptr(leaf, slot, | 
 | 					struct btrfs_file_extent_item); | 
 |  | 
 | 		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr) | 
 | 			continue; | 
 |  | 
 | 		/* | 
 | 		 * 'offset' refers to the exact key.offset, | 
 | 		 * NOT the 'offset' field in btrfs_extent_data_ref, ie. | 
 | 		 * (key.offset - extent_offset). | 
 | 		 */ | 
 | 		if (key.offset != offset) | 
 | 			continue; | 
 |  | 
 | 		extent_offset = btrfs_file_extent_offset(leaf, extent); | 
 | 		num_bytes = btrfs_file_extent_num_bytes(leaf, extent); | 
 |  | 
 | 		if (extent_offset >= old->extent_offset + old->offset + | 
 | 		    old->len || extent_offset + num_bytes <= | 
 | 		    old->extent_offset + old->offset) | 
 | 			continue; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	backref = kmalloc(sizeof(*backref), GFP_NOFS); | 
 | 	if (!backref) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	backref->root_id = root_id; | 
 | 	backref->inum = inum; | 
 | 	backref->file_pos = offset; | 
 | 	backref->num_bytes = num_bytes; | 
 | 	backref->extent_offset = extent_offset; | 
 | 	backref->generation = btrfs_file_extent_generation(leaf, extent); | 
 | 	backref->old = old; | 
 | 	backref_insert(&new->root, backref); | 
 | 	old->count++; | 
 | out: | 
 | 	btrfs_release_path(path); | 
 | 	WARN_ON(ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline bool record_extent_backrefs(struct btrfs_path *path, | 
 | 				   struct new_sa_defrag_extent *new) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); | 
 | 	struct old_sa_defrag_extent *old, *tmp; | 
 | 	int ret; | 
 |  | 
 | 	new->path = path; | 
 |  | 
 | 	list_for_each_entry_safe(old, tmp, &new->head, list) { | 
 | 		ret = iterate_inodes_from_logical(old->bytenr + | 
 | 						  old->extent_offset, fs_info, | 
 | 						  path, record_one_backref, | 
 | 						  old, false); | 
 | 		if (ret < 0 && ret != -ENOENT) | 
 | 			return false; | 
 |  | 
 | 		/* no backref to be processed for this extent */ | 
 | 		if (!old->count) { | 
 | 			list_del(&old->list); | 
 | 			kfree(old); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (list_empty(&new->head)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int relink_is_mergable(struct extent_buffer *leaf, | 
 | 			      struct btrfs_file_extent_item *fi, | 
 | 			      struct new_sa_defrag_extent *new) | 
 | { | 
 | 	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr) | 
 | 		return 0; | 
 |  | 
 | 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG) | 
 | 		return 0; | 
 |  | 
 | 	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type) | 
 | 		return 0; | 
 |  | 
 | 	if (btrfs_file_extent_encryption(leaf, fi) || | 
 | 	    btrfs_file_extent_other_encoding(leaf, fi)) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Note the backref might has changed, and in this case we just return 0. | 
 |  */ | 
 | static noinline int relink_extent_backref(struct btrfs_path *path, | 
 | 				 struct sa_defrag_extent_backref *prev, | 
 | 				 struct sa_defrag_extent_backref *backref) | 
 | { | 
 | 	struct btrfs_file_extent_item *extent; | 
 | 	struct btrfs_file_extent_item *item; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root; | 
 | 	struct btrfs_key key; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct old_sa_defrag_extent *old = backref->old; | 
 | 	struct new_sa_defrag_extent *new = old->new; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); | 
 | 	struct inode *inode; | 
 | 	struct extent_state *cached = NULL; | 
 | 	int ret = 0; | 
 | 	u64 start; | 
 | 	u64 len; | 
 | 	u64 lock_start; | 
 | 	u64 lock_end; | 
 | 	bool merge = false; | 
 | 	int index; | 
 |  | 
 | 	if (prev && prev->root_id == backref->root_id && | 
 | 	    prev->inum == backref->inum && | 
 | 	    prev->file_pos + prev->num_bytes == backref->file_pos) | 
 | 		merge = true; | 
 |  | 
 | 	/* step 1: get root */ | 
 | 	key.objectid = backref->root_id; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	index = srcu_read_lock(&fs_info->subvol_srcu); | 
 |  | 
 | 	root = btrfs_read_fs_root_no_name(fs_info, &key); | 
 | 	if (IS_ERR(root)) { | 
 | 		srcu_read_unlock(&fs_info->subvol_srcu, index); | 
 | 		if (PTR_ERR(root) == -ENOENT) | 
 | 			return 0; | 
 | 		return PTR_ERR(root); | 
 | 	} | 
 |  | 
 | 	if (btrfs_root_readonly(root)) { | 
 | 		srcu_read_unlock(&fs_info->subvol_srcu, index); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* step 2: get inode */ | 
 | 	key.objectid = backref->inum; | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 |  | 
 | 	inode = btrfs_iget(fs_info->sb, &key, root, NULL); | 
 | 	if (IS_ERR(inode)) { | 
 | 		srcu_read_unlock(&fs_info->subvol_srcu, index); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	srcu_read_unlock(&fs_info->subvol_srcu, index); | 
 |  | 
 | 	/* step 3: relink backref */ | 
 | 	lock_start = backref->file_pos; | 
 | 	lock_end = backref->file_pos + backref->num_bytes - 1; | 
 | 	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end, | 
 | 			 &cached); | 
 |  | 
 | 	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end); | 
 | 	if (ordered) { | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	key.objectid = backref->inum; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = backref->file_pos; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) { | 
 | 		goto out_free_path; | 
 | 	} else if (ret > 0) { | 
 | 		ret = 0; | 
 | 		goto out_free_path; | 
 | 	} | 
 |  | 
 | 	extent = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				struct btrfs_file_extent_item); | 
 |  | 
 | 	if (btrfs_file_extent_generation(path->nodes[0], extent) != | 
 | 	    backref->generation) | 
 | 		goto out_free_path; | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	start = backref->file_pos; | 
 | 	if (backref->extent_offset < old->extent_offset + old->offset) | 
 | 		start += old->extent_offset + old->offset - | 
 | 			 backref->extent_offset; | 
 |  | 
 | 	len = min(backref->extent_offset + backref->num_bytes, | 
 | 		  old->extent_offset + old->offset + old->len); | 
 | 	len -= max(backref->extent_offset, old->extent_offset + old->offset); | 
 |  | 
 | 	ret = btrfs_drop_extents(trans, root, inode, start, | 
 | 				 start + len, 1); | 
 | 	if (ret) | 
 | 		goto out_free_path; | 
 | again: | 
 | 	key.objectid = btrfs_ino(BTRFS_I(inode)); | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = start; | 
 |  | 
 | 	path->leave_spinning = 1; | 
 | 	if (merge) { | 
 | 		struct btrfs_file_extent_item *fi; | 
 | 		u64 extent_len; | 
 | 		struct btrfs_key found_key; | 
 |  | 
 | 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1); | 
 | 		if (ret < 0) | 
 | 			goto out_free_path; | 
 |  | 
 | 		path->slots[0]--; | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 |  | 
 | 		fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_file_extent_item); | 
 | 		extent_len = btrfs_file_extent_num_bytes(leaf, fi); | 
 |  | 
 | 		if (extent_len + found_key.offset == start && | 
 | 		    relink_is_mergable(leaf, fi, new)) { | 
 | 			btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							extent_len + len); | 
 | 			btrfs_mark_buffer_dirty(leaf); | 
 | 			inode_add_bytes(inode, len); | 
 |  | 
 | 			ret = 1; | 
 | 			goto out_free_path; | 
 | 		} else { | 
 | 			merge = false; | 
 | 			btrfs_release_path(path); | 
 | 			goto again; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 					sizeof(*extent)); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_free_path; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				struct btrfs_file_extent_item); | 
 | 	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr); | 
 | 	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len); | 
 | 	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos); | 
 | 	btrfs_set_file_extent_num_bytes(leaf, item, len); | 
 | 	btrfs_set_file_extent_ram_bytes(leaf, item, new->len); | 
 | 	btrfs_set_file_extent_generation(leaf, item, trans->transid); | 
 | 	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG); | 
 | 	btrfs_set_file_extent_compression(leaf, item, new->compress_type); | 
 | 	btrfs_set_file_extent_encryption(leaf, item, 0); | 
 | 	btrfs_set_file_extent_other_encoding(leaf, item, 0); | 
 |  | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	inode_add_bytes(inode, len); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	ret = btrfs_inc_extent_ref(trans, root, new->bytenr, | 
 | 			new->disk_len, 0, | 
 | 			backref->root_id, backref->inum, | 
 | 			new->file_pos);	/* start - extent_offset */ | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_free_path; | 
 | 	} | 
 |  | 
 | 	ret = 1; | 
 | out_free_path: | 
 | 	btrfs_release_path(path); | 
 | 	path->leave_spinning = 0; | 
 | 	btrfs_end_transaction(trans); | 
 | out_unlock: | 
 | 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end, | 
 | 			     &cached); | 
 | 	iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void free_sa_defrag_extent(struct new_sa_defrag_extent *new) | 
 | { | 
 | 	struct old_sa_defrag_extent *old, *tmp; | 
 |  | 
 | 	if (!new) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry_safe(old, tmp, &new->head, list) { | 
 | 		kfree(old); | 
 | 	} | 
 | 	kfree(new); | 
 | } | 
 |  | 
 | static void relink_file_extents(struct new_sa_defrag_extent *new) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb); | 
 | 	struct btrfs_path *path; | 
 | 	struct sa_defrag_extent_backref *backref; | 
 | 	struct sa_defrag_extent_backref *prev = NULL; | 
 | 	struct inode *inode; | 
 | 	struct rb_node *node; | 
 | 	int ret; | 
 |  | 
 | 	inode = new->inode; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return; | 
 |  | 
 | 	if (!record_extent_backrefs(path, new)) { | 
 | 		btrfs_free_path(path); | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	while (1) { | 
 | 		node = rb_first(&new->root); | 
 | 		if (!node) | 
 | 			break; | 
 | 		rb_erase(node, &new->root); | 
 |  | 
 | 		backref = rb_entry(node, struct sa_defrag_extent_backref, node); | 
 |  | 
 | 		ret = relink_extent_backref(path, prev, backref); | 
 | 		WARN_ON(ret < 0); | 
 |  | 
 | 		kfree(prev); | 
 |  | 
 | 		if (ret == 1) | 
 | 			prev = backref; | 
 | 		else | 
 | 			prev = NULL; | 
 | 		cond_resched(); | 
 | 	} | 
 | 	kfree(prev); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | out: | 
 | 	free_sa_defrag_extent(new); | 
 |  | 
 | 	atomic_dec(&fs_info->defrag_running); | 
 | 	wake_up(&fs_info->transaction_wait); | 
 | } | 
 |  | 
 | static struct new_sa_defrag_extent * | 
 | record_old_file_extents(struct inode *inode, | 
 | 			struct btrfs_ordered_extent *ordered) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct old_sa_defrag_extent *old; | 
 | 	struct new_sa_defrag_extent *new; | 
 | 	int ret; | 
 |  | 
 | 	new = kmalloc(sizeof(*new), GFP_NOFS); | 
 | 	if (!new) | 
 | 		return NULL; | 
 |  | 
 | 	new->inode = inode; | 
 | 	new->file_pos = ordered->file_offset; | 
 | 	new->len = ordered->len; | 
 | 	new->bytenr = ordered->start; | 
 | 	new->disk_len = ordered->disk_len; | 
 | 	new->compress_type = ordered->compress_type; | 
 | 	new->root = RB_ROOT; | 
 | 	INIT_LIST_HEAD(&new->head); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		goto out_kfree; | 
 |  | 
 | 	key.objectid = btrfs_ino(BTRFS_I(inode)); | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	key.offset = new->file_pos; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out_free_path; | 
 | 	if (ret > 0 && path->slots[0] > 0) | 
 | 		path->slots[0]--; | 
 |  | 
 | 	/* find out all the old extents for the file range */ | 
 | 	while (1) { | 
 | 		struct btrfs_file_extent_item *extent; | 
 | 		struct extent_buffer *l; | 
 | 		int slot; | 
 | 		u64 num_bytes; | 
 | 		u64 offset; | 
 | 		u64 end; | 
 | 		u64 disk_bytenr; | 
 | 		u64 extent_offset; | 
 |  | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 |  | 
 | 		if (slot >= btrfs_header_nritems(l)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto out_free_path; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(l, &key, slot); | 
 |  | 
 | 		if (key.objectid != btrfs_ino(BTRFS_I(inode))) | 
 | 			break; | 
 | 		if (key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			break; | 
 | 		if (key.offset >= new->file_pos + new->len) | 
 | 			break; | 
 |  | 
 | 		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item); | 
 |  | 
 | 		num_bytes = btrfs_file_extent_num_bytes(l, extent); | 
 | 		if (key.offset + num_bytes < new->file_pos) | 
 | 			goto next; | 
 |  | 
 | 		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent); | 
 | 		if (!disk_bytenr) | 
 | 			goto next; | 
 |  | 
 | 		extent_offset = btrfs_file_extent_offset(l, extent); | 
 |  | 
 | 		old = kmalloc(sizeof(*old), GFP_NOFS); | 
 | 		if (!old) | 
 | 			goto out_free_path; | 
 |  | 
 | 		offset = max(new->file_pos, key.offset); | 
 | 		end = min(new->file_pos + new->len, key.offset + num_bytes); | 
 |  | 
 | 		old->bytenr = disk_bytenr; | 
 | 		old->extent_offset = extent_offset; | 
 | 		old->offset = offset - key.offset; | 
 | 		old->len = end - offset; | 
 | 		old->new = new; | 
 | 		old->count = 0; | 
 | 		list_add_tail(&old->list, &new->head); | 
 | next: | 
 | 		path->slots[0]++; | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	atomic_inc(&fs_info->defrag_running); | 
 |  | 
 | 	return new; | 
 |  | 
 | out_free_path: | 
 | 	btrfs_free_path(path); | 
 | out_kfree: | 
 | 	free_sa_defrag_extent(new); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info, | 
 | 					 u64 start, u64 len) | 
 | { | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	cache = btrfs_lookup_block_group(fs_info, start); | 
 | 	ASSERT(cache); | 
 |  | 
 | 	spin_lock(&cache->lock); | 
 | 	cache->delalloc_bytes -= len; | 
 | 	spin_unlock(&cache->lock); | 
 |  | 
 | 	btrfs_put_block_group(cache); | 
 | } | 
 |  | 
 | /* as ordered data IO finishes, this gets called so we can finish | 
 |  * an ordered extent if the range of bytes in the file it covers are | 
 |  * fully written. | 
 |  */ | 
 | static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent) | 
 | { | 
 | 	struct inode *inode = ordered_extent->inode; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_trans_handle *trans = NULL; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct new_sa_defrag_extent *new = NULL; | 
 | 	int compress_type = 0; | 
 | 	int ret = 0; | 
 | 	u64 logical_len = ordered_extent->len; | 
 | 	bool nolock; | 
 | 	bool truncated = false; | 
 | 	bool range_locked = false; | 
 | 	bool clear_new_delalloc_bytes = false; | 
 | 	bool clear_reserved_extent = true; | 
 |  | 
 | 	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && | 
 | 	    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) && | 
 | 	    !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags)) | 
 | 		clear_new_delalloc_bytes = true; | 
 |  | 
 | 	nolock = btrfs_is_free_space_inode(BTRFS_I(inode)); | 
 |  | 
 | 	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) { | 
 | 		ret = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	btrfs_free_io_failure_record(BTRFS_I(inode), | 
 | 			ordered_extent->file_offset, | 
 | 			ordered_extent->file_offset + | 
 | 			ordered_extent->len - 1); | 
 |  | 
 | 	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) { | 
 | 		truncated = true; | 
 | 		logical_len = ordered_extent->truncated_len; | 
 | 		/* Truncated the entire extent, don't bother adding */ | 
 | 		if (!logical_len) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) { | 
 | 		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */ | 
 |  | 
 | 		/* | 
 | 		 * For mwrite(mmap + memset to write) case, we still reserve | 
 | 		 * space for NOCOW range. | 
 | 		 * As NOCOW won't cause a new delayed ref, just free the space | 
 | 		 */ | 
 | 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, | 
 | 				       ordered_extent->len); | 
 | 		btrfs_ordered_update_i_size(inode, 0, ordered_extent); | 
 | 		if (nolock) | 
 | 			trans = btrfs_join_transaction_nolock(root); | 
 | 		else | 
 | 			trans = btrfs_join_transaction(root); | 
 | 		if (IS_ERR(trans)) { | 
 | 			ret = PTR_ERR(trans); | 
 | 			trans = NULL; | 
 | 			goto out; | 
 | 		} | 
 | 		trans->block_rsv = &BTRFS_I(inode)->block_rsv; | 
 | 		ret = btrfs_update_inode_fallback(trans, root, inode); | 
 | 		if (ret) /* -ENOMEM or corruption */ | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	range_locked = true; | 
 | 	lock_extent_bits(io_tree, ordered_extent->file_offset, | 
 | 			 ordered_extent->file_offset + ordered_extent->len - 1, | 
 | 			 &cached_state); | 
 |  | 
 | 	ret = test_range_bit(io_tree, ordered_extent->file_offset, | 
 | 			ordered_extent->file_offset + ordered_extent->len - 1, | 
 | 			EXTENT_DEFRAG, 0, cached_state); | 
 | 	if (ret) { | 
 | 		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item); | 
 | 		if (0 && last_snapshot >= BTRFS_I(inode)->generation) | 
 | 			/* the inode is shared */ | 
 | 			new = record_old_file_extents(inode, ordered_extent); | 
 |  | 
 | 		clear_extent_bit(io_tree, ordered_extent->file_offset, | 
 | 			ordered_extent->file_offset + ordered_extent->len - 1, | 
 | 			EXTENT_DEFRAG, 0, 0, &cached_state); | 
 | 	} | 
 |  | 
 | 	if (nolock) | 
 | 		trans = btrfs_join_transaction_nolock(root); | 
 | 	else | 
 | 		trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		trans = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trans->block_rsv = &BTRFS_I(inode)->block_rsv; | 
 |  | 
 | 	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags)) | 
 | 		compress_type = ordered_extent->compress_type; | 
 | 	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) { | 
 | 		BUG_ON(compress_type); | 
 | 		btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset, | 
 | 				       ordered_extent->len); | 
 | 		ret = btrfs_mark_extent_written(trans, BTRFS_I(inode), | 
 | 						ordered_extent->file_offset, | 
 | 						ordered_extent->file_offset + | 
 | 						logical_len); | 
 | 	} else { | 
 | 		BUG_ON(root == fs_info->tree_root); | 
 | 		ret = insert_reserved_file_extent(trans, inode, | 
 | 						ordered_extent->file_offset, | 
 | 						ordered_extent->start, | 
 | 						ordered_extent->disk_len, | 
 | 						logical_len, logical_len, | 
 | 						compress_type, 0, 0, | 
 | 						BTRFS_FILE_EXTENT_REG); | 
 | 		if (!ret) { | 
 | 			clear_reserved_extent = false; | 
 | 			btrfs_release_delalloc_bytes(fs_info, | 
 | 						     ordered_extent->start, | 
 | 						     ordered_extent->disk_len); | 
 | 		} | 
 | 	} | 
 | 	unpin_extent_cache(&BTRFS_I(inode)->extent_tree, | 
 | 			   ordered_extent->file_offset, ordered_extent->len, | 
 | 			   trans->transid); | 
 | 	if (ret < 0) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = add_pending_csums(trans, inode, &ordered_extent->list); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	btrfs_ordered_update_i_size(inode, 0, ordered_extent); | 
 | 	ret = btrfs_update_inode_fallback(trans, root, inode); | 
 | 	if (ret) { /* -ENOMEM or corruption */ | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} | 
 | 	ret = 0; | 
 | out: | 
 | 	if (range_locked || clear_new_delalloc_bytes) { | 
 | 		unsigned int clear_bits = 0; | 
 |  | 
 | 		if (range_locked) | 
 | 			clear_bits |= EXTENT_LOCKED; | 
 | 		if (clear_new_delalloc_bytes) | 
 | 			clear_bits |= EXTENT_DELALLOC_NEW; | 
 | 		clear_extent_bit(&BTRFS_I(inode)->io_tree, | 
 | 				 ordered_extent->file_offset, | 
 | 				 ordered_extent->file_offset + | 
 | 				 ordered_extent->len - 1, | 
 | 				 clear_bits, | 
 | 				 (clear_bits & EXTENT_LOCKED) ? 1 : 0, | 
 | 				 0, &cached_state); | 
 | 	} | 
 |  | 
 | 	if (trans) | 
 | 		btrfs_end_transaction(trans); | 
 |  | 
 | 	if (ret || truncated) { | 
 | 		u64 start, end; | 
 |  | 
 | 		if (truncated) | 
 | 			start = ordered_extent->file_offset + logical_len; | 
 | 		else | 
 | 			start = ordered_extent->file_offset; | 
 | 		end = ordered_extent->file_offset + ordered_extent->len - 1; | 
 | 		clear_extent_uptodate(io_tree, start, end, NULL); | 
 |  | 
 | 		/* Drop the cache for the part of the extent we didn't write. */ | 
 | 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); | 
 |  | 
 | 		/* | 
 | 		 * If the ordered extent had an IOERR or something else went | 
 | 		 * wrong we need to return the space for this ordered extent | 
 | 		 * back to the allocator.  We only free the extent in the | 
 | 		 * truncated case if we didn't write out the extent at all. | 
 | 		 * | 
 | 		 * If we made it past insert_reserved_file_extent before we | 
 | 		 * errored out then we don't need to do this as the accounting | 
 | 		 * has already been done. | 
 | 		 */ | 
 | 		if ((ret || !logical_len) && | 
 | 		    clear_reserved_extent && | 
 | 		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) && | 
 | 		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) | 
 | 			btrfs_free_reserved_extent(fs_info, | 
 | 						   ordered_extent->start, | 
 | 						   ordered_extent->disk_len, 1); | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * This needs to be done to make sure anybody waiting knows we are done | 
 | 	 * updating everything for this ordered extent. | 
 | 	 */ | 
 | 	btrfs_remove_ordered_extent(inode, ordered_extent); | 
 |  | 
 | 	/* for snapshot-aware defrag */ | 
 | 	if (new) { | 
 | 		if (ret) { | 
 | 			free_sa_defrag_extent(new); | 
 | 			atomic_dec(&fs_info->defrag_running); | 
 | 		} else { | 
 | 			relink_file_extents(new); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* once for us */ | 
 | 	btrfs_put_ordered_extent(ordered_extent); | 
 | 	/* once for the tree */ | 
 | 	btrfs_put_ordered_extent(ordered_extent); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void finish_ordered_fn(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_ordered_extent *ordered_extent; | 
 | 	ordered_extent = container_of(work, struct btrfs_ordered_extent, work); | 
 | 	btrfs_finish_ordered_io(ordered_extent); | 
 | } | 
 |  | 
 | static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end, | 
 | 				struct extent_state *state, int uptodate) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_ordered_extent *ordered_extent = NULL; | 
 | 	struct btrfs_workqueue *wq; | 
 | 	btrfs_work_func_t func; | 
 |  | 
 | 	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate); | 
 |  | 
 | 	ClearPagePrivate2(page); | 
 | 	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start, | 
 | 					    end - start + 1, uptodate)) | 
 | 		return; | 
 |  | 
 | 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) { | 
 | 		wq = fs_info->endio_freespace_worker; | 
 | 		func = btrfs_freespace_write_helper; | 
 | 	} else { | 
 | 		wq = fs_info->endio_write_workers; | 
 | 		func = btrfs_endio_write_helper; | 
 | 	} | 
 |  | 
 | 	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL, | 
 | 			NULL); | 
 | 	btrfs_queue_work(wq, &ordered_extent->work); | 
 | } | 
 |  | 
 | static int __readpage_endio_check(struct inode *inode, | 
 | 				  struct btrfs_io_bio *io_bio, | 
 | 				  int icsum, struct page *page, | 
 | 				  int pgoff, u64 start, size_t len) | 
 | { | 
 | 	char *kaddr; | 
 | 	u32 csum_expected; | 
 | 	u32 csum = ~(u32)0; | 
 |  | 
 | 	csum_expected = *(((u32 *)io_bio->csum) + icsum); | 
 |  | 
 | 	kaddr = kmap_atomic(page); | 
 | 	csum = btrfs_csum_data(kaddr + pgoff, csum,  len); | 
 | 	btrfs_csum_final(csum, (u8 *)&csum); | 
 | 	if (csum != csum_expected) | 
 | 		goto zeroit; | 
 |  | 
 | 	kunmap_atomic(kaddr); | 
 | 	return 0; | 
 | zeroit: | 
 | 	btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected, | 
 | 				    io_bio->mirror_num); | 
 | 	memset(kaddr + pgoff, 1, len); | 
 | 	flush_dcache_page(page); | 
 | 	kunmap_atomic(kaddr); | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /* | 
 |  * when reads are done, we need to check csums to verify the data is correct | 
 |  * if there's a match, we allow the bio to finish.  If not, the code in | 
 |  * extent_io.c will try to find good copies for us. | 
 |  */ | 
 | static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio, | 
 | 				      u64 phy_offset, struct page *page, | 
 | 				      u64 start, u64 end, int mirror) | 
 | { | 
 | 	size_t offset = start - page_offset(page); | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 |  | 
 | 	if (PageChecked(page)) { | 
 | 		ClearPageChecked(page); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) | 
 | 		return 0; | 
 |  | 
 | 	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID && | 
 | 	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) { | 
 | 		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	phy_offset >>= inode->i_sb->s_blocksize_bits; | 
 | 	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset, | 
 | 				      start, (size_t)(end - start + 1)); | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_add_delayed_iput - perform a delayed iput on @inode | 
 |  * | 
 |  * @inode: The inode we want to perform iput on | 
 |  * | 
 |  * This function uses the generic vfs_inode::i_count to track whether we should | 
 |  * just decrement it (in case it's > 1) or if this is the last iput then link | 
 |  * the inode to the delayed iput machinery. Delayed iputs are processed at | 
 |  * transaction commit time/superblock commit/cleaner kthread. | 
 |  */ | 
 | void btrfs_add_delayed_iput(struct inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_inode *binode = BTRFS_I(inode); | 
 |  | 
 | 	if (atomic_add_unless(&inode->i_count, -1, 1)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&fs_info->delayed_iput_lock); | 
 | 	ASSERT(list_empty(&binode->delayed_iput)); | 
 | 	list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs); | 
 | 	spin_unlock(&fs_info->delayed_iput_lock); | 
 | } | 
 |  | 
 | void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info) | 
 | { | 
 |  | 
 | 	spin_lock(&fs_info->delayed_iput_lock); | 
 | 	while (!list_empty(&fs_info->delayed_iputs)) { | 
 | 		struct btrfs_inode *inode; | 
 |  | 
 | 		inode = list_first_entry(&fs_info->delayed_iputs, | 
 | 				struct btrfs_inode, delayed_iput); | 
 | 		list_del_init(&inode->delayed_iput); | 
 | 		spin_unlock(&fs_info->delayed_iput_lock); | 
 | 		iput(&inode->vfs_inode); | 
 | 		spin_lock(&fs_info->delayed_iput_lock); | 
 | 	} | 
 | 	spin_unlock(&fs_info->delayed_iput_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * This creates an orphan entry for the given inode in case something goes wrong | 
 |  * in the middle of an unlink. | 
 |  */ | 
 | int btrfs_orphan_add(struct btrfs_trans_handle *trans, | 
 | 		     struct btrfs_inode *inode) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_insert_orphan_item(trans, inode->root, btrfs_ino(inode)); | 
 | 	if (ret && ret != -EEXIST) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * We have done the delete so we can go ahead and remove the orphan item for | 
 |  * this particular inode. | 
 |  */ | 
 | static int btrfs_orphan_del(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_inode *inode) | 
 | { | 
 | 	return btrfs_del_orphan_item(trans, inode->root, btrfs_ino(inode)); | 
 | } | 
 |  | 
 | /* | 
 |  * this cleans up any orphans that may be left on the list from the last use | 
 |  * of this root. | 
 |  */ | 
 | int btrfs_orphan_cleanup(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key, found_key; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct inode *inode; | 
 | 	u64 last_objectid = 0; | 
 | 	int ret = 0, nr_unlink = 0; | 
 |  | 
 | 	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED)) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	path->reada = READA_BACK; | 
 |  | 
 | 	key.objectid = BTRFS_ORPHAN_OBJECTID; | 
 | 	key.type = BTRFS_ORPHAN_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * if ret == 0 means we found what we were searching for, which | 
 | 		 * is weird, but possible, so only screw with path if we didn't | 
 | 		 * find the key and see if we have stuff that matches | 
 | 		 */ | 
 | 		if (ret > 0) { | 
 | 			ret = 0; | 
 | 			if (path->slots[0] == 0) | 
 | 				break; | 
 | 			path->slots[0]--; | 
 | 		} | 
 |  | 
 | 		/* pull out the item */ | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 |  | 
 | 		/* make sure the item matches what we want */ | 
 | 		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID) | 
 | 			break; | 
 | 		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		/* release the path since we're done with it */ | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		/* | 
 | 		 * this is where we are basically btrfs_lookup, without the | 
 | 		 * crossing root thing.  we store the inode number in the | 
 | 		 * offset of the orphan item. | 
 | 		 */ | 
 |  | 
 | 		if (found_key.offset == last_objectid) { | 
 | 			btrfs_err(fs_info, | 
 | 				  "Error removing orphan entry, stopping orphan cleanup"); | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		last_objectid = found_key.offset; | 
 |  | 
 | 		found_key.objectid = found_key.offset; | 
 | 		found_key.type = BTRFS_INODE_ITEM_KEY; | 
 | 		found_key.offset = 0; | 
 | 		inode = btrfs_iget(fs_info->sb, &found_key, root, NULL); | 
 | 		ret = PTR_ERR_OR_ZERO(inode); | 
 | 		if (ret && ret != -ENOENT) | 
 | 			goto out; | 
 |  | 
 | 		if (ret == -ENOENT && root == fs_info->tree_root) { | 
 | 			struct btrfs_root *dead_root; | 
 | 			struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 			int is_dead_root = 0; | 
 |  | 
 | 			/* | 
 | 			 * this is an orphan in the tree root. Currently these | 
 | 			 * could come from 2 sources: | 
 | 			 *  a) a snapshot deletion in progress | 
 | 			 *  b) a free space cache inode | 
 | 			 * We need to distinguish those two, as the snapshot | 
 | 			 * orphan must not get deleted. | 
 | 			 * find_dead_roots already ran before us, so if this | 
 | 			 * is a snapshot deletion, we should find the root | 
 | 			 * in the dead_roots list | 
 | 			 */ | 
 | 			spin_lock(&fs_info->trans_lock); | 
 | 			list_for_each_entry(dead_root, &fs_info->dead_roots, | 
 | 					    root_list) { | 
 | 				if (dead_root->root_key.objectid == | 
 | 				    found_key.objectid) { | 
 | 					is_dead_root = 1; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			spin_unlock(&fs_info->trans_lock); | 
 | 			if (is_dead_root) { | 
 | 				/* prevent this orphan from being found again */ | 
 | 				key.offset = found_key.objectid - 1; | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * If we have an inode with links, there are a couple of | 
 | 		 * possibilities. Old kernels (before v3.12) used to create an | 
 | 		 * orphan item for truncate indicating that there were possibly | 
 | 		 * extent items past i_size that needed to be deleted. In v3.12, | 
 | 		 * truncate was changed to update i_size in sync with the extent | 
 | 		 * items, but the (useless) orphan item was still created. Since | 
 | 		 * v4.18, we don't create the orphan item for truncate at all. | 
 | 		 * | 
 | 		 * So, this item could mean that we need to do a truncate, but | 
 | 		 * only if this filesystem was last used on a pre-v3.12 kernel | 
 | 		 * and was not cleanly unmounted. The odds of that are quite | 
 | 		 * slim, and it's a pain to do the truncate now, so just delete | 
 | 		 * the orphan item. | 
 | 		 * | 
 | 		 * It's also possible that this orphan item was supposed to be | 
 | 		 * deleted but wasn't. The inode number may have been reused, | 
 | 		 * but either way, we can delete the orphan item. | 
 | 		 */ | 
 | 		if (ret == -ENOENT || inode->i_nlink) { | 
 | 			if (!ret) | 
 | 				iput(inode); | 
 | 			trans = btrfs_start_transaction(root, 1); | 
 | 			if (IS_ERR(trans)) { | 
 | 				ret = PTR_ERR(trans); | 
 | 				goto out; | 
 | 			} | 
 | 			btrfs_debug(fs_info, "auto deleting %Lu", | 
 | 				    found_key.objectid); | 
 | 			ret = btrfs_del_orphan_item(trans, root, | 
 | 						    found_key.objectid); | 
 | 			btrfs_end_transaction(trans); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		nr_unlink++; | 
 |  | 
 | 		/* this will do delete_inode and everything for us */ | 
 | 		iput(inode); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 | 	/* release the path since we're done with it */ | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE; | 
 |  | 
 | 	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) { | 
 | 		trans = btrfs_join_transaction(root); | 
 | 		if (!IS_ERR(trans)) | 
 | 			btrfs_end_transaction(trans); | 
 | 	} | 
 |  | 
 | 	if (nr_unlink) | 
 | 		btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink); | 
 |  | 
 | out: | 
 | 	if (ret) | 
 | 		btrfs_err(fs_info, "could not do orphan cleanup %d", ret); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * very simple check to peek ahead in the leaf looking for xattrs.  If we | 
 |  * don't find any xattrs, we know there can't be any acls. | 
 |  * | 
 |  * slot is the slot the inode is in, objectid is the objectid of the inode | 
 |  */ | 
 | static noinline int acls_after_inode_item(struct extent_buffer *leaf, | 
 | 					  int slot, u64 objectid, | 
 | 					  int *first_xattr_slot) | 
 | { | 
 | 	u32 nritems = btrfs_header_nritems(leaf); | 
 | 	struct btrfs_key found_key; | 
 | 	static u64 xattr_access = 0; | 
 | 	static u64 xattr_default = 0; | 
 | 	int scanned = 0; | 
 |  | 
 | 	if (!xattr_access) { | 
 | 		xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS, | 
 | 					strlen(XATTR_NAME_POSIX_ACL_ACCESS)); | 
 | 		xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT, | 
 | 					strlen(XATTR_NAME_POSIX_ACL_DEFAULT)); | 
 | 	} | 
 |  | 
 | 	slot++; | 
 | 	*first_xattr_slot = -1; | 
 | 	while (slot < nritems) { | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 |  | 
 | 		/* we found a different objectid, there must not be acls */ | 
 | 		if (found_key.objectid != objectid) | 
 | 			return 0; | 
 |  | 
 | 		/* we found an xattr, assume we've got an acl */ | 
 | 		if (found_key.type == BTRFS_XATTR_ITEM_KEY) { | 
 | 			if (*first_xattr_slot == -1) | 
 | 				*first_xattr_slot = slot; | 
 | 			if (found_key.offset == xattr_access || | 
 | 			    found_key.offset == xattr_default) | 
 | 				return 1; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * we found a key greater than an xattr key, there can't | 
 | 		 * be any acls later on | 
 | 		 */ | 
 | 		if (found_key.type > BTRFS_XATTR_ITEM_KEY) | 
 | 			return 0; | 
 |  | 
 | 		slot++; | 
 | 		scanned++; | 
 |  | 
 | 		/* | 
 | 		 * it goes inode, inode backrefs, xattrs, extents, | 
 | 		 * so if there are a ton of hard links to an inode there can | 
 | 		 * be a lot of backrefs.  Don't waste time searching too hard, | 
 | 		 * this is just an optimization | 
 | 		 */ | 
 | 		if (scanned >= 8) | 
 | 			break; | 
 | 	} | 
 | 	/* we hit the end of the leaf before we found an xattr or | 
 | 	 * something larger than an xattr.  We have to assume the inode | 
 | 	 * has acls | 
 | 	 */ | 
 | 	if (*first_xattr_slot == -1) | 
 | 		*first_xattr_slot = slot; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * read an inode from the btree into the in-memory inode | 
 |  */ | 
 | static int btrfs_read_locked_inode(struct inode *inode, | 
 | 				   struct btrfs_path *in_path) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_path *path = in_path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_key location; | 
 | 	unsigned long ptr; | 
 | 	int maybe_acls; | 
 | 	u32 rdev; | 
 | 	int ret; | 
 | 	bool filled = false; | 
 | 	int first_xattr_slot; | 
 |  | 
 | 	ret = btrfs_fill_inode(inode, &rdev); | 
 | 	if (!ret) | 
 | 		filled = true; | 
 |  | 
 | 	if (!path) { | 
 | 		path = btrfs_alloc_path(); | 
 | 		if (!path) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location)); | 
 |  | 
 | 	ret = btrfs_lookup_inode(NULL, root, path, &location, 0); | 
 | 	if (ret) { | 
 | 		if (path != in_path) | 
 | 			btrfs_free_path(path); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 |  | 
 | 	if (filled) | 
 | 		goto cache_index; | 
 |  | 
 | 	inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_inode_item); | 
 | 	inode->i_mode = btrfs_inode_mode(leaf, inode_item); | 
 | 	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item)); | 
 | 	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item)); | 
 | 	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item)); | 
 | 	btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item)); | 
 |  | 
 | 	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime); | 
 | 	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime); | 
 |  | 
 | 	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime); | 
 | 	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime); | 
 |  | 
 | 	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime); | 
 | 	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime); | 
 |  | 
 | 	BTRFS_I(inode)->i_otime.tv_sec = | 
 | 		btrfs_timespec_sec(leaf, &inode_item->otime); | 
 | 	BTRFS_I(inode)->i_otime.tv_nsec = | 
 | 		btrfs_timespec_nsec(leaf, &inode_item->otime); | 
 |  | 
 | 	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item)); | 
 | 	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item); | 
 | 	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item); | 
 |  | 
 | 	inode_set_iversion_queried(inode, | 
 | 				   btrfs_inode_sequence(leaf, inode_item)); | 
 | 	inode->i_generation = BTRFS_I(inode)->generation; | 
 | 	inode->i_rdev = 0; | 
 | 	rdev = btrfs_inode_rdev(leaf, inode_item); | 
 |  | 
 | 	BTRFS_I(inode)->index_cnt = (u64)-1; | 
 | 	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item); | 
 |  | 
 | cache_index: | 
 | 	/* | 
 | 	 * If we were modified in the current generation and evicted from memory | 
 | 	 * and then re-read we need to do a full sync since we don't have any | 
 | 	 * idea about which extents were modified before we were evicted from | 
 | 	 * cache. | 
 | 	 * | 
 | 	 * This is required for both inode re-read from disk and delayed inode | 
 | 	 * in delayed_nodes_tree. | 
 | 	 */ | 
 | 	if (BTRFS_I(inode)->last_trans == fs_info->generation) | 
 | 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 			&BTRFS_I(inode)->runtime_flags); | 
 |  | 
 | 	/* | 
 | 	 * We don't persist the id of the transaction where an unlink operation | 
 | 	 * against the inode was last made. So here we assume the inode might | 
 | 	 * have been evicted, and therefore the exact value of last_unlink_trans | 
 | 	 * lost, and set it to last_trans to avoid metadata inconsistencies | 
 | 	 * between the inode and its parent if the inode is fsync'ed and the log | 
 | 	 * replayed. For example, in the scenario: | 
 | 	 * | 
 | 	 * touch mydir/foo | 
 | 	 * ln mydir/foo mydir/bar | 
 | 	 * sync | 
 | 	 * unlink mydir/bar | 
 | 	 * echo 2 > /proc/sys/vm/drop_caches   # evicts inode | 
 | 	 * xfs_io -c fsync mydir/foo | 
 | 	 * <power failure> | 
 | 	 * mount fs, triggers fsync log replay | 
 | 	 * | 
 | 	 * We must make sure that when we fsync our inode foo we also log its | 
 | 	 * parent inode, otherwise after log replay the parent still has the | 
 | 	 * dentry with the "bar" name but our inode foo has a link count of 1 | 
 | 	 * and doesn't have an inode ref with the name "bar" anymore. | 
 | 	 * | 
 | 	 * Setting last_unlink_trans to last_trans is a pessimistic approach, | 
 | 	 * but it guarantees correctness at the expense of occasional full | 
 | 	 * transaction commits on fsync if our inode is a directory, or if our | 
 | 	 * inode is not a directory, logging its parent unnecessarily. | 
 | 	 */ | 
 | 	BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans; | 
 | 	/* | 
 | 	 * Similar reasoning for last_link_trans, needs to be set otherwise | 
 | 	 * for a case like the following: | 
 | 	 * | 
 | 	 * mkdir A | 
 | 	 * touch foo | 
 | 	 * ln foo A/bar | 
 | 	 * echo 2 > /proc/sys/vm/drop_caches | 
 | 	 * fsync foo | 
 | 	 * <power failure> | 
 | 	 * | 
 | 	 * Would result in link bar and directory A not existing after the power | 
 | 	 * failure. | 
 | 	 */ | 
 | 	BTRFS_I(inode)->last_link_trans = BTRFS_I(inode)->last_trans; | 
 |  | 
 | 	path->slots[0]++; | 
 | 	if (inode->i_nlink != 1 || | 
 | 	    path->slots[0] >= btrfs_header_nritems(leaf)) | 
 | 		goto cache_acl; | 
 |  | 
 | 	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]); | 
 | 	if (location.objectid != btrfs_ino(BTRFS_I(inode))) | 
 | 		goto cache_acl; | 
 |  | 
 | 	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
 | 	if (location.type == BTRFS_INODE_REF_KEY) { | 
 | 		struct btrfs_inode_ref *ref; | 
 |  | 
 | 		ref = (struct btrfs_inode_ref *)ptr; | 
 | 		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref); | 
 | 	} else if (location.type == BTRFS_INODE_EXTREF_KEY) { | 
 | 		struct btrfs_inode_extref *extref; | 
 |  | 
 | 		extref = (struct btrfs_inode_extref *)ptr; | 
 | 		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf, | 
 | 								     extref); | 
 | 	} | 
 | cache_acl: | 
 | 	/* | 
 | 	 * try to precache a NULL acl entry for files that don't have | 
 | 	 * any xattrs or acls | 
 | 	 */ | 
 | 	maybe_acls = acls_after_inode_item(leaf, path->slots[0], | 
 | 			btrfs_ino(BTRFS_I(inode)), &first_xattr_slot); | 
 | 	if (first_xattr_slot != -1) { | 
 | 		path->slots[0] = first_xattr_slot; | 
 | 		ret = btrfs_load_inode_props(inode, path); | 
 | 		if (ret) | 
 | 			btrfs_err(fs_info, | 
 | 				  "error loading props for ino %llu (root %llu): %d", | 
 | 				  btrfs_ino(BTRFS_I(inode)), | 
 | 				  root->root_key.objectid, ret); | 
 | 	} | 
 | 	if (path != in_path) | 
 | 		btrfs_free_path(path); | 
 |  | 
 | 	if (!maybe_acls) | 
 | 		cache_no_acl(inode); | 
 |  | 
 | 	switch (inode->i_mode & S_IFMT) { | 
 | 	case S_IFREG: | 
 | 		inode->i_mapping->a_ops = &btrfs_aops; | 
 | 		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; | 
 | 		inode->i_fop = &btrfs_file_operations; | 
 | 		inode->i_op = &btrfs_file_inode_operations; | 
 | 		break; | 
 | 	case S_IFDIR: | 
 | 		inode->i_fop = &btrfs_dir_file_operations; | 
 | 		inode->i_op = &btrfs_dir_inode_operations; | 
 | 		break; | 
 | 	case S_IFLNK: | 
 | 		inode->i_op = &btrfs_symlink_inode_operations; | 
 | 		inode_nohighmem(inode); | 
 | 		inode->i_mapping->a_ops = &btrfs_symlink_aops; | 
 | 		break; | 
 | 	default: | 
 | 		inode->i_op = &btrfs_special_inode_operations; | 
 | 		init_special_inode(inode, inode->i_mode, rdev); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	btrfs_sync_inode_flags_to_i_flags(inode); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * given a leaf and an inode, copy the inode fields into the leaf | 
 |  */ | 
 | static void fill_inode_item(struct btrfs_trans_handle *trans, | 
 | 			    struct extent_buffer *leaf, | 
 | 			    struct btrfs_inode_item *item, | 
 | 			    struct inode *inode) | 
 | { | 
 | 	struct btrfs_map_token token; | 
 |  | 
 | 	btrfs_init_map_token(&token); | 
 |  | 
 | 	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token); | 
 | 	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token); | 
 | 	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size, | 
 | 				   &token); | 
 | 	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token); | 
 | 	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token); | 
 |  | 
 | 	btrfs_set_token_timespec_sec(leaf, &item->atime, | 
 | 				     inode->i_atime.tv_sec, &token); | 
 | 	btrfs_set_token_timespec_nsec(leaf, &item->atime, | 
 | 				      inode->i_atime.tv_nsec, &token); | 
 |  | 
 | 	btrfs_set_token_timespec_sec(leaf, &item->mtime, | 
 | 				     inode->i_mtime.tv_sec, &token); | 
 | 	btrfs_set_token_timespec_nsec(leaf, &item->mtime, | 
 | 				      inode->i_mtime.tv_nsec, &token); | 
 |  | 
 | 	btrfs_set_token_timespec_sec(leaf, &item->ctime, | 
 | 				     inode->i_ctime.tv_sec, &token); | 
 | 	btrfs_set_token_timespec_nsec(leaf, &item->ctime, | 
 | 				      inode->i_ctime.tv_nsec, &token); | 
 |  | 
 | 	btrfs_set_token_timespec_sec(leaf, &item->otime, | 
 | 				     BTRFS_I(inode)->i_otime.tv_sec, &token); | 
 | 	btrfs_set_token_timespec_nsec(leaf, &item->otime, | 
 | 				      BTRFS_I(inode)->i_otime.tv_nsec, &token); | 
 |  | 
 | 	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode), | 
 | 				     &token); | 
 | 	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation, | 
 | 					 &token); | 
 | 	btrfs_set_token_inode_sequence(leaf, item, inode_peek_iversion(inode), | 
 | 				       &token); | 
 | 	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token); | 
 | 	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token); | 
 | 	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token); | 
 | 	btrfs_set_token_inode_block_group(leaf, item, 0, &token); | 
 | } | 
 |  | 
 | /* | 
 |  * copy everything in the in-memory inode into the btree. | 
 |  */ | 
 | static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, struct inode *inode) | 
 | { | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->leave_spinning = 1; | 
 | 	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location, | 
 | 				 1); | 
 | 	if (ret) { | 
 | 		if (ret > 0) | 
 | 			ret = -ENOENT; | 
 | 		goto failed; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	inode_item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 				    struct btrfs_inode_item); | 
 |  | 
 | 	fill_inode_item(trans, leaf, inode_item, inode); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_set_inode_last_trans(trans, inode); | 
 | 	ret = 0; | 
 | failed: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * copy everything in the in-memory inode into the btree. | 
 |  */ | 
 | noinline int btrfs_update_inode(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, struct inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * If the inode is a free space inode, we can deadlock during commit | 
 | 	 * if we put it into the delayed code. | 
 | 	 * | 
 | 	 * The data relocation inode should also be directly updated | 
 | 	 * without delay | 
 | 	 */ | 
 | 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) | 
 | 	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID | 
 | 	    && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) { | 
 | 		btrfs_update_root_times(trans, root); | 
 |  | 
 | 		ret = btrfs_delayed_update_inode(trans, root, inode); | 
 | 		if (!ret) | 
 | 			btrfs_set_inode_last_trans(trans, inode); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	return btrfs_update_inode_item(trans, root, inode); | 
 | } | 
 |  | 
 | noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans, | 
 | 					 struct btrfs_root *root, | 
 | 					 struct inode *inode) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 | 	if (ret == -ENOSPC) | 
 | 		return btrfs_update_inode_item(trans, root, inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * unlink helper that gets used here in inode.c and in the tree logging | 
 |  * recovery code.  It remove a link in a directory with a given name, and | 
 |  * also drops the back refs in the inode to the directory | 
 |  */ | 
 | static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				struct btrfs_inode *dir, | 
 | 				struct btrfs_inode *inode, | 
 | 				const char *name, int name_len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	int ret = 0; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key key; | 
 | 	u64 index; | 
 | 	u64 ino = btrfs_ino(inode); | 
 | 	u64 dir_ino = btrfs_ino(dir); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	path->leave_spinning = 1; | 
 | 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, | 
 | 				    name, name_len, -1); | 
 | 	if (IS_ERR(di)) { | 
 | 		ret = PTR_ERR(di); | 
 | 		goto err; | 
 | 	} | 
 | 	if (!di) { | 
 | 		ret = -ENOENT; | 
 | 		goto err; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_dir_item_key_to_cpu(leaf, di, &key); | 
 | 	ret = btrfs_delete_one_dir_name(trans, root, path, di); | 
 | 	if (ret) | 
 | 		goto err; | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * If we don't have dir index, we have to get it by looking up | 
 | 	 * the inode ref, since we get the inode ref, remove it directly, | 
 | 	 * it is unnecessary to do delayed deletion. | 
 | 	 * | 
 | 	 * But if we have dir index, needn't search inode ref to get it. | 
 | 	 * Since the inode ref is close to the inode item, it is better | 
 | 	 * that we delay to delete it, and just do this deletion when | 
 | 	 * we update the inode item. | 
 | 	 */ | 
 | 	if (inode->dir_index) { | 
 | 		ret = btrfs_delayed_delete_inode_ref(inode); | 
 | 		if (!ret) { | 
 | 			index = inode->dir_index; | 
 | 			goto skip_backref; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino, | 
 | 				  dir_ino, &index); | 
 | 	if (ret) { | 
 | 		btrfs_info(fs_info, | 
 | 			"failed to delete reference to %.*s, inode %llu parent %llu", | 
 | 			name_len, name, ino, dir_ino); | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto err; | 
 | 	} | 
 | skip_backref: | 
 | 	ret = btrfs_delete_delayed_dir_index(trans, dir, index); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode, | 
 | 			dir_ino); | 
 | 	if (ret != 0 && ret != -ENOENT) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir, | 
 | 			index); | 
 | 	if (ret == -ENOENT) | 
 | 		ret = 0; | 
 | 	else if (ret) | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | err: | 
 | 	btrfs_free_path(path); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2); | 
 | 	inode_inc_iversion(&inode->vfs_inode); | 
 | 	inode_inc_iversion(&dir->vfs_inode); | 
 | 	inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime = | 
 | 		dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode); | 
 | 	ret = btrfs_update_inode(trans, root, &dir->vfs_inode); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_unlink_inode(struct btrfs_trans_handle *trans, | 
 | 		       struct btrfs_root *root, | 
 | 		       struct btrfs_inode *dir, struct btrfs_inode *inode, | 
 | 		       const char *name, int name_len) | 
 | { | 
 | 	int ret; | 
 | 	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len); | 
 | 	if (!ret) { | 
 | 		drop_nlink(&inode->vfs_inode); | 
 | 		ret = btrfs_update_inode(trans, root, &inode->vfs_inode); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to start transaction for unlink and rmdir. | 
 |  * | 
 |  * unlink and rmdir are special in btrfs, they do not always free space, so | 
 |  * if we cannot make our reservations the normal way try and see if there is | 
 |  * plenty of slack room in the global reserve to migrate, otherwise we cannot | 
 |  * allow the unlink to occur. | 
 |  */ | 
 | static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 |  | 
 | 	/* | 
 | 	 * 1 for the possible orphan item | 
 | 	 * 1 for the dir item | 
 | 	 * 1 for the dir index | 
 | 	 * 1 for the inode ref | 
 | 	 * 1 for the inode | 
 | 	 */ | 
 | 	return btrfs_start_transaction_fallback_global_rsv(root, 5, 5); | 
 | } | 
 |  | 
 | static int btrfs_unlink(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct inode *inode = d_inode(dentry); | 
 | 	int ret; | 
 |  | 
 | 	trans = __unlink_start_trans(dir); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)), | 
 | 			0); | 
 |  | 
 | 	ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir), | 
 | 			BTRFS_I(d_inode(dentry)), dentry->d_name.name, | 
 | 			dentry->d_name.len); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	if (inode->i_nlink == 0) { | 
 | 		ret = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_end_transaction(trans); | 
 | 	btrfs_btree_balance_dirty(root->fs_info); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_unlink_subvol(struct btrfs_trans_handle *trans, | 
 | 			       struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct btrfs_inode *inode = BTRFS_I(d_inode(dentry)); | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key key; | 
 | 	const char *name = dentry->d_name.name; | 
 | 	int name_len = dentry->d_name.len; | 
 | 	u64 index; | 
 | 	int ret; | 
 | 	u64 objectid; | 
 | 	u64 dir_ino = btrfs_ino(BTRFS_I(dir)); | 
 |  | 
 | 	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		objectid = inode->root->root_key.objectid; | 
 | 	} else if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { | 
 | 		objectid = inode->location.objectid; | 
 | 	} else { | 
 | 		WARN_ON(1); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	di = btrfs_lookup_dir_item(trans, root, path, dir_ino, | 
 | 				   name, name_len, -1); | 
 | 	if (IS_ERR_OR_NULL(di)) { | 
 | 		if (!di) | 
 | 			ret = -ENOENT; | 
 | 		else | 
 | 			ret = PTR_ERR(di); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_dir_item_key_to_cpu(leaf, di, &key); | 
 | 	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid); | 
 | 	ret = btrfs_delete_one_dir_name(trans, root, path, di); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * This is a placeholder inode for a subvolume we didn't have a | 
 | 	 * reference to at the time of the snapshot creation.  In the meantime | 
 | 	 * we could have renamed the real subvol link into our snapshot, so | 
 | 	 * depending on btrfs_del_root_ref to return -ENOENT here is incorret. | 
 | 	 * Instead simply lookup the dir_index_item for this entry so we can | 
 | 	 * remove it.  Otherwise we know we have a ref to the root and we can | 
 | 	 * call btrfs_del_root_ref, and it _shouldn't_ fail. | 
 | 	 */ | 
 | 	if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) { | 
 | 		di = btrfs_search_dir_index_item(root, path, dir_ino, | 
 | 						 name, name_len); | 
 | 		if (IS_ERR_OR_NULL(di)) { | 
 | 			if (!di) | 
 | 				ret = -ENOENT; | 
 | 			else | 
 | 				ret = PTR_ERR(di); | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
 | 		index = key.offset; | 
 | 		btrfs_release_path(path); | 
 | 	} else { | 
 | 		ret = btrfs_del_root_ref(trans, objectid, | 
 | 					 root->root_key.objectid, dir_ino, | 
 | 					 &index, name, name_len); | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_delete_delayed_dir_index(trans, BTRFS_I(dir), index); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2); | 
 | 	inode_inc_iversion(dir); | 
 | 	dir->i_mtime = dir->i_ctime = current_time(dir); | 
 | 	ret = btrfs_update_inode_fallback(trans, root, dir); | 
 | 	if (ret) | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Helper to check if the subvolume references other subvolumes or if it's | 
 |  * default. | 
 |  */ | 
 | static noinline int may_destroy_subvol(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key key; | 
 | 	u64 dir_id; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Make sure this root isn't set as the default subvol */ | 
 | 	dir_id = btrfs_super_root_dir(fs_info->super_copy); | 
 | 	di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path, | 
 | 				   dir_id, "default", 7, 0); | 
 | 	if (di && !IS_ERR(di)) { | 
 | 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); | 
 | 		if (key.objectid == root->root_key.objectid) { | 
 | 			ret = -EPERM; | 
 | 			btrfs_err(fs_info, | 
 | 				  "deleting default subvolume %llu is not allowed", | 
 | 				  key.objectid); | 
 | 			goto out; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 |  | 
 | 	key.objectid = root->root_key.objectid; | 
 | 	key.type = BTRFS_ROOT_REF_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	BUG_ON(ret == 0); | 
 |  | 
 | 	ret = 0; | 
 | 	if (path->slots[0] > 0) { | 
 | 		path->slots[0]--; | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 		if (key.objectid == root->root_key.objectid && | 
 | 		    key.type == BTRFS_ROOT_REF_KEY) | 
 | 			ret = -ENOTEMPTY; | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Delete all dentries for inodes belonging to the root */ | 
 | static void btrfs_prune_dentries(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct rb_node *node; | 
 | 	struct rb_node *prev; | 
 | 	struct btrfs_inode *entry; | 
 | 	struct inode *inode; | 
 | 	u64 objectid = 0; | 
 |  | 
 | 	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
 | 		WARN_ON(btrfs_root_refs(&root->root_item) != 0); | 
 |  | 
 | 	spin_lock(&root->inode_lock); | 
 | again: | 
 | 	node = root->inode_tree.rb_node; | 
 | 	prev = NULL; | 
 | 	while (node) { | 
 | 		prev = node; | 
 | 		entry = rb_entry(node, struct btrfs_inode, rb_node); | 
 |  | 
 | 		if (objectid < btrfs_ino(entry)) | 
 | 			node = node->rb_left; | 
 | 		else if (objectid > btrfs_ino(entry)) | 
 | 			node = node->rb_right; | 
 | 		else | 
 | 			break; | 
 | 	} | 
 | 	if (!node) { | 
 | 		while (prev) { | 
 | 			entry = rb_entry(prev, struct btrfs_inode, rb_node); | 
 | 			if (objectid <= btrfs_ino(entry)) { | 
 | 				node = prev; | 
 | 				break; | 
 | 			} | 
 | 			prev = rb_next(prev); | 
 | 		} | 
 | 	} | 
 | 	while (node) { | 
 | 		entry = rb_entry(node, struct btrfs_inode, rb_node); | 
 | 		objectid = btrfs_ino(entry) + 1; | 
 | 		inode = igrab(&entry->vfs_inode); | 
 | 		if (inode) { | 
 | 			spin_unlock(&root->inode_lock); | 
 | 			if (atomic_read(&inode->i_count) > 1) | 
 | 				d_prune_aliases(inode); | 
 | 			/* | 
 | 			 * btrfs_drop_inode will have it removed from the inode | 
 | 			 * cache when its usage count hits zero. | 
 | 			 */ | 
 | 			iput(inode); | 
 | 			cond_resched(); | 
 | 			spin_lock(&root->inode_lock); | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		if (cond_resched_lock(&root->inode_lock)) | 
 | 			goto again; | 
 |  | 
 | 		node = rb_next(node); | 
 | 	} | 
 | 	spin_unlock(&root->inode_lock); | 
 | } | 
 |  | 
 | int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct inode *inode = d_inode(dentry); | 
 | 	struct btrfs_root *dest = BTRFS_I(inode)->root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_block_rsv block_rsv; | 
 | 	u64 root_flags; | 
 | 	int ret; | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * Don't allow to delete a subvolume with send in progress. This is | 
 | 	 * inside the inode lock so the error handling that has to drop the bit | 
 | 	 * again is not run concurrently. | 
 | 	 */ | 
 | 	spin_lock(&dest->root_item_lock); | 
 | 	root_flags = btrfs_root_flags(&dest->root_item); | 
 | 	if (dest->send_in_progress == 0) { | 
 | 		btrfs_set_root_flags(&dest->root_item, | 
 | 				root_flags | BTRFS_ROOT_SUBVOL_DEAD); | 
 | 		spin_unlock(&dest->root_item_lock); | 
 | 	} else { | 
 | 		spin_unlock(&dest->root_item_lock); | 
 | 		btrfs_warn(fs_info, | 
 | 			   "attempt to delete subvolume %llu during send", | 
 | 			   dest->root_key.objectid); | 
 | 		return -EPERM; | 
 | 	} | 
 |  | 
 | 	down_write(&fs_info->subvol_sem); | 
 |  | 
 | 	err = may_destroy_subvol(dest); | 
 | 	if (err) | 
 | 		goto out_up_write; | 
 |  | 
 | 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); | 
 | 	/* | 
 | 	 * One for dir inode, | 
 | 	 * two for dir entries, | 
 | 	 * two for root ref/backref. | 
 | 	 */ | 
 | 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 5, true); | 
 | 	if (err) | 
 | 		goto out_up_write; | 
 |  | 
 | 	trans = btrfs_start_transaction(root, 0); | 
 | 	if (IS_ERR(trans)) { | 
 | 		err = PTR_ERR(trans); | 
 | 		goto out_release; | 
 | 	} | 
 | 	trans->block_rsv = &block_rsv; | 
 | 	trans->bytes_reserved = block_rsv.size; | 
 |  | 
 | 	btrfs_record_snapshot_destroy(trans, BTRFS_I(dir)); | 
 |  | 
 | 	ret = btrfs_unlink_subvol(trans, dir, dentry); | 
 | 	if (ret) { | 
 | 		err = ret; | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_end_trans; | 
 | 	} | 
 |  | 
 | 	btrfs_record_root_in_trans(trans, dest); | 
 |  | 
 | 	memset(&dest->root_item.drop_progress, 0, | 
 | 		sizeof(dest->root_item.drop_progress)); | 
 | 	dest->root_item.drop_level = 0; | 
 | 	btrfs_set_root_refs(&dest->root_item, 0); | 
 |  | 
 | 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { | 
 | 		ret = btrfs_insert_orphan_item(trans, | 
 | 					fs_info->tree_root, | 
 | 					dest->root_key.objectid); | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			err = ret; | 
 | 			goto out_end_trans; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_uuid_tree_remove(trans, dest->root_item.uuid, | 
 | 				  BTRFS_UUID_KEY_SUBVOL, | 
 | 				  dest->root_key.objectid); | 
 | 	if (ret && ret != -ENOENT) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		err = ret; | 
 | 		goto out_end_trans; | 
 | 	} | 
 | 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { | 
 | 		ret = btrfs_uuid_tree_remove(trans, | 
 | 					  dest->root_item.received_uuid, | 
 | 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL, | 
 | 					  dest->root_key.objectid); | 
 | 		if (ret && ret != -ENOENT) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			err = ret; | 
 | 			goto out_end_trans; | 
 | 		} | 
 | 	} | 
 |  | 
 | out_end_trans: | 
 | 	trans->block_rsv = NULL; | 
 | 	trans->bytes_reserved = 0; | 
 | 	ret = btrfs_end_transaction(trans); | 
 | 	if (ret && !err) | 
 | 		err = ret; | 
 | 	inode->i_flags |= S_DEAD; | 
 | out_release: | 
 | 	btrfs_subvolume_release_metadata(fs_info, &block_rsv); | 
 | out_up_write: | 
 | 	up_write(&fs_info->subvol_sem); | 
 | 	if (err) { | 
 | 		spin_lock(&dest->root_item_lock); | 
 | 		root_flags = btrfs_root_flags(&dest->root_item); | 
 | 		btrfs_set_root_flags(&dest->root_item, | 
 | 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); | 
 | 		spin_unlock(&dest->root_item_lock); | 
 | 	} else { | 
 | 		d_invalidate(dentry); | 
 | 		btrfs_prune_dentries(dest); | 
 | 		ASSERT(dest->send_in_progress == 0); | 
 |  | 
 | 		/* the last ref */ | 
 | 		if (dest->ino_cache_inode) { | 
 | 			iput(dest->ino_cache_inode); | 
 | 			dest->ino_cache_inode = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int btrfs_rmdir(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct inode *inode = d_inode(dentry); | 
 | 	int err = 0; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	u64 last_unlink_trans; | 
 |  | 
 | 	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE) | 
 | 		return -ENOTEMPTY; | 
 | 	if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID) | 
 | 		return btrfs_delete_subvolume(dir, dentry); | 
 |  | 
 | 	trans = __unlink_start_trans(dir); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { | 
 | 		err = btrfs_unlink_subvol(trans, dir, dentry); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	last_unlink_trans = BTRFS_I(inode)->last_unlink_trans; | 
 |  | 
 | 	/* now the directory is empty */ | 
 | 	err = btrfs_unlink_inode(trans, root, BTRFS_I(dir), | 
 | 			BTRFS_I(d_inode(dentry)), dentry->d_name.name, | 
 | 			dentry->d_name.len); | 
 | 	if (!err) { | 
 | 		btrfs_i_size_write(BTRFS_I(inode), 0); | 
 | 		/* | 
 | 		 * Propagate the last_unlink_trans value of the deleted dir to | 
 | 		 * its parent directory. This is to prevent an unrecoverable | 
 | 		 * log tree in the case we do something like this: | 
 | 		 * 1) create dir foo | 
 | 		 * 2) create snapshot under dir foo | 
 | 		 * 3) delete the snapshot | 
 | 		 * 4) rmdir foo | 
 | 		 * 5) mkdir foo | 
 | 		 * 6) fsync foo or some file inside foo | 
 | 		 */ | 
 | 		if (last_unlink_trans >= trans->transid) | 
 | 			BTRFS_I(dir)->last_unlink_trans = last_unlink_trans; | 
 | 	} | 
 | out: | 
 | 	btrfs_end_transaction(trans); | 
 | 	btrfs_btree_balance_dirty(root->fs_info); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int truncate_space_check(struct btrfs_trans_handle *trans, | 
 | 				struct btrfs_root *root, | 
 | 				u64 bytes_deleted) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * This is only used to apply pressure to the enospc system, we don't | 
 | 	 * intend to use this reservation at all. | 
 | 	 */ | 
 | 	bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted); | 
 | 	bytes_deleted *= fs_info->nodesize; | 
 | 	ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, | 
 | 				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH); | 
 | 	if (!ret) { | 
 | 		trace_btrfs_space_reservation(fs_info, "transaction", | 
 | 					      trans->transid, | 
 | 					      bytes_deleted, 1); | 
 | 		trans->bytes_reserved += bytes_deleted; | 
 | 	} | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * Return this if we need to call truncate_block for the last bit of the | 
 |  * truncate. | 
 |  */ | 
 | #define NEED_TRUNCATE_BLOCK 1 | 
 |  | 
 | /* | 
 |  * this can truncate away extent items, csum items and directory items. | 
 |  * It starts at a high offset and removes keys until it can't find | 
 |  * any higher than new_size | 
 |  * | 
 |  * csum items that cross the new i_size are truncated to the new size | 
 |  * as well. | 
 |  * | 
 |  * min_type is the minimum key type to truncate down to.  If set to 0, this | 
 |  * will kill all the items on this inode, including the INODE_ITEM_KEY. | 
 |  */ | 
 | int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans, | 
 | 			       struct btrfs_root *root, | 
 | 			       struct inode *inode, | 
 | 			       u64 new_size, u32 min_type) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	u64 extent_start = 0; | 
 | 	u64 extent_num_bytes = 0; | 
 | 	u64 extent_offset = 0; | 
 | 	u64 item_end = 0; | 
 | 	u64 last_size = new_size; | 
 | 	u32 found_type = (u8)-1; | 
 | 	int found_extent; | 
 | 	int del_item; | 
 | 	int pending_del_nr = 0; | 
 | 	int pending_del_slot = 0; | 
 | 	int extent_type = -1; | 
 | 	int ret; | 
 | 	u64 ino = btrfs_ino(BTRFS_I(inode)); | 
 | 	u64 bytes_deleted = 0; | 
 | 	bool be_nice = false; | 
 | 	bool should_throttle = false; | 
 | 	bool should_end = false; | 
 |  | 
 | 	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY); | 
 |  | 
 | 	/* | 
 | 	 * for non-free space inodes and ref cows, we want to back off from | 
 | 	 * time to time | 
 | 	 */ | 
 | 	if (!btrfs_is_free_space_inode(BTRFS_I(inode)) && | 
 | 	    test_bit(BTRFS_ROOT_REF_COWS, &root->state)) | 
 | 		be_nice = true; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->reada = READA_BACK; | 
 |  | 
 | 	/* | 
 | 	 * We want to drop from the next block forward in case this new size is | 
 | 	 * not block aligned since we will be keeping the last block of the | 
 | 	 * extent just the way it is. | 
 | 	 */ | 
 | 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || | 
 | 	    root == fs_info->tree_root) | 
 | 		btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size, | 
 | 					fs_info->sectorsize), | 
 | 					(u64)-1, 0); | 
 |  | 
 | 	/* | 
 | 	 * This function is also used to drop the items in the log tree before | 
 | 	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means | 
 | 	 * it is used to drop the loged items. So we shouldn't kill the delayed | 
 | 	 * items. | 
 | 	 */ | 
 | 	if (min_type == 0 && root == BTRFS_I(inode)->root) | 
 | 		btrfs_kill_delayed_inode_items(BTRFS_I(inode)); | 
 |  | 
 | 	key.objectid = ino; | 
 | 	key.offset = (u64)-1; | 
 | 	key.type = (u8)-1; | 
 |  | 
 | search_again: | 
 | 	/* | 
 | 	 * with a 16K leaf size and 128MB extents, you can actually queue | 
 | 	 * up a huge file in a single leaf.  Most of the time that | 
 | 	 * bytes_deleted is > 0, it will be huge by the time we get here | 
 | 	 */ | 
 | 	if (be_nice && bytes_deleted > SZ_32M && | 
 | 	    btrfs_should_end_transaction(trans)) { | 
 | 		ret = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	path->leave_spinning = 1; | 
 | 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	if (ret > 0) { | 
 | 		ret = 0; | 
 | 		/* there are no items in the tree for us to truncate, we're | 
 | 		 * done | 
 | 		 */ | 
 | 		if (path->slots[0] == 0) | 
 | 			goto out; | 
 | 		path->slots[0]--; | 
 | 	} | 
 |  | 
 | 	while (1) { | 
 | 		fi = NULL; | 
 | 		leaf = path->nodes[0]; | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 		found_type = found_key.type; | 
 |  | 
 | 		if (found_key.objectid != ino) | 
 | 			break; | 
 |  | 
 | 		if (found_type < min_type) | 
 | 			break; | 
 |  | 
 | 		item_end = found_key.offset; | 
 | 		if (found_type == BTRFS_EXTENT_DATA_KEY) { | 
 | 			fi = btrfs_item_ptr(leaf, path->slots[0], | 
 | 					    struct btrfs_file_extent_item); | 
 | 			extent_type = btrfs_file_extent_type(leaf, fi); | 
 | 			if (extent_type != BTRFS_FILE_EXTENT_INLINE) { | 
 | 				item_end += | 
 | 				    btrfs_file_extent_num_bytes(leaf, fi); | 
 |  | 
 | 				trace_btrfs_truncate_show_fi_regular( | 
 | 					BTRFS_I(inode), leaf, fi, | 
 | 					found_key.offset); | 
 | 			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 				item_end += btrfs_file_extent_ram_bytes(leaf, | 
 | 									fi); | 
 |  | 
 | 				trace_btrfs_truncate_show_fi_inline( | 
 | 					BTRFS_I(inode), leaf, fi, path->slots[0], | 
 | 					found_key.offset); | 
 | 			} | 
 | 			item_end--; | 
 | 		} | 
 | 		if (found_type > min_type) { | 
 | 			del_item = 1; | 
 | 		} else { | 
 | 			if (item_end < new_size) | 
 | 				break; | 
 | 			if (found_key.offset >= new_size) | 
 | 				del_item = 1; | 
 | 			else | 
 | 				del_item = 0; | 
 | 		} | 
 | 		found_extent = 0; | 
 | 		/* FIXME, shrink the extent if the ref count is only 1 */ | 
 | 		if (found_type != BTRFS_EXTENT_DATA_KEY) | 
 | 			goto delete; | 
 |  | 
 | 		if (extent_type != BTRFS_FILE_EXTENT_INLINE) { | 
 | 			u64 num_dec; | 
 | 			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi); | 
 | 			if (!del_item) { | 
 | 				u64 orig_num_bytes = | 
 | 					btrfs_file_extent_num_bytes(leaf, fi); | 
 | 				extent_num_bytes = ALIGN(new_size - | 
 | 						found_key.offset, | 
 | 						fs_info->sectorsize); | 
 | 				btrfs_set_file_extent_num_bytes(leaf, fi, | 
 | 							 extent_num_bytes); | 
 | 				num_dec = (orig_num_bytes - | 
 | 					   extent_num_bytes); | 
 | 				if (test_bit(BTRFS_ROOT_REF_COWS, | 
 | 					     &root->state) && | 
 | 				    extent_start != 0) | 
 | 					inode_sub_bytes(inode, num_dec); | 
 | 				btrfs_mark_buffer_dirty(leaf); | 
 | 			} else { | 
 | 				extent_num_bytes = | 
 | 					btrfs_file_extent_disk_num_bytes(leaf, | 
 | 									 fi); | 
 | 				extent_offset = found_key.offset - | 
 | 					btrfs_file_extent_offset(leaf, fi); | 
 |  | 
 | 				/* FIXME blocksize != 4096 */ | 
 | 				num_dec = btrfs_file_extent_num_bytes(leaf, fi); | 
 | 				if (extent_start != 0) { | 
 | 					found_extent = 1; | 
 | 					if (test_bit(BTRFS_ROOT_REF_COWS, | 
 | 						     &root->state)) | 
 | 						inode_sub_bytes(inode, num_dec); | 
 | 				} | 
 | 			} | 
 | 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 			/* | 
 | 			 * we can't truncate inline items that have had | 
 | 			 * special encodings | 
 | 			 */ | 
 | 			if (!del_item && | 
 | 			    btrfs_file_extent_encryption(leaf, fi) == 0 && | 
 | 			    btrfs_file_extent_other_encoding(leaf, fi) == 0 && | 
 | 			    btrfs_file_extent_compression(leaf, fi) == 0) { | 
 | 				u32 size = (u32)(new_size - found_key.offset); | 
 |  | 
 | 				btrfs_set_file_extent_ram_bytes(leaf, fi, size); | 
 | 				size = btrfs_file_extent_calc_inline_size(size); | 
 | 				btrfs_truncate_item(root->fs_info, path, size, 1); | 
 | 			} else if (!del_item) { | 
 | 				/* | 
 | 				 * We have to bail so the last_size is set to | 
 | 				 * just before this extent. | 
 | 				 */ | 
 | 				ret = NEED_TRUNCATE_BLOCK; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) | 
 | 				inode_sub_bytes(inode, item_end + 1 - new_size); | 
 | 		} | 
 | delete: | 
 | 		if (del_item) | 
 | 			last_size = found_key.offset; | 
 | 		else | 
 | 			last_size = new_size; | 
 | 		if (del_item) { | 
 | 			if (!pending_del_nr) { | 
 | 				/* no pending yet, add ourselves */ | 
 | 				pending_del_slot = path->slots[0]; | 
 | 				pending_del_nr = 1; | 
 | 			} else if (pending_del_nr && | 
 | 				   path->slots[0] + 1 == pending_del_slot) { | 
 | 				/* hop on the pending chunk */ | 
 | 				pending_del_nr++; | 
 | 				pending_del_slot = path->slots[0]; | 
 | 			} else { | 
 | 				BUG(); | 
 | 			} | 
 | 		} else { | 
 | 			break; | 
 | 		} | 
 | 		should_throttle = false; | 
 |  | 
 | 		if (found_extent && | 
 | 		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || | 
 | 		     root == fs_info->tree_root)) { | 
 | 			btrfs_set_path_blocking(path); | 
 | 			bytes_deleted += extent_num_bytes; | 
 | 			ret = btrfs_free_extent(trans, root, extent_start, | 
 | 						extent_num_bytes, 0, | 
 | 						btrfs_header_owner(leaf), | 
 | 						ino, extent_offset); | 
 | 			if (ret) { | 
 | 				btrfs_abort_transaction(trans, ret); | 
 | 				break; | 
 | 			} | 
 | 			if (btrfs_should_throttle_delayed_refs(trans, fs_info)) | 
 | 				btrfs_async_run_delayed_refs(fs_info, | 
 | 					trans->delayed_ref_updates * 2, | 
 | 					trans->transid, 0); | 
 | 			if (be_nice) { | 
 | 				if (truncate_space_check(trans, root, | 
 | 							 extent_num_bytes)) { | 
 | 					should_end = true; | 
 | 				} | 
 | 				if (btrfs_should_throttle_delayed_refs(trans, | 
 | 								       fs_info)) | 
 | 					should_throttle = true; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (found_type == BTRFS_INODE_ITEM_KEY) | 
 | 			break; | 
 |  | 
 | 		if (path->slots[0] == 0 || | 
 | 		    path->slots[0] != pending_del_slot || | 
 | 		    should_throttle || should_end) { | 
 | 			if (pending_del_nr) { | 
 | 				ret = btrfs_del_items(trans, root, path, | 
 | 						pending_del_slot, | 
 | 						pending_del_nr); | 
 | 				if (ret) { | 
 | 					btrfs_abort_transaction(trans, ret); | 
 | 					break; | 
 | 				} | 
 | 				pending_del_nr = 0; | 
 | 			} | 
 | 			btrfs_release_path(path); | 
 | 			if (should_throttle) { | 
 | 				unsigned long updates = trans->delayed_ref_updates; | 
 | 				if (updates) { | 
 | 					trans->delayed_ref_updates = 0; | 
 | 					ret = btrfs_run_delayed_refs(trans, | 
 | 								   updates * 2); | 
 | 					if (ret) | 
 | 						break; | 
 | 				} | 
 | 			} | 
 | 			/* | 
 | 			 * if we failed to refill our space rsv, bail out | 
 | 			 * and let the transaction restart | 
 | 			 */ | 
 | 			if (should_end) { | 
 | 				ret = -EAGAIN; | 
 | 				break; | 
 | 			} | 
 | 			goto search_again; | 
 | 		} else { | 
 | 			path->slots[0]--; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	if (ret >= 0 && pending_del_nr) { | 
 | 		int err; | 
 |  | 
 | 		err = btrfs_del_items(trans, root, path, pending_del_slot, | 
 | 				      pending_del_nr); | 
 | 		if (err) { | 
 | 			btrfs_abort_transaction(trans, err); | 
 | 			ret = err; | 
 | 		} | 
 | 	} | 
 | 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
 | 		ASSERT(last_size >= new_size); | 
 | 		if (!ret && last_size > new_size) | 
 | 			last_size = new_size; | 
 | 		btrfs_ordered_update_i_size(inode, last_size, NULL); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	if (be_nice && bytes_deleted > SZ_32M && (ret >= 0 || ret == -EAGAIN)) { | 
 | 		unsigned long updates = trans->delayed_ref_updates; | 
 | 		int err; | 
 |  | 
 | 		if (updates) { | 
 | 			trans->delayed_ref_updates = 0; | 
 | 			err = btrfs_run_delayed_refs(trans, updates * 2); | 
 | 			if (err) | 
 | 				ret = err; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_truncate_block - read, zero a chunk and write a block | 
 |  * @inode - inode that we're zeroing | 
 |  * @from - the offset to start zeroing | 
 |  * @len - the length to zero, 0 to zero the entire range respective to the | 
 |  *	offset | 
 |  * @front - zero up to the offset instead of from the offset on | 
 |  * | 
 |  * This will find the block for the "from" offset and cow the block and zero the | 
 |  * part we want to zero.  This is used with truncate and hole punching. | 
 |  */ | 
 | int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len, | 
 | 			int front) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct address_space *mapping = inode->i_mapping; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct extent_changeset *data_reserved = NULL; | 
 | 	char *kaddr; | 
 | 	u32 blocksize = fs_info->sectorsize; | 
 | 	pgoff_t index = from >> PAGE_SHIFT; | 
 | 	unsigned offset = from & (blocksize - 1); | 
 | 	struct page *page; | 
 | 	gfp_t mask = btrfs_alloc_write_mask(mapping); | 
 | 	int ret = 0; | 
 | 	u64 block_start; | 
 | 	u64 block_end; | 
 |  | 
 | 	if (IS_ALIGNED(offset, blocksize) && | 
 | 	    (!len || IS_ALIGNED(len, blocksize))) | 
 | 		goto out; | 
 |  | 
 | 	block_start = round_down(from, blocksize); | 
 | 	block_end = block_start + blocksize - 1; | 
 |  | 
 | 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, | 
 | 					   block_start, blocksize); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | again: | 
 | 	page = find_or_create_page(mapping, index, mask); | 
 | 	if (!page) { | 
 | 		btrfs_delalloc_release_space(inode, data_reserved, | 
 | 					     block_start, blocksize, true); | 
 | 		btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!PageUptodate(page)) { | 
 | 		ret = btrfs_readpage(NULL, page); | 
 | 		lock_page(page); | 
 | 		if (page->mapping != mapping) { | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 			goto again; | 
 | 		} | 
 | 		if (!PageUptodate(page)) { | 
 | 			ret = -EIO; | 
 | 			goto out_unlock; | 
 | 		} | 
 | 	} | 
 | 	wait_on_page_writeback(page); | 
 |  | 
 | 	lock_extent_bits(io_tree, block_start, block_end, &cached_state); | 
 | 	set_page_extent_mapped(page); | 
 |  | 
 | 	ordered = btrfs_lookup_ordered_extent(inode, block_start); | 
 | 	if (ordered) { | 
 | 		unlock_extent_cached(io_tree, block_start, block_end, | 
 | 				     &cached_state); | 
 | 		unlock_page(page); | 
 | 		put_page(page); | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end, | 
 | 			  EXTENT_DIRTY | EXTENT_DELALLOC | | 
 | 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, | 
 | 			  0, 0, &cached_state); | 
 |  | 
 | 	ret = btrfs_set_extent_delalloc(inode, block_start, block_end, 0, | 
 | 					&cached_state, 0); | 
 | 	if (ret) { | 
 | 		unlock_extent_cached(io_tree, block_start, block_end, | 
 | 				     &cached_state); | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	if (offset != blocksize) { | 
 | 		if (!len) | 
 | 			len = blocksize - offset; | 
 | 		kaddr = kmap(page); | 
 | 		if (front) | 
 | 			memset(kaddr + (block_start - page_offset(page)), | 
 | 				0, offset); | 
 | 		else | 
 | 			memset(kaddr + (block_start - page_offset(page)) +  offset, | 
 | 				0, len); | 
 | 		flush_dcache_page(page); | 
 | 		kunmap(page); | 
 | 	} | 
 | 	ClearPageChecked(page); | 
 | 	set_page_dirty(page); | 
 | 	unlock_extent_cached(io_tree, block_start, block_end, &cached_state); | 
 |  | 
 | out_unlock: | 
 | 	if (ret) | 
 | 		btrfs_delalloc_release_space(inode, data_reserved, block_start, | 
 | 					     blocksize, true); | 
 | 	btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize); | 
 | 	unlock_page(page); | 
 | 	put_page(page); | 
 | out: | 
 | 	extent_changeset_free(data_reserved); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode, | 
 | 			     u64 offset, u64 len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Still need to make sure the inode looks like it's been updated so | 
 | 	 * that any holes get logged if we fsync. | 
 | 	 */ | 
 | 	if (btrfs_fs_incompat(fs_info, NO_HOLES)) { | 
 | 		BTRFS_I(inode)->last_trans = fs_info->generation; | 
 | 		BTRFS_I(inode)->last_sub_trans = root->log_transid; | 
 | 		BTRFS_I(inode)->last_log_commit = root->last_log_commit; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * 1 - for the one we're dropping | 
 | 	 * 1 - for the one we're adding | 
 | 	 * 1 - for updating the inode. | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, 3); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		btrfs_end_transaction(trans); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)), | 
 | 			offset, 0, 0, len, 0, len, 0, 0, 0); | 
 | 	if (ret) | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 	else | 
 | 		btrfs_update_inode(trans, root, inode); | 
 | 	btrfs_end_transaction(trans); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This function puts in dummy file extents for the area we're creating a hole | 
 |  * for.  So if we are truncating this file to a larger size we need to insert | 
 |  * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for | 
 |  * the range between oldsize and size | 
 |  */ | 
 | int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_map *em = NULL; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	u64 hole_start = ALIGN(oldsize, fs_info->sectorsize); | 
 | 	u64 block_end = ALIGN(size, fs_info->sectorsize); | 
 | 	u64 last_byte; | 
 | 	u64 cur_offset; | 
 | 	u64 hole_size; | 
 | 	int err = 0; | 
 |  | 
 | 	/* | 
 | 	 * If our size started in the middle of a block we need to zero out the | 
 | 	 * rest of the block before we expand the i_size, otherwise we could | 
 | 	 * expose stale data. | 
 | 	 */ | 
 | 	err = btrfs_truncate_block(inode, oldsize, 0, 0); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (size <= hole_start) | 
 | 		return 0; | 
 |  | 
 | 	while (1) { | 
 | 		struct btrfs_ordered_extent *ordered; | 
 |  | 
 | 		lock_extent_bits(io_tree, hole_start, block_end - 1, | 
 | 				 &cached_state); | 
 | 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start, | 
 | 						     block_end - hole_start); | 
 | 		if (!ordered) | 
 | 			break; | 
 | 		unlock_extent_cached(io_tree, hole_start, block_end - 1, | 
 | 				     &cached_state); | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 	} | 
 |  | 
 | 	cur_offset = hole_start; | 
 | 	while (1) { | 
 | 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset, | 
 | 				block_end - cur_offset, 0); | 
 | 		if (IS_ERR(em)) { | 
 | 			err = PTR_ERR(em); | 
 | 			em = NULL; | 
 | 			break; | 
 | 		} | 
 | 		last_byte = min(extent_map_end(em), block_end); | 
 | 		last_byte = ALIGN(last_byte, fs_info->sectorsize); | 
 | 		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) { | 
 | 			struct extent_map *hole_em; | 
 | 			hole_size = last_byte - cur_offset; | 
 |  | 
 | 			err = maybe_insert_hole(root, inode, cur_offset, | 
 | 						hole_size); | 
 | 			if (err) | 
 | 				break; | 
 | 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, | 
 | 						cur_offset + hole_size - 1, 0); | 
 | 			hole_em = alloc_extent_map(); | 
 | 			if (!hole_em) { | 
 | 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 					&BTRFS_I(inode)->runtime_flags); | 
 | 				goto next; | 
 | 			} | 
 | 			hole_em->start = cur_offset; | 
 | 			hole_em->len = hole_size; | 
 | 			hole_em->orig_start = cur_offset; | 
 |  | 
 | 			hole_em->block_start = EXTENT_MAP_HOLE; | 
 | 			hole_em->block_len = 0; | 
 | 			hole_em->orig_block_len = 0; | 
 | 			hole_em->ram_bytes = hole_size; | 
 | 			hole_em->bdev = fs_info->fs_devices->latest_bdev; | 
 | 			hole_em->compress_type = BTRFS_COMPRESS_NONE; | 
 | 			hole_em->generation = fs_info->generation; | 
 |  | 
 | 			while (1) { | 
 | 				write_lock(&em_tree->lock); | 
 | 				err = add_extent_mapping(em_tree, hole_em, 1); | 
 | 				write_unlock(&em_tree->lock); | 
 | 				if (err != -EEXIST) | 
 | 					break; | 
 | 				btrfs_drop_extent_cache(BTRFS_I(inode), | 
 | 							cur_offset, | 
 | 							cur_offset + | 
 | 							hole_size - 1, 0); | 
 | 			} | 
 | 			free_extent_map(hole_em); | 
 | 		} | 
 | next: | 
 | 		free_extent_map(em); | 
 | 		em = NULL; | 
 | 		cur_offset = last_byte; | 
 | 		if (cur_offset >= block_end) | 
 | 			break; | 
 | 	} | 
 | 	free_extent_map(em); | 
 | 	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int btrfs_setsize(struct inode *inode, struct iattr *attr) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	loff_t oldsize = i_size_read(inode); | 
 | 	loff_t newsize = attr->ia_size; | 
 | 	int mask = attr->ia_valid; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a | 
 | 	 * special case where we need to update the times despite not having | 
 | 	 * these flags set.  For all other operations the VFS set these flags | 
 | 	 * explicitly if it wants a timestamp update. | 
 | 	 */ | 
 | 	if (newsize != oldsize) { | 
 | 		inode_inc_iversion(inode); | 
 | 		if (!(mask & (ATTR_CTIME | ATTR_MTIME))) | 
 | 			inode->i_ctime = inode->i_mtime = | 
 | 				current_time(inode); | 
 | 	} | 
 |  | 
 | 	if (newsize > oldsize) { | 
 | 		/* | 
 | 		 * Don't do an expanding truncate while snapshotting is ongoing. | 
 | 		 * This is to ensure the snapshot captures a fully consistent | 
 | 		 * state of this file - if the snapshot captures this expanding | 
 | 		 * truncation, it must capture all writes that happened before | 
 | 		 * this truncation. | 
 | 		 */ | 
 | 		btrfs_wait_for_snapshot_creation(root); | 
 | 		ret = btrfs_cont_expand(inode, oldsize, newsize); | 
 | 		if (ret) { | 
 | 			btrfs_end_write_no_snapshotting(root); | 
 | 			return ret; | 
 | 		} | 
 |  | 
 | 		trans = btrfs_start_transaction(root, 1); | 
 | 		if (IS_ERR(trans)) { | 
 | 			btrfs_end_write_no_snapshotting(root); | 
 | 			return PTR_ERR(trans); | 
 | 		} | 
 |  | 
 | 		i_size_write(inode, newsize); | 
 | 		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL); | 
 | 		pagecache_isize_extended(inode, oldsize, newsize); | 
 | 		ret = btrfs_update_inode(trans, root, inode); | 
 | 		btrfs_end_write_no_snapshotting(root); | 
 | 		btrfs_end_transaction(trans); | 
 | 	} else { | 
 |  | 
 | 		/* | 
 | 		 * We're truncating a file that used to have good data down to | 
 | 		 * zero. Make sure it gets into the ordered flush list so that | 
 | 		 * any new writes get down to disk quickly. | 
 | 		 */ | 
 | 		if (newsize == 0) | 
 | 			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE, | 
 | 				&BTRFS_I(inode)->runtime_flags); | 
 |  | 
 | 		truncate_setsize(inode, newsize); | 
 |  | 
 | 		/* Disable nonlocked read DIO to avoid the end less truncate */ | 
 | 		btrfs_inode_block_unlocked_dio(BTRFS_I(inode)); | 
 | 		inode_dio_wait(inode); | 
 | 		btrfs_inode_resume_unlocked_dio(BTRFS_I(inode)); | 
 |  | 
 | 		ret = btrfs_truncate(inode, newsize == oldsize); | 
 | 		if (ret && inode->i_nlink) { | 
 | 			int err; | 
 |  | 
 | 			/* | 
 | 			 * Truncate failed, so fix up the in-memory size. We | 
 | 			 * adjusted disk_i_size down as we removed extents, so | 
 | 			 * wait for disk_i_size to be stable and then update the | 
 | 			 * in-memory size to match. | 
 | 			 */ | 
 | 			err = btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
 | 			if (err) | 
 | 				return err; | 
 | 			i_size_write(inode, BTRFS_I(inode)->disk_i_size); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_setattr(struct dentry *dentry, struct iattr *attr) | 
 | { | 
 | 	struct inode *inode = d_inode(dentry); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	int err; | 
 |  | 
 | 	if (btrfs_root_readonly(root)) | 
 | 		return -EROFS; | 
 |  | 
 | 	err = setattr_prepare(dentry, attr); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) { | 
 | 		err = btrfs_setsize(inode, attr); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} | 
 |  | 
 | 	if (attr->ia_valid) { | 
 | 		setattr_copy(inode, attr); | 
 | 		inode_inc_iversion(inode); | 
 | 		err = btrfs_dirty_inode(inode); | 
 |  | 
 | 		if (!err && attr->ia_valid & ATTR_MODE) | 
 | 			err = posix_acl_chmod(inode, inode->i_mode); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * While truncating the inode pages during eviction, we get the VFS calling | 
 |  * btrfs_invalidatepage() against each page of the inode. This is slow because | 
 |  * the calls to btrfs_invalidatepage() result in a huge amount of calls to | 
 |  * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting | 
 |  * extent_state structures over and over, wasting lots of time. | 
 |  * | 
 |  * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all | 
 |  * those expensive operations on a per page basis and do only the ordered io | 
 |  * finishing, while we release here the extent_map and extent_state structures, | 
 |  * without the excessive merging and splitting. | 
 |  */ | 
 | static void evict_inode_truncate_pages(struct inode *inode) | 
 | { | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	struct rb_node *node; | 
 |  | 
 | 	ASSERT(inode->i_state & I_FREEING); | 
 | 	truncate_inode_pages_final(&inode->i_data); | 
 |  | 
 | 	write_lock(&map_tree->lock); | 
 | 	while (!RB_EMPTY_ROOT(&map_tree->map)) { | 
 | 		struct extent_map *em; | 
 |  | 
 | 		node = rb_first(&map_tree->map); | 
 | 		em = rb_entry(node, struct extent_map, rb_node); | 
 | 		clear_bit(EXTENT_FLAG_PINNED, &em->flags); | 
 | 		clear_bit(EXTENT_FLAG_LOGGING, &em->flags); | 
 | 		remove_extent_mapping(map_tree, em); | 
 | 		free_extent_map(em); | 
 | 		if (need_resched()) { | 
 | 			write_unlock(&map_tree->lock); | 
 | 			cond_resched(); | 
 | 			write_lock(&map_tree->lock); | 
 | 		} | 
 | 	} | 
 | 	write_unlock(&map_tree->lock); | 
 |  | 
 | 	/* | 
 | 	 * Keep looping until we have no more ranges in the io tree. | 
 | 	 * We can have ongoing bios started by readpages (called from readahead) | 
 | 	 * that have their endio callback (extent_io.c:end_bio_extent_readpage) | 
 | 	 * still in progress (unlocked the pages in the bio but did not yet | 
 | 	 * unlocked the ranges in the io tree). Therefore this means some | 
 | 	 * ranges can still be locked and eviction started because before | 
 | 	 * submitting those bios, which are executed by a separate task (work | 
 | 	 * queue kthread), inode references (inode->i_count) were not taken | 
 | 	 * (which would be dropped in the end io callback of each bio). | 
 | 	 * Therefore here we effectively end up waiting for those bios and | 
 | 	 * anyone else holding locked ranges without having bumped the inode's | 
 | 	 * reference count - if we don't do it, when they access the inode's | 
 | 	 * io_tree to unlock a range it may be too late, leading to an | 
 | 	 * use-after-free issue. | 
 | 	 */ | 
 | 	spin_lock(&io_tree->lock); | 
 | 	while (!RB_EMPTY_ROOT(&io_tree->state)) { | 
 | 		struct extent_state *state; | 
 | 		struct extent_state *cached_state = NULL; | 
 | 		u64 start; | 
 | 		u64 end; | 
 | 		unsigned state_flags; | 
 |  | 
 | 		node = rb_first(&io_tree->state); | 
 | 		state = rb_entry(node, struct extent_state, rb_node); | 
 | 		start = state->start; | 
 | 		end = state->end; | 
 | 		state_flags = state->state; | 
 | 		spin_unlock(&io_tree->lock); | 
 |  | 
 | 		lock_extent_bits(io_tree, start, end, &cached_state); | 
 |  | 
 | 		/* | 
 | 		 * If still has DELALLOC flag, the extent didn't reach disk, | 
 | 		 * and its reserved space won't be freed by delayed_ref. | 
 | 		 * So we need to free its reserved space here. | 
 | 		 * (Refer to comment in btrfs_invalidatepage, case 2) | 
 | 		 * | 
 | 		 * Note, end is the bytenr of last byte, so we need + 1 here. | 
 | 		 */ | 
 | 		if (state_flags & EXTENT_DELALLOC) | 
 | 			btrfs_qgroup_free_data(inode, NULL, start, end - start + 1); | 
 |  | 
 | 		clear_extent_bit(io_tree, start, end, | 
 | 				 EXTENT_LOCKED | EXTENT_DIRTY | | 
 | 				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | | 
 | 				 EXTENT_DEFRAG, 1, 1, &cached_state); | 
 |  | 
 | 		cond_resched(); | 
 | 		spin_lock(&io_tree->lock); | 
 | 	} | 
 | 	spin_unlock(&io_tree->lock); | 
 | } | 
 |  | 
 | static struct btrfs_trans_handle *evict_refill_and_join(struct btrfs_root *root, | 
 | 							struct btrfs_block_rsv *rsv, | 
 | 							u64 min_size) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
 | 	int failures = 0; | 
 |  | 
 | 	for (;;) { | 
 | 		struct btrfs_trans_handle *trans; | 
 | 		int ret; | 
 |  | 
 | 		ret = btrfs_block_rsv_refill(root, rsv, min_size, | 
 | 					     BTRFS_RESERVE_FLUSH_LIMIT); | 
 |  | 
 | 		if (ret && ++failures > 2) { | 
 | 			btrfs_warn(fs_info, | 
 | 				   "could not allocate space for a delete; will truncate on mount"); | 
 | 			return ERR_PTR(-ENOSPC); | 
 | 		} | 
 |  | 
 | 		trans = btrfs_join_transaction(root); | 
 | 		if (IS_ERR(trans) || !ret) | 
 | 			return trans; | 
 |  | 
 | 		/* | 
 | 		 * Try to steal from the global reserve if there is space for | 
 | 		 * it. | 
 | 		 */ | 
 | 		if (!btrfs_check_space_for_delayed_refs(trans, fs_info) && | 
 | 		    !btrfs_block_rsv_migrate(global_rsv, rsv, min_size, 0)) | 
 | 			return trans; | 
 |  | 
 | 		/* If not, commit and try again. */ | 
 | 		ret = btrfs_commit_transaction(trans); | 
 | 		if (ret) | 
 | 			return ERR_PTR(ret); | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_evict_inode(struct inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_block_rsv *rsv; | 
 | 	u64 min_size; | 
 | 	int ret; | 
 |  | 
 | 	trace_btrfs_inode_evict(inode); | 
 |  | 
 | 	if (!root) { | 
 | 		clear_inode(inode); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); | 
 |  | 
 | 	evict_inode_truncate_pages(inode); | 
 |  | 
 | 	if (inode->i_nlink && | 
 | 	    ((btrfs_root_refs(&root->root_item) != 0 && | 
 | 	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) || | 
 | 	     btrfs_is_free_space_inode(BTRFS_I(inode)))) | 
 | 		goto no_delete; | 
 |  | 
 | 	if (is_bad_inode(inode)) | 
 | 		goto no_delete; | 
 | 	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */ | 
 | 	if (!special_file(inode->i_mode)) | 
 | 		btrfs_wait_ordered_range(inode, 0, (u64)-1); | 
 |  | 
 | 	btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1); | 
 |  | 
 | 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) | 
 | 		goto no_delete; | 
 |  | 
 | 	if (inode->i_nlink > 0) { | 
 | 		BUG_ON(btrfs_root_refs(&root->root_item) != 0 && | 
 | 		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID); | 
 | 		goto no_delete; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode)); | 
 | 	if (ret) | 
 | 		goto no_delete; | 
 |  | 
 | 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); | 
 | 	if (!rsv) | 
 | 		goto no_delete; | 
 | 	rsv->size = min_size; | 
 | 	rsv->failfast = 1; | 
 |  | 
 | 	btrfs_i_size_write(BTRFS_I(inode), 0); | 
 |  | 
 | 	while (1) { | 
 | 		trans = evict_refill_and_join(root, rsv, min_size); | 
 | 		if (IS_ERR(trans)) | 
 | 			goto free_rsv; | 
 |  | 
 | 		trans->block_rsv = rsv; | 
 |  | 
 | 		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0); | 
 | 		trans->block_rsv = &fs_info->trans_block_rsv; | 
 | 		btrfs_end_transaction(trans); | 
 | 		btrfs_btree_balance_dirty(fs_info); | 
 | 		if (ret && ret != -ENOSPC && ret != -EAGAIN) | 
 | 			goto free_rsv; | 
 | 		else if (!ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Errors here aren't a big deal, it just means we leave orphan items in | 
 | 	 * the tree. They will be cleaned up on the next mount. If the inode | 
 | 	 * number gets reused, cleanup deletes the orphan item without doing | 
 | 	 * anything, and unlink reuses the existing orphan item. | 
 | 	 * | 
 | 	 * If it turns out that we are dropping too many of these, we might want | 
 | 	 * to add a mechanism for retrying these after a commit. | 
 | 	 */ | 
 | 	trans = evict_refill_and_join(root, rsv, min_size); | 
 | 	if (!IS_ERR(trans)) { | 
 | 		trans->block_rsv = rsv; | 
 | 		btrfs_orphan_del(trans, BTRFS_I(inode)); | 
 | 		trans->block_rsv = &fs_info->trans_block_rsv; | 
 | 		btrfs_end_transaction(trans); | 
 | 	} | 
 |  | 
 | 	if (!(root == fs_info->tree_root || | 
 | 	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)) | 
 | 		btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode))); | 
 |  | 
 | free_rsv: | 
 | 	btrfs_free_block_rsv(fs_info, rsv); | 
 | no_delete: | 
 | 	/* | 
 | 	 * If we didn't successfully delete, the orphan item will still be in | 
 | 	 * the tree and we'll retry on the next mount. Again, we might also want | 
 | 	 * to retry these periodically in the future. | 
 | 	 */ | 
 | 	btrfs_remove_delayed_node(BTRFS_I(inode)); | 
 | 	clear_inode(inode); | 
 | } | 
 |  | 
 | /* | 
 |  * this returns the key found in the dir entry in the location pointer. | 
 |  * If no dir entries were found, returns -ENOENT. | 
 |  * If found a corrupted location in dir entry, returns -EUCLEAN. | 
 |  */ | 
 | static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry, | 
 | 			       struct btrfs_key *location) | 
 | { | 
 | 	const char *name = dentry->d_name.name; | 
 | 	int namelen = dentry->d_name.len; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	int ret = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)), | 
 | 			name, namelen, 0); | 
 | 	if (!di) { | 
 | 		ret = -ENOENT; | 
 | 		goto out; | 
 | 	} | 
 | 	if (IS_ERR(di)) { | 
 | 		ret = PTR_ERR(di); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location); | 
 | 	if (location->type != BTRFS_INODE_ITEM_KEY && | 
 | 	    location->type != BTRFS_ROOT_ITEM_KEY) { | 
 | 		ret = -EUCLEAN; | 
 | 		btrfs_warn(root->fs_info, | 
 | "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))", | 
 | 			   __func__, name, btrfs_ino(BTRFS_I(dir)), | 
 | 			   location->objectid, location->type, location->offset); | 
 | 	} | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * when we hit a tree root in a directory, the btrfs part of the inode | 
 |  * needs to be changed to reflect the root directory of the tree root.  This | 
 |  * is kind of like crossing a mount point. | 
 |  */ | 
 | static int fixup_tree_root_location(struct btrfs_fs_info *fs_info, | 
 | 				    struct inode *dir, | 
 | 				    struct dentry *dentry, | 
 | 				    struct btrfs_key *location, | 
 | 				    struct btrfs_root **sub_root) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *new_root; | 
 | 	struct btrfs_root_ref *ref; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key key; | 
 | 	int ret; | 
 | 	int err = 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = -ENOENT; | 
 | 	key.objectid = BTRFS_I(dir)->root->root_key.objectid; | 
 | 	key.type = BTRFS_ROOT_REF_KEY; | 
 | 	key.offset = location->objectid; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); | 
 | 	if (ret) { | 
 | 		if (ret < 0) | 
 | 			err = ret; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref); | 
 | 	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) || | 
 | 	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len) | 
 | 		goto out; | 
 |  | 
 | 	ret = memcmp_extent_buffer(leaf, dentry->d_name.name, | 
 | 				   (unsigned long)(ref + 1), | 
 | 				   dentry->d_name.len); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	new_root = btrfs_read_fs_root_no_name(fs_info, location); | 
 | 	if (IS_ERR(new_root)) { | 
 | 		err = PTR_ERR(new_root); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	*sub_root = new_root; | 
 | 	location->objectid = btrfs_root_dirid(&new_root->root_item); | 
 | 	location->type = BTRFS_INODE_ITEM_KEY; | 
 | 	location->offset = 0; | 
 | 	err = 0; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return err; | 
 | } | 
 |  | 
 | static void inode_tree_add(struct inode *inode) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_inode *entry; | 
 | 	struct rb_node **p; | 
 | 	struct rb_node *parent; | 
 | 	struct rb_node *new = &BTRFS_I(inode)->rb_node; | 
 | 	u64 ino = btrfs_ino(BTRFS_I(inode)); | 
 |  | 
 | 	if (inode_unhashed(inode)) | 
 | 		return; | 
 | 	parent = NULL; | 
 | 	spin_lock(&root->inode_lock); | 
 | 	p = &root->inode_tree.rb_node; | 
 | 	while (*p) { | 
 | 		parent = *p; | 
 | 		entry = rb_entry(parent, struct btrfs_inode, rb_node); | 
 |  | 
 | 		if (ino < btrfs_ino(entry)) | 
 | 			p = &parent->rb_left; | 
 | 		else if (ino > btrfs_ino(entry)) | 
 | 			p = &parent->rb_right; | 
 | 		else { | 
 | 			WARN_ON(!(entry->vfs_inode.i_state & | 
 | 				  (I_WILL_FREE | I_FREEING))); | 
 | 			rb_replace_node(parent, new, &root->inode_tree); | 
 | 			RB_CLEAR_NODE(parent); | 
 | 			spin_unlock(&root->inode_lock); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	rb_link_node(new, parent, p); | 
 | 	rb_insert_color(new, &root->inode_tree); | 
 | 	spin_unlock(&root->inode_lock); | 
 | } | 
 |  | 
 | static void inode_tree_del(struct inode *inode) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	int empty = 0; | 
 |  | 
 | 	spin_lock(&root->inode_lock); | 
 | 	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) { | 
 | 		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree); | 
 | 		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node); | 
 | 		empty = RB_EMPTY_ROOT(&root->inode_tree); | 
 | 	} | 
 | 	spin_unlock(&root->inode_lock); | 
 |  | 
 | 	if (empty && btrfs_root_refs(&root->root_item) == 0) { | 
 | 		spin_lock(&root->inode_lock); | 
 | 		empty = RB_EMPTY_ROOT(&root->inode_tree); | 
 | 		spin_unlock(&root->inode_lock); | 
 | 		if (empty) | 
 | 			btrfs_add_dead_root(root); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static int btrfs_init_locked_inode(struct inode *inode, void *p) | 
 | { | 
 | 	struct btrfs_iget_args *args = p; | 
 | 	inode->i_ino = args->location->objectid; | 
 | 	memcpy(&BTRFS_I(inode)->location, args->location, | 
 | 	       sizeof(*args->location)); | 
 | 	BTRFS_I(inode)->root = args->root; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_find_actor(struct inode *inode, void *opaque) | 
 | { | 
 | 	struct btrfs_iget_args *args = opaque; | 
 | 	return args->location->objectid == BTRFS_I(inode)->location.objectid && | 
 | 		args->root == BTRFS_I(inode)->root; | 
 | } | 
 |  | 
 | static struct inode *btrfs_iget_locked(struct super_block *s, | 
 | 				       struct btrfs_key *location, | 
 | 				       struct btrfs_root *root) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct btrfs_iget_args args; | 
 | 	unsigned long hashval = btrfs_inode_hash(location->objectid, root); | 
 |  | 
 | 	args.location = location; | 
 | 	args.root = root; | 
 |  | 
 | 	inode = iget5_locked(s, hashval, btrfs_find_actor, | 
 | 			     btrfs_init_locked_inode, | 
 | 			     (void *)&args); | 
 | 	return inode; | 
 | } | 
 |  | 
 | /* Get an inode object given its location and corresponding root. | 
 |  * Returns in *is_new if the inode was read from disk | 
 |  */ | 
 | struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location, | 
 | 			      struct btrfs_root *root, int *new, | 
 | 			      struct btrfs_path *path) | 
 | { | 
 | 	struct inode *inode; | 
 |  | 
 | 	inode = btrfs_iget_locked(s, location, root); | 
 | 	if (!inode) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (inode->i_state & I_NEW) { | 
 | 		int ret; | 
 |  | 
 | 		ret = btrfs_read_locked_inode(inode, path); | 
 | 		if (!ret) { | 
 | 			inode_tree_add(inode); | 
 | 			unlock_new_inode(inode); | 
 | 			if (new) | 
 | 				*new = 1; | 
 | 		} else { | 
 | 			iget_failed(inode); | 
 | 			/* | 
 | 			 * ret > 0 can come from btrfs_search_slot called by | 
 | 			 * btrfs_read_locked_inode, this means the inode item | 
 | 			 * was not found. | 
 | 			 */ | 
 | 			if (ret > 0) | 
 | 				ret = -ENOENT; | 
 | 			inode = ERR_PTR(ret); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location, | 
 | 			 struct btrfs_root *root, int *new) | 
 | { | 
 | 	return btrfs_iget_path(s, location, root, new, NULL); | 
 | } | 
 |  | 
 | static struct inode *new_simple_dir(struct super_block *s, | 
 | 				    struct btrfs_key *key, | 
 | 				    struct btrfs_root *root) | 
 | { | 
 | 	struct inode *inode = new_inode(s); | 
 |  | 
 | 	if (!inode) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	BTRFS_I(inode)->root = root; | 
 | 	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key)); | 
 | 	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags); | 
 |  | 
 | 	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID; | 
 | 	inode->i_op = &btrfs_dir_ro_inode_operations; | 
 | 	inode->i_opflags &= ~IOP_XATTR; | 
 | 	inode->i_fop = &simple_dir_operations; | 
 | 	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO; | 
 | 	inode->i_mtime = current_time(inode); | 
 | 	inode->i_atime = inode->i_mtime; | 
 | 	inode->i_ctime = inode->i_mtime; | 
 | 	BTRFS_I(inode)->i_otime = inode->i_mtime; | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
 | 	struct inode *inode; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct btrfs_root *sub_root = root; | 
 | 	struct btrfs_key location; | 
 | 	int index; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (dentry->d_name.len > BTRFS_NAME_LEN) | 
 | 		return ERR_PTR(-ENAMETOOLONG); | 
 |  | 
 | 	ret = btrfs_inode_by_name(dir, dentry, &location); | 
 | 	if (ret < 0) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	if (location.type == BTRFS_INODE_ITEM_KEY) { | 
 | 		inode = btrfs_iget(dir->i_sb, &location, root, NULL); | 
 | 		return inode; | 
 | 	} | 
 |  | 
 | 	index = srcu_read_lock(&fs_info->subvol_srcu); | 
 | 	ret = fixup_tree_root_location(fs_info, dir, dentry, | 
 | 				       &location, &sub_root); | 
 | 	if (ret < 0) { | 
 | 		if (ret != -ENOENT) | 
 | 			inode = ERR_PTR(ret); | 
 | 		else | 
 | 			inode = new_simple_dir(dir->i_sb, &location, sub_root); | 
 | 	} else { | 
 | 		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL); | 
 | 	} | 
 | 	srcu_read_unlock(&fs_info->subvol_srcu, index); | 
 |  | 
 | 	if (!IS_ERR(inode) && root != sub_root) { | 
 | 		down_read(&fs_info->cleanup_work_sem); | 
 | 		if (!sb_rdonly(inode->i_sb)) | 
 | 			ret = btrfs_orphan_cleanup(sub_root); | 
 | 		up_read(&fs_info->cleanup_work_sem); | 
 | 		if (ret) { | 
 | 			iput(inode); | 
 | 			inode = ERR_PTR(ret); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | static int btrfs_dentry_delete(const struct dentry *dentry) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct inode *inode = d_inode(dentry); | 
 |  | 
 | 	if (!inode && !IS_ROOT(dentry)) | 
 | 		inode = d_inode(dentry->d_parent); | 
 |  | 
 | 	if (inode) { | 
 | 		root = BTRFS_I(inode)->root; | 
 | 		if (btrfs_root_refs(&root->root_item) == 0) | 
 | 			return 1; | 
 |  | 
 | 		if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) | 
 | 			return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry, | 
 | 				   unsigned int flags) | 
 | { | 
 | 	struct inode *inode; | 
 |  | 
 | 	inode = btrfs_lookup_dentry(dir, dentry); | 
 | 	if (IS_ERR(inode)) { | 
 | 		if (PTR_ERR(inode) == -ENOENT) | 
 | 			inode = NULL; | 
 | 		else | 
 | 			return ERR_CAST(inode); | 
 | 	} | 
 |  | 
 | 	return d_splice_alias(inode, dentry); | 
 | } | 
 |  | 
 | unsigned char btrfs_filetype_table[] = { | 
 | 	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK | 
 | }; | 
 |  | 
 | /* | 
 |  * All this infrastructure exists because dir_emit can fault, and we are holding | 
 |  * the tree lock when doing readdir.  For now just allocate a buffer and copy | 
 |  * our information into that, and then dir_emit from the buffer.  This is | 
 |  * similar to what NFS does, only we don't keep the buffer around in pagecache | 
 |  * because I'm afraid I'll mess that up.  Long term we need to make filldir do | 
 |  * copy_to_user_inatomic so we don't have to worry about page faulting under the | 
 |  * tree lock. | 
 |  */ | 
 | static int btrfs_opendir(struct inode *inode, struct file *file) | 
 | { | 
 | 	struct btrfs_file_private *private; | 
 |  | 
 | 	private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL); | 
 | 	if (!private) | 
 | 		return -ENOMEM; | 
 | 	private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	if (!private->filldir_buf) { | 
 | 		kfree(private); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	file->private_data = private; | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct dir_entry { | 
 | 	u64 ino; | 
 | 	u64 offset; | 
 | 	unsigned type; | 
 | 	int name_len; | 
 | }; | 
 |  | 
 | static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx) | 
 | { | 
 | 	while (entries--) { | 
 | 		struct dir_entry *entry = addr; | 
 | 		char *name = (char *)(entry + 1); | 
 |  | 
 | 		ctx->pos = get_unaligned(&entry->offset); | 
 | 		if (!dir_emit(ctx, name, get_unaligned(&entry->name_len), | 
 | 					 get_unaligned(&entry->ino), | 
 | 					 get_unaligned(&entry->type))) | 
 | 			return 1; | 
 | 		addr += sizeof(struct dir_entry) + | 
 | 			get_unaligned(&entry->name_len); | 
 | 		ctx->pos++; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_real_readdir(struct file *file, struct dir_context *ctx) | 
 | { | 
 | 	struct inode *inode = file_inode(file); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_file_private *private = file->private_data; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_path *path; | 
 | 	void *addr; | 
 | 	struct list_head ins_list; | 
 | 	struct list_head del_list; | 
 | 	int ret; | 
 | 	struct extent_buffer *leaf; | 
 | 	int slot; | 
 | 	char *name_ptr; | 
 | 	int name_len; | 
 | 	int entries = 0; | 
 | 	int total_len = 0; | 
 | 	bool put = false; | 
 | 	struct btrfs_key location; | 
 |  | 
 | 	if (!dir_emit_dots(file, ctx)) | 
 | 		return 0; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	addr = private->filldir_buf; | 
 | 	path->reada = READA_FORWARD; | 
 |  | 
 | 	INIT_LIST_HEAD(&ins_list); | 
 | 	INIT_LIST_HEAD(&del_list); | 
 | 	put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list); | 
 |  | 
 | again: | 
 | 	key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	key.offset = ctx->pos; | 
 | 	key.objectid = btrfs_ino(BTRFS_I(inode)); | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto err; | 
 |  | 
 | 	while (1) { | 
 | 		struct dir_entry *entry; | 
 |  | 
 | 		leaf = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 | 		if (slot >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) | 
 | 				goto err; | 
 | 			else if (ret > 0) | 
 | 				break; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
 |  | 
 | 		if (found_key.objectid != key.objectid) | 
 | 			break; | 
 | 		if (found_key.type != BTRFS_DIR_INDEX_KEY) | 
 | 			break; | 
 | 		if (found_key.offset < ctx->pos) | 
 | 			goto next; | 
 | 		if (btrfs_should_delete_dir_index(&del_list, found_key.offset)) | 
 | 			goto next; | 
 | 		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item); | 
 | 		name_len = btrfs_dir_name_len(leaf, di); | 
 | 		if ((total_len + sizeof(struct dir_entry) + name_len) >= | 
 | 		    PAGE_SIZE) { | 
 | 			btrfs_release_path(path); | 
 | 			ret = btrfs_filldir(private->filldir_buf, entries, ctx); | 
 | 			if (ret) | 
 | 				goto nopos; | 
 | 			addr = private->filldir_buf; | 
 | 			entries = 0; | 
 | 			total_len = 0; | 
 | 			goto again; | 
 | 		} | 
 |  | 
 | 		entry = addr; | 
 | 		put_unaligned(name_len, &entry->name_len); | 
 | 		name_ptr = (char *)(entry + 1); | 
 | 		read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1), | 
 | 				   name_len); | 
 | 		put_unaligned(btrfs_filetype_table[btrfs_dir_type(leaf, di)], | 
 | 				&entry->type); | 
 | 		btrfs_dir_item_key_to_cpu(leaf, di, &location); | 
 | 		put_unaligned(location.objectid, &entry->ino); | 
 | 		put_unaligned(found_key.offset, &entry->offset); | 
 | 		entries++; | 
 | 		addr += sizeof(struct dir_entry) + name_len; | 
 | 		total_len += sizeof(struct dir_entry) + name_len; | 
 | next: | 
 | 		path->slots[0]++; | 
 | 	} | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	ret = btrfs_filldir(private->filldir_buf, entries, ctx); | 
 | 	if (ret) | 
 | 		goto nopos; | 
 |  | 
 | 	ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list); | 
 | 	if (ret) | 
 | 		goto nopos; | 
 |  | 
 | 	/* | 
 | 	 * Stop new entries from being returned after we return the last | 
 | 	 * entry. | 
 | 	 * | 
 | 	 * New directory entries are assigned a strictly increasing | 
 | 	 * offset.  This means that new entries created during readdir | 
 | 	 * are *guaranteed* to be seen in the future by that readdir. | 
 | 	 * This has broken buggy programs which operate on names as | 
 | 	 * they're returned by readdir.  Until we re-use freed offsets | 
 | 	 * we have this hack to stop new entries from being returned | 
 | 	 * under the assumption that they'll never reach this huge | 
 | 	 * offset. | 
 | 	 * | 
 | 	 * This is being careful not to overflow 32bit loff_t unless the | 
 | 	 * last entry requires it because doing so has broken 32bit apps | 
 | 	 * in the past. | 
 | 	 */ | 
 | 	if (ctx->pos >= INT_MAX) | 
 | 		ctx->pos = LLONG_MAX; | 
 | 	else | 
 | 		ctx->pos = INT_MAX; | 
 | nopos: | 
 | 	ret = 0; | 
 | err: | 
 | 	if (put) | 
 | 		btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list); | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This is somewhat expensive, updating the tree every time the | 
 |  * inode changes.  But, it is most likely to find the inode in cache. | 
 |  * FIXME, needs more benchmarking...there are no reasons other than performance | 
 |  * to keep or drop this code. | 
 |  */ | 
 | static int btrfs_dirty_inode(struct inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	int ret; | 
 |  | 
 | 	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags)) | 
 | 		return 0; | 
 |  | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 | 	if (ret && ret == -ENOSPC) { | 
 | 		/* whoops, lets try again with the full transaction */ | 
 | 		btrfs_end_transaction(trans); | 
 | 		trans = btrfs_start_transaction(root, 1); | 
 | 		if (IS_ERR(trans)) | 
 | 			return PTR_ERR(trans); | 
 |  | 
 | 		ret = btrfs_update_inode(trans, root, inode); | 
 | 	} | 
 | 	btrfs_end_transaction(trans); | 
 | 	if (BTRFS_I(inode)->delayed_node) | 
 | 		btrfs_balance_delayed_items(fs_info); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a copy of file_update_time.  We need this so we can return error on | 
 |  * ENOSPC for updating the inode in the case of file write and mmap writes. | 
 |  */ | 
 | static int btrfs_update_time(struct inode *inode, struct timespec64 *now, | 
 | 			     int flags) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	bool dirty = flags & ~S_VERSION; | 
 |  | 
 | 	if (btrfs_root_readonly(root)) | 
 | 		return -EROFS; | 
 |  | 
 | 	if (flags & S_VERSION) | 
 | 		dirty |= inode_maybe_inc_iversion(inode, dirty); | 
 | 	if (flags & S_CTIME) | 
 | 		inode->i_ctime = *now; | 
 | 	if (flags & S_MTIME) | 
 | 		inode->i_mtime = *now; | 
 | 	if (flags & S_ATIME) | 
 | 		inode->i_atime = *now; | 
 | 	return dirty ? btrfs_dirty_inode(inode) : 0; | 
 | } | 
 |  | 
 | /* | 
 |  * find the highest existing sequence number in a directory | 
 |  * and then set the in-memory index_cnt variable to reflect | 
 |  * free sequence numbers | 
 |  */ | 
 | static int btrfs_set_inode_index_count(struct btrfs_inode *inode) | 
 | { | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_key key, found_key; | 
 | 	struct btrfs_path *path; | 
 | 	struct extent_buffer *leaf; | 
 | 	int ret; | 
 |  | 
 | 	key.objectid = btrfs_ino(inode); | 
 | 	key.type = BTRFS_DIR_INDEX_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 | 	/* FIXME: we should be able to handle this */ | 
 | 	if (ret == 0) | 
 | 		goto out; | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * MAGIC NUMBER EXPLANATION: | 
 | 	 * since we search a directory based on f_pos we have to start at 2 | 
 | 	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody | 
 | 	 * else has to start at 2 | 
 | 	 */ | 
 | 	if (path->slots[0] == 0) { | 
 | 		inode->index_cnt = 2; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	path->slots[0]--; | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 |  | 
 | 	if (found_key.objectid != btrfs_ino(inode) || | 
 | 	    found_key.type != BTRFS_DIR_INDEX_KEY) { | 
 | 		inode->index_cnt = 2; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	inode->index_cnt = found_key.offset + 1; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to find a free sequence number in a given directory.  This current | 
 |  * code is very simple, later versions will do smarter things in the btree | 
 |  */ | 
 | int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (dir->index_cnt == (u64)-1) { | 
 | 		ret = btrfs_inode_delayed_dir_index_count(dir); | 
 | 		if (ret) { | 
 | 			ret = btrfs_set_inode_index_count(dir); | 
 | 			if (ret) | 
 | 				return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	*index = dir->index_cnt; | 
 | 	dir->index_cnt++; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_insert_inode_locked(struct inode *inode) | 
 | { | 
 | 	struct btrfs_iget_args args; | 
 | 	args.location = &BTRFS_I(inode)->location; | 
 | 	args.root = BTRFS_I(inode)->root; | 
 |  | 
 | 	return insert_inode_locked4(inode, | 
 | 		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root), | 
 | 		   btrfs_find_actor, &args); | 
 | } | 
 |  | 
 | /* | 
 |  * Inherit flags from the parent inode. | 
 |  * | 
 |  * Currently only the compression flags and the cow flags are inherited. | 
 |  */ | 
 | static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) | 
 | { | 
 | 	unsigned int flags; | 
 |  | 
 | 	if (!dir) | 
 | 		return; | 
 |  | 
 | 	flags = BTRFS_I(dir)->flags; | 
 |  | 
 | 	if (flags & BTRFS_INODE_NOCOMPRESS) { | 
 | 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; | 
 | 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; | 
 | 	} else if (flags & BTRFS_INODE_COMPRESS) { | 
 | 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; | 
 | 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; | 
 | 	} | 
 |  | 
 | 	if (flags & BTRFS_INODE_NODATACOW) { | 
 | 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; | 
 | 		if (S_ISREG(inode->i_mode)) | 
 | 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; | 
 | 	} | 
 |  | 
 | 	btrfs_sync_inode_flags_to_i_flags(inode); | 
 | } | 
 |  | 
 | static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     struct inode *dir, | 
 | 				     const char *name, int name_len, | 
 | 				     u64 ref_objectid, u64 objectid, | 
 | 				     umode_t mode, u64 *index) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct inode *inode; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct btrfs_key *location; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_inode_ref *ref; | 
 | 	struct btrfs_key key[2]; | 
 | 	u32 sizes[2]; | 
 | 	int nitems = name ? 2 : 1; | 
 | 	unsigned long ptr; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	inode = new_inode(fs_info->sb); | 
 | 	if (!inode) { | 
 | 		btrfs_free_path(path); | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * O_TMPFILE, set link count to 0, so that after this point, | 
 | 	 * we fill in an inode item with the correct link count. | 
 | 	 */ | 
 | 	if (!name) | 
 | 		set_nlink(inode, 0); | 
 |  | 
 | 	/* | 
 | 	 * we have to initialize this early, so we can reclaim the inode | 
 | 	 * number if we fail afterwards in this function. | 
 | 	 */ | 
 | 	inode->i_ino = objectid; | 
 |  | 
 | 	if (dir && name) { | 
 | 		trace_btrfs_inode_request(dir); | 
 |  | 
 | 		ret = btrfs_set_inode_index(BTRFS_I(dir), index); | 
 | 		if (ret) { | 
 | 			btrfs_free_path(path); | 
 | 			iput(inode); | 
 | 			return ERR_PTR(ret); | 
 | 		} | 
 | 	} else if (dir) { | 
 | 		*index = 0; | 
 | 	} | 
 | 	/* | 
 | 	 * index_cnt is ignored for everything but a dir, | 
 | 	 * btrfs_set_inode_index_count has an explanation for the magic | 
 | 	 * number | 
 | 	 */ | 
 | 	BTRFS_I(inode)->index_cnt = 2; | 
 | 	BTRFS_I(inode)->dir_index = *index; | 
 | 	BTRFS_I(inode)->root = root; | 
 | 	BTRFS_I(inode)->generation = trans->transid; | 
 | 	inode->i_generation = BTRFS_I(inode)->generation; | 
 |  | 
 | 	/* | 
 | 	 * We could have gotten an inode number from somebody who was fsynced | 
 | 	 * and then removed in this same transaction, so let's just set full | 
 | 	 * sync since it will be a full sync anyway and this will blow away the | 
 | 	 * old info in the log. | 
 | 	 */ | 
 | 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); | 
 |  | 
 | 	key[0].objectid = objectid; | 
 | 	key[0].type = BTRFS_INODE_ITEM_KEY; | 
 | 	key[0].offset = 0; | 
 |  | 
 | 	sizes[0] = sizeof(struct btrfs_inode_item); | 
 |  | 
 | 	if (name) { | 
 | 		/* | 
 | 		 * Start new inodes with an inode_ref. This is slightly more | 
 | 		 * efficient for small numbers of hard links since they will | 
 | 		 * be packed into one item. Extended refs will kick in if we | 
 | 		 * add more hard links than can fit in the ref item. | 
 | 		 */ | 
 | 		key[1].objectid = objectid; | 
 | 		key[1].type = BTRFS_INODE_REF_KEY; | 
 | 		key[1].offset = ref_objectid; | 
 |  | 
 | 		sizes[1] = name_len + sizeof(*ref); | 
 | 	} | 
 |  | 
 | 	location = &BTRFS_I(inode)->location; | 
 | 	location->objectid = objectid; | 
 | 	location->offset = 0; | 
 | 	location->type = BTRFS_INODE_ITEM_KEY; | 
 |  | 
 | 	ret = btrfs_insert_inode_locked(inode); | 
 | 	if (ret < 0) { | 
 | 		iput(inode); | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	path->leave_spinning = 1; | 
 | 	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems); | 
 | 	if (ret != 0) | 
 | 		goto fail_unlock; | 
 |  | 
 | 	inode_init_owner(inode, dir, mode); | 
 | 	inode_set_bytes(inode, 0); | 
 |  | 
 | 	inode->i_mtime = current_time(inode); | 
 | 	inode->i_atime = inode->i_mtime; | 
 | 	inode->i_ctime = inode->i_mtime; | 
 | 	BTRFS_I(inode)->i_otime = inode->i_mtime; | 
 |  | 
 | 	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 				  struct btrfs_inode_item); | 
 | 	memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item, | 
 | 			     sizeof(*inode_item)); | 
 | 	fill_inode_item(trans, path->nodes[0], inode_item, inode); | 
 |  | 
 | 	if (name) { | 
 | 		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1, | 
 | 				     struct btrfs_inode_ref); | 
 | 		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len); | 
 | 		btrfs_set_inode_ref_index(path->nodes[0], ref, *index); | 
 | 		ptr = (unsigned long)(ref + 1); | 
 | 		write_extent_buffer(path->nodes[0], name, ptr, name_len); | 
 | 	} | 
 |  | 
 | 	btrfs_mark_buffer_dirty(path->nodes[0]); | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	btrfs_inherit_iflags(inode, dir); | 
 |  | 
 | 	if (S_ISREG(mode)) { | 
 | 		if (btrfs_test_opt(fs_info, NODATASUM)) | 
 | 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; | 
 | 		if (btrfs_test_opt(fs_info, NODATACOW)) | 
 | 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW | | 
 | 				BTRFS_INODE_NODATASUM; | 
 | 	} | 
 |  | 
 | 	inode_tree_add(inode); | 
 |  | 
 | 	trace_btrfs_inode_new(inode); | 
 | 	btrfs_set_inode_last_trans(trans, inode); | 
 |  | 
 | 	btrfs_update_root_times(trans, root); | 
 |  | 
 | 	ret = btrfs_inode_inherit_props(trans, inode, dir); | 
 | 	if (ret) | 
 | 		btrfs_err(fs_info, | 
 | 			  "error inheriting props for ino %llu (root %llu): %d", | 
 | 			btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret); | 
 |  | 
 | 	return inode; | 
 |  | 
 | fail_unlock: | 
 | 	discard_new_inode(inode); | 
 | fail: | 
 | 	if (dir && name) | 
 | 		BTRFS_I(dir)->index_cnt--; | 
 | 	btrfs_free_path(path); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static inline u8 btrfs_inode_type(struct inode *inode) | 
 | { | 
 | 	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT]; | 
 | } | 
 |  | 
 | /* | 
 |  * utility function to add 'inode' into 'parent_inode' with | 
 |  * a give name and a given sequence number. | 
 |  * if 'add_backref' is true, also insert a backref from the | 
 |  * inode to the parent directory. | 
 |  */ | 
 | int btrfs_add_link(struct btrfs_trans_handle *trans, | 
 | 		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode, | 
 | 		   const char *name, int name_len, int add_backref, u64 index) | 
 | { | 
 | 	int ret = 0; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_root *root = parent_inode->root; | 
 | 	u64 ino = btrfs_ino(inode); | 
 | 	u64 parent_ino = btrfs_ino(parent_inode); | 
 |  | 
 | 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
 | 		memcpy(&key, &inode->root->root_key, sizeof(key)); | 
 | 	} else { | 
 | 		key.objectid = ino; | 
 | 		key.type = BTRFS_INODE_ITEM_KEY; | 
 | 		key.offset = 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
 | 		ret = btrfs_add_root_ref(trans, key.objectid, | 
 | 					 root->root_key.objectid, parent_ino, | 
 | 					 index, name, name_len); | 
 | 	} else if (add_backref) { | 
 | 		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino, | 
 | 					     parent_ino, index); | 
 | 	} | 
 |  | 
 | 	/* Nothing to clean up yet */ | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_insert_dir_item(trans, root, name, name_len, | 
 | 				    parent_inode, &key, | 
 | 				    btrfs_inode_type(&inode->vfs_inode), index); | 
 | 	if (ret == -EEXIST || ret == -EOVERFLOW) | 
 | 		goto fail_dir_item; | 
 | 	else if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size + | 
 | 			   name_len * 2); | 
 | 	inode_inc_iversion(&parent_inode->vfs_inode); | 
 | 	/* | 
 | 	 * If we are replaying a log tree, we do not want to update the mtime | 
 | 	 * and ctime of the parent directory with the current time, since the | 
 | 	 * log replay procedure is responsible for setting them to their correct | 
 | 	 * values (the ones it had when the fsync was done). | 
 | 	 */ | 
 | 	if (!test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) { | 
 | 		struct timespec64 now = current_time(&parent_inode->vfs_inode); | 
 |  | 
 | 		parent_inode->vfs_inode.i_mtime = now; | 
 | 		parent_inode->vfs_inode.i_ctime = now; | 
 | 	} | 
 | 	ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode); | 
 | 	if (ret) | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 	return ret; | 
 |  | 
 | fail_dir_item: | 
 | 	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
 | 		u64 local_index; | 
 | 		int err; | 
 | 		err = btrfs_del_root_ref(trans, key.objectid, | 
 | 					 root->root_key.objectid, parent_ino, | 
 | 					 &local_index, name, name_len); | 
 | 		if (err) | 
 | 			btrfs_abort_transaction(trans, err); | 
 | 	} else if (add_backref) { | 
 | 		u64 local_index; | 
 | 		int err; | 
 |  | 
 | 		err = btrfs_del_inode_ref(trans, root, name, name_len, | 
 | 					  ino, parent_ino, &local_index); | 
 | 		if (err) | 
 | 			btrfs_abort_transaction(trans, err); | 
 | 	} | 
 |  | 
 | 	/* Return the original error code */ | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_add_nondir(struct btrfs_trans_handle *trans, | 
 | 			    struct btrfs_inode *dir, struct dentry *dentry, | 
 | 			    struct btrfs_inode *inode, int backref, u64 index) | 
 | { | 
 | 	int err = btrfs_add_link(trans, dir, inode, | 
 | 				 dentry->d_name.name, dentry->d_name.len, | 
 | 				 backref, index); | 
 | 	if (err > 0) | 
 | 		err = -EEXIST; | 
 | 	return err; | 
 | } | 
 |  | 
 | static int btrfs_mknod(struct inode *dir, struct dentry *dentry, | 
 | 			umode_t mode, dev_t rdev) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct inode *inode = NULL; | 
 | 	int err; | 
 | 	u64 objectid; | 
 | 	u64 index = 0; | 
 |  | 
 | 	/* | 
 | 	 * 2 for inode item and ref | 
 | 	 * 2 for dir items | 
 | 	 * 1 for xattr if selinux is on | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, 5); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	err = btrfs_find_free_ino(root, &objectid); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, | 
 | 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, | 
 | 			mode, &index); | 
 | 	if (IS_ERR(inode)) { | 
 | 		err = PTR_ERR(inode); | 
 | 		inode = NULL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	* If the active LSM wants to access the inode during | 
 | 	* d_instantiate it needs these. Smack checks to see | 
 | 	* if the filesystem supports xattrs by looking at the | 
 | 	* ops vector. | 
 | 	*/ | 
 | 	inode->i_op = &btrfs_special_inode_operations; | 
 | 	init_special_inode(inode, inode->i_mode, rdev); | 
 |  | 
 | 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), | 
 | 			0, index); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	btrfs_update_inode(trans, root, inode); | 
 | 	d_instantiate_new(dentry, inode); | 
 |  | 
 | out_unlock: | 
 | 	btrfs_end_transaction(trans); | 
 | 	btrfs_btree_balance_dirty(fs_info); | 
 | 	if (err && inode) { | 
 | 		inode_dec_link_count(inode); | 
 | 		discard_new_inode(inode); | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int btrfs_create(struct inode *dir, struct dentry *dentry, | 
 | 			umode_t mode, bool excl) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct inode *inode = NULL; | 
 | 	int err; | 
 | 	u64 objectid; | 
 | 	u64 index = 0; | 
 |  | 
 | 	/* | 
 | 	 * 2 for inode item and ref | 
 | 	 * 2 for dir items | 
 | 	 * 1 for xattr if selinux is on | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, 5); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	err = btrfs_find_free_ino(root, &objectid); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, | 
 | 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, | 
 | 			mode, &index); | 
 | 	if (IS_ERR(inode)) { | 
 | 		err = PTR_ERR(inode); | 
 | 		inode = NULL; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	/* | 
 | 	* If the active LSM wants to access the inode during | 
 | 	* d_instantiate it needs these. Smack checks to see | 
 | 	* if the filesystem supports xattrs by looking at the | 
 | 	* ops vector. | 
 | 	*/ | 
 | 	inode->i_fop = &btrfs_file_operations; | 
 | 	inode->i_op = &btrfs_file_inode_operations; | 
 | 	inode->i_mapping->a_ops = &btrfs_aops; | 
 |  | 
 | 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	err = btrfs_update_inode(trans, root, inode); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), | 
 | 			0, index); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; | 
 | 	d_instantiate_new(dentry, inode); | 
 |  | 
 | out_unlock: | 
 | 	btrfs_end_transaction(trans); | 
 | 	if (err && inode) { | 
 | 		inode_dec_link_count(inode); | 
 | 		discard_new_inode(inode); | 
 | 	} | 
 | 	btrfs_btree_balance_dirty(fs_info); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int btrfs_link(struct dentry *old_dentry, struct inode *dir, | 
 | 		      struct dentry *dentry) | 
 | { | 
 | 	struct btrfs_trans_handle *trans = NULL; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct inode *inode = d_inode(old_dentry); | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	u64 index; | 
 | 	int err; | 
 | 	int drop_inode = 0; | 
 |  | 
 | 	/* do not allow sys_link's with other subvols of the same device */ | 
 | 	if (root->objectid != BTRFS_I(inode)->root->objectid) | 
 | 		return -EXDEV; | 
 |  | 
 | 	if (inode->i_nlink >= BTRFS_LINK_MAX) | 
 | 		return -EMLINK; | 
 |  | 
 | 	err = btrfs_set_inode_index(BTRFS_I(dir), &index); | 
 | 	if (err) | 
 | 		goto fail; | 
 |  | 
 | 	/* | 
 | 	 * 2 items for inode and inode ref | 
 | 	 * 2 items for dir items | 
 | 	 * 1 item for parent inode | 
 | 	 * 1 item for orphan item deletion if O_TMPFILE | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, inode->i_nlink ? 5 : 6); | 
 | 	if (IS_ERR(trans)) { | 
 | 		err = PTR_ERR(trans); | 
 | 		trans = NULL; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	/* There are several dir indexes for this inode, clear the cache. */ | 
 | 	BTRFS_I(inode)->dir_index = 0ULL; | 
 | 	inc_nlink(inode); | 
 | 	inode_inc_iversion(inode); | 
 | 	inode->i_ctime = current_time(inode); | 
 | 	ihold(inode); | 
 | 	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags); | 
 |  | 
 | 	err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode), | 
 | 			1, index); | 
 |  | 
 | 	if (err) { | 
 | 		drop_inode = 1; | 
 | 	} else { | 
 | 		struct dentry *parent = dentry->d_parent; | 
 | 		int ret; | 
 |  | 
 | 		err = btrfs_update_inode(trans, root, inode); | 
 | 		if (err) | 
 | 			goto fail; | 
 | 		if (inode->i_nlink == 1) { | 
 | 			/* | 
 | 			 * If new hard link count is 1, it's a file created | 
 | 			 * with open(2) O_TMPFILE flag. | 
 | 			 */ | 
 | 			err = btrfs_orphan_del(trans, BTRFS_I(inode)); | 
 | 			if (err) | 
 | 				goto fail; | 
 | 		} | 
 | 		BTRFS_I(inode)->last_link_trans = trans->transid; | 
 | 		d_instantiate(dentry, inode); | 
 | 		ret = btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent, | 
 | 					 true, NULL); | 
 | 		if (ret == BTRFS_NEED_TRANS_COMMIT) { | 
 | 			err = btrfs_commit_transaction(trans); | 
 | 			trans = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | fail: | 
 | 	if (trans) | 
 | 		btrfs_end_transaction(trans); | 
 | 	if (drop_inode) { | 
 | 		inode_dec_link_count(inode); | 
 | 		iput(inode); | 
 | 	} | 
 | 	btrfs_btree_balance_dirty(fs_info); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
 | 	struct inode *inode = NULL; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	int err = 0; | 
 | 	int drop_on_err = 0; | 
 | 	u64 objectid = 0; | 
 | 	u64 index = 0; | 
 |  | 
 | 	/* | 
 | 	 * 2 items for inode and ref | 
 | 	 * 2 items for dir items | 
 | 	 * 1 for xattr if selinux is on | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, 5); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	err = btrfs_find_free_ino(root, &objectid); | 
 | 	if (err) | 
 | 		goto out_fail; | 
 |  | 
 | 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, | 
 | 			dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid, | 
 | 			S_IFDIR | mode, &index); | 
 | 	if (IS_ERR(inode)) { | 
 | 		err = PTR_ERR(inode); | 
 | 		inode = NULL; | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	drop_on_err = 1; | 
 | 	/* these must be set before we unlock the inode */ | 
 | 	inode->i_op = &btrfs_dir_inode_operations; | 
 | 	inode->i_fop = &btrfs_dir_file_operations; | 
 |  | 
 | 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); | 
 | 	if (err) | 
 | 		goto out_fail; | 
 |  | 
 | 	btrfs_i_size_write(BTRFS_I(inode), 0); | 
 | 	err = btrfs_update_inode(trans, root, inode); | 
 | 	if (err) | 
 | 		goto out_fail; | 
 |  | 
 | 	err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), | 
 | 			dentry->d_name.name, | 
 | 			dentry->d_name.len, 0, index); | 
 | 	if (err) | 
 | 		goto out_fail; | 
 |  | 
 | 	d_instantiate_new(dentry, inode); | 
 | 	drop_on_err = 0; | 
 |  | 
 | out_fail: | 
 | 	btrfs_end_transaction(trans); | 
 | 	if (err && inode) { | 
 | 		inode_dec_link_count(inode); | 
 | 		discard_new_inode(inode); | 
 | 	} | 
 | 	btrfs_btree_balance_dirty(fs_info); | 
 | 	return err; | 
 | } | 
 |  | 
 | static noinline int uncompress_inline(struct btrfs_path *path, | 
 | 				      struct page *page, | 
 | 				      size_t pg_offset, u64 extent_offset, | 
 | 				      struct btrfs_file_extent_item *item) | 
 | { | 
 | 	int ret; | 
 | 	struct extent_buffer *leaf = path->nodes[0]; | 
 | 	char *tmp; | 
 | 	size_t max_size; | 
 | 	unsigned long inline_size; | 
 | 	unsigned long ptr; | 
 | 	int compress_type; | 
 |  | 
 | 	WARN_ON(pg_offset != 0); | 
 | 	compress_type = btrfs_file_extent_compression(leaf, item); | 
 | 	max_size = btrfs_file_extent_ram_bytes(leaf, item); | 
 | 	inline_size = btrfs_file_extent_inline_item_len(leaf, | 
 | 					btrfs_item_nr(path->slots[0])); | 
 | 	tmp = kmalloc(inline_size, GFP_NOFS); | 
 | 	if (!tmp) | 
 | 		return -ENOMEM; | 
 | 	ptr = btrfs_file_extent_inline_start(item); | 
 |  | 
 | 	read_extent_buffer(leaf, tmp, ptr, inline_size); | 
 |  | 
 | 	max_size = min_t(unsigned long, PAGE_SIZE, max_size); | 
 | 	ret = btrfs_decompress(compress_type, tmp, page, | 
 | 			       extent_offset, inline_size, max_size); | 
 |  | 
 | 	/* | 
 | 	 * decompression code contains a memset to fill in any space between the end | 
 | 	 * of the uncompressed data and the end of max_size in case the decompressed | 
 | 	 * data ends up shorter than ram_bytes.  That doesn't cover the hole between | 
 | 	 * the end of an inline extent and the beginning of the next block, so we | 
 | 	 * cover that region here. | 
 | 	 */ | 
 |  | 
 | 	if (max_size + pg_offset < PAGE_SIZE) { | 
 | 		char *map = kmap(page); | 
 | 		memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset); | 
 | 		kunmap(page); | 
 | 	} | 
 | 	kfree(tmp); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * a bit scary, this does extent mapping from logical file offset to the disk. | 
 |  * the ugly parts come from merging extents from the disk with the in-ram | 
 |  * representation.  This gets more complex because of the data=ordered code, | 
 |  * where the in-ram extents might be locked pending data=ordered completion. | 
 |  * | 
 |  * This also copies inline extents directly into the page. | 
 |  */ | 
 | struct extent_map *btrfs_get_extent(struct btrfs_inode *inode, | 
 | 		struct page *page, | 
 | 	    size_t pg_offset, u64 start, u64 len, | 
 | 		int create) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
 | 	int ret; | 
 | 	int err = 0; | 
 | 	u64 extent_start = 0; | 
 | 	u64 extent_end = 0; | 
 | 	u64 objectid = btrfs_ino(inode); | 
 | 	u32 found_type; | 
 | 	struct btrfs_path *path = NULL; | 
 | 	struct btrfs_root *root = inode->root; | 
 | 	struct btrfs_file_extent_item *item; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_map *em = NULL; | 
 | 	struct extent_map_tree *em_tree = &inode->extent_tree; | 
 | 	struct extent_io_tree *io_tree = &inode->io_tree; | 
 | 	const bool new_inline = !page || create; | 
 |  | 
 | 	read_lock(&em_tree->lock); | 
 | 	em = lookup_extent_mapping(em_tree, start, len); | 
 | 	if (em) | 
 | 		em->bdev = fs_info->fs_devices->latest_bdev; | 
 | 	read_unlock(&em_tree->lock); | 
 |  | 
 | 	if (em) { | 
 | 		if (em->start > start || em->start + em->len <= start) | 
 | 			free_extent_map(em); | 
 | 		else if (em->block_start == EXTENT_MAP_INLINE && page) | 
 | 			free_extent_map(em); | 
 | 		else | 
 | 			goto out; | 
 | 	} | 
 | 	em = alloc_extent_map(); | 
 | 	if (!em) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	em->bdev = fs_info->fs_devices->latest_bdev; | 
 | 	em->start = EXTENT_MAP_HOLE; | 
 | 	em->orig_start = EXTENT_MAP_HOLE; | 
 | 	em->len = (u64)-1; | 
 | 	em->block_len = (u64)-1; | 
 |  | 
 | 	if (!path) { | 
 | 		path = btrfs_alloc_path(); | 
 | 		if (!path) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		/* | 
 | 		 * Chances are we'll be called again, so go ahead and do | 
 | 		 * readahead | 
 | 		 */ | 
 | 		path->reada = READA_FORWARD; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_lookup_file_extent(NULL, root, path, objectid, start, 0); | 
 | 	if (ret < 0) { | 
 | 		err = ret; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (ret != 0) { | 
 | 		if (path->slots[0] == 0) | 
 | 			goto not_found; | 
 | 		path->slots[0]--; | 
 | 	} | 
 |  | 
 | 	leaf = path->nodes[0]; | 
 | 	item = btrfs_item_ptr(leaf, path->slots[0], | 
 | 			      struct btrfs_file_extent_item); | 
 | 	/* are we inside the extent that was found? */ | 
 | 	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 	found_type = found_key.type; | 
 | 	if (found_key.objectid != objectid || | 
 | 	    found_type != BTRFS_EXTENT_DATA_KEY) { | 
 | 		/* | 
 | 		 * If we backup past the first extent we want to move forward | 
 | 		 * and see if there is an extent in front of us, otherwise we'll | 
 | 		 * say there is a hole for our whole search range which can | 
 | 		 * cause problems. | 
 | 		 */ | 
 | 		extent_end = start; | 
 | 		goto next; | 
 | 	} | 
 |  | 
 | 	found_type = btrfs_file_extent_type(leaf, item); | 
 | 	extent_start = found_key.offset; | 
 | 	if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		extent_end = extent_start + | 
 | 		       btrfs_file_extent_num_bytes(leaf, item); | 
 |  | 
 | 		trace_btrfs_get_extent_show_fi_regular(inode, leaf, item, | 
 | 						       extent_start); | 
 | 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		size_t size; | 
 |  | 
 | 		size = btrfs_file_extent_ram_bytes(leaf, item); | 
 | 		extent_end = ALIGN(extent_start + size, | 
 | 				   fs_info->sectorsize); | 
 |  | 
 | 		trace_btrfs_get_extent_show_fi_inline(inode, leaf, item, | 
 | 						      path->slots[0], | 
 | 						      extent_start); | 
 | 	} | 
 | next: | 
 | 	if (start >= extent_end) { | 
 | 		path->slots[0]++; | 
 | 		if (path->slots[0] >= btrfs_header_nritems(leaf)) { | 
 | 			ret = btrfs_next_leaf(root, path); | 
 | 			if (ret < 0) { | 
 | 				err = ret; | 
 | 				goto out; | 
 | 			} | 
 | 			if (ret > 0) | 
 | 				goto not_found; | 
 | 			leaf = path->nodes[0]; | 
 | 		} | 
 | 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
 | 		if (found_key.objectid != objectid || | 
 | 		    found_key.type != BTRFS_EXTENT_DATA_KEY) | 
 | 			goto not_found; | 
 | 		if (start + len <= found_key.offset) | 
 | 			goto not_found; | 
 | 		if (start > found_key.offset) | 
 | 			goto next; | 
 | 		em->start = start; | 
 | 		em->orig_start = start; | 
 | 		em->len = found_key.offset - start; | 
 | 		goto not_found_em; | 
 | 	} | 
 |  | 
 | 	btrfs_extent_item_to_extent_map(inode, path, item, | 
 | 			new_inline, em); | 
 |  | 
 | 	if (found_type == BTRFS_FILE_EXTENT_REG || | 
 | 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		goto insert; | 
 | 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) { | 
 | 		unsigned long ptr; | 
 | 		char *map; | 
 | 		size_t size; | 
 | 		size_t extent_offset; | 
 | 		size_t copy_size; | 
 |  | 
 | 		if (new_inline) | 
 | 			goto out; | 
 |  | 
 | 		size = btrfs_file_extent_ram_bytes(leaf, item); | 
 | 		extent_offset = page_offset(page) + pg_offset - extent_start; | 
 | 		copy_size = min_t(u64, PAGE_SIZE - pg_offset, | 
 | 				  size - extent_offset); | 
 | 		em->start = extent_start + extent_offset; | 
 | 		em->len = ALIGN(copy_size, fs_info->sectorsize); | 
 | 		em->orig_block_len = em->len; | 
 | 		em->orig_start = em->start; | 
 | 		ptr = btrfs_file_extent_inline_start(item) + extent_offset; | 
 | 		if (!PageUptodate(page)) { | 
 | 			if (btrfs_file_extent_compression(leaf, item) != | 
 | 			    BTRFS_COMPRESS_NONE) { | 
 | 				ret = uncompress_inline(path, page, pg_offset, | 
 | 							extent_offset, item); | 
 | 				if (ret) { | 
 | 					err = ret; | 
 | 					goto out; | 
 | 				} | 
 | 			} else { | 
 | 				map = kmap(page); | 
 | 				read_extent_buffer(leaf, map + pg_offset, ptr, | 
 | 						   copy_size); | 
 | 				if (pg_offset + copy_size < PAGE_SIZE) { | 
 | 					memset(map + pg_offset + copy_size, 0, | 
 | 					       PAGE_SIZE - pg_offset - | 
 | 					       copy_size); | 
 | 				} | 
 | 				kunmap(page); | 
 | 			} | 
 | 			flush_dcache_page(page); | 
 | 		} | 
 | 		set_extent_uptodate(io_tree, em->start, | 
 | 				    extent_map_end(em) - 1, NULL, GFP_NOFS); | 
 | 		goto insert; | 
 | 	} | 
 | not_found: | 
 | 	em->start = start; | 
 | 	em->orig_start = start; | 
 | 	em->len = len; | 
 | not_found_em: | 
 | 	em->block_start = EXTENT_MAP_HOLE; | 
 | insert: | 
 | 	btrfs_release_path(path); | 
 | 	if (em->start > start || extent_map_end(em) <= start) { | 
 | 		btrfs_err(fs_info, | 
 | 			  "bad extent! em: [%llu %llu] passed [%llu %llu]", | 
 | 			  em->start, em->len, start, len); | 
 | 		err = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = 0; | 
 | 	write_lock(&em_tree->lock); | 
 | 	err = btrfs_add_extent_mapping(fs_info, em_tree, &em, start, len); | 
 | 	write_unlock(&em_tree->lock); | 
 | out: | 
 |  | 
 | 	trace_btrfs_get_extent(root, inode, em); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	if (err) { | 
 | 		free_extent_map(em); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 | 	BUG_ON(!em); /* Error is always set */ | 
 | 	return em; | 
 | } | 
 |  | 
 | struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode, | 
 | 		struct page *page, | 
 | 		size_t pg_offset, u64 start, u64 len, | 
 | 		int create) | 
 | { | 
 | 	struct extent_map *em; | 
 | 	struct extent_map *hole_em = NULL; | 
 | 	u64 range_start = start; | 
 | 	u64 end; | 
 | 	u64 found; | 
 | 	u64 found_end; | 
 | 	int err = 0; | 
 |  | 
 | 	em = btrfs_get_extent(inode, page, pg_offset, start, len, create); | 
 | 	if (IS_ERR(em)) | 
 | 		return em; | 
 | 	/* | 
 | 	 * If our em maps to: | 
 | 	 * - a hole or | 
 | 	 * - a pre-alloc extent, | 
 | 	 * there might actually be delalloc bytes behind it. | 
 | 	 */ | 
 | 	if (em->block_start != EXTENT_MAP_HOLE && | 
 | 	    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 		return em; | 
 | 	else | 
 | 		hole_em = em; | 
 |  | 
 | 	/* check to see if we've wrapped (len == -1 or similar) */ | 
 | 	end = start + len; | 
 | 	if (end < start) | 
 | 		end = (u64)-1; | 
 | 	else | 
 | 		end -= 1; | 
 |  | 
 | 	em = NULL; | 
 |  | 
 | 	/* ok, we didn't find anything, lets look for delalloc */ | 
 | 	found = count_range_bits(&inode->io_tree, &range_start, | 
 | 				 end, len, EXTENT_DELALLOC, 1); | 
 | 	found_end = range_start + found; | 
 | 	if (found_end < range_start) | 
 | 		found_end = (u64)-1; | 
 |  | 
 | 	/* | 
 | 	 * we didn't find anything useful, return | 
 | 	 * the original results from get_extent() | 
 | 	 */ | 
 | 	if (range_start > end || found_end <= start) { | 
 | 		em = hole_em; | 
 | 		hole_em = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* adjust the range_start to make sure it doesn't | 
 | 	 * go backwards from the start they passed in | 
 | 	 */ | 
 | 	range_start = max(start, range_start); | 
 | 	found = found_end - range_start; | 
 |  | 
 | 	if (found > 0) { | 
 | 		u64 hole_start = start; | 
 | 		u64 hole_len = len; | 
 |  | 
 | 		em = alloc_extent_map(); | 
 | 		if (!em) { | 
 | 			err = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		/* | 
 | 		 * when btrfs_get_extent can't find anything it | 
 | 		 * returns one huge hole | 
 | 		 * | 
 | 		 * make sure what it found really fits our range, and | 
 | 		 * adjust to make sure it is based on the start from | 
 | 		 * the caller | 
 | 		 */ | 
 | 		if (hole_em) { | 
 | 			u64 calc_end = extent_map_end(hole_em); | 
 |  | 
 | 			if (calc_end <= start || (hole_em->start > end)) { | 
 | 				free_extent_map(hole_em); | 
 | 				hole_em = NULL; | 
 | 			} else { | 
 | 				hole_start = max(hole_em->start, start); | 
 | 				hole_len = calc_end - hole_start; | 
 | 			} | 
 | 		} | 
 | 		em->bdev = NULL; | 
 | 		if (hole_em && range_start > hole_start) { | 
 | 			/* our hole starts before our delalloc, so we | 
 | 			 * have to return just the parts of the hole | 
 | 			 * that go until  the delalloc starts | 
 | 			 */ | 
 | 			em->len = min(hole_len, | 
 | 				      range_start - hole_start); | 
 | 			em->start = hole_start; | 
 | 			em->orig_start = hole_start; | 
 | 			/* | 
 | 			 * don't adjust block start at all, | 
 | 			 * it is fixed at EXTENT_MAP_HOLE | 
 | 			 */ | 
 | 			em->block_start = hole_em->block_start; | 
 | 			em->block_len = hole_len; | 
 | 			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags)) | 
 | 				set_bit(EXTENT_FLAG_PREALLOC, &em->flags); | 
 | 		} else { | 
 | 			em->start = range_start; | 
 | 			em->len = found; | 
 | 			em->orig_start = range_start; | 
 | 			em->block_start = EXTENT_MAP_DELALLOC; | 
 | 			em->block_len = found; | 
 | 		} | 
 | 	} else { | 
 | 		return hole_em; | 
 | 	} | 
 | out: | 
 |  | 
 | 	free_extent_map(hole_em); | 
 | 	if (err) { | 
 | 		free_extent_map(em); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 | 	return em; | 
 | } | 
 |  | 
 | static struct extent_map *btrfs_create_dio_extent(struct inode *inode, | 
 | 						  const u64 start, | 
 | 						  const u64 len, | 
 | 						  const u64 orig_start, | 
 | 						  const u64 block_start, | 
 | 						  const u64 block_len, | 
 | 						  const u64 orig_block_len, | 
 | 						  const u64 ram_bytes, | 
 | 						  const int type) | 
 | { | 
 | 	struct extent_map *em = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (type != BTRFS_ORDERED_NOCOW) { | 
 | 		em = create_io_em(inode, start, len, orig_start, | 
 | 				  block_start, block_len, orig_block_len, | 
 | 				  ram_bytes, | 
 | 				  BTRFS_COMPRESS_NONE, /* compress_type */ | 
 | 				  type); | 
 | 		if (IS_ERR(em)) | 
 | 			goto out; | 
 | 	} | 
 | 	ret = btrfs_add_ordered_extent_dio(inode, start, block_start, | 
 | 					   len, block_len, type); | 
 | 	if (ret) { | 
 | 		if (em) { | 
 | 			free_extent_map(em); | 
 | 			btrfs_drop_extent_cache(BTRFS_I(inode), start, | 
 | 						start + len - 1, 0); | 
 | 		} | 
 | 		em = ERR_PTR(ret); | 
 | 	} | 
 |  out: | 
 |  | 
 | 	return em; | 
 | } | 
 |  | 
 | static struct extent_map *btrfs_new_extent_direct(struct inode *inode, | 
 | 						  u64 start, u64 len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_map *em; | 
 | 	struct btrfs_key ins; | 
 | 	u64 alloc_hint; | 
 | 	int ret; | 
 |  | 
 | 	alloc_hint = get_extent_allocation_hint(inode, start, len); | 
 | 	ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize, | 
 | 				   0, alloc_hint, &ins, 1, 1); | 
 | 	if (ret) | 
 | 		return ERR_PTR(ret); | 
 |  | 
 | 	em = btrfs_create_dio_extent(inode, start, ins.offset, start, | 
 | 				     ins.objectid, ins.offset, ins.offset, | 
 | 				     ins.offset, BTRFS_ORDERED_REGULAR); | 
 | 	btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
 | 	if (IS_ERR(em)) | 
 | 		btrfs_free_reserved_extent(fs_info, ins.objectid, | 
 | 					   ins.offset, 1); | 
 |  | 
 | 	return em; | 
 | } | 
 |  | 
 | /* | 
 |  * returns 1 when the nocow is safe, < 1 on error, 0 if the | 
 |  * block must be cow'd | 
 |  */ | 
 | noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len, | 
 | 			      u64 *orig_start, u64 *orig_block_len, | 
 | 			      u64 *ram_bytes) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_path *path; | 
 | 	int ret; | 
 | 	struct extent_buffer *leaf; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct btrfs_file_extent_item *fi; | 
 | 	struct btrfs_key key; | 
 | 	u64 disk_bytenr; | 
 | 	u64 backref_offset; | 
 | 	u64 extent_end; | 
 | 	u64 num_bytes; | 
 | 	int slot; | 
 | 	int found_type; | 
 | 	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW); | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	ret = btrfs_lookup_file_extent(NULL, root, path, | 
 | 			btrfs_ino(BTRFS_I(inode)), offset, 0); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	slot = path->slots[0]; | 
 | 	if (ret == 1) { | 
 | 		if (slot == 0) { | 
 | 			/* can't find the item, must cow */ | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		slot--; | 
 | 	} | 
 | 	ret = 0; | 
 | 	leaf = path->nodes[0]; | 
 | 	btrfs_item_key_to_cpu(leaf, &key, slot); | 
 | 	if (key.objectid != btrfs_ino(BTRFS_I(inode)) || | 
 | 	    key.type != BTRFS_EXTENT_DATA_KEY) { | 
 | 		/* not our file or wrong item type, must cow */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (key.offset > offset) { | 
 | 		/* Wrong offset, must cow */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item); | 
 | 	found_type = btrfs_file_extent_type(leaf, fi); | 
 | 	if (found_type != BTRFS_FILE_EXTENT_REG && | 
 | 	    found_type != BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		/* not a regular extent, must cow */ | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG) | 
 | 		goto out; | 
 |  | 
 | 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi); | 
 | 	if (extent_end <= offset) | 
 | 		goto out; | 
 |  | 
 | 	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); | 
 | 	if (disk_bytenr == 0) | 
 | 		goto out; | 
 |  | 
 | 	if (btrfs_file_extent_compression(leaf, fi) || | 
 | 	    btrfs_file_extent_encryption(leaf, fi) || | 
 | 	    btrfs_file_extent_other_encoding(leaf, fi)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Do the same check as in btrfs_cross_ref_exist but without the | 
 | 	 * unnecessary search. | 
 | 	 */ | 
 | 	if (btrfs_file_extent_generation(leaf, fi) <= | 
 | 	    btrfs_root_last_snapshot(&root->root_item)) | 
 | 		goto out; | 
 |  | 
 | 	backref_offset = btrfs_file_extent_offset(leaf, fi); | 
 |  | 
 | 	if (orig_start) { | 
 | 		*orig_start = key.offset - backref_offset; | 
 | 		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi); | 
 | 		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi); | 
 | 	} | 
 |  | 
 | 	if (btrfs_extent_readonly(fs_info, disk_bytenr)) | 
 | 		goto out; | 
 |  | 
 | 	num_bytes = min(offset + *len, extent_end) - offset; | 
 | 	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) { | 
 | 		u64 range_end; | 
 |  | 
 | 		range_end = round_up(offset + num_bytes, | 
 | 				     root->fs_info->sectorsize) - 1; | 
 | 		ret = test_range_bit(io_tree, offset, range_end, | 
 | 				     EXTENT_DELALLOC, 0, NULL); | 
 | 		if (ret) { | 
 | 			ret = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	/* | 
 | 	 * look for other files referencing this extent, if we | 
 | 	 * find any we must cow | 
 | 	 */ | 
 |  | 
 | 	ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)), | 
 | 				    key.offset - backref_offset, disk_bytenr); | 
 | 	if (ret) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * adjust disk_bytenr and num_bytes to cover just the bytes | 
 | 	 * in this extent we are about to write.  If there | 
 | 	 * are any csums in that range we have to cow in order | 
 | 	 * to keep the csums correct | 
 | 	 */ | 
 | 	disk_bytenr += backref_offset; | 
 | 	disk_bytenr += offset - key.offset; | 
 | 	if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes)) | 
 | 		goto out; | 
 | 	/* | 
 | 	 * all of the above have passed, it is safe to overwrite this extent | 
 | 	 * without cow | 
 | 	 */ | 
 | 	*len = num_bytes; | 
 | 	ret = 1; | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend, | 
 | 			      struct extent_state **cached_state, int writing) | 
 | { | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	int ret = 0; | 
 |  | 
 | 	while (1) { | 
 | 		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
 | 				 cached_state); | 
 | 		/* | 
 | 		 * We're concerned with the entire range that we're going to be | 
 | 		 * doing DIO to, so we need to make sure there's no ordered | 
 | 		 * extents in this range. | 
 | 		 */ | 
 | 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart, | 
 | 						     lockend - lockstart + 1); | 
 |  | 
 | 		/* | 
 | 		 * We need to make sure there are no buffered pages in this | 
 | 		 * range either, we could have raced between the invalidate in | 
 | 		 * generic_file_direct_write and locking the extent.  The | 
 | 		 * invalidate needs to happen so that reads after a write do not | 
 | 		 * get stale data. | 
 | 		 */ | 
 | 		if (!ordered && | 
 | 		    (!writing || !filemap_range_has_page(inode->i_mapping, | 
 | 							 lockstart, lockend))) | 
 | 			break; | 
 |  | 
 | 		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
 | 				     cached_state); | 
 |  | 
 | 		if (ordered) { | 
 | 			/* | 
 | 			 * If we are doing a DIO read and the ordered extent we | 
 | 			 * found is for a buffered write, we can not wait for it | 
 | 			 * to complete and retry, because if we do so we can | 
 | 			 * deadlock with concurrent buffered writes on page | 
 | 			 * locks. This happens only if our DIO read covers more | 
 | 			 * than one extent map, if at this point has already | 
 | 			 * created an ordered extent for a previous extent map | 
 | 			 * and locked its range in the inode's io tree, and a | 
 | 			 * concurrent write against that previous extent map's | 
 | 			 * range and this range started (we unlock the ranges | 
 | 			 * in the io tree only when the bios complete and | 
 | 			 * buffered writes always lock pages before attempting | 
 | 			 * to lock range in the io tree). | 
 | 			 */ | 
 | 			if (writing || | 
 | 			    test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) | 
 | 				btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 			else | 
 | 				ret = -ENOTBLK; | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 		} else { | 
 | 			/* | 
 | 			 * We could trigger writeback for this range (and wait | 
 | 			 * for it to complete) and then invalidate the pages for | 
 | 			 * this range (through invalidate_inode_pages2_range()), | 
 | 			 * but that can lead us to a deadlock with a concurrent | 
 | 			 * call to readpages() (a buffered read or a defrag call | 
 | 			 * triggered a readahead) on a page lock due to an | 
 | 			 * ordered dio extent we created before but did not have | 
 | 			 * yet a corresponding bio submitted (whence it can not | 
 | 			 * complete), which makes readpages() wait for that | 
 | 			 * ordered extent to complete while holding a lock on | 
 | 			 * that page. | 
 | 			 */ | 
 | 			ret = -ENOTBLK; | 
 | 		} | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		cond_resched(); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* The callers of this must take lock_extent() */ | 
 | static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len, | 
 | 				       u64 orig_start, u64 block_start, | 
 | 				       u64 block_len, u64 orig_block_len, | 
 | 				       u64 ram_bytes, int compress_type, | 
 | 				       int type) | 
 | { | 
 | 	struct extent_map_tree *em_tree; | 
 | 	struct extent_map *em; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	int ret; | 
 |  | 
 | 	ASSERT(type == BTRFS_ORDERED_PREALLOC || | 
 | 	       type == BTRFS_ORDERED_COMPRESSED || | 
 | 	       type == BTRFS_ORDERED_NOCOW || | 
 | 	       type == BTRFS_ORDERED_REGULAR); | 
 |  | 
 | 	em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	em = alloc_extent_map(); | 
 | 	if (!em) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	em->start = start; | 
 | 	em->orig_start = orig_start; | 
 | 	em->len = len; | 
 | 	em->block_len = block_len; | 
 | 	em->block_start = block_start; | 
 | 	em->bdev = root->fs_info->fs_devices->latest_bdev; | 
 | 	em->orig_block_len = orig_block_len; | 
 | 	em->ram_bytes = ram_bytes; | 
 | 	em->generation = -1; | 
 | 	set_bit(EXTENT_FLAG_PINNED, &em->flags); | 
 | 	if (type == BTRFS_ORDERED_PREALLOC) { | 
 | 		set_bit(EXTENT_FLAG_FILLING, &em->flags); | 
 | 	} else if (type == BTRFS_ORDERED_COMPRESSED) { | 
 | 		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags); | 
 | 		em->compress_type = compress_type; | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		btrfs_drop_extent_cache(BTRFS_I(inode), em->start, | 
 | 				em->start + em->len - 1, 0); | 
 | 		write_lock(&em_tree->lock); | 
 | 		ret = add_extent_mapping(em_tree, em, 1); | 
 | 		write_unlock(&em_tree->lock); | 
 | 		/* | 
 | 		 * The caller has taken lock_extent(), who could race with us | 
 | 		 * to add em? | 
 | 		 */ | 
 | 	} while (ret == -EEXIST); | 
 |  | 
 | 	if (ret) { | 
 | 		free_extent_map(em); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 |  | 
 | 	/* em got 2 refs now, callers needs to do free_extent_map once. */ | 
 | 	return em; | 
 | } | 
 |  | 
 |  | 
 | static int btrfs_get_blocks_direct_read(struct extent_map *em, | 
 | 					struct buffer_head *bh_result, | 
 | 					struct inode *inode, | 
 | 					u64 start, u64 len) | 
 | { | 
 | 	if (em->block_start == EXTENT_MAP_HOLE || | 
 | 			test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 		return -ENOENT; | 
 |  | 
 | 	len = min(len, em->len - (start - em->start)); | 
 |  | 
 | 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >> | 
 | 		inode->i_blkbits; | 
 | 	bh_result->b_size = len; | 
 | 	bh_result->b_bdev = em->bdev; | 
 | 	set_buffer_mapped(bh_result); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_get_blocks_direct_write(struct extent_map **map, | 
 | 					 struct buffer_head *bh_result, | 
 | 					 struct inode *inode, | 
 | 					 struct btrfs_dio_data *dio_data, | 
 | 					 u64 start, u64 len) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct extent_map *em = *map; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * We don't allocate a new extent in the following cases | 
 | 	 * | 
 | 	 * 1) The inode is marked as NODATACOW. In this case we'll just use the | 
 | 	 * existing extent. | 
 | 	 * 2) The extent is marked as PREALLOC. We're good to go here and can | 
 | 	 * just use the extent. | 
 | 	 * | 
 | 	 */ | 
 | 	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) || | 
 | 	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) && | 
 | 	     em->block_start != EXTENT_MAP_HOLE)) { | 
 | 		int type; | 
 | 		u64 block_start, orig_start, orig_block_len, ram_bytes; | 
 |  | 
 | 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 			type = BTRFS_ORDERED_PREALLOC; | 
 | 		else | 
 | 			type = BTRFS_ORDERED_NOCOW; | 
 | 		len = min(len, em->len - (start - em->start)); | 
 | 		block_start = em->block_start + (start - em->start); | 
 |  | 
 | 		if (can_nocow_extent(inode, start, &len, &orig_start, | 
 | 				     &orig_block_len, &ram_bytes) == 1 && | 
 | 		    btrfs_inc_nocow_writers(fs_info, block_start)) { | 
 | 			struct extent_map *em2; | 
 |  | 
 | 			em2 = btrfs_create_dio_extent(inode, start, len, | 
 | 						      orig_start, block_start, | 
 | 						      len, orig_block_len, | 
 | 						      ram_bytes, type); | 
 | 			btrfs_dec_nocow_writers(fs_info, block_start); | 
 | 			if (type == BTRFS_ORDERED_PREALLOC) { | 
 | 				free_extent_map(em); | 
 | 				*map = em = em2; | 
 | 			} | 
 |  | 
 | 			if (em2 && IS_ERR(em2)) { | 
 | 				ret = PTR_ERR(em2); | 
 | 				goto out; | 
 | 			} | 
 | 			/* | 
 | 			 * For inode marked NODATACOW or extent marked PREALLOC, | 
 | 			 * use the existing or preallocated extent, so does not | 
 | 			 * need to adjust btrfs_space_info's bytes_may_use. | 
 | 			 */ | 
 | 			btrfs_free_reserved_data_space_noquota(inode, start, | 
 | 							       len); | 
 | 			goto skip_cow; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* this will cow the extent */ | 
 | 	len = bh_result->b_size; | 
 | 	free_extent_map(em); | 
 | 	*map = em = btrfs_new_extent_direct(inode, start, len); | 
 | 	if (IS_ERR(em)) { | 
 | 		ret = PTR_ERR(em); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	len = min(len, em->len - (start - em->start)); | 
 |  | 
 | skip_cow: | 
 | 	bh_result->b_blocknr = (em->block_start + (start - em->start)) >> | 
 | 		inode->i_blkbits; | 
 | 	bh_result->b_size = len; | 
 | 	bh_result->b_bdev = em->bdev; | 
 | 	set_buffer_mapped(bh_result); | 
 |  | 
 | 	if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) | 
 | 		set_buffer_new(bh_result); | 
 |  | 
 | 	/* | 
 | 	 * Need to update the i_size under the extent lock so buffered | 
 | 	 * readers will get the updated i_size when we unlock. | 
 | 	 */ | 
 | 	if (!dio_data->overwrite && start + len > i_size_read(inode)) | 
 | 		i_size_write(inode, start + len); | 
 |  | 
 | 	WARN_ON(dio_data->reserve < len); | 
 | 	dio_data->reserve -= len; | 
 | 	dio_data->unsubmitted_oe_range_end = start + len; | 
 | 	current->journal_info = dio_data; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock, | 
 | 				   struct buffer_head *bh_result, int create) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct extent_map *em; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct btrfs_dio_data *dio_data = NULL; | 
 | 	u64 start = iblock << inode->i_blkbits; | 
 | 	u64 lockstart, lockend; | 
 | 	u64 len = bh_result->b_size; | 
 | 	int unlock_bits = EXTENT_LOCKED; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (create) | 
 | 		unlock_bits |= EXTENT_DIRTY; | 
 | 	else | 
 | 		len = min_t(u64, len, fs_info->sectorsize); | 
 |  | 
 | 	lockstart = start; | 
 | 	lockend = start + len - 1; | 
 |  | 
 | 	if (current->journal_info) { | 
 | 		/* | 
 | 		 * Need to pull our outstanding extents and set journal_info to NULL so | 
 | 		 * that anything that needs to check if there's a transaction doesn't get | 
 | 		 * confused. | 
 | 		 */ | 
 | 		dio_data = current->journal_info; | 
 | 		current->journal_info = NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this errors out it's because we couldn't invalidate pagecache for | 
 | 	 * this range and we need to fallback to buffered. | 
 | 	 */ | 
 | 	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, | 
 | 			       create)) { | 
 | 		ret = -ENOTBLK; | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0); | 
 | 	if (IS_ERR(em)) { | 
 | 		ret = PTR_ERR(em); | 
 | 		goto unlock_err; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered | 
 | 	 * io.  INLINE is special, and we could probably kludge it in here, but | 
 | 	 * it's still buffered so for safety lets just fall back to the generic | 
 | 	 * buffered path. | 
 | 	 * | 
 | 	 * For COMPRESSED we _have_ to read the entire extent in so we can | 
 | 	 * decompress it, so there will be buffering required no matter what we | 
 | 	 * do, so go ahead and fallback to buffered. | 
 | 	 * | 
 | 	 * We return -ENOTBLK because that's what makes DIO go ahead and go back | 
 | 	 * to buffered IO.  Don't blame me, this is the price we pay for using | 
 | 	 * the generic code. | 
 | 	 */ | 
 | 	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) || | 
 | 	    em->block_start == EXTENT_MAP_INLINE) { | 
 | 		free_extent_map(em); | 
 | 		ret = -ENOTBLK; | 
 | 		goto unlock_err; | 
 | 	} | 
 |  | 
 | 	if (create) { | 
 | 		ret = btrfs_get_blocks_direct_write(&em, bh_result, inode, | 
 | 						    dio_data, start, len); | 
 | 		if (ret < 0) | 
 | 			goto unlock_err; | 
 |  | 
 | 		/* clear and unlock the entire range */ | 
 | 		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
 | 				 unlock_bits, 1, 0, &cached_state); | 
 | 	} else { | 
 | 		ret = btrfs_get_blocks_direct_read(em, bh_result, inode, | 
 | 						   start, len); | 
 | 		/* Can be negative only if we read from a hole */ | 
 | 		if (ret < 0) { | 
 | 			ret = 0; | 
 | 			free_extent_map(em); | 
 | 			goto unlock_err; | 
 | 		} | 
 | 		/* | 
 | 		 * We need to unlock only the end area that we aren't using. | 
 | 		 * The rest is going to be unlocked by the endio routine. | 
 | 		 */ | 
 | 		lockstart = start + bh_result->b_size; | 
 | 		if (lockstart < lockend) { | 
 | 			clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, | 
 | 					 lockend, unlock_bits, 1, 0, | 
 | 					 &cached_state); | 
 | 		} else { | 
 | 			free_extent_state(cached_state); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	free_extent_map(em); | 
 |  | 
 | 	return 0; | 
 |  | 
 | unlock_err: | 
 | 	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend, | 
 | 			 unlock_bits, 1, 0, &cached_state); | 
 | err: | 
 | 	if (dio_data) | 
 | 		current->journal_info = dio_data; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline blk_status_t submit_dio_repair_bio(struct inode *inode, | 
 | 						 struct bio *bio, | 
 | 						 int mirror_num) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	blk_status_t ret; | 
 |  | 
 | 	BUG_ON(bio_op(bio) == REQ_OP_WRITE); | 
 |  | 
 | 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = btrfs_map_bio(fs_info, bio, mirror_num, 0); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_check_dio_repairable(struct inode *inode, | 
 | 				      struct bio *failed_bio, | 
 | 				      struct io_failure_record *failrec, | 
 | 				      int failed_mirror) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	int num_copies; | 
 |  | 
 | 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len); | 
 | 	if (num_copies == 1) { | 
 | 		/* | 
 | 		 * we only have a single copy of the data, so don't bother with | 
 | 		 * all the retry and error correction code that follows. no | 
 | 		 * matter what the error is, it is very likely to persist. | 
 | 		 */ | 
 | 		btrfs_debug(fs_info, | 
 | 			"Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d", | 
 | 			num_copies, failrec->this_mirror, failed_mirror); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	failrec->failed_mirror = failed_mirror; | 
 | 	failrec->this_mirror++; | 
 | 	if (failrec->this_mirror == failed_mirror) | 
 | 		failrec->this_mirror++; | 
 |  | 
 | 	if (failrec->this_mirror > num_copies) { | 
 | 		btrfs_debug(fs_info, | 
 | 			"Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d", | 
 | 			num_copies, failrec->this_mirror, failed_mirror); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio, | 
 | 				   struct page *page, unsigned int pgoff, | 
 | 				   u64 start, u64 end, int failed_mirror, | 
 | 				   bio_end_io_t *repair_endio, void *repair_arg) | 
 | { | 
 | 	struct io_failure_record *failrec; | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 | 	struct bio *bio; | 
 | 	int isector; | 
 | 	unsigned int read_mode = 0; | 
 | 	int segs; | 
 | 	int ret; | 
 | 	blk_status_t status; | 
 | 	struct bio_vec bvec; | 
 |  | 
 | 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE); | 
 |  | 
 | 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec); | 
 | 	if (ret) | 
 | 		return errno_to_blk_status(ret); | 
 |  | 
 | 	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec, | 
 | 					 failed_mirror); | 
 | 	if (!ret) { | 
 | 		free_io_failure(failure_tree, io_tree, failrec); | 
 | 		return BLK_STS_IOERR; | 
 | 	} | 
 |  | 
 | 	segs = bio_segments(failed_bio); | 
 | 	bio_get_first_bvec(failed_bio, &bvec); | 
 | 	if (segs > 1 || | 
 | 	    (bvec.bv_len > btrfs_inode_sectorsize(inode))) | 
 | 		read_mode |= REQ_FAILFAST_DEV; | 
 |  | 
 | 	isector = start - btrfs_io_bio(failed_bio)->logical; | 
 | 	isector >>= inode->i_sb->s_blocksize_bits; | 
 | 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page, | 
 | 				pgoff, isector, repair_endio, repair_arg); | 
 | 	bio->bi_opf = REQ_OP_READ | read_mode; | 
 |  | 
 | 	btrfs_debug(BTRFS_I(inode)->root->fs_info, | 
 | 		    "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d", | 
 | 		    read_mode, failrec->this_mirror, failrec->in_validation); | 
 |  | 
 | 	status = submit_dio_repair_bio(inode, bio, failrec->this_mirror); | 
 | 	if (status) { | 
 | 		free_io_failure(failure_tree, io_tree, failrec); | 
 | 		bio_put(bio); | 
 | 	} | 
 |  | 
 | 	return status; | 
 | } | 
 |  | 
 | struct btrfs_retry_complete { | 
 | 	struct completion done; | 
 | 	struct inode *inode; | 
 | 	u64 start; | 
 | 	int uptodate; | 
 | }; | 
 |  | 
 | static void btrfs_retry_endio_nocsum(struct bio *bio) | 
 | { | 
 | 	struct btrfs_retry_complete *done = bio->bi_private; | 
 | 	struct inode *inode = done->inode; | 
 | 	struct bio_vec *bvec; | 
 | 	struct extent_io_tree *io_tree, *failure_tree; | 
 | 	int i; | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		goto end; | 
 |  | 
 | 	ASSERT(bio->bi_vcnt == 1); | 
 | 	io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 | 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(inode)); | 
 |  | 
 | 	done->uptodate = 1; | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, i) | 
 | 		clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree, | 
 | 				 io_tree, done->start, bvec->bv_page, | 
 | 				 btrfs_ino(BTRFS_I(inode)), 0); | 
 | end: | 
 | 	complete(&done->done); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode, | 
 | 						struct btrfs_io_bio *io_bio) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct bio_vec bvec; | 
 | 	struct bvec_iter iter; | 
 | 	struct btrfs_retry_complete done; | 
 | 	u64 start; | 
 | 	unsigned int pgoff; | 
 | 	u32 sectorsize; | 
 | 	int nr_sectors; | 
 | 	blk_status_t ret; | 
 | 	blk_status_t err = BLK_STS_OK; | 
 |  | 
 | 	fs_info = BTRFS_I(inode)->root->fs_info; | 
 | 	sectorsize = fs_info->sectorsize; | 
 |  | 
 | 	start = io_bio->logical; | 
 | 	done.inode = inode; | 
 | 	io_bio->bio.bi_iter = io_bio->iter; | 
 |  | 
 | 	bio_for_each_segment(bvec, &io_bio->bio, iter) { | 
 | 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); | 
 | 		pgoff = bvec.bv_offset; | 
 |  | 
 | next_block_or_try_again: | 
 | 		done.uptodate = 0; | 
 | 		done.start = start; | 
 | 		init_completion(&done.done); | 
 |  | 
 | 		ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page, | 
 | 				pgoff, start, start + sectorsize - 1, | 
 | 				io_bio->mirror_num, | 
 | 				btrfs_retry_endio_nocsum, &done); | 
 | 		if (ret) { | 
 | 			err = ret; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		wait_for_completion_io(&done.done); | 
 |  | 
 | 		if (!done.uptodate) { | 
 | 			/* We might have another mirror, so try again */ | 
 | 			goto next_block_or_try_again; | 
 | 		} | 
 |  | 
 | next: | 
 | 		start += sectorsize; | 
 |  | 
 | 		nr_sectors--; | 
 | 		if (nr_sectors) { | 
 | 			pgoff += sectorsize; | 
 | 			ASSERT(pgoff < PAGE_SIZE); | 
 | 			goto next_block_or_try_again; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void btrfs_retry_endio(struct bio *bio) | 
 | { | 
 | 	struct btrfs_retry_complete *done = bio->bi_private; | 
 | 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); | 
 | 	struct extent_io_tree *io_tree, *failure_tree; | 
 | 	struct inode *inode = done->inode; | 
 | 	struct bio_vec *bvec; | 
 | 	int uptodate; | 
 | 	int ret; | 
 | 	int i; | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		goto end; | 
 |  | 
 | 	uptodate = 1; | 
 |  | 
 | 	ASSERT(bio->bi_vcnt == 1); | 
 | 	ASSERT(bio_first_bvec_all(bio)->bv_len == btrfs_inode_sectorsize(done->inode)); | 
 |  | 
 | 	io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	failure_tree = &BTRFS_I(inode)->io_failure_tree; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 | 	bio_for_each_segment_all(bvec, bio, i) { | 
 | 		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page, | 
 | 					     bvec->bv_offset, done->start, | 
 | 					     bvec->bv_len); | 
 | 		if (!ret) | 
 | 			clean_io_failure(BTRFS_I(inode)->root->fs_info, | 
 | 					 failure_tree, io_tree, done->start, | 
 | 					 bvec->bv_page, | 
 | 					 btrfs_ino(BTRFS_I(inode)), | 
 | 					 bvec->bv_offset); | 
 | 		else | 
 | 			uptodate = 0; | 
 | 	} | 
 |  | 
 | 	done->uptodate = uptodate; | 
 | end: | 
 | 	complete(&done->done); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static blk_status_t __btrfs_subio_endio_read(struct inode *inode, | 
 | 		struct btrfs_io_bio *io_bio, blk_status_t err) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct bio_vec bvec; | 
 | 	struct bvec_iter iter; | 
 | 	struct btrfs_retry_complete done; | 
 | 	u64 start; | 
 | 	u64 offset = 0; | 
 | 	u32 sectorsize; | 
 | 	int nr_sectors; | 
 | 	unsigned int pgoff; | 
 | 	int csum_pos; | 
 | 	bool uptodate = (err == 0); | 
 | 	int ret; | 
 | 	blk_status_t status; | 
 |  | 
 | 	fs_info = BTRFS_I(inode)->root->fs_info; | 
 | 	sectorsize = fs_info->sectorsize; | 
 |  | 
 | 	err = BLK_STS_OK; | 
 | 	start = io_bio->logical; | 
 | 	done.inode = inode; | 
 | 	io_bio->bio.bi_iter = io_bio->iter; | 
 |  | 
 | 	bio_for_each_segment(bvec, &io_bio->bio, iter) { | 
 | 		nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len); | 
 |  | 
 | 		pgoff = bvec.bv_offset; | 
 | next_block: | 
 | 		if (uptodate) { | 
 | 			csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset); | 
 | 			ret = __readpage_endio_check(inode, io_bio, csum_pos, | 
 | 					bvec.bv_page, pgoff, start, sectorsize); | 
 | 			if (likely(!ret)) | 
 | 				goto next; | 
 | 		} | 
 | try_again: | 
 | 		done.uptodate = 0; | 
 | 		done.start = start; | 
 | 		init_completion(&done.done); | 
 |  | 
 | 		status = dio_read_error(inode, &io_bio->bio, bvec.bv_page, | 
 | 					pgoff, start, start + sectorsize - 1, | 
 | 					io_bio->mirror_num, btrfs_retry_endio, | 
 | 					&done); | 
 | 		if (status) { | 
 | 			err = status; | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		wait_for_completion_io(&done.done); | 
 |  | 
 | 		if (!done.uptodate) { | 
 | 			/* We might have another mirror, so try again */ | 
 | 			goto try_again; | 
 | 		} | 
 | next: | 
 | 		offset += sectorsize; | 
 | 		start += sectorsize; | 
 |  | 
 | 		ASSERT(nr_sectors); | 
 |  | 
 | 		nr_sectors--; | 
 | 		if (nr_sectors) { | 
 | 			pgoff += sectorsize; | 
 | 			ASSERT(pgoff < PAGE_SIZE); | 
 | 			goto next_block; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static blk_status_t btrfs_subio_endio_read(struct inode *inode, | 
 | 		struct btrfs_io_bio *io_bio, blk_status_t err) | 
 | { | 
 | 	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM; | 
 |  | 
 | 	if (skip_csum) { | 
 | 		if (unlikely(err)) | 
 | 			return __btrfs_correct_data_nocsum(inode, io_bio); | 
 | 		else | 
 | 			return BLK_STS_OK; | 
 | 	} else { | 
 | 		return __btrfs_subio_endio_read(inode, io_bio, err); | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_endio_direct_read(struct bio *bio) | 
 | { | 
 | 	struct btrfs_dio_private *dip = bio->bi_private; | 
 | 	struct inode *inode = dip->inode; | 
 | 	struct bio *dio_bio; | 
 | 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); | 
 | 	blk_status_t err = bio->bi_status; | 
 |  | 
 | 	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED) | 
 | 		err = btrfs_subio_endio_read(inode, io_bio, err); | 
 |  | 
 | 	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset, | 
 | 		      dip->logical_offset + dip->bytes - 1); | 
 | 	dio_bio = dip->dio_bio; | 
 |  | 
 | 	kfree(dip); | 
 |  | 
 | 	dio_bio->bi_status = err; | 
 | 	dio_end_io(dio_bio); | 
 |  | 
 | 	if (io_bio->end_io) | 
 | 		io_bio->end_io(io_bio, blk_status_to_errno(err)); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static void __endio_write_update_ordered(struct inode *inode, | 
 | 					 const u64 offset, const u64 bytes, | 
 | 					 const bool uptodate) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_ordered_extent *ordered = NULL; | 
 | 	struct btrfs_workqueue *wq; | 
 | 	btrfs_work_func_t func; | 
 | 	u64 ordered_offset = offset; | 
 | 	u64 ordered_bytes = bytes; | 
 | 	u64 last_offset; | 
 |  | 
 | 	if (btrfs_is_free_space_inode(BTRFS_I(inode))) { | 
 | 		wq = fs_info->endio_freespace_worker; | 
 | 		func = btrfs_freespace_write_helper; | 
 | 	} else { | 
 | 		wq = fs_info->endio_write_workers; | 
 | 		func = btrfs_endio_write_helper; | 
 | 	} | 
 |  | 
 | 	while (ordered_offset < offset + bytes) { | 
 | 		last_offset = ordered_offset; | 
 | 		if (btrfs_dec_test_first_ordered_pending(inode, &ordered, | 
 | 							   &ordered_offset, | 
 | 							   ordered_bytes, | 
 | 							   uptodate)) { | 
 | 			btrfs_init_work(&ordered->work, func, | 
 | 					finish_ordered_fn, | 
 | 					NULL, NULL); | 
 | 			btrfs_queue_work(wq, &ordered->work); | 
 | 		} | 
 | 		/* | 
 | 		 * If btrfs_dec_test_ordered_pending does not find any ordered | 
 | 		 * extent in the range, we can exit. | 
 | 		 */ | 
 | 		if (ordered_offset == last_offset) | 
 | 			return; | 
 | 		/* | 
 | 		 * Our bio might span multiple ordered extents. In this case | 
 | 		 * we keep goin until we have accounted the whole dio. | 
 | 		 */ | 
 | 		if (ordered_offset < offset + bytes) { | 
 | 			ordered_bytes = offset + bytes - ordered_offset; | 
 | 			ordered = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void btrfs_endio_direct_write(struct bio *bio) | 
 | { | 
 | 	struct btrfs_dio_private *dip = bio->bi_private; | 
 | 	struct bio *dio_bio = dip->dio_bio; | 
 |  | 
 | 	__endio_write_update_ordered(dip->inode, dip->logical_offset, | 
 | 				     dip->bytes, !bio->bi_status); | 
 |  | 
 | 	kfree(dip); | 
 |  | 
 | 	dio_bio->bi_status = bio->bi_status; | 
 | 	dio_end_io(dio_bio); | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static blk_status_t btrfs_submit_bio_start_direct_io(void *private_data, | 
 | 				    struct bio *bio, u64 offset) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 | 	blk_status_t ret; | 
 | 	ret = btrfs_csum_one_bio(inode, bio, offset, 1); | 
 | 	BUG_ON(ret); /* -ENOMEM */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btrfs_end_dio_bio(struct bio *bio) | 
 | { | 
 | 	struct btrfs_dio_private *dip = bio->bi_private; | 
 | 	blk_status_t err = bio->bi_status; | 
 |  | 
 | 	if (err) | 
 | 		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info, | 
 | 			   "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d", | 
 | 			   btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio), | 
 | 			   bio->bi_opf, | 
 | 			   (unsigned long long)bio->bi_iter.bi_sector, | 
 | 			   bio->bi_iter.bi_size, err); | 
 |  | 
 | 	if (dip->subio_endio) | 
 | 		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err); | 
 |  | 
 | 	if (err) { | 
 | 		/* | 
 | 		 * We want to perceive the errors flag being set before | 
 | 		 * decrementing the reference count. We don't need a barrier | 
 | 		 * since atomic operations with a return value are fully | 
 | 		 * ordered as per atomic_t.txt | 
 | 		 */ | 
 | 		dip->errors = 1; | 
 | 	} | 
 |  | 
 | 	/* if there are more bios still pending for this dio, just exit */ | 
 | 	if (!atomic_dec_and_test(&dip->pending_bios)) | 
 | 		goto out; | 
 |  | 
 | 	if (dip->errors) { | 
 | 		bio_io_error(dip->orig_bio); | 
 | 	} else { | 
 | 		dip->dio_bio->bi_status = BLK_STS_OK; | 
 | 		bio_endio(dip->orig_bio); | 
 | 	} | 
 | out: | 
 | 	bio_put(bio); | 
 | } | 
 |  | 
 | static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode, | 
 | 						 struct btrfs_dio_private *dip, | 
 | 						 struct bio *bio, | 
 | 						 u64 file_offset) | 
 | { | 
 | 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); | 
 | 	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio); | 
 | 	blk_status_t ret; | 
 |  | 
 | 	/* | 
 | 	 * We load all the csum data we need when we submit | 
 | 	 * the first bio to reduce the csum tree search and | 
 | 	 * contention. | 
 | 	 */ | 
 | 	if (dip->logical_offset == file_offset) { | 
 | 		ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio, | 
 | 						file_offset); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	if (bio == dip->orig_bio) | 
 | 		return 0; | 
 |  | 
 | 	file_offset -= dip->logical_offset; | 
 | 	file_offset >>= inode->i_sb->s_blocksize_bits; | 
 | 	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline blk_status_t btrfs_submit_dio_bio(struct bio *bio, | 
 | 		struct inode *inode, u64 file_offset, int async_submit) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_dio_private *dip = bio->bi_private; | 
 | 	bool write = bio_op(bio) == REQ_OP_WRITE; | 
 | 	blk_status_t ret; | 
 |  | 
 | 	/* Check btrfs_submit_bio_hook() for rules about async submit. */ | 
 | 	if (async_submit) | 
 | 		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers); | 
 |  | 
 | 	if (!write) { | 
 | 		ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) | 
 | 		goto map; | 
 |  | 
 | 	if (write && async_submit) { | 
 | 		ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0, | 
 | 					  file_offset, inode, | 
 | 					  btrfs_submit_bio_start_direct_io); | 
 | 		goto err; | 
 | 	} else if (write) { | 
 | 		/* | 
 | 		 * If we aren't doing async submit, calculate the csum of the | 
 | 		 * bio now. | 
 | 		 */ | 
 | 		ret = btrfs_csum_one_bio(inode, bio, file_offset, 1); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 	} else { | 
 | 		ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio, | 
 | 						     file_offset); | 
 | 		if (ret) | 
 | 			goto err; | 
 | 	} | 
 | map: | 
 | 	ret = btrfs_map_bio(fs_info, bio, 0, 0); | 
 | err: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip) | 
 | { | 
 | 	struct inode *inode = dip->inode; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct bio *bio; | 
 | 	struct bio *orig_bio = dip->orig_bio; | 
 | 	u64 start_sector = orig_bio->bi_iter.bi_sector; | 
 | 	u64 file_offset = dip->logical_offset; | 
 | 	u64 map_length; | 
 | 	int async_submit = 0; | 
 | 	u64 submit_len; | 
 | 	int clone_offset = 0; | 
 | 	int clone_len; | 
 | 	int ret; | 
 | 	blk_status_t status; | 
 |  | 
 | 	map_length = orig_bio->bi_iter.bi_size; | 
 | 	submit_len = map_length; | 
 | 	ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9, | 
 | 			      &map_length, NULL, 0); | 
 | 	if (ret) | 
 | 		return -EIO; | 
 |  | 
 | 	if (map_length >= submit_len) { | 
 | 		bio = orig_bio; | 
 | 		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED; | 
 | 		goto submit; | 
 | 	} | 
 |  | 
 | 	/* async crcs make it difficult to collect full stripe writes. */ | 
 | 	if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK) | 
 | 		async_submit = 0; | 
 | 	else | 
 | 		async_submit = 1; | 
 |  | 
 | 	/* bio split */ | 
 | 	ASSERT(map_length <= INT_MAX); | 
 | 	atomic_inc(&dip->pending_bios); | 
 | 	do { | 
 | 		clone_len = min_t(int, submit_len, map_length); | 
 |  | 
 | 		/* | 
 | 		 * This will never fail as it's passing GPF_NOFS and | 
 | 		 * the allocation is backed by btrfs_bioset. | 
 | 		 */ | 
 | 		bio = btrfs_bio_clone_partial(orig_bio, clone_offset, | 
 | 					      clone_len); | 
 | 		bio->bi_private = dip; | 
 | 		bio->bi_end_io = btrfs_end_dio_bio; | 
 | 		btrfs_io_bio(bio)->logical = file_offset; | 
 |  | 
 | 		ASSERT(submit_len >= clone_len); | 
 | 		submit_len -= clone_len; | 
 | 		if (submit_len == 0) | 
 | 			break; | 
 |  | 
 | 		/* | 
 | 		 * Increase the count before we submit the bio so we know | 
 | 		 * the end IO handler won't happen before we increase the | 
 | 		 * count. Otherwise, the dip might get freed before we're | 
 | 		 * done setting it up. | 
 | 		 */ | 
 | 		atomic_inc(&dip->pending_bios); | 
 |  | 
 | 		status = btrfs_submit_dio_bio(bio, inode, file_offset, | 
 | 						async_submit); | 
 | 		if (status) { | 
 | 			bio_put(bio); | 
 | 			atomic_dec(&dip->pending_bios); | 
 | 			goto out_err; | 
 | 		} | 
 |  | 
 | 		clone_offset += clone_len; | 
 | 		start_sector += clone_len >> 9; | 
 | 		file_offset += clone_len; | 
 |  | 
 | 		map_length = submit_len; | 
 | 		ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), | 
 | 				      start_sector << 9, &map_length, NULL, 0); | 
 | 		if (ret) | 
 | 			goto out_err; | 
 | 	} while (submit_len > 0); | 
 |  | 
 | submit: | 
 | 	status = btrfs_submit_dio_bio(bio, inode, file_offset, async_submit); | 
 | 	if (!status) | 
 | 		return 0; | 
 |  | 
 | 	bio_put(bio); | 
 | out_err: | 
 | 	dip->errors = 1; | 
 | 	/* | 
 | 	 * Before atomic variable goto zero, we must  make sure dip->errors is | 
 | 	 * perceived to be set. This ordering is ensured by the fact that an | 
 | 	 * atomic operations with a return value are fully ordered as per | 
 | 	 * atomic_t.txt | 
 | 	 */ | 
 | 	if (atomic_dec_and_test(&dip->pending_bios)) | 
 | 		bio_io_error(dip->orig_bio); | 
 |  | 
 | 	/* bio_end_io() will handle error, so we needn't return it */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode, | 
 | 				loff_t file_offset) | 
 | { | 
 | 	struct btrfs_dio_private *dip = NULL; | 
 | 	struct bio *bio = NULL; | 
 | 	struct btrfs_io_bio *io_bio; | 
 | 	bool write = (bio_op(dio_bio) == REQ_OP_WRITE); | 
 | 	int ret = 0; | 
 |  | 
 | 	bio = btrfs_bio_clone(dio_bio); | 
 |  | 
 | 	dip = kzalloc(sizeof(*dip), GFP_NOFS); | 
 | 	if (!dip) { | 
 | 		ret = -ENOMEM; | 
 | 		goto free_ordered; | 
 | 	} | 
 |  | 
 | 	dip->private = dio_bio->bi_private; | 
 | 	dip->inode = inode; | 
 | 	dip->logical_offset = file_offset; | 
 | 	dip->bytes = dio_bio->bi_iter.bi_size; | 
 | 	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9; | 
 | 	bio->bi_private = dip; | 
 | 	dip->orig_bio = bio; | 
 | 	dip->dio_bio = dio_bio; | 
 | 	atomic_set(&dip->pending_bios, 0); | 
 | 	io_bio = btrfs_io_bio(bio); | 
 | 	io_bio->logical = file_offset; | 
 |  | 
 | 	if (write) { | 
 | 		bio->bi_end_io = btrfs_endio_direct_write; | 
 | 	} else { | 
 | 		bio->bi_end_io = btrfs_endio_direct_read; | 
 | 		dip->subio_endio = btrfs_subio_endio_read; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Reset the range for unsubmitted ordered extents (to a 0 length range) | 
 | 	 * even if we fail to submit a bio, because in such case we do the | 
 | 	 * corresponding error handling below and it must not be done a second | 
 | 	 * time by btrfs_direct_IO(). | 
 | 	 */ | 
 | 	if (write) { | 
 | 		struct btrfs_dio_data *dio_data = current->journal_info; | 
 |  | 
 | 		dio_data->unsubmitted_oe_range_end = dip->logical_offset + | 
 | 			dip->bytes; | 
 | 		dio_data->unsubmitted_oe_range_start = | 
 | 			dio_data->unsubmitted_oe_range_end; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_submit_direct_hook(dip); | 
 | 	if (!ret) | 
 | 		return; | 
 |  | 
 | 	if (io_bio->end_io) | 
 | 		io_bio->end_io(io_bio, ret); | 
 |  | 
 | free_ordered: | 
 | 	/* | 
 | 	 * If we arrived here it means either we failed to submit the dip | 
 | 	 * or we either failed to clone the dio_bio or failed to allocate the | 
 | 	 * dip. If we cloned the dio_bio and allocated the dip, we can just | 
 | 	 * call bio_endio against our io_bio so that we get proper resource | 
 | 	 * cleanup if we fail to submit the dip, otherwise, we must do the | 
 | 	 * same as btrfs_endio_direct_[write|read] because we can't call these | 
 | 	 * callbacks - they require an allocated dip and a clone of dio_bio. | 
 | 	 */ | 
 | 	if (bio && dip) { | 
 | 		bio_io_error(bio); | 
 | 		/* | 
 | 		 * The end io callbacks free our dip, do the final put on bio | 
 | 		 * and all the cleanup and final put for dio_bio (through | 
 | 		 * dio_end_io()). | 
 | 		 */ | 
 | 		dip = NULL; | 
 | 		bio = NULL; | 
 | 	} else { | 
 | 		if (write) | 
 | 			__endio_write_update_ordered(inode, | 
 | 						file_offset, | 
 | 						dio_bio->bi_iter.bi_size, | 
 | 						false); | 
 | 		else | 
 | 			unlock_extent(&BTRFS_I(inode)->io_tree, file_offset, | 
 | 			      file_offset + dio_bio->bi_iter.bi_size - 1); | 
 |  | 
 | 		dio_bio->bi_status = BLK_STS_IOERR; | 
 | 		/* | 
 | 		 * Releases and cleans up our dio_bio, no need to bio_put() | 
 | 		 * nor bio_endio()/bio_io_error() against dio_bio. | 
 | 		 */ | 
 | 		dio_end_io(dio_bio); | 
 | 	} | 
 | 	if (bio) | 
 | 		bio_put(bio); | 
 | 	kfree(dip); | 
 | } | 
 |  | 
 | static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info, | 
 | 			       const struct iov_iter *iter, loff_t offset) | 
 | { | 
 | 	int seg; | 
 | 	int i; | 
 | 	unsigned int blocksize_mask = fs_info->sectorsize - 1; | 
 | 	ssize_t retval = -EINVAL; | 
 |  | 
 | 	if (offset & blocksize_mask) | 
 | 		goto out; | 
 |  | 
 | 	if (iov_iter_alignment(iter) & blocksize_mask) | 
 | 		goto out; | 
 |  | 
 | 	/* If this is a write we don't need to check anymore */ | 
 | 	if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter)) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * Check to make sure we don't have duplicate iov_base's in this | 
 | 	 * iovec, if so return EINVAL, otherwise we'll get csum errors | 
 | 	 * when reading back. | 
 | 	 */ | 
 | 	for (seg = 0; seg < iter->nr_segs; seg++) { | 
 | 		for (i = seg + 1; i < iter->nr_segs; i++) { | 
 | 			if (iter->iov[seg].iov_base == iter->iov[i].iov_base) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 | 	retval = 0; | 
 | out: | 
 | 	return retval; | 
 | } | 
 |  | 
 | static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter) | 
 | { | 
 | 	struct file *file = iocb->ki_filp; | 
 | 	struct inode *inode = file->f_mapping->host; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_dio_data dio_data = { 0 }; | 
 | 	struct extent_changeset *data_reserved = NULL; | 
 | 	loff_t offset = iocb->ki_pos; | 
 | 	size_t count = 0; | 
 | 	int flags = 0; | 
 | 	bool wakeup = true; | 
 | 	bool relock = false; | 
 | 	ssize_t ret; | 
 |  | 
 | 	if (check_direct_IO(fs_info, iter, offset)) | 
 | 		return 0; | 
 |  | 
 | 	inode_dio_begin(inode); | 
 |  | 
 | 	/* | 
 | 	 * The generic stuff only does filemap_write_and_wait_range, which | 
 | 	 * isn't enough if we've written compressed pages to this area, so | 
 | 	 * we need to flush the dirty pages again to make absolutely sure | 
 | 	 * that any outstanding dirty pages are on disk. | 
 | 	 */ | 
 | 	count = iov_iter_count(iter); | 
 | 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, | 
 | 		     &BTRFS_I(inode)->runtime_flags)) | 
 | 		filemap_fdatawrite_range(inode->i_mapping, offset, | 
 | 					 offset + count - 1); | 
 |  | 
 | 	if (iov_iter_rw(iter) == WRITE) { | 
 | 		/* | 
 | 		 * If the write DIO is beyond the EOF, we need update | 
 | 		 * the isize, but it is protected by i_mutex. So we can | 
 | 		 * not unlock the i_mutex at this case. | 
 | 		 */ | 
 | 		if (offset + count <= inode->i_size) { | 
 | 			dio_data.overwrite = 1; | 
 | 			inode_unlock(inode); | 
 | 			relock = true; | 
 | 		} else if (iocb->ki_flags & IOCB_NOWAIT) { | 
 | 			ret = -EAGAIN; | 
 | 			goto out; | 
 | 		} | 
 | 		ret = btrfs_delalloc_reserve_space(inode, &data_reserved, | 
 | 						   offset, count); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		/* | 
 | 		 * We need to know how many extents we reserved so that we can | 
 | 		 * do the accounting properly if we go over the number we | 
 | 		 * originally calculated.  Abuse current->journal_info for this. | 
 | 		 */ | 
 | 		dio_data.reserve = round_up(count, | 
 | 					    fs_info->sectorsize); | 
 | 		dio_data.unsubmitted_oe_range_start = (u64)offset; | 
 | 		dio_data.unsubmitted_oe_range_end = (u64)offset; | 
 | 		current->journal_info = &dio_data; | 
 | 		down_read(&BTRFS_I(inode)->dio_sem); | 
 | 	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK, | 
 | 				     &BTRFS_I(inode)->runtime_flags)) { | 
 | 		inode_dio_end(inode); | 
 | 		flags = DIO_LOCKING | DIO_SKIP_HOLES; | 
 | 		wakeup = false; | 
 | 	} | 
 |  | 
 | 	ret = __blockdev_direct_IO(iocb, inode, | 
 | 				   fs_info->fs_devices->latest_bdev, | 
 | 				   iter, btrfs_get_blocks_direct, NULL, | 
 | 				   btrfs_submit_direct, flags); | 
 | 	if (iov_iter_rw(iter) == WRITE) { | 
 | 		up_read(&BTRFS_I(inode)->dio_sem); | 
 | 		current->journal_info = NULL; | 
 | 		if (ret < 0 && ret != -EIOCBQUEUED) { | 
 | 			if (dio_data.reserve) | 
 | 				btrfs_delalloc_release_space(inode, data_reserved, | 
 | 					offset, dio_data.reserve, true); | 
 | 			/* | 
 | 			 * On error we might have left some ordered extents | 
 | 			 * without submitting corresponding bios for them, so | 
 | 			 * cleanup them up to avoid other tasks getting them | 
 | 			 * and waiting for them to complete forever. | 
 | 			 */ | 
 | 			if (dio_data.unsubmitted_oe_range_start < | 
 | 			    dio_data.unsubmitted_oe_range_end) | 
 | 				__endio_write_update_ordered(inode, | 
 | 					dio_data.unsubmitted_oe_range_start, | 
 | 					dio_data.unsubmitted_oe_range_end - | 
 | 					dio_data.unsubmitted_oe_range_start, | 
 | 					false); | 
 | 		} else if (ret >= 0 && (size_t)ret < count) | 
 | 			btrfs_delalloc_release_space(inode, data_reserved, | 
 | 					offset, count - (size_t)ret, true); | 
 | 		btrfs_delalloc_release_extents(BTRFS_I(inode), count); | 
 | 	} | 
 | out: | 
 | 	if (wakeup) | 
 | 		inode_dio_end(inode); | 
 | 	if (relock) | 
 | 		inode_lock(inode); | 
 |  | 
 | 	extent_changeset_free(data_reserved); | 
 | 	return ret; | 
 | } | 
 |  | 
 | #define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC) | 
 |  | 
 | static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, | 
 | 		__u64 start, __u64 len) | 
 | { | 
 | 	int	ret; | 
 |  | 
 | 	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	return extent_fiemap(inode, fieinfo, start, len); | 
 | } | 
 |  | 
 | int btrfs_readpage(struct file *file, struct page *page) | 
 | { | 
 | 	struct extent_io_tree *tree; | 
 | 	tree = &BTRFS_I(page->mapping->host)->io_tree; | 
 | 	return extent_read_full_page(tree, page, btrfs_get_extent, 0); | 
 | } | 
 |  | 
 | static int btrfs_writepage(struct page *page, struct writeback_control *wbc) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	int ret; | 
 |  | 
 | 	if (current->flags & PF_MEMALLOC) { | 
 | 		redirty_page_for_writepage(wbc, page); | 
 | 		unlock_page(page); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we are under memory pressure we will call this directly from the | 
 | 	 * VM, we need to make sure we have the inode referenced for the ordered | 
 | 	 * extent.  If not just return like we didn't do anything. | 
 | 	 */ | 
 | 	if (!igrab(inode)) { | 
 | 		redirty_page_for_writepage(wbc, page); | 
 | 		return AOP_WRITEPAGE_ACTIVATE; | 
 | 	} | 
 | 	ret = extent_write_full_page(page, wbc); | 
 | 	btrfs_add_delayed_iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_writepages(struct address_space *mapping, | 
 | 			    struct writeback_control *wbc) | 
 | { | 
 | 	return extent_writepages(mapping, wbc); | 
 | } | 
 |  | 
 | static int | 
 | btrfs_readpages(struct file *file, struct address_space *mapping, | 
 | 		struct list_head *pages, unsigned nr_pages) | 
 | { | 
 | 	return extent_readpages(mapping, pages, nr_pages); | 
 | } | 
 |  | 
 | static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags) | 
 | { | 
 | 	int ret = try_release_extent_mapping(page, gfp_flags); | 
 | 	if (ret == 1) { | 
 | 		ClearPagePrivate(page); | 
 | 		set_page_private(page, 0); | 
 | 		put_page(page); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_releasepage(struct page *page, gfp_t gfp_flags) | 
 | { | 
 | 	if (PageWriteback(page) || PageDirty(page)) | 
 | 		return 0; | 
 | 	return __btrfs_releasepage(page, gfp_flags); | 
 | } | 
 |  | 
 | static void btrfs_invalidatepage(struct page *page, unsigned int offset, | 
 | 				 unsigned int length) | 
 | { | 
 | 	struct inode *inode = page->mapping->host; | 
 | 	struct extent_io_tree *tree; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	u64 page_start = page_offset(page); | 
 | 	u64 page_end = page_start + PAGE_SIZE - 1; | 
 | 	u64 start; | 
 | 	u64 end; | 
 | 	int inode_evicting = inode->i_state & I_FREEING; | 
 |  | 
 | 	/* | 
 | 	 * we have the page locked, so new writeback can't start, | 
 | 	 * and the dirty bit won't be cleared while we are here. | 
 | 	 * | 
 | 	 * Wait for IO on this page so that we can safely clear | 
 | 	 * the PagePrivate2 bit and do ordered accounting | 
 | 	 */ | 
 | 	wait_on_page_writeback(page); | 
 |  | 
 | 	tree = &BTRFS_I(inode)->io_tree; | 
 | 	if (offset) { | 
 | 		btrfs_releasepage(page, GFP_NOFS); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!inode_evicting) | 
 | 		lock_extent_bits(tree, page_start, page_end, &cached_state); | 
 | again: | 
 | 	start = page_start; | 
 | 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start, | 
 | 					page_end - start + 1); | 
 | 	if (ordered) { | 
 | 		end = min(page_end, ordered->file_offset + ordered->len - 1); | 
 | 		/* | 
 | 		 * IO on this page will never be started, so we need | 
 | 		 * to account for any ordered extents now | 
 | 		 */ | 
 | 		if (!inode_evicting) | 
 | 			clear_extent_bit(tree, start, end, | 
 | 					 EXTENT_DIRTY | EXTENT_DELALLOC | | 
 | 					 EXTENT_DELALLOC_NEW | | 
 | 					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING | | 
 | 					 EXTENT_DEFRAG, 1, 0, &cached_state); | 
 | 		/* | 
 | 		 * whoever cleared the private bit is responsible | 
 | 		 * for the finish_ordered_io | 
 | 		 */ | 
 | 		if (TestClearPagePrivate2(page)) { | 
 | 			struct btrfs_ordered_inode_tree *tree; | 
 | 			u64 new_len; | 
 |  | 
 | 			tree = &BTRFS_I(inode)->ordered_tree; | 
 |  | 
 | 			spin_lock_irq(&tree->lock); | 
 | 			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags); | 
 | 			new_len = start - ordered->file_offset; | 
 | 			if (new_len < ordered->truncated_len) | 
 | 				ordered->truncated_len = new_len; | 
 | 			spin_unlock_irq(&tree->lock); | 
 |  | 
 | 			if (btrfs_dec_test_ordered_pending(inode, &ordered, | 
 | 							   start, | 
 | 							   end - start + 1, 1)) | 
 | 				btrfs_finish_ordered_io(ordered); | 
 | 		} | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		if (!inode_evicting) { | 
 | 			cached_state = NULL; | 
 | 			lock_extent_bits(tree, start, end, | 
 | 					 &cached_state); | 
 | 		} | 
 |  | 
 | 		start = end + 1; | 
 | 		if (start < page_end) | 
 | 			goto again; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Qgroup reserved space handler | 
 | 	 * Page here will be either | 
 | 	 * 1) Already written to disk | 
 | 	 *    In this case, its reserved space is released from data rsv map | 
 | 	 *    and will be freed by delayed_ref handler finally. | 
 | 	 *    So even we call qgroup_free_data(), it won't decrease reserved | 
 | 	 *    space. | 
 | 	 * 2) Not written to disk | 
 | 	 *    This means the reserved space should be freed here. However, | 
 | 	 *    if a truncate invalidates the page (by clearing PageDirty) | 
 | 	 *    and the page is accounted for while allocating extent | 
 | 	 *    in btrfs_check_data_free_space() we let delayed_ref to | 
 | 	 *    free the entire extent. | 
 | 	 */ | 
 | 	if (PageDirty(page)) | 
 | 		btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE); | 
 | 	if (!inode_evicting) { | 
 | 		clear_extent_bit(tree, page_start, page_end, | 
 | 				 EXTENT_LOCKED | EXTENT_DIRTY | | 
 | 				 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW | | 
 | 				 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1, | 
 | 				 &cached_state); | 
 |  | 
 | 		__btrfs_releasepage(page, GFP_NOFS); | 
 | 	} | 
 |  | 
 | 	ClearPageChecked(page); | 
 | 	if (PagePrivate(page)) { | 
 | 		ClearPagePrivate(page); | 
 | 		set_page_private(page, 0); | 
 | 		put_page(page); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * btrfs_page_mkwrite() is not allowed to change the file size as it gets | 
 |  * called from a page fault handler when a page is first dirtied. Hence we must | 
 |  * be careful to check for EOF conditions here. We set the page up correctly | 
 |  * for a written page which means we get ENOSPC checking when writing into | 
 |  * holes and correct delalloc and unwritten extent mapping on filesystems that | 
 |  * support these features. | 
 |  * | 
 |  * We are not allowed to take the i_mutex here so we have to play games to | 
 |  * protect against truncate races as the page could now be beyond EOF.  Because | 
 |  * truncate_setsize() writes the inode size before removing pages, once we have | 
 |  * the page lock we can determine safely if the page is beyond EOF. If it is not | 
 |  * beyond EOF, then the page is guaranteed safe against truncation until we | 
 |  * unlock the page. | 
 |  */ | 
 | vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf) | 
 | { | 
 | 	struct page *page = vmf->page; | 
 | 	struct inode *inode = file_inode(vmf->vma->vm_file); | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct extent_state *cached_state = NULL; | 
 | 	struct extent_changeset *data_reserved = NULL; | 
 | 	char *kaddr; | 
 | 	unsigned long zero_start; | 
 | 	loff_t size; | 
 | 	vm_fault_t ret; | 
 | 	int ret2; | 
 | 	int reserved = 0; | 
 | 	u64 reserved_space; | 
 | 	u64 page_start; | 
 | 	u64 page_end; | 
 | 	u64 end; | 
 |  | 
 | 	reserved_space = PAGE_SIZE; | 
 |  | 
 | 	sb_start_pagefault(inode->i_sb); | 
 | 	page_start = page_offset(page); | 
 | 	page_end = page_start + PAGE_SIZE - 1; | 
 | 	end = page_end; | 
 |  | 
 | 	/* | 
 | 	 * Reserving delalloc space after obtaining the page lock can lead to | 
 | 	 * deadlock. For example, if a dirty page is locked by this function | 
 | 	 * and the call to btrfs_delalloc_reserve_space() ends up triggering | 
 | 	 * dirty page write out, then the btrfs_writepage() function could | 
 | 	 * end up waiting indefinitely to get a lock on the page currently | 
 | 	 * being processed by btrfs_page_mkwrite() function. | 
 | 	 */ | 
 | 	ret2 = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start, | 
 | 					   reserved_space); | 
 | 	if (!ret2) { | 
 | 		ret2 = file_update_time(vmf->vma->vm_file); | 
 | 		reserved = 1; | 
 | 	} | 
 | 	if (ret2) { | 
 | 		ret = vmf_error(ret2); | 
 | 		if (reserved) | 
 | 			goto out; | 
 | 		goto out_noreserve; | 
 | 	} | 
 |  | 
 | 	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ | 
 | again: | 
 | 	lock_page(page); | 
 | 	size = i_size_read(inode); | 
 |  | 
 | 	if ((page->mapping != inode->i_mapping) || | 
 | 	    (page_start >= size)) { | 
 | 		/* page got truncated out from underneath us */ | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	wait_on_page_writeback(page); | 
 |  | 
 | 	lock_extent_bits(io_tree, page_start, page_end, &cached_state); | 
 | 	set_page_extent_mapped(page); | 
 |  | 
 | 	/* | 
 | 	 * we can't set the delalloc bits if there are pending ordered | 
 | 	 * extents.  Drop our locks and wait for them to finish | 
 | 	 */ | 
 | 	ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, | 
 | 			PAGE_SIZE); | 
 | 	if (ordered) { | 
 | 		unlock_extent_cached(io_tree, page_start, page_end, | 
 | 				     &cached_state); | 
 | 		unlock_page(page); | 
 | 		btrfs_start_ordered_extent(inode, ordered, 1); | 
 | 		btrfs_put_ordered_extent(ordered); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	if (page->index == ((size - 1) >> PAGE_SHIFT)) { | 
 | 		reserved_space = round_up(size - page_start, | 
 | 					  fs_info->sectorsize); | 
 | 		if (reserved_space < PAGE_SIZE) { | 
 | 			end = page_start + reserved_space - 1; | 
 | 			btrfs_delalloc_release_space(inode, data_reserved, | 
 | 					page_start, PAGE_SIZE - reserved_space, | 
 | 					true); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * page_mkwrite gets called when the page is firstly dirtied after it's | 
 | 	 * faulted in, but write(2) could also dirty a page and set delalloc | 
 | 	 * bits, thus in this case for space account reason, we still need to | 
 | 	 * clear any delalloc bits within this page range since we have to | 
 | 	 * reserve data&meta space before lock_page() (see above comments). | 
 | 	 */ | 
 | 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end, | 
 | 			  EXTENT_DIRTY | EXTENT_DELALLOC | | 
 | 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, | 
 | 			  0, 0, &cached_state); | 
 |  | 
 | 	ret2 = btrfs_set_extent_delalloc(inode, page_start, end, 0, | 
 | 					&cached_state, 0); | 
 | 	if (ret2) { | 
 | 		unlock_extent_cached(io_tree, page_start, page_end, | 
 | 				     &cached_state); | 
 | 		ret = VM_FAULT_SIGBUS; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	ret2 = 0; | 
 |  | 
 | 	/* page is wholly or partially inside EOF */ | 
 | 	if (page_start + PAGE_SIZE > size) | 
 | 		zero_start = size & ~PAGE_MASK; | 
 | 	else | 
 | 		zero_start = PAGE_SIZE; | 
 |  | 
 | 	if (zero_start != PAGE_SIZE) { | 
 | 		kaddr = kmap(page); | 
 | 		memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start); | 
 | 		flush_dcache_page(page); | 
 | 		kunmap(page); | 
 | 	} | 
 | 	ClearPageChecked(page); | 
 | 	set_page_dirty(page); | 
 | 	SetPageUptodate(page); | 
 |  | 
 | 	BTRFS_I(inode)->last_trans = fs_info->generation; | 
 | 	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid; | 
 | 	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit; | 
 |  | 
 | 	unlock_extent_cached(io_tree, page_start, page_end, &cached_state); | 
 |  | 
 | 	if (!ret2) { | 
 | 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); | 
 | 		sb_end_pagefault(inode->i_sb); | 
 | 		extent_changeset_free(data_reserved); | 
 | 		return VM_FAULT_LOCKED; | 
 | 	} | 
 |  | 
 | out_unlock: | 
 | 	unlock_page(page); | 
 | out: | 
 | 	btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); | 
 | 	btrfs_delalloc_release_space(inode, data_reserved, page_start, | 
 | 				     reserved_space, (ret != 0)); | 
 | out_noreserve: | 
 | 	sb_end_pagefault(inode->i_sb); | 
 | 	extent_changeset_free(data_reserved); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_truncate(struct inode *inode, bool skip_writeback) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_block_rsv *rsv; | 
 | 	int ret; | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	u64 mask = fs_info->sectorsize - 1; | 
 | 	u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1); | 
 |  | 
 | 	if (!skip_writeback) { | 
 | 		ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask), | 
 | 					       (u64)-1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Yes ladies and gentlemen, this is indeed ugly.  We have a couple of | 
 | 	 * things going on here: | 
 | 	 * | 
 | 	 * 1) We need to reserve space to update our inode. | 
 | 	 * | 
 | 	 * 2) We need to have something to cache all the space that is going to | 
 | 	 * be free'd up by the truncate operation, but also have some slack | 
 | 	 * space reserved in case it uses space during the truncate (thank you | 
 | 	 * very much snapshotting). | 
 | 	 * | 
 | 	 * And we need these to be separate.  The fact is we can use a lot of | 
 | 	 * space doing the truncate, and we have no earthly idea how much space | 
 | 	 * we will use, so we need the truncate reservation to be separate so it | 
 | 	 * doesn't end up using space reserved for updating the inode.  We also | 
 | 	 * need to be able to stop the transaction and start a new one, which | 
 | 	 * means we need to be able to update the inode several times, and we | 
 | 	 * have no idea of knowing how many times that will be, so we can't just | 
 | 	 * reserve 1 item for the entirety of the operation, so that has to be | 
 | 	 * done separately as well. | 
 | 	 * | 
 | 	 * So that leaves us with | 
 | 	 * | 
 | 	 * 1) rsv - for the truncate reservation, which we will steal from the | 
 | 	 * transaction reservation. | 
 | 	 * 2) fs_info->trans_block_rsv - this will have 1 items worth left for | 
 | 	 * updating the inode. | 
 | 	 */ | 
 | 	rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP); | 
 | 	if (!rsv) | 
 | 		return -ENOMEM; | 
 | 	rsv->size = min_size; | 
 | 	rsv->failfast = 1; | 
 |  | 
 | 	/* | 
 | 	 * 1 for the truncate slack space | 
 | 	 * 1 for updating the inode. | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, 2); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Migrate the slack space for the truncate to our reserve */ | 
 | 	ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv, | 
 | 				      min_size, 0); | 
 | 	BUG_ON(ret); | 
 |  | 
 | 	/* | 
 | 	 * So if we truncate and then write and fsync we normally would just | 
 | 	 * write the extents that changed, which is a problem if we need to | 
 | 	 * first truncate that entire inode.  So set this flag so we write out | 
 | 	 * all of the extents in the inode to the sync log so we're completely | 
 | 	 * safe. | 
 | 	 */ | 
 | 	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags); | 
 | 	trans->block_rsv = rsv; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_truncate_inode_items(trans, root, inode, | 
 | 						 inode->i_size, | 
 | 						 BTRFS_EXTENT_DATA_KEY); | 
 | 		trans->block_rsv = &fs_info->trans_block_rsv; | 
 | 		if (ret != -ENOSPC && ret != -EAGAIN) | 
 | 			break; | 
 |  | 
 | 		ret = btrfs_update_inode(trans, root, inode); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		btrfs_end_transaction(trans); | 
 | 		btrfs_btree_balance_dirty(fs_info); | 
 |  | 
 | 		trans = btrfs_start_transaction(root, 2); | 
 | 		if (IS_ERR(trans)) { | 
 | 			ret = PTR_ERR(trans); | 
 | 			trans = NULL; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		btrfs_block_rsv_release(fs_info, rsv, -1); | 
 | 		ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, | 
 | 					      rsv, min_size, 0); | 
 | 		BUG_ON(ret);	/* shouldn't happen */ | 
 | 		trans->block_rsv = rsv; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We can't call btrfs_truncate_block inside a trans handle as we could | 
 | 	 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know | 
 | 	 * we've truncated everything except the last little bit, and can do | 
 | 	 * btrfs_truncate_block and then update the disk_i_size. | 
 | 	 */ | 
 | 	if (ret == NEED_TRUNCATE_BLOCK) { | 
 | 		btrfs_end_transaction(trans); | 
 | 		btrfs_btree_balance_dirty(fs_info); | 
 |  | 
 | 		ret = btrfs_truncate_block(inode, inode->i_size, 0, 0); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		trans = btrfs_start_transaction(root, 1); | 
 | 		if (IS_ERR(trans)) { | 
 | 			ret = PTR_ERR(trans); | 
 | 			goto out; | 
 | 		} | 
 | 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL); | 
 | 	} | 
 |  | 
 | 	if (trans) { | 
 | 		int ret2; | 
 |  | 
 | 		trans->block_rsv = &fs_info->trans_block_rsv; | 
 | 		ret2 = btrfs_update_inode(trans, root, inode); | 
 | 		if (ret2 && !ret) | 
 | 			ret = ret2; | 
 |  | 
 | 		ret2 = btrfs_end_transaction(trans); | 
 | 		if (ret2 && !ret) | 
 | 			ret = ret2; | 
 | 		btrfs_btree_balance_dirty(fs_info); | 
 | 	} | 
 | out: | 
 | 	btrfs_free_block_rsv(fs_info, rsv); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * create a new subvolume directory/inode (helper for the ioctl). | 
 |  */ | 
 | int btrfs_create_subvol_root(struct btrfs_trans_handle *trans, | 
 | 			     struct btrfs_root *new_root, | 
 | 			     struct btrfs_root *parent_root, | 
 | 			     u64 new_dirid) | 
 | { | 
 | 	struct inode *inode; | 
 | 	int err; | 
 | 	u64 index = 0; | 
 |  | 
 | 	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, | 
 | 				new_dirid, new_dirid, | 
 | 				S_IFDIR | (~current_umask() & S_IRWXUGO), | 
 | 				&index); | 
 | 	if (IS_ERR(inode)) | 
 | 		return PTR_ERR(inode); | 
 | 	inode->i_op = &btrfs_dir_inode_operations; | 
 | 	inode->i_fop = &btrfs_dir_file_operations; | 
 |  | 
 | 	set_nlink(inode, 1); | 
 | 	btrfs_i_size_write(BTRFS_I(inode), 0); | 
 | 	unlock_new_inode(inode); | 
 |  | 
 | 	err = btrfs_subvol_inherit_props(trans, new_root, parent_root); | 
 | 	if (err) | 
 | 		btrfs_err(new_root->fs_info, | 
 | 			  "error inheriting subvolume %llu properties: %d", | 
 | 			  new_root->root_key.objectid, err); | 
 |  | 
 | 	err = btrfs_update_inode(trans, new_root, inode); | 
 |  | 
 | 	iput(inode); | 
 | 	return err; | 
 | } | 
 |  | 
 | struct inode *btrfs_alloc_inode(struct super_block *sb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
 | 	struct btrfs_inode *ei; | 
 | 	struct inode *inode; | 
 |  | 
 | 	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_KERNEL); | 
 | 	if (!ei) | 
 | 		return NULL; | 
 |  | 
 | 	ei->root = NULL; | 
 | 	ei->generation = 0; | 
 | 	ei->last_trans = 0; | 
 | 	ei->last_sub_trans = 0; | 
 | 	ei->logged_trans = 0; | 
 | 	ei->delalloc_bytes = 0; | 
 | 	ei->new_delalloc_bytes = 0; | 
 | 	ei->defrag_bytes = 0; | 
 | 	ei->disk_i_size = 0; | 
 | 	ei->flags = 0; | 
 | 	ei->csum_bytes = 0; | 
 | 	ei->index_cnt = (u64)-1; | 
 | 	ei->dir_index = 0; | 
 | 	ei->last_unlink_trans = 0; | 
 | 	ei->last_link_trans = 0; | 
 | 	ei->last_log_commit = 0; | 
 |  | 
 | 	spin_lock_init(&ei->lock); | 
 | 	ei->outstanding_extents = 0; | 
 | 	if (sb->s_magic != BTRFS_TEST_MAGIC) | 
 | 		btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv, | 
 | 					      BTRFS_BLOCK_RSV_DELALLOC); | 
 | 	ei->runtime_flags = 0; | 
 | 	ei->prop_compress = BTRFS_COMPRESS_NONE; | 
 | 	ei->defrag_compress = BTRFS_COMPRESS_NONE; | 
 |  | 
 | 	ei->delayed_node = NULL; | 
 |  | 
 | 	ei->i_otime.tv_sec = 0; | 
 | 	ei->i_otime.tv_nsec = 0; | 
 |  | 
 | 	inode = &ei->vfs_inode; | 
 | 	extent_map_tree_init(&ei->extent_tree); | 
 | 	extent_io_tree_init(&ei->io_tree, inode); | 
 | 	extent_io_tree_init(&ei->io_failure_tree, inode); | 
 | 	ei->io_tree.track_uptodate = 1; | 
 | 	ei->io_failure_tree.track_uptodate = 1; | 
 | 	atomic_set(&ei->sync_writers, 0); | 
 | 	mutex_init(&ei->log_mutex); | 
 | 	mutex_init(&ei->delalloc_mutex); | 
 | 	btrfs_ordered_inode_tree_init(&ei->ordered_tree); | 
 | 	INIT_LIST_HEAD(&ei->delalloc_inodes); | 
 | 	INIT_LIST_HEAD(&ei->delayed_iput); | 
 | 	RB_CLEAR_NODE(&ei->rb_node); | 
 | 	init_rwsem(&ei->dio_sem); | 
 |  | 
 | 	return inode; | 
 | } | 
 |  | 
 | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
 | void btrfs_test_destroy_inode(struct inode *inode) | 
 | { | 
 | 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); | 
 | 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); | 
 | } | 
 | #endif | 
 |  | 
 | static void btrfs_i_callback(struct rcu_head *head) | 
 | { | 
 | 	struct inode *inode = container_of(head, struct inode, i_rcu); | 
 | 	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode)); | 
 | } | 
 |  | 
 | void btrfs_destroy_inode(struct inode *inode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct btrfs_ordered_extent *ordered; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 |  | 
 | 	WARN_ON(!hlist_empty(&inode->i_dentry)); | 
 | 	WARN_ON(inode->i_data.nrpages); | 
 | 	WARN_ON(BTRFS_I(inode)->block_rsv.reserved); | 
 | 	WARN_ON(BTRFS_I(inode)->block_rsv.size); | 
 | 	WARN_ON(BTRFS_I(inode)->outstanding_extents); | 
 | 	WARN_ON(BTRFS_I(inode)->delalloc_bytes); | 
 | 	WARN_ON(BTRFS_I(inode)->new_delalloc_bytes); | 
 | 	WARN_ON(BTRFS_I(inode)->csum_bytes); | 
 | 	WARN_ON(BTRFS_I(inode)->defrag_bytes); | 
 |  | 
 | 	/* | 
 | 	 * This can happen where we create an inode, but somebody else also | 
 | 	 * created the same inode and we need to destroy the one we already | 
 | 	 * created. | 
 | 	 */ | 
 | 	if (!root) | 
 | 		goto free; | 
 |  | 
 | 	while (1) { | 
 | 		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1); | 
 | 		if (!ordered) | 
 | 			break; | 
 | 		else { | 
 | 			btrfs_err(fs_info, | 
 | 				  "found ordered extent %llu %llu on inode cleanup", | 
 | 				  ordered->file_offset, ordered->len); | 
 | 			btrfs_remove_ordered_extent(inode, ordered); | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 			btrfs_put_ordered_extent(ordered); | 
 | 		} | 
 | 	} | 
 | 	btrfs_qgroup_check_reserved_leak(inode); | 
 | 	inode_tree_del(inode); | 
 | 	btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0); | 
 | free: | 
 | 	call_rcu(&inode->i_rcu, btrfs_i_callback); | 
 | } | 
 |  | 
 | int btrfs_drop_inode(struct inode *inode) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 |  | 
 | 	if (root == NULL) | 
 | 		return 1; | 
 |  | 
 | 	/* the snap/subvol tree is on deleting */ | 
 | 	if (btrfs_root_refs(&root->root_item) == 0) | 
 | 		return 1; | 
 | 	else | 
 | 		return generic_drop_inode(inode); | 
 | } | 
 |  | 
 | static void init_once(void *foo) | 
 | { | 
 | 	struct btrfs_inode *ei = (struct btrfs_inode *) foo; | 
 |  | 
 | 	inode_init_once(&ei->vfs_inode); | 
 | } | 
 |  | 
 | void __cold btrfs_destroy_cachep(void) | 
 | { | 
 | 	/* | 
 | 	 * Make sure all delayed rcu free inodes are flushed before we | 
 | 	 * destroy cache. | 
 | 	 */ | 
 | 	rcu_barrier(); | 
 | 	kmem_cache_destroy(btrfs_inode_cachep); | 
 | 	kmem_cache_destroy(btrfs_trans_handle_cachep); | 
 | 	kmem_cache_destroy(btrfs_path_cachep); | 
 | 	kmem_cache_destroy(btrfs_free_space_cachep); | 
 | 	kmem_cache_destroy(btrfs_free_space_bitmap_cachep); | 
 | } | 
 |  | 
 | int __init btrfs_init_cachep(void) | 
 | { | 
 | 	btrfs_inode_cachep = kmem_cache_create("btrfs_inode", | 
 | 			sizeof(struct btrfs_inode), 0, | 
 | 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT, | 
 | 			init_once); | 
 | 	if (!btrfs_inode_cachep) | 
 | 		goto fail; | 
 |  | 
 | 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", | 
 | 			sizeof(struct btrfs_trans_handle), 0, | 
 | 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); | 
 | 	if (!btrfs_trans_handle_cachep) | 
 | 		goto fail; | 
 |  | 
 | 	btrfs_path_cachep = kmem_cache_create("btrfs_path", | 
 | 			sizeof(struct btrfs_path), 0, | 
 | 			SLAB_MEM_SPREAD, NULL); | 
 | 	if (!btrfs_path_cachep) | 
 | 		goto fail; | 
 |  | 
 | 	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space", | 
 | 			sizeof(struct btrfs_free_space), 0, | 
 | 			SLAB_MEM_SPREAD, NULL); | 
 | 	if (!btrfs_free_space_cachep) | 
 | 		goto fail; | 
 |  | 
 | 	btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap", | 
 | 							PAGE_SIZE, PAGE_SIZE, | 
 | 							SLAB_RED_ZONE, NULL); | 
 | 	if (!btrfs_free_space_bitmap_cachep) | 
 | 		goto fail; | 
 |  | 
 | 	return 0; | 
 | fail: | 
 | 	btrfs_destroy_cachep(); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int btrfs_getattr(const struct path *path, struct kstat *stat, | 
 | 			 u32 request_mask, unsigned int flags) | 
 | { | 
 | 	u64 delalloc_bytes; | 
 | 	struct inode *inode = d_inode(path->dentry); | 
 | 	u32 blocksize = inode->i_sb->s_blocksize; | 
 | 	u32 bi_flags = BTRFS_I(inode)->flags; | 
 |  | 
 | 	stat->result_mask |= STATX_BTIME; | 
 | 	stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec; | 
 | 	stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec; | 
 | 	if (bi_flags & BTRFS_INODE_APPEND) | 
 | 		stat->attributes |= STATX_ATTR_APPEND; | 
 | 	if (bi_flags & BTRFS_INODE_COMPRESS) | 
 | 		stat->attributes |= STATX_ATTR_COMPRESSED; | 
 | 	if (bi_flags & BTRFS_INODE_IMMUTABLE) | 
 | 		stat->attributes |= STATX_ATTR_IMMUTABLE; | 
 | 	if (bi_flags & BTRFS_INODE_NODUMP) | 
 | 		stat->attributes |= STATX_ATTR_NODUMP; | 
 |  | 
 | 	stat->attributes_mask |= (STATX_ATTR_APPEND | | 
 | 				  STATX_ATTR_COMPRESSED | | 
 | 				  STATX_ATTR_IMMUTABLE | | 
 | 				  STATX_ATTR_NODUMP); | 
 |  | 
 | 	generic_fillattr(inode, stat); | 
 | 	stat->dev = BTRFS_I(inode)->root->anon_dev; | 
 |  | 
 | 	spin_lock(&BTRFS_I(inode)->lock); | 
 | 	delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes; | 
 | 	spin_unlock(&BTRFS_I(inode)->lock); | 
 | 	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) + | 
 | 			ALIGN(delalloc_bytes, blocksize)) >> 9; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_rename_exchange(struct inode *old_dir, | 
 | 			      struct dentry *old_dentry, | 
 | 			      struct inode *new_dir, | 
 | 			      struct dentry *new_dentry) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = BTRFS_I(old_dir)->root; | 
 | 	struct btrfs_root *dest = BTRFS_I(new_dir)->root; | 
 | 	struct inode *new_inode = new_dentry->d_inode; | 
 | 	struct inode *old_inode = old_dentry->d_inode; | 
 | 	struct timespec64 ctime = current_time(old_inode); | 
 | 	struct dentry *parent; | 
 | 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); | 
 | 	u64 new_ino = btrfs_ino(BTRFS_I(new_inode)); | 
 | 	u64 old_idx = 0; | 
 | 	u64 new_idx = 0; | 
 | 	int ret; | 
 | 	bool root_log_pinned = false; | 
 | 	bool dest_log_pinned = false; | 
 | 	struct btrfs_log_ctx ctx_root; | 
 | 	struct btrfs_log_ctx ctx_dest; | 
 | 	bool sync_log_root = false; | 
 | 	bool sync_log_dest = false; | 
 | 	bool commit_transaction = false; | 
 |  | 
 | 	/* we only allow rename subvolume link between subvolumes */ | 
 | 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) | 
 | 		return -EXDEV; | 
 |  | 
 | 	btrfs_init_log_ctx(&ctx_root, old_inode); | 
 | 	btrfs_init_log_ctx(&ctx_dest, new_inode); | 
 |  | 
 | 	/* close the race window with snapshot create/destroy ioctl */ | 
 | 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID || | 
 | 	    new_ino == BTRFS_FIRST_FREE_OBJECTID) | 
 | 		down_read(&fs_info->subvol_sem); | 
 |  | 
 | 	/* | 
 | 	 * We want to reserve the absolute worst case amount of items.  So if | 
 | 	 * both inodes are subvols and we need to unlink them then that would | 
 | 	 * require 4 item modifications, but if they are both normal inodes it | 
 | 	 * would require 5 item modifications, so we'll assume their normal | 
 | 	 * inodes.  So 5 * 2 is 10, plus 2 for the new links, so 12 total items | 
 | 	 * should cover the worst case number of items we'll modify. | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, 12); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto out_notrans; | 
 | 	} | 
 |  | 
 | 	if (dest != root) | 
 | 		btrfs_record_root_in_trans(trans, dest); | 
 |  | 
 | 	/* | 
 | 	 * We need to find a free sequence number both in the source and | 
 | 	 * in the destination directory for the exchange. | 
 | 	 */ | 
 | 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx); | 
 | 	if (ret) | 
 | 		goto out_fail; | 
 | 	ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx); | 
 | 	if (ret) | 
 | 		goto out_fail; | 
 |  | 
 | 	BTRFS_I(old_inode)->dir_index = 0ULL; | 
 | 	BTRFS_I(new_inode)->dir_index = 0ULL; | 
 |  | 
 | 	/* Reference for the source. */ | 
 | 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		/* force full log commit if subvolume involved. */ | 
 | 		btrfs_set_log_full_commit(fs_info, trans); | 
 | 	} else { | 
 | 		btrfs_pin_log_trans(root); | 
 | 		root_log_pinned = true; | 
 | 		ret = btrfs_insert_inode_ref(trans, dest, | 
 | 					     new_dentry->d_name.name, | 
 | 					     new_dentry->d_name.len, | 
 | 					     old_ino, | 
 | 					     btrfs_ino(BTRFS_I(new_dir)), | 
 | 					     old_idx); | 
 | 		if (ret) | 
 | 			goto out_fail; | 
 | 	} | 
 |  | 
 | 	/* And now for the dest. */ | 
 | 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		/* force full log commit if subvolume involved. */ | 
 | 		btrfs_set_log_full_commit(fs_info, trans); | 
 | 	} else { | 
 | 		btrfs_pin_log_trans(dest); | 
 | 		dest_log_pinned = true; | 
 | 		ret = btrfs_insert_inode_ref(trans, root, | 
 | 					     old_dentry->d_name.name, | 
 | 					     old_dentry->d_name.len, | 
 | 					     new_ino, | 
 | 					     btrfs_ino(BTRFS_I(old_dir)), | 
 | 					     new_idx); | 
 | 		if (ret) | 
 | 			goto out_fail; | 
 | 	} | 
 |  | 
 | 	/* Update inode version and ctime/mtime. */ | 
 | 	inode_inc_iversion(old_dir); | 
 | 	inode_inc_iversion(new_dir); | 
 | 	inode_inc_iversion(old_inode); | 
 | 	inode_inc_iversion(new_inode); | 
 | 	old_dir->i_ctime = old_dir->i_mtime = ctime; | 
 | 	new_dir->i_ctime = new_dir->i_mtime = ctime; | 
 | 	old_inode->i_ctime = ctime; | 
 | 	new_inode->i_ctime = ctime; | 
 |  | 
 | 	if (old_dentry->d_parent != new_dentry->d_parent) { | 
 | 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), | 
 | 				BTRFS_I(old_inode), 1); | 
 | 		btrfs_record_unlink_dir(trans, BTRFS_I(new_dir), | 
 | 				BTRFS_I(new_inode), 1); | 
 | 	} | 
 |  | 
 | 	/* src is a subvolume */ | 
 | 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); | 
 | 	} else { /* src is an inode */ | 
 | 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), | 
 | 					   BTRFS_I(old_dentry->d_inode), | 
 | 					   old_dentry->d_name.name, | 
 | 					   old_dentry->d_name.len); | 
 | 		if (!ret) | 
 | 			ret = btrfs_update_inode(trans, root, old_inode); | 
 | 	} | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	/* dest is a subvolume */ | 
 | 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID) { | 
 | 		ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); | 
 | 	} else { /* dest is an inode */ | 
 | 		ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), | 
 | 					   BTRFS_I(new_dentry->d_inode), | 
 | 					   new_dentry->d_name.name, | 
 | 					   new_dentry->d_name.len); | 
 | 		if (!ret) | 
 | 			ret = btrfs_update_inode(trans, dest, new_inode); | 
 | 	} | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), | 
 | 			     new_dentry->d_name.name, | 
 | 			     new_dentry->d_name.len, 0, old_idx); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode), | 
 | 			     old_dentry->d_name.name, | 
 | 			     old_dentry->d_name.len, 0, new_idx); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	if (old_inode->i_nlink == 1) | 
 | 		BTRFS_I(old_inode)->dir_index = old_idx; | 
 | 	if (new_inode->i_nlink == 1) | 
 | 		BTRFS_I(new_inode)->dir_index = new_idx; | 
 |  | 
 | 	if (root_log_pinned) { | 
 | 		parent = new_dentry->d_parent; | 
 | 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), | 
 | 					 BTRFS_I(old_dir), parent, | 
 | 					 false, &ctx_root); | 
 | 		if (ret == BTRFS_NEED_LOG_SYNC) | 
 | 			sync_log_root = true; | 
 | 		else if (ret == BTRFS_NEED_TRANS_COMMIT) | 
 | 			commit_transaction = true; | 
 | 		ret = 0; | 
 | 		btrfs_end_log_trans(root); | 
 | 		root_log_pinned = false; | 
 | 	} | 
 | 	if (dest_log_pinned) { | 
 | 		if (!commit_transaction) { | 
 | 			parent = old_dentry->d_parent; | 
 | 			ret = btrfs_log_new_name(trans, BTRFS_I(new_inode), | 
 | 						 BTRFS_I(new_dir), parent, | 
 | 						 false, &ctx_dest); | 
 | 			if (ret == BTRFS_NEED_LOG_SYNC) | 
 | 				sync_log_dest = true; | 
 | 			else if (ret == BTRFS_NEED_TRANS_COMMIT) | 
 | 				commit_transaction = true; | 
 | 			ret = 0; | 
 | 		} | 
 | 		btrfs_end_log_trans(dest); | 
 | 		dest_log_pinned = false; | 
 | 	} | 
 | out_fail: | 
 | 	/* | 
 | 	 * If we have pinned a log and an error happened, we unpin tasks | 
 | 	 * trying to sync the log and force them to fallback to a transaction | 
 | 	 * commit if the log currently contains any of the inodes involved in | 
 | 	 * this rename operation (to ensure we do not persist a log with an | 
 | 	 * inconsistent state for any of these inodes or leading to any | 
 | 	 * inconsistencies when replayed). If the transaction was aborted, the | 
 | 	 * abortion reason is propagated to userspace when attempting to commit | 
 | 	 * the transaction. If the log does not contain any of these inodes, we | 
 | 	 * allow the tasks to sync it. | 
 | 	 */ | 
 | 	if (ret && (root_log_pinned || dest_log_pinned)) { | 
 | 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || | 
 | 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || | 
 | 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || | 
 | 		    (new_inode && | 
 | 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) | 
 | 			btrfs_set_log_full_commit(fs_info, trans); | 
 |  | 
 | 		if (root_log_pinned) { | 
 | 			btrfs_end_log_trans(root); | 
 | 			root_log_pinned = false; | 
 | 		} | 
 | 		if (dest_log_pinned) { | 
 | 			btrfs_end_log_trans(dest); | 
 | 			dest_log_pinned = false; | 
 | 		} | 
 | 	} | 
 | 	if (!ret && sync_log_root && !commit_transaction) { | 
 | 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, | 
 | 				     &ctx_root); | 
 | 		if (ret) | 
 | 			commit_transaction = true; | 
 | 	} | 
 | 	if (!ret && sync_log_dest && !commit_transaction) { | 
 | 		ret = btrfs_sync_log(trans, BTRFS_I(new_inode)->root, | 
 | 				     &ctx_dest); | 
 | 		if (ret) | 
 | 			commit_transaction = true; | 
 | 	} | 
 | 	if (commit_transaction) { | 
 | 		/* | 
 | 		 * We may have set commit_transaction when logging the new name | 
 | 		 * in the destination root, in which case we left the source | 
 | 		 * root context in the list of log contextes. So make sure we | 
 | 		 * remove it to avoid invalid memory accesses, since the context | 
 | 		 * was allocated in our stack frame. | 
 | 		 */ | 
 | 		if (sync_log_root) { | 
 | 			mutex_lock(&root->log_mutex); | 
 | 			list_del_init(&ctx_root.list); | 
 | 			mutex_unlock(&root->log_mutex); | 
 | 		} | 
 | 		ret = btrfs_commit_transaction(trans); | 
 | 	} else { | 
 | 		int ret2; | 
 |  | 
 | 		ret2 = btrfs_end_transaction(trans); | 
 | 		ret = ret ? ret : ret2; | 
 | 	} | 
 | out_notrans: | 
 | 	if (new_ino == BTRFS_FIRST_FREE_OBJECTID || | 
 | 	    old_ino == BTRFS_FIRST_FREE_OBJECTID) | 
 | 		up_read(&fs_info->subvol_sem); | 
 |  | 
 | 	ASSERT(list_empty(&ctx_root.list)); | 
 | 	ASSERT(list_empty(&ctx_dest.list)); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans, | 
 | 				     struct btrfs_root *root, | 
 | 				     struct inode *dir, | 
 | 				     struct dentry *dentry) | 
 | { | 
 | 	int ret; | 
 | 	struct inode *inode; | 
 | 	u64 objectid; | 
 | 	u64 index; | 
 |  | 
 | 	ret = btrfs_find_free_ino(root, &objectid); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	inode = btrfs_new_inode(trans, root, dir, | 
 | 				dentry->d_name.name, | 
 | 				dentry->d_name.len, | 
 | 				btrfs_ino(BTRFS_I(dir)), | 
 | 				objectid, | 
 | 				S_IFCHR | WHITEOUT_MODE, | 
 | 				&index); | 
 |  | 
 | 	if (IS_ERR(inode)) { | 
 | 		ret = PTR_ERR(inode); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	inode->i_op = &btrfs_special_inode_operations; | 
 | 	init_special_inode(inode, inode->i_mode, | 
 | 		WHITEOUT_DEV); | 
 |  | 
 | 	ret = btrfs_init_inode_security(trans, inode, dir, | 
 | 				&dentry->d_name); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, | 
 | 				BTRFS_I(inode), 0, index); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 | out: | 
 | 	unlock_new_inode(inode); | 
 | 	if (ret) | 
 | 		inode_dec_link_count(inode); | 
 | 	iput(inode); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry, | 
 | 			   struct inode *new_dir, struct dentry *new_dentry, | 
 | 			   unsigned int flags) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb); | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	unsigned int trans_num_items; | 
 | 	struct btrfs_root *root = BTRFS_I(old_dir)->root; | 
 | 	struct btrfs_root *dest = BTRFS_I(new_dir)->root; | 
 | 	struct inode *new_inode = d_inode(new_dentry); | 
 | 	struct inode *old_inode = d_inode(old_dentry); | 
 | 	u64 index = 0; | 
 | 	int ret; | 
 | 	u64 old_ino = btrfs_ino(BTRFS_I(old_inode)); | 
 | 	bool log_pinned = false; | 
 | 	struct btrfs_log_ctx ctx; | 
 | 	bool sync_log = false; | 
 | 	bool commit_transaction = false; | 
 |  | 
 | 	if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID) | 
 | 		return -EPERM; | 
 |  | 
 | 	/* we only allow rename subvolume link between subvolumes */ | 
 | 	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest) | 
 | 		return -EXDEV; | 
 |  | 
 | 	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID || | 
 | 	    (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID)) | 
 | 		return -ENOTEMPTY; | 
 |  | 
 | 	if (S_ISDIR(old_inode->i_mode) && new_inode && | 
 | 	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE) | 
 | 		return -ENOTEMPTY; | 
 |  | 
 |  | 
 | 	/* check for collisions, even if the  name isn't there */ | 
 | 	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino, | 
 | 			     new_dentry->d_name.name, | 
 | 			     new_dentry->d_name.len); | 
 |  | 
 | 	if (ret) { | 
 | 		if (ret == -EEXIST) { | 
 | 			/* we shouldn't get | 
 | 			 * eexist without a new_inode */ | 
 | 			if (WARN_ON(!new_inode)) { | 
 | 				return ret; | 
 | 			} | 
 | 		} else { | 
 | 			/* maybe -EOVERFLOW */ | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 | 	ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * we're using rename to replace one file with another.  Start IO on it | 
 | 	 * now so  we don't add too much work to the end of the transaction | 
 | 	 */ | 
 | 	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size) | 
 | 		filemap_flush(old_inode->i_mapping); | 
 |  | 
 | 	/* close the racy window with snapshot create/destroy ioctl */ | 
 | 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) | 
 | 		down_read(&fs_info->subvol_sem); | 
 | 	/* | 
 | 	 * We want to reserve the absolute worst case amount of items.  So if | 
 | 	 * both inodes are subvols and we need to unlink them then that would | 
 | 	 * require 4 item modifications, but if they are both normal inodes it | 
 | 	 * would require 5 item modifications, so we'll assume they are normal | 
 | 	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items | 
 | 	 * should cover the worst case number of items we'll modify. | 
 | 	 * If our rename has the whiteout flag, we need more 5 units for the | 
 | 	 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item | 
 | 	 * when selinux is enabled). | 
 | 	 */ | 
 | 	trans_num_items = 11; | 
 | 	if (flags & RENAME_WHITEOUT) | 
 | 		trans_num_items += 5; | 
 | 	trans = btrfs_start_transaction(root, trans_num_items); | 
 | 	if (IS_ERR(trans)) { | 
 | 		ret = PTR_ERR(trans); | 
 | 		goto out_notrans; | 
 | 	} | 
 |  | 
 | 	if (dest != root) | 
 | 		btrfs_record_root_in_trans(trans, dest); | 
 |  | 
 | 	ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index); | 
 | 	if (ret) | 
 | 		goto out_fail; | 
 |  | 
 | 	BTRFS_I(old_inode)->dir_index = 0ULL; | 
 | 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
 | 		/* force full log commit if subvolume involved. */ | 
 | 		btrfs_set_log_full_commit(fs_info, trans); | 
 | 	} else { | 
 | 		btrfs_pin_log_trans(root); | 
 | 		log_pinned = true; | 
 | 		ret = btrfs_insert_inode_ref(trans, dest, | 
 | 					     new_dentry->d_name.name, | 
 | 					     new_dentry->d_name.len, | 
 | 					     old_ino, | 
 | 					     btrfs_ino(BTRFS_I(new_dir)), index); | 
 | 		if (ret) | 
 | 			goto out_fail; | 
 | 	} | 
 |  | 
 | 	inode_inc_iversion(old_dir); | 
 | 	inode_inc_iversion(new_dir); | 
 | 	inode_inc_iversion(old_inode); | 
 | 	old_dir->i_ctime = old_dir->i_mtime = | 
 | 	new_dir->i_ctime = new_dir->i_mtime = | 
 | 	old_inode->i_ctime = current_time(old_dir); | 
 |  | 
 | 	if (old_dentry->d_parent != new_dentry->d_parent) | 
 | 		btrfs_record_unlink_dir(trans, BTRFS_I(old_dir), | 
 | 				BTRFS_I(old_inode), 1); | 
 |  | 
 | 	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) { | 
 | 		ret = btrfs_unlink_subvol(trans, old_dir, old_dentry); | 
 | 	} else { | 
 | 		ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir), | 
 | 					BTRFS_I(d_inode(old_dentry)), | 
 | 					old_dentry->d_name.name, | 
 | 					old_dentry->d_name.len); | 
 | 		if (!ret) | 
 | 			ret = btrfs_update_inode(trans, root, old_inode); | 
 | 	} | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	if (new_inode) { | 
 | 		inode_inc_iversion(new_inode); | 
 | 		new_inode->i_ctime = current_time(new_inode); | 
 | 		if (unlikely(btrfs_ino(BTRFS_I(new_inode)) == | 
 | 			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) { | 
 | 			ret = btrfs_unlink_subvol(trans, new_dir, new_dentry); | 
 | 			BUG_ON(new_inode->i_nlink == 0); | 
 | 		} else { | 
 | 			ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir), | 
 | 						 BTRFS_I(d_inode(new_dentry)), | 
 | 						 new_dentry->d_name.name, | 
 | 						 new_dentry->d_name.len); | 
 | 		} | 
 | 		if (!ret && new_inode->i_nlink == 0) | 
 | 			ret = btrfs_orphan_add(trans, | 
 | 					BTRFS_I(d_inode(new_dentry))); | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto out_fail; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode), | 
 | 			     new_dentry->d_name.name, | 
 | 			     new_dentry->d_name.len, 0, index); | 
 | 	if (ret) { | 
 | 		btrfs_abort_transaction(trans, ret); | 
 | 		goto out_fail; | 
 | 	} | 
 |  | 
 | 	if (old_inode->i_nlink == 1) | 
 | 		BTRFS_I(old_inode)->dir_index = index; | 
 |  | 
 | 	if (log_pinned) { | 
 | 		struct dentry *parent = new_dentry->d_parent; | 
 |  | 
 | 		btrfs_init_log_ctx(&ctx, old_inode); | 
 | 		ret = btrfs_log_new_name(trans, BTRFS_I(old_inode), | 
 | 					 BTRFS_I(old_dir), parent, | 
 | 					 false, &ctx); | 
 | 		if (ret == BTRFS_NEED_LOG_SYNC) | 
 | 			sync_log = true; | 
 | 		else if (ret == BTRFS_NEED_TRANS_COMMIT) | 
 | 			commit_transaction = true; | 
 | 		ret = 0; | 
 | 		btrfs_end_log_trans(root); | 
 | 		log_pinned = false; | 
 | 	} | 
 |  | 
 | 	if (flags & RENAME_WHITEOUT) { | 
 | 		ret = btrfs_whiteout_for_rename(trans, root, old_dir, | 
 | 						old_dentry); | 
 |  | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			goto out_fail; | 
 | 		} | 
 | 	} | 
 | out_fail: | 
 | 	/* | 
 | 	 * If we have pinned the log and an error happened, we unpin tasks | 
 | 	 * trying to sync the log and force them to fallback to a transaction | 
 | 	 * commit if the log currently contains any of the inodes involved in | 
 | 	 * this rename operation (to ensure we do not persist a log with an | 
 | 	 * inconsistent state for any of these inodes or leading to any | 
 | 	 * inconsistencies when replayed). If the transaction was aborted, the | 
 | 	 * abortion reason is propagated to userspace when attempting to commit | 
 | 	 * the transaction. If the log does not contain any of these inodes, we | 
 | 	 * allow the tasks to sync it. | 
 | 	 */ | 
 | 	if (ret && log_pinned) { | 
 | 		if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) || | 
 | 		    btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) || | 
 | 		    btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) || | 
 | 		    (new_inode && | 
 | 		     btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation))) | 
 | 			btrfs_set_log_full_commit(fs_info, trans); | 
 |  | 
 | 		btrfs_end_log_trans(root); | 
 | 		log_pinned = false; | 
 | 	} | 
 | 	if (!ret && sync_log) { | 
 | 		ret = btrfs_sync_log(trans, BTRFS_I(old_inode)->root, &ctx); | 
 | 		if (ret) | 
 | 			commit_transaction = true; | 
 | 	} | 
 | 	if (commit_transaction) { | 
 | 		ret = btrfs_commit_transaction(trans); | 
 | 	} else { | 
 | 		int ret2; | 
 |  | 
 | 		ret2 = btrfs_end_transaction(trans); | 
 | 		ret = ret ? ret : ret2; | 
 | 	} | 
 | out_notrans: | 
 | 	if (old_ino == BTRFS_FIRST_FREE_OBJECTID) | 
 | 		up_read(&fs_info->subvol_sem); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry, | 
 | 			 struct inode *new_dir, struct dentry *new_dentry, | 
 | 			 unsigned int flags) | 
 | { | 
 | 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (flags & RENAME_EXCHANGE) | 
 | 		return btrfs_rename_exchange(old_dir, old_dentry, new_dir, | 
 | 					  new_dentry); | 
 |  | 
 | 	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags); | 
 | } | 
 |  | 
 | struct btrfs_delalloc_work { | 
 | 	struct inode *inode; | 
 | 	struct completion completion; | 
 | 	struct list_head list; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | static void btrfs_run_delalloc_work(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_delalloc_work *delalloc_work; | 
 | 	struct inode *inode; | 
 |  | 
 | 	delalloc_work = container_of(work, struct btrfs_delalloc_work, | 
 | 				     work); | 
 | 	inode = delalloc_work->inode; | 
 | 	filemap_flush(inode->i_mapping); | 
 | 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, | 
 | 				&BTRFS_I(inode)->runtime_flags)) | 
 | 		filemap_flush(inode->i_mapping); | 
 |  | 
 | 	iput(inode); | 
 | 	complete(&delalloc_work->completion); | 
 | } | 
 |  | 
 | static struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode) | 
 | { | 
 | 	struct btrfs_delalloc_work *work; | 
 |  | 
 | 	work = kmalloc(sizeof(*work), GFP_NOFS); | 
 | 	if (!work) | 
 | 		return NULL; | 
 |  | 
 | 	init_completion(&work->completion); | 
 | 	INIT_LIST_HEAD(&work->list); | 
 | 	work->inode = inode; | 
 | 	WARN_ON_ONCE(!inode); | 
 | 	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper, | 
 | 			btrfs_run_delalloc_work, NULL, NULL); | 
 |  | 
 | 	return work; | 
 | } | 
 |  | 
 | /* | 
 |  * some fairly slow code that needs optimization. This walks the list | 
 |  * of all the inodes with pending delalloc and forces them to disk. | 
 |  */ | 
 | static int start_delalloc_inodes(struct btrfs_root *root, int nr, bool snapshot) | 
 | { | 
 | 	struct btrfs_inode *binode; | 
 | 	struct inode *inode; | 
 | 	struct btrfs_delalloc_work *work, *next; | 
 | 	struct list_head works; | 
 | 	struct list_head splice; | 
 | 	int ret = 0; | 
 |  | 
 | 	INIT_LIST_HEAD(&works); | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	mutex_lock(&root->delalloc_mutex); | 
 | 	spin_lock(&root->delalloc_lock); | 
 | 	list_splice_init(&root->delalloc_inodes, &splice); | 
 | 	while (!list_empty(&splice)) { | 
 | 		binode = list_entry(splice.next, struct btrfs_inode, | 
 | 				    delalloc_inodes); | 
 |  | 
 | 		list_move_tail(&binode->delalloc_inodes, | 
 | 			       &root->delalloc_inodes); | 
 | 		inode = igrab(&binode->vfs_inode); | 
 | 		if (!inode) { | 
 | 			cond_resched_lock(&root->delalloc_lock); | 
 | 			continue; | 
 | 		} | 
 | 		spin_unlock(&root->delalloc_lock); | 
 |  | 
 | 		if (snapshot) | 
 | 			set_bit(BTRFS_INODE_SNAPSHOT_FLUSH, | 
 | 				&binode->runtime_flags); | 
 | 		work = btrfs_alloc_delalloc_work(inode); | 
 | 		if (!work) { | 
 | 			iput(inode); | 
 | 			ret = -ENOMEM; | 
 | 			goto out; | 
 | 		} | 
 | 		list_add_tail(&work->list, &works); | 
 | 		btrfs_queue_work(root->fs_info->flush_workers, | 
 | 				 &work->work); | 
 | 		ret++; | 
 | 		if (nr != -1 && ret >= nr) | 
 | 			goto out; | 
 | 		cond_resched(); | 
 | 		spin_lock(&root->delalloc_lock); | 
 | 	} | 
 | 	spin_unlock(&root->delalloc_lock); | 
 |  | 
 | out: | 
 | 	list_for_each_entry_safe(work, next, &works, list) { | 
 | 		list_del_init(&work->list); | 
 | 		wait_for_completion(&work->completion); | 
 | 		kfree(work); | 
 | 	} | 
 |  | 
 | 	if (!list_empty(&splice)) { | 
 | 		spin_lock(&root->delalloc_lock); | 
 | 		list_splice_tail(&splice, &root->delalloc_inodes); | 
 | 		spin_unlock(&root->delalloc_lock); | 
 | 	} | 
 | 	mutex_unlock(&root->delalloc_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_start_delalloc_snapshot(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int ret; | 
 |  | 
 | 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
 | 		return -EROFS; | 
 |  | 
 | 	ret = start_delalloc_inodes(root, -1, true); | 
 | 	if (ret > 0) | 
 | 		ret = 0; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr) | 
 | { | 
 | 	struct btrfs_root *root; | 
 | 	struct list_head splice; | 
 | 	int ret; | 
 |  | 
 | 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) | 
 | 		return -EROFS; | 
 |  | 
 | 	INIT_LIST_HEAD(&splice); | 
 |  | 
 | 	mutex_lock(&fs_info->delalloc_root_mutex); | 
 | 	spin_lock(&fs_info->delalloc_root_lock); | 
 | 	list_splice_init(&fs_info->delalloc_roots, &splice); | 
 | 	while (!list_empty(&splice) && nr) { | 
 | 		root = list_first_entry(&splice, struct btrfs_root, | 
 | 					delalloc_root); | 
 | 		root = btrfs_grab_fs_root(root); | 
 | 		BUG_ON(!root); | 
 | 		list_move_tail(&root->delalloc_root, | 
 | 			       &fs_info->delalloc_roots); | 
 | 		spin_unlock(&fs_info->delalloc_root_lock); | 
 |  | 
 | 		ret = start_delalloc_inodes(root, nr, false); | 
 | 		btrfs_put_fs_root(root); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 |  | 
 | 		if (nr != -1) { | 
 | 			nr -= ret; | 
 | 			WARN_ON(nr < 0); | 
 | 		} | 
 | 		spin_lock(&fs_info->delalloc_root_lock); | 
 | 	} | 
 | 	spin_unlock(&fs_info->delalloc_root_lock); | 
 |  | 
 | 	ret = 0; | 
 | out: | 
 | 	if (!list_empty(&splice)) { | 
 | 		spin_lock(&fs_info->delalloc_root_lock); | 
 | 		list_splice_tail(&splice, &fs_info->delalloc_roots); | 
 | 		spin_unlock(&fs_info->delalloc_root_lock); | 
 | 	} | 
 | 	mutex_unlock(&fs_info->delalloc_root_mutex); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_symlink(struct inode *dir, struct dentry *dentry, | 
 | 			 const char *symname) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode = NULL; | 
 | 	int err; | 
 | 	u64 objectid; | 
 | 	u64 index = 0; | 
 | 	int name_len; | 
 | 	int datasize; | 
 | 	unsigned long ptr; | 
 | 	struct btrfs_file_extent_item *ei; | 
 | 	struct extent_buffer *leaf; | 
 |  | 
 | 	name_len = strlen(symname); | 
 | 	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info)) | 
 | 		return -ENAMETOOLONG; | 
 |  | 
 | 	/* | 
 | 	 * 2 items for inode item and ref | 
 | 	 * 2 items for dir items | 
 | 	 * 1 item for updating parent inode item | 
 | 	 * 1 item for the inline extent item | 
 | 	 * 1 item for xattr if selinux is on | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, 7); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	err = btrfs_find_free_ino(root, &objectid); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name, | 
 | 				dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), | 
 | 				objectid, S_IFLNK|S_IRWXUGO, &index); | 
 | 	if (IS_ERR(inode)) { | 
 | 		err = PTR_ERR(inode); | 
 | 		inode = NULL; | 
 | 		goto out_unlock; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	* If the active LSM wants to access the inode during | 
 | 	* d_instantiate it needs these. Smack checks to see | 
 | 	* if the filesystem supports xattrs by looking at the | 
 | 	* ops vector. | 
 | 	*/ | 
 | 	inode->i_fop = &btrfs_file_operations; | 
 | 	inode->i_op = &btrfs_file_inode_operations; | 
 | 	inode->i_mapping->a_ops = &btrfs_aops; | 
 | 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; | 
 |  | 
 | 	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		err = -ENOMEM; | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	key.objectid = btrfs_ino(BTRFS_I(inode)); | 
 | 	key.offset = 0; | 
 | 	key.type = BTRFS_EXTENT_DATA_KEY; | 
 | 	datasize = btrfs_file_extent_calc_inline_size(name_len); | 
 | 	err = btrfs_insert_empty_item(trans, root, path, &key, | 
 | 				      datasize); | 
 | 	if (err) { | 
 | 		btrfs_free_path(path); | 
 | 		goto out_unlock; | 
 | 	} | 
 | 	leaf = path->nodes[0]; | 
 | 	ei = btrfs_item_ptr(leaf, path->slots[0], | 
 | 			    struct btrfs_file_extent_item); | 
 | 	btrfs_set_file_extent_generation(leaf, ei, trans->transid); | 
 | 	btrfs_set_file_extent_type(leaf, ei, | 
 | 				   BTRFS_FILE_EXTENT_INLINE); | 
 | 	btrfs_set_file_extent_encryption(leaf, ei, 0); | 
 | 	btrfs_set_file_extent_compression(leaf, ei, 0); | 
 | 	btrfs_set_file_extent_other_encoding(leaf, ei, 0); | 
 | 	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len); | 
 |  | 
 | 	ptr = btrfs_file_extent_inline_start(ei); | 
 | 	write_extent_buffer(leaf, symname, ptr, name_len); | 
 | 	btrfs_mark_buffer_dirty(leaf); | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	inode->i_op = &btrfs_symlink_inode_operations; | 
 | 	inode_nohighmem(inode); | 
 | 	inode->i_mapping->a_ops = &btrfs_symlink_aops; | 
 | 	inode_set_bytes(inode, name_len); | 
 | 	btrfs_i_size_write(BTRFS_I(inode), name_len); | 
 | 	err = btrfs_update_inode(trans, root, inode); | 
 | 	/* | 
 | 	 * Last step, add directory indexes for our symlink inode. This is the | 
 | 	 * last step to avoid extra cleanup of these indexes if an error happens | 
 | 	 * elsewhere above. | 
 | 	 */ | 
 | 	if (!err) | 
 | 		err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, | 
 | 				BTRFS_I(inode), 0, index); | 
 | 	if (err) | 
 | 		goto out_unlock; | 
 |  | 
 | 	d_instantiate_new(dentry, inode); | 
 |  | 
 | out_unlock: | 
 | 	btrfs_end_transaction(trans); | 
 | 	if (err && inode) { | 
 | 		inode_dec_link_count(inode); | 
 | 		discard_new_inode(inode); | 
 | 	} | 
 | 	btrfs_btree_balance_dirty(fs_info); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __btrfs_prealloc_file_range(struct inode *inode, int mode, | 
 | 				       u64 start, u64 num_bytes, u64 min_size, | 
 | 				       loff_t actual_len, u64 *alloc_hint, | 
 | 				       struct btrfs_trans_handle *trans) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
 | 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; | 
 | 	struct extent_map *em; | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	struct btrfs_key ins; | 
 | 	u64 cur_offset = start; | 
 | 	u64 i_size; | 
 | 	u64 cur_bytes; | 
 | 	u64 last_alloc = (u64)-1; | 
 | 	int ret = 0; | 
 | 	bool own_trans = true; | 
 | 	u64 end = start + num_bytes - 1; | 
 |  | 
 | 	if (trans) | 
 | 		own_trans = false; | 
 | 	while (num_bytes > 0) { | 
 | 		if (own_trans) { | 
 | 			trans = btrfs_start_transaction(root, 3); | 
 | 			if (IS_ERR(trans)) { | 
 | 				ret = PTR_ERR(trans); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		cur_bytes = min_t(u64, num_bytes, SZ_256M); | 
 | 		cur_bytes = max(cur_bytes, min_size); | 
 | 		/* | 
 | 		 * If we are severely fragmented we could end up with really | 
 | 		 * small allocations, so if the allocator is returning small | 
 | 		 * chunks lets make its job easier by only searching for those | 
 | 		 * sized chunks. | 
 | 		 */ | 
 | 		cur_bytes = min(cur_bytes, last_alloc); | 
 | 		ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes, | 
 | 				min_size, 0, *alloc_hint, &ins, 1, 0); | 
 | 		if (ret) { | 
 | 			if (own_trans) | 
 | 				btrfs_end_transaction(trans); | 
 | 			break; | 
 | 		} | 
 | 		btrfs_dec_block_group_reservations(fs_info, ins.objectid); | 
 |  | 
 | 		last_alloc = ins.offset; | 
 | 		ret = insert_reserved_file_extent(trans, inode, | 
 | 						  cur_offset, ins.objectid, | 
 | 						  ins.offset, ins.offset, | 
 | 						  ins.offset, 0, 0, 0, | 
 | 						  BTRFS_FILE_EXTENT_PREALLOC); | 
 | 		if (ret) { | 
 | 			btrfs_free_reserved_extent(fs_info, ins.objectid, | 
 | 						   ins.offset, 0); | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			if (own_trans) | 
 | 				btrfs_end_transaction(trans); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, | 
 | 					cur_offset + ins.offset -1, 0); | 
 |  | 
 | 		em = alloc_extent_map(); | 
 | 		if (!em) { | 
 | 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, | 
 | 				&BTRFS_I(inode)->runtime_flags); | 
 | 			goto next; | 
 | 		} | 
 |  | 
 | 		em->start = cur_offset; | 
 | 		em->orig_start = cur_offset; | 
 | 		em->len = ins.offset; | 
 | 		em->block_start = ins.objectid; | 
 | 		em->block_len = ins.offset; | 
 | 		em->orig_block_len = ins.offset; | 
 | 		em->ram_bytes = ins.offset; | 
 | 		em->bdev = fs_info->fs_devices->latest_bdev; | 
 | 		set_bit(EXTENT_FLAG_PREALLOC, &em->flags); | 
 | 		em->generation = trans->transid; | 
 |  | 
 | 		while (1) { | 
 | 			write_lock(&em_tree->lock); | 
 | 			ret = add_extent_mapping(em_tree, em, 1); | 
 | 			write_unlock(&em_tree->lock); | 
 | 			if (ret != -EEXIST) | 
 | 				break; | 
 | 			btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset, | 
 | 						cur_offset + ins.offset - 1, | 
 | 						0); | 
 | 		} | 
 | 		free_extent_map(em); | 
 | next: | 
 | 		num_bytes -= ins.offset; | 
 | 		cur_offset += ins.offset; | 
 | 		*alloc_hint = ins.objectid + ins.offset; | 
 |  | 
 | 		inode_inc_iversion(inode); | 
 | 		inode->i_ctime = current_time(inode); | 
 | 		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC; | 
 | 		if (!(mode & FALLOC_FL_KEEP_SIZE) && | 
 | 		    (actual_len > inode->i_size) && | 
 | 		    (cur_offset > inode->i_size)) { | 
 | 			if (cur_offset > actual_len) | 
 | 				i_size = actual_len; | 
 | 			else | 
 | 				i_size = cur_offset; | 
 | 			i_size_write(inode, i_size); | 
 | 			btrfs_ordered_update_i_size(inode, i_size, NULL); | 
 | 		} | 
 |  | 
 | 		ret = btrfs_update_inode(trans, root, inode); | 
 |  | 
 | 		if (ret) { | 
 | 			btrfs_abort_transaction(trans, ret); | 
 | 			if (own_trans) | 
 | 				btrfs_end_transaction(trans); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (own_trans) | 
 | 			btrfs_end_transaction(trans); | 
 | 	} | 
 | 	if (cur_offset < end) | 
 | 		btrfs_free_reserved_data_space(inode, NULL, cur_offset, | 
 | 			end - cur_offset + 1); | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_prealloc_file_range(struct inode *inode, int mode, | 
 | 			      u64 start, u64 num_bytes, u64 min_size, | 
 | 			      loff_t actual_len, u64 *alloc_hint) | 
 | { | 
 | 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, | 
 | 					   min_size, actual_len, alloc_hint, | 
 | 					   NULL); | 
 | } | 
 |  | 
 | int btrfs_prealloc_file_range_trans(struct inode *inode, | 
 | 				    struct btrfs_trans_handle *trans, int mode, | 
 | 				    u64 start, u64 num_bytes, u64 min_size, | 
 | 				    loff_t actual_len, u64 *alloc_hint) | 
 | { | 
 | 	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes, | 
 | 					   min_size, actual_len, alloc_hint, trans); | 
 | } | 
 |  | 
 | static int btrfs_set_page_dirty(struct page *page) | 
 | { | 
 | 	return __set_page_dirty_nobuffers(page); | 
 | } | 
 |  | 
 | static int btrfs_permission(struct inode *inode, int mask) | 
 | { | 
 | 	struct btrfs_root *root = BTRFS_I(inode)->root; | 
 | 	umode_t mode = inode->i_mode; | 
 |  | 
 | 	if (mask & MAY_WRITE && | 
 | 	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) { | 
 | 		if (btrfs_root_readonly(root)) | 
 | 			return -EROFS; | 
 | 		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) | 
 | 			return -EACCES; | 
 | 	} | 
 | 	return generic_permission(inode, mask); | 
 | } | 
 |  | 
 | static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_root *root = BTRFS_I(dir)->root; | 
 | 	struct inode *inode = NULL; | 
 | 	u64 objectid; | 
 | 	u64 index; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * 5 units required for adding orphan entry | 
 | 	 */ | 
 | 	trans = btrfs_start_transaction(root, 5); | 
 | 	if (IS_ERR(trans)) | 
 | 		return PTR_ERR(trans); | 
 |  | 
 | 	ret = btrfs_find_free_ino(root, &objectid); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	inode = btrfs_new_inode(trans, root, dir, NULL, 0, | 
 | 			btrfs_ino(BTRFS_I(dir)), objectid, mode, &index); | 
 | 	if (IS_ERR(inode)) { | 
 | 		ret = PTR_ERR(inode); | 
 | 		inode = NULL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	inode->i_fop = &btrfs_file_operations; | 
 | 	inode->i_op = &btrfs_file_inode_operations; | 
 |  | 
 | 	inode->i_mapping->a_ops = &btrfs_aops; | 
 | 	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops; | 
 |  | 
 | 	ret = btrfs_init_inode_security(trans, inode, dir, NULL); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	ret = btrfs_update_inode(trans, root, inode); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	ret = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We set number of links to 0 in btrfs_new_inode(), and here we set | 
 | 	 * it to 1 because d_tmpfile() will issue a warning if the count is 0, | 
 | 	 * through: | 
 | 	 * | 
 | 	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink() | 
 | 	 */ | 
 | 	set_nlink(inode, 1); | 
 | 	d_tmpfile(dentry, inode); | 
 | 	unlock_new_inode(inode); | 
 | 	mark_inode_dirty(inode); | 
 | out: | 
 | 	btrfs_end_transaction(trans); | 
 | 	if (ret && inode) | 
 | 		discard_new_inode(inode); | 
 | 	btrfs_btree_balance_dirty(fs_info); | 
 | 	return ret; | 
 | } | 
 |  | 
 | __attribute__((const)) | 
 | static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror) | 
 | { | 
 | 	return -EAGAIN; | 
 | } | 
 |  | 
 | static void btrfs_check_extent_io_range(void *private_data, const char *caller, | 
 | 					u64 start, u64 end) | 
 | { | 
 | 	struct inode *inode = private_data; | 
 | 	u64 isize; | 
 |  | 
 | 	isize = i_size_read(inode); | 
 | 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { | 
 | 		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info, | 
 | 		    "%s: ino %llu isize %llu odd range [%llu,%llu]", | 
 | 			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end); | 
 | 	} | 
 | } | 
 |  | 
 | void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) | 
 | { | 
 | 	struct inode *inode = tree->private_data; | 
 | 	unsigned long index = start >> PAGE_SHIFT; | 
 | 	unsigned long end_index = end >> PAGE_SHIFT; | 
 | 	struct page *page; | 
 |  | 
 | 	while (index <= end_index) { | 
 | 		page = find_get_page(inode->i_mapping, index); | 
 | 		ASSERT(page); /* Pages should be in the extent_io_tree */ | 
 | 		set_page_writeback(page); | 
 | 		put_page(page); | 
 | 		index++; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct inode_operations btrfs_dir_inode_operations = { | 
 | 	.getattr	= btrfs_getattr, | 
 | 	.lookup		= btrfs_lookup, | 
 | 	.create		= btrfs_create, | 
 | 	.unlink		= btrfs_unlink, | 
 | 	.link		= btrfs_link, | 
 | 	.mkdir		= btrfs_mkdir, | 
 | 	.rmdir		= btrfs_rmdir, | 
 | 	.rename		= btrfs_rename2, | 
 | 	.symlink	= btrfs_symlink, | 
 | 	.setattr	= btrfs_setattr, | 
 | 	.mknod		= btrfs_mknod, | 
 | 	.listxattr	= btrfs_listxattr, | 
 | 	.permission	= btrfs_permission, | 
 | 	.get_acl	= btrfs_get_acl, | 
 | 	.set_acl	= btrfs_set_acl, | 
 | 	.update_time	= btrfs_update_time, | 
 | 	.tmpfile        = btrfs_tmpfile, | 
 | }; | 
 | static const struct inode_operations btrfs_dir_ro_inode_operations = { | 
 | 	.lookup		= btrfs_lookup, | 
 | 	.permission	= btrfs_permission, | 
 | 	.update_time	= btrfs_update_time, | 
 | }; | 
 |  | 
 | static const struct file_operations btrfs_dir_file_operations = { | 
 | 	.llseek		= generic_file_llseek, | 
 | 	.read		= generic_read_dir, | 
 | 	.iterate_shared	= btrfs_real_readdir, | 
 | 	.open		= btrfs_opendir, | 
 | 	.unlocked_ioctl	= btrfs_ioctl, | 
 | #ifdef CONFIG_COMPAT | 
 | 	.compat_ioctl	= btrfs_compat_ioctl, | 
 | #endif | 
 | 	.release        = btrfs_release_file, | 
 | 	.fsync		= btrfs_sync_file, | 
 | }; | 
 |  | 
 | static const struct extent_io_ops btrfs_extent_io_ops = { | 
 | 	/* mandatory callbacks */ | 
 | 	.submit_bio_hook = btrfs_submit_bio_hook, | 
 | 	.readpage_end_io_hook = btrfs_readpage_end_io_hook, | 
 | 	.readpage_io_failed_hook = btrfs_readpage_io_failed_hook, | 
 |  | 
 | 	/* optional callbacks */ | 
 | 	.writepage_end_io_hook = btrfs_writepage_end_io_hook, | 
 | 	.writepage_start_hook = btrfs_writepage_start_hook, | 
 | 	.set_bit_hook = btrfs_set_bit_hook, | 
 | 	.clear_bit_hook = btrfs_clear_bit_hook, | 
 | 	.merge_extent_hook = btrfs_merge_extent_hook, | 
 | 	.split_extent_hook = btrfs_split_extent_hook, | 
 | 	.check_extent_io_range = btrfs_check_extent_io_range, | 
 | }; | 
 |  | 
 | /* | 
 |  * btrfs doesn't support the bmap operation because swapfiles | 
 |  * use bmap to make a mapping of extents in the file.  They assume | 
 |  * these extents won't change over the life of the file and they | 
 |  * use the bmap result to do IO directly to the drive. | 
 |  * | 
 |  * the btrfs bmap call would return logical addresses that aren't | 
 |  * suitable for IO and they also will change frequently as COW | 
 |  * operations happen.  So, swapfile + btrfs == corruption. | 
 |  * | 
 |  * For now we're avoiding this by dropping bmap. | 
 |  */ | 
 | static const struct address_space_operations btrfs_aops = { | 
 | 	.readpage	= btrfs_readpage, | 
 | 	.writepage	= btrfs_writepage, | 
 | 	.writepages	= btrfs_writepages, | 
 | 	.readpages	= btrfs_readpages, | 
 | 	.direct_IO	= btrfs_direct_IO, | 
 | 	.invalidatepage = btrfs_invalidatepage, | 
 | 	.releasepage	= btrfs_releasepage, | 
 | 	.set_page_dirty	= btrfs_set_page_dirty, | 
 | 	.error_remove_page = generic_error_remove_page, | 
 | }; | 
 |  | 
 | static const struct address_space_operations btrfs_symlink_aops = { | 
 | 	.readpage	= btrfs_readpage, | 
 | 	.writepage	= btrfs_writepage, | 
 | 	.invalidatepage = btrfs_invalidatepage, | 
 | 	.releasepage	= btrfs_releasepage, | 
 | }; | 
 |  | 
 | static const struct inode_operations btrfs_file_inode_operations = { | 
 | 	.getattr	= btrfs_getattr, | 
 | 	.setattr	= btrfs_setattr, | 
 | 	.listxattr      = btrfs_listxattr, | 
 | 	.permission	= btrfs_permission, | 
 | 	.fiemap		= btrfs_fiemap, | 
 | 	.get_acl	= btrfs_get_acl, | 
 | 	.set_acl	= btrfs_set_acl, | 
 | 	.update_time	= btrfs_update_time, | 
 | }; | 
 | static const struct inode_operations btrfs_special_inode_operations = { | 
 | 	.getattr	= btrfs_getattr, | 
 | 	.setattr	= btrfs_setattr, | 
 | 	.permission	= btrfs_permission, | 
 | 	.listxattr	= btrfs_listxattr, | 
 | 	.get_acl	= btrfs_get_acl, | 
 | 	.set_acl	= btrfs_set_acl, | 
 | 	.update_time	= btrfs_update_time, | 
 | }; | 
 | static const struct inode_operations btrfs_symlink_inode_operations = { | 
 | 	.get_link	= page_get_link, | 
 | 	.getattr	= btrfs_getattr, | 
 | 	.setattr	= btrfs_setattr, | 
 | 	.permission	= btrfs_permission, | 
 | 	.listxattr	= btrfs_listxattr, | 
 | 	.update_time	= btrfs_update_time, | 
 | }; | 
 |  | 
 | const struct dentry_operations btrfs_dentry_operations = { | 
 | 	.d_delete	= btrfs_dentry_delete, | 
 | }; |