| /* | 
 |  * Copyright (c) 2003-2012 Broadcom Corporation | 
 |  * All Rights Reserved | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the Broadcom | 
 |  * license below: | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in | 
 |  *    the documentation and/or other materials provided with the | 
 |  *    distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY BROADCOM ``AS IS'' AND ANY EXPRESS OR | 
 |  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
 |  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
 |  * ARE DISCLAIMED. IN NO EVENT SHALL BROADCOM OR CONTRIBUTORS BE LIABLE | 
 |  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
 |  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF | 
 |  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
 |  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, | 
 |  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE | 
 |  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN | 
 |  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | #include <linux/types.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/msi.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/irqdesc.h> | 
 | #include <linux/console.h> | 
 |  | 
 | #include <asm/io.h> | 
 |  | 
 | #include <asm/netlogic/interrupt.h> | 
 | #include <asm/netlogic/haldefs.h> | 
 | #include <asm/netlogic/common.h> | 
 | #include <asm/netlogic/mips-extns.h> | 
 |  | 
 | #include <asm/netlogic/xlp-hal/iomap.h> | 
 | #include <asm/netlogic/xlp-hal/xlp.h> | 
 | #include <asm/netlogic/xlp-hal/pic.h> | 
 | #include <asm/netlogic/xlp-hal/pcibus.h> | 
 | #include <asm/netlogic/xlp-hal/bridge.h> | 
 |  | 
 | #define XLP_MSIVEC_PER_LINK	32 | 
 | #define XLP_MSIXVEC_TOTAL	(cpu_is_xlp9xx() ? 128 : 32) | 
 | #define XLP_MSIXVEC_PER_LINK	(cpu_is_xlp9xx() ? 32 : 8) | 
 |  | 
 | /* 128 MSI irqs per node, mapped starting at NLM_MSI_VEC_BASE */ | 
 | static inline int nlm_link_msiirq(int link, int msivec) | 
 | { | 
 | 	return NLM_MSI_VEC_BASE + link * XLP_MSIVEC_PER_LINK + msivec; | 
 | } | 
 |  | 
 | /* get the link MSI vector from irq number */ | 
 | static inline int nlm_irq_msivec(int irq) | 
 | { | 
 | 	return (irq - NLM_MSI_VEC_BASE) % XLP_MSIVEC_PER_LINK; | 
 | } | 
 |  | 
 | /* get the link from the irq number */ | 
 | static inline int nlm_irq_msilink(int irq) | 
 | { | 
 | 	int total_msivec = XLP_MSIVEC_PER_LINK * PCIE_NLINKS; | 
 |  | 
 | 	return ((irq - NLM_MSI_VEC_BASE) % total_msivec) / | 
 | 		XLP_MSIVEC_PER_LINK; | 
 | } | 
 |  | 
 | /* | 
 |  * For XLP 8xx/4xx/3xx/2xx, only 32 MSI-X vectors are possible because | 
 |  * there are only 32 PIC interrupts for MSI. We split them statically | 
 |  * and use 8 MSI-X vectors per link - this keeps the allocation and | 
 |  * lookup simple. | 
 |  * On XLP 9xx, there are 32 vectors per link, and the interrupts are | 
 |  * not routed thru PIC, so we can use all 128 MSI-X vectors. | 
 |  */ | 
 | static inline int nlm_link_msixirq(int link, int bit) | 
 | { | 
 | 	return NLM_MSIX_VEC_BASE + link * XLP_MSIXVEC_PER_LINK + bit; | 
 | } | 
 |  | 
 | /* get the link MSI vector from irq number */ | 
 | static inline int nlm_irq_msixvec(int irq) | 
 | { | 
 | 	return (irq - NLM_MSIX_VEC_BASE) % XLP_MSIXVEC_TOTAL; | 
 | } | 
 |  | 
 | /* get the link from MSIX vec */ | 
 | static inline int nlm_irq_msixlink(int msixvec) | 
 | { | 
 | 	return msixvec / XLP_MSIXVEC_PER_LINK; | 
 | } | 
 |  | 
 | /* | 
 |  * Per link MSI and MSI-X information, set as IRQ handler data for | 
 |  * MSI and MSI-X interrupts. | 
 |  */ | 
 | struct xlp_msi_data { | 
 | 	struct nlm_soc_info *node; | 
 | 	uint64_t	lnkbase; | 
 | 	uint32_t	msi_enabled_mask; | 
 | 	uint32_t	msi_alloc_mask; | 
 | 	uint32_t	msix_alloc_mask; | 
 | 	spinlock_t	msi_lock; | 
 | }; | 
 |  | 
 | /* | 
 |  * MSI Chip definitions | 
 |  * | 
 |  * On XLP, there is a PIC interrupt associated with each PCIe link on the | 
 |  * chip (which appears as a PCI bridge to us). This gives us 32 MSI irqa | 
 |  * per link and 128 overall. | 
 |  * | 
 |  * When a device connected to the link raises a MSI interrupt, we get a | 
 |  * link interrupt and we then have to look at PCIE_MSI_STATUS register at | 
 |  * the bridge to map it to the IRQ | 
 |  */ | 
 | static void xlp_msi_enable(struct irq_data *d) | 
 | { | 
 | 	struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | 
 | 	unsigned long flags; | 
 | 	int vec; | 
 |  | 
 | 	vec = nlm_irq_msivec(d->irq); | 
 | 	spin_lock_irqsave(&md->msi_lock, flags); | 
 | 	md->msi_enabled_mask |= 1u << vec; | 
 | 	if (cpu_is_xlp9xx()) | 
 | 		nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN, | 
 | 				md->msi_enabled_mask); | 
 | 	else | 
 | 		nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask); | 
 | 	spin_unlock_irqrestore(&md->msi_lock, flags); | 
 | } | 
 |  | 
 | static void xlp_msi_disable(struct irq_data *d) | 
 | { | 
 | 	struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | 
 | 	unsigned long flags; | 
 | 	int vec; | 
 |  | 
 | 	vec = nlm_irq_msivec(d->irq); | 
 | 	spin_lock_irqsave(&md->msi_lock, flags); | 
 | 	md->msi_enabled_mask &= ~(1u << vec); | 
 | 	if (cpu_is_xlp9xx()) | 
 | 		nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_EN, | 
 | 				md->msi_enabled_mask); | 
 | 	else | 
 | 		nlm_write_reg(md->lnkbase, PCIE_MSI_EN, md->msi_enabled_mask); | 
 | 	spin_unlock_irqrestore(&md->msi_lock, flags); | 
 | } | 
 |  | 
 | static void xlp_msi_mask_ack(struct irq_data *d) | 
 | { | 
 | 	struct xlp_msi_data *md = irq_data_get_irq_chip_data(d); | 
 | 	int link, vec; | 
 |  | 
 | 	link = nlm_irq_msilink(d->irq); | 
 | 	vec = nlm_irq_msivec(d->irq); | 
 | 	xlp_msi_disable(d); | 
 |  | 
 | 	/* Ack MSI on bridge */ | 
 | 	if (cpu_is_xlp9xx()) | 
 | 		nlm_write_reg(md->lnkbase, PCIE_9XX_MSI_STATUS, 1u << vec); | 
 | 	else | 
 | 		nlm_write_reg(md->lnkbase, PCIE_MSI_STATUS, 1u << vec); | 
 |  | 
 | } | 
 |  | 
 | static struct irq_chip xlp_msi_chip = { | 
 | 	.name		= "XLP-MSI", | 
 | 	.irq_enable	= xlp_msi_enable, | 
 | 	.irq_disable	= xlp_msi_disable, | 
 | 	.irq_mask_ack	= xlp_msi_mask_ack, | 
 | 	.irq_unmask	= xlp_msi_enable, | 
 | }; | 
 |  | 
 | /* | 
 |  * XLP8XX/4XX/3XX/2XX: | 
 |  * The MSI-X interrupt handling is different from MSI, there are 32 MSI-X | 
 |  * interrupts generated by the PIC and each of these correspond to a MSI-X | 
 |  * vector (0-31) that can be assigned. | 
 |  * | 
 |  * We divide the MSI-X vectors to 8 per link and do a per-link allocation | 
 |  * | 
 |  * XLP9XX: | 
 |  * 32 MSI-X vectors are available per link, and the interrupts are not routed | 
 |  * thru the PIC. PIC ack not needed. | 
 |  * | 
 |  * Enable and disable done using standard MSI functions. | 
 |  */ | 
 | static void xlp_msix_mask_ack(struct irq_data *d) | 
 | { | 
 | 	struct xlp_msi_data *md; | 
 | 	int link, msixvec; | 
 | 	uint32_t status_reg, bit; | 
 |  | 
 | 	msixvec = nlm_irq_msixvec(d->irq); | 
 | 	link = nlm_irq_msixlink(msixvec); | 
 | 	pci_msi_mask_irq(d); | 
 | 	md = irq_data_get_irq_chip_data(d); | 
 |  | 
 | 	/* Ack MSI on bridge */ | 
 | 	if (cpu_is_xlp9xx()) { | 
 | 		status_reg = PCIE_9XX_MSIX_STATUSX(link); | 
 | 		bit = msixvec % XLP_MSIXVEC_PER_LINK; | 
 | 	} else { | 
 | 		status_reg = PCIE_MSIX_STATUS; | 
 | 		bit = msixvec; | 
 | 	} | 
 | 	nlm_write_reg(md->lnkbase, status_reg, 1u << bit); | 
 |  | 
 | 	if (!cpu_is_xlp9xx()) | 
 | 		nlm_pic_ack(md->node->picbase, | 
 | 				PIC_IRT_PCIE_MSIX_INDEX(msixvec)); | 
 | } | 
 |  | 
 | static struct irq_chip xlp_msix_chip = { | 
 | 	.name		= "XLP-MSIX", | 
 | 	.irq_enable	= pci_msi_unmask_irq, | 
 | 	.irq_disable	= pci_msi_mask_irq, | 
 | 	.irq_mask_ack	= xlp_msix_mask_ack, | 
 | 	.irq_unmask	= pci_msi_unmask_irq, | 
 | }; | 
 |  | 
 | void arch_teardown_msi_irq(unsigned int irq) | 
 | { | 
 | } | 
 |  | 
 | /* | 
 |  * Setup a PCIe link for MSI.  By default, the links are in | 
 |  * legacy interrupt mode.  We will switch them to MSI mode | 
 |  * at the first MSI request. | 
 |  */ | 
 | static void xlp_config_link_msi(uint64_t lnkbase, int lirq, uint64_t msiaddr) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	if (cpu_is_xlp9xx()) { | 
 | 		val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0); | 
 | 		if ((val & 0x200) == 0) { | 
 | 			val |= 0x200;		/* MSI Interrupt enable */ | 
 | 			nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val); | 
 | 		} | 
 | 	} else { | 
 | 		val = nlm_read_reg(lnkbase, PCIE_INT_EN0); | 
 | 		if ((val & 0x200) == 0) { | 
 | 			val |= 0x200; | 
 | 			nlm_write_reg(lnkbase, PCIE_INT_EN0, val); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	val = nlm_read_reg(lnkbase, 0x1);	/* CMD */ | 
 | 	if ((val & 0x0400) == 0) { | 
 | 		val |= 0x0400; | 
 | 		nlm_write_reg(lnkbase, 0x1, val); | 
 | 	} | 
 |  | 
 | 	/* Update IRQ in the PCI irq reg */ | 
 | 	val = nlm_read_pci_reg(lnkbase, 0xf); | 
 | 	val &= ~0x1fu; | 
 | 	val |= (1 << 8) | lirq; | 
 | 	nlm_write_pci_reg(lnkbase, 0xf, val); | 
 |  | 
 | 	/* MSI addr */ | 
 | 	nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRH, msiaddr >> 32); | 
 | 	nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_ADDRL, msiaddr & 0xffffffff); | 
 |  | 
 | 	/* MSI cap for bridge */ | 
 | 	val = nlm_read_reg(lnkbase, PCIE_BRIDGE_MSI_CAP); | 
 | 	if ((val & (1 << 16)) == 0) { | 
 | 		val |= 0xb << 16;		/* mmc32, msi enable */ | 
 | 		nlm_write_reg(lnkbase, PCIE_BRIDGE_MSI_CAP, val); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a MSI vector on a link | 
 |  */ | 
 | static int xlp_setup_msi(uint64_t lnkbase, int node, int link, | 
 | 	struct msi_desc *desc) | 
 | { | 
 | 	struct xlp_msi_data *md; | 
 | 	struct msi_msg msg; | 
 | 	unsigned long flags; | 
 | 	int msivec, irt, lirq, xirq, ret; | 
 | 	uint64_t msiaddr; | 
 |  | 
 | 	/* Get MSI data for the link */ | 
 | 	lirq = PIC_PCIE_LINK_MSI_IRQ(link); | 
 | 	xirq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | 
 | 	md = irq_get_chip_data(xirq); | 
 | 	msiaddr = MSI_LINK_ADDR(node, link); | 
 |  | 
 | 	spin_lock_irqsave(&md->msi_lock, flags); | 
 | 	if (md->msi_alloc_mask == 0) { | 
 | 		xlp_config_link_msi(lnkbase, lirq, msiaddr); | 
 | 		/* switch the link IRQ to MSI range */ | 
 | 		if (cpu_is_xlp9xx()) | 
 | 			irt = PIC_9XX_IRT_PCIE_LINK_INDEX(link); | 
 | 		else | 
 | 			irt = PIC_IRT_PCIE_LINK_INDEX(link); | 
 | 		nlm_setup_pic_irq(node, lirq, lirq, irt); | 
 | 		nlm_pic_init_irt(nlm_get_node(node)->picbase, irt, lirq, | 
 | 				 node * nlm_threads_per_node(), 1 /*en */); | 
 | 	} | 
 |  | 
 | 	/* allocate a MSI vec, and tell the bridge about it */ | 
 | 	msivec = fls(md->msi_alloc_mask); | 
 | 	if (msivec == XLP_MSIVEC_PER_LINK) { | 
 | 		spin_unlock_irqrestore(&md->msi_lock, flags); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	md->msi_alloc_mask |= (1u << msivec); | 
 | 	spin_unlock_irqrestore(&md->msi_lock, flags); | 
 |  | 
 | 	msg.address_hi = msiaddr >> 32; | 
 | 	msg.address_lo = msiaddr & 0xffffffff; | 
 | 	msg.data = 0xc00 | msivec; | 
 |  | 
 | 	xirq = xirq + msivec;		/* msi mapped to global irq space */ | 
 | 	ret = irq_set_msi_desc(xirq, desc); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	pci_write_msi_msg(xirq, &msg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Switch a link to MSI-X mode | 
 |  */ | 
 | static void xlp_config_link_msix(uint64_t lnkbase, int lirq, uint64_t msixaddr) | 
 | { | 
 | 	u32 val; | 
 |  | 
 | 	val = nlm_read_reg(lnkbase, 0x2C); | 
 | 	if ((val & 0x80000000U) == 0) { | 
 | 		val |= 0x80000000U; | 
 | 		nlm_write_reg(lnkbase, 0x2C, val); | 
 | 	} | 
 |  | 
 | 	if (cpu_is_xlp9xx()) { | 
 | 		val = nlm_read_reg(lnkbase, PCIE_9XX_INT_EN0); | 
 | 		if ((val & 0x200) == 0) { | 
 | 			val |= 0x200;		/* MSI Interrupt enable */ | 
 | 			nlm_write_reg(lnkbase, PCIE_9XX_INT_EN0, val); | 
 | 		} | 
 | 	} else { | 
 | 		val = nlm_read_reg(lnkbase, PCIE_INT_EN0); | 
 | 		if ((val & 0x200) == 0) { | 
 | 			val |= 0x200;		/* MSI Interrupt enable */ | 
 | 			nlm_write_reg(lnkbase, PCIE_INT_EN0, val); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	val = nlm_read_reg(lnkbase, 0x1);	/* CMD */ | 
 | 	if ((val & 0x0400) == 0) { | 
 | 		val |= 0x0400; | 
 | 		nlm_write_reg(lnkbase, 0x1, val); | 
 | 	} | 
 |  | 
 | 	/* Update IRQ in the PCI irq reg */ | 
 | 	val = nlm_read_pci_reg(lnkbase, 0xf); | 
 | 	val &= ~0x1fu; | 
 | 	val |= (1 << 8) | lirq; | 
 | 	nlm_write_pci_reg(lnkbase, 0xf, val); | 
 |  | 
 | 	if (cpu_is_xlp9xx()) { | 
 | 		/* MSI-X addresses */ | 
 | 		nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_BASE, | 
 | 				msixaddr >> 8); | 
 | 		nlm_write_reg(lnkbase, PCIE_9XX_BRIDGE_MSIX_ADDR_LIMIT, | 
 | 				(msixaddr + MSI_ADDR_SZ) >> 8); | 
 | 	} else { | 
 | 		/* MSI-X addresses */ | 
 | 		nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_BASE, | 
 | 				msixaddr >> 8); | 
 | 		nlm_write_reg(lnkbase, PCIE_BRIDGE_MSIX_ADDR_LIMIT, | 
 | 				(msixaddr + MSI_ADDR_SZ) >> 8); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *  Allocate a MSI-X vector | 
 |  */ | 
 | static int xlp_setup_msix(uint64_t lnkbase, int node, int link, | 
 | 	struct msi_desc *desc) | 
 | { | 
 | 	struct xlp_msi_data *md; | 
 | 	struct msi_msg msg; | 
 | 	unsigned long flags; | 
 | 	int t, msixvec, lirq, xirq, ret; | 
 | 	uint64_t msixaddr; | 
 |  | 
 | 	/* Get MSI data for the link */ | 
 | 	lirq = PIC_PCIE_MSIX_IRQ(link); | 
 | 	xirq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0)); | 
 | 	md = irq_get_chip_data(xirq); | 
 | 	msixaddr = MSIX_LINK_ADDR(node, link); | 
 |  | 
 | 	spin_lock_irqsave(&md->msi_lock, flags); | 
 | 	/* switch the PCIe link to MSI-X mode at the first alloc */ | 
 | 	if (md->msix_alloc_mask == 0) | 
 | 		xlp_config_link_msix(lnkbase, lirq, msixaddr); | 
 |  | 
 | 	/* allocate a MSI-X vec, and tell the bridge about it */ | 
 | 	t = fls(md->msix_alloc_mask); | 
 | 	if (t == XLP_MSIXVEC_PER_LINK) { | 
 | 		spin_unlock_irqrestore(&md->msi_lock, flags); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	md->msix_alloc_mask |= (1u << t); | 
 | 	spin_unlock_irqrestore(&md->msi_lock, flags); | 
 |  | 
 | 	xirq += t; | 
 | 	msixvec = nlm_irq_msixvec(xirq); | 
 |  | 
 | 	msg.address_hi = msixaddr >> 32; | 
 | 	msg.address_lo = msixaddr & 0xffffffff; | 
 | 	msg.data = 0xc00 | msixvec; | 
 |  | 
 | 	ret = irq_set_msi_desc(xirq, desc); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	pci_write_msi_msg(xirq, &msg); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int arch_setup_msi_irq(struct pci_dev *dev, struct msi_desc *desc) | 
 | { | 
 | 	struct pci_dev *lnkdev; | 
 | 	uint64_t lnkbase; | 
 | 	int node, link, slot; | 
 |  | 
 | 	lnkdev = xlp_get_pcie_link(dev); | 
 | 	if (lnkdev == NULL) { | 
 | 		dev_err(&dev->dev, "Could not find bridge\n"); | 
 | 		return 1; | 
 | 	} | 
 | 	slot = PCI_SLOT(lnkdev->devfn); | 
 | 	link = PCI_FUNC(lnkdev->devfn); | 
 | 	node = slot / 8; | 
 | 	lnkbase = nlm_get_pcie_base(node, link); | 
 |  | 
 | 	if (desc->msi_attrib.is_msix) | 
 | 		return xlp_setup_msix(lnkbase, node, link, desc); | 
 | 	else | 
 | 		return xlp_setup_msi(lnkbase, node, link, desc); | 
 | } | 
 |  | 
 | void __init xlp_init_node_msi_irqs(int node, int link) | 
 | { | 
 | 	struct nlm_soc_info *nodep; | 
 | 	struct xlp_msi_data *md; | 
 | 	int irq, i, irt, msixvec, val; | 
 |  | 
 | 	pr_info("[%d %d] Init node PCI IRT\n", node, link); | 
 | 	nodep = nlm_get_node(node); | 
 |  | 
 | 	/* Alloc an MSI block for the link */ | 
 | 	md = kzalloc(sizeof(*md), GFP_KERNEL); | 
 | 	spin_lock_init(&md->msi_lock); | 
 | 	md->msi_enabled_mask = 0; | 
 | 	md->msi_alloc_mask = 0; | 
 | 	md->msix_alloc_mask = 0; | 
 | 	md->node = nodep; | 
 | 	md->lnkbase = nlm_get_pcie_base(node, link); | 
 |  | 
 | 	/* extended space for MSI interrupts */ | 
 | 	irq = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | 
 | 	for (i = irq; i < irq + XLP_MSIVEC_PER_LINK; i++) { | 
 | 		irq_set_chip_and_handler(i, &xlp_msi_chip, handle_level_irq); | 
 | 		irq_set_chip_data(i, md); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < XLP_MSIXVEC_PER_LINK ; i++) { | 
 | 		if (cpu_is_xlp9xx()) { | 
 | 			val = ((node * nlm_threads_per_node()) << 7 | | 
 | 				PIC_PCIE_MSIX_IRQ(link) << 1 | 0 << 0); | 
 | 			nlm_write_pcie_reg(md->lnkbase, PCIE_9XX_MSIX_VECX(i + | 
 | 					(link * XLP_MSIXVEC_PER_LINK)), val); | 
 | 		} else { | 
 | 			/* Initialize MSI-X irts to generate one interrupt | 
 | 			 * per link | 
 | 			 */ | 
 | 			msixvec = link * XLP_MSIXVEC_PER_LINK + i; | 
 | 			irt = PIC_IRT_PCIE_MSIX_INDEX(msixvec); | 
 | 			nlm_pic_init_irt(nodep->picbase, irt, | 
 | 					PIC_PCIE_MSIX_IRQ(link), | 
 | 					node * nlm_threads_per_node(), 1); | 
 | 		} | 
 |  | 
 | 		/* Initialize MSI-X extended irq space for the link  */ | 
 | 		irq = nlm_irq_to_xirq(node, nlm_link_msixirq(link, i)); | 
 | 		irq_set_chip_and_handler(irq, &xlp_msix_chip, handle_level_irq); | 
 | 		irq_set_chip_data(irq, md); | 
 | 	} | 
 | } | 
 |  | 
 | void nlm_dispatch_msi(int node, int lirq) | 
 | { | 
 | 	struct xlp_msi_data *md; | 
 | 	int link, i, irqbase; | 
 | 	u32 status; | 
 |  | 
 | 	link = lirq - PIC_PCIE_LINK_MSI_IRQ_BASE; | 
 | 	irqbase = nlm_irq_to_xirq(node, nlm_link_msiirq(link, 0)); | 
 | 	md = irq_get_chip_data(irqbase); | 
 | 	if (cpu_is_xlp9xx()) | 
 | 		status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSI_STATUS) & | 
 | 						md->msi_enabled_mask; | 
 | 	else | 
 | 		status = nlm_read_reg(md->lnkbase, PCIE_MSI_STATUS) & | 
 | 						md->msi_enabled_mask; | 
 | 	while (status) { | 
 | 		i = __ffs(status); | 
 | 		do_IRQ(irqbase + i); | 
 | 		status &= status - 1; | 
 | 	} | 
 |  | 
 | 	/* Ack at eirr and PIC */ | 
 | 	ack_c0_eirr(PIC_PCIE_LINK_MSI_IRQ(link)); | 
 | 	if (cpu_is_xlp9xx()) | 
 | 		nlm_pic_ack(md->node->picbase, | 
 | 				PIC_9XX_IRT_PCIE_LINK_INDEX(link)); | 
 | 	else | 
 | 		nlm_pic_ack(md->node->picbase, PIC_IRT_PCIE_LINK_INDEX(link)); | 
 | } | 
 |  | 
 | void nlm_dispatch_msix(int node, int lirq) | 
 | { | 
 | 	struct xlp_msi_data *md; | 
 | 	int link, i, irqbase; | 
 | 	u32 status; | 
 |  | 
 | 	link = lirq - PIC_PCIE_MSIX_IRQ_BASE; | 
 | 	irqbase = nlm_irq_to_xirq(node, nlm_link_msixirq(link, 0)); | 
 | 	md = irq_get_chip_data(irqbase); | 
 | 	if (cpu_is_xlp9xx()) | 
 | 		status = nlm_read_reg(md->lnkbase, PCIE_9XX_MSIX_STATUSX(link)); | 
 | 	else | 
 | 		status = nlm_read_reg(md->lnkbase, PCIE_MSIX_STATUS); | 
 |  | 
 | 	/* narrow it down to the MSI-x vectors for our link */ | 
 | 	if (!cpu_is_xlp9xx()) | 
 | 		status = (status >> (link * XLP_MSIXVEC_PER_LINK)) & | 
 | 			((1 << XLP_MSIXVEC_PER_LINK) - 1); | 
 |  | 
 | 	while (status) { | 
 | 		i = __ffs(status); | 
 | 		do_IRQ(irqbase + i); | 
 | 		status &= status - 1; | 
 | 	} | 
 | 	/* Ack at eirr and PIC */ | 
 | 	ack_c0_eirr(PIC_PCIE_MSIX_IRQ(link)); | 
 | } |