| /* | 
 |  * Based on arch/arm/mm/context.c | 
 |  * | 
 |  * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved. | 
 |  * Copyright (C) 2012 ARM Ltd. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #include <linux/bitops.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mm.h> | 
 |  | 
 | #include <asm/cpufeature.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | static u32 asid_bits; | 
 | static DEFINE_RAW_SPINLOCK(cpu_asid_lock); | 
 |  | 
 | static atomic64_t asid_generation; | 
 | static unsigned long *asid_map; | 
 |  | 
 | static DEFINE_PER_CPU(atomic64_t, active_asids); | 
 | static DEFINE_PER_CPU(u64, reserved_asids); | 
 | static cpumask_t tlb_flush_pending; | 
 |  | 
 | #define ASID_MASK		(~GENMASK(asid_bits - 1, 0)) | 
 | #define ASID_FIRST_VERSION	(1UL << asid_bits) | 
 |  | 
 | #ifdef CONFIG_UNMAP_KERNEL_AT_EL0 | 
 | #define NUM_USER_ASIDS		(ASID_FIRST_VERSION >> 1) | 
 | #define asid2idx(asid)		(((asid) & ~ASID_MASK) >> 1) | 
 | #define idx2asid(idx)		(((idx) << 1) & ~ASID_MASK) | 
 | #else | 
 | #define NUM_USER_ASIDS		(ASID_FIRST_VERSION) | 
 | #define asid2idx(asid)		((asid) & ~ASID_MASK) | 
 | #define idx2asid(idx)		asid2idx(idx) | 
 | #endif | 
 |  | 
 | /* Get the ASIDBits supported by the current CPU */ | 
 | static u32 get_cpu_asid_bits(void) | 
 | { | 
 | 	u32 asid; | 
 | 	int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1), | 
 | 						ID_AA64MMFR0_ASID_SHIFT); | 
 |  | 
 | 	switch (fld) { | 
 | 	default: | 
 | 		pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n", | 
 | 					smp_processor_id(),  fld); | 
 | 		/* Fallthrough */ | 
 | 	case 0: | 
 | 		asid = 8; | 
 | 		break; | 
 | 	case 2: | 
 | 		asid = 16; | 
 | 	} | 
 |  | 
 | 	return asid; | 
 | } | 
 |  | 
 | /* Check if the current cpu's ASIDBits is compatible with asid_bits */ | 
 | void verify_cpu_asid_bits(void) | 
 | { | 
 | 	u32 asid = get_cpu_asid_bits(); | 
 |  | 
 | 	if (asid < asid_bits) { | 
 | 		/* | 
 | 		 * We cannot decrease the ASID size at runtime, so panic if we support | 
 | 		 * fewer ASID bits than the boot CPU. | 
 | 		 */ | 
 | 		pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n", | 
 | 				smp_processor_id(), asid, asid_bits); | 
 | 		cpu_panic_kernel(); | 
 | 	} | 
 | } | 
 |  | 
 | static void flush_context(unsigned int cpu) | 
 | { | 
 | 	int i; | 
 | 	u64 asid; | 
 |  | 
 | 	/* Update the list of reserved ASIDs and the ASID bitmap. */ | 
 | 	bitmap_clear(asid_map, 0, NUM_USER_ASIDS); | 
 |  | 
 | 	for_each_possible_cpu(i) { | 
 | 		asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0); | 
 | 		/* | 
 | 		 * If this CPU has already been through a | 
 | 		 * rollover, but hasn't run another task in | 
 | 		 * the meantime, we must preserve its reserved | 
 | 		 * ASID, as this is the only trace we have of | 
 | 		 * the process it is still running. | 
 | 		 */ | 
 | 		if (asid == 0) | 
 | 			asid = per_cpu(reserved_asids, i); | 
 | 		__set_bit(asid2idx(asid), asid_map); | 
 | 		per_cpu(reserved_asids, i) = asid; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Queue a TLB invalidation for each CPU to perform on next | 
 | 	 * context-switch | 
 | 	 */ | 
 | 	cpumask_setall(&tlb_flush_pending); | 
 | } | 
 |  | 
 | static bool check_update_reserved_asid(u64 asid, u64 newasid) | 
 | { | 
 | 	int cpu; | 
 | 	bool hit = false; | 
 |  | 
 | 	/* | 
 | 	 * Iterate over the set of reserved ASIDs looking for a match. | 
 | 	 * If we find one, then we can update our mm to use newasid | 
 | 	 * (i.e. the same ASID in the current generation) but we can't | 
 | 	 * exit the loop early, since we need to ensure that all copies | 
 | 	 * of the old ASID are updated to reflect the mm. Failure to do | 
 | 	 * so could result in us missing the reserved ASID in a future | 
 | 	 * generation. | 
 | 	 */ | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		if (per_cpu(reserved_asids, cpu) == asid) { | 
 | 			hit = true; | 
 | 			per_cpu(reserved_asids, cpu) = newasid; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return hit; | 
 | } | 
 |  | 
 | static u64 new_context(struct mm_struct *mm, unsigned int cpu) | 
 | { | 
 | 	static u32 cur_idx = 1; | 
 | 	u64 asid = atomic64_read(&mm->context.id); | 
 | 	u64 generation = atomic64_read(&asid_generation); | 
 |  | 
 | 	if (asid != 0) { | 
 | 		u64 newasid = generation | (asid & ~ASID_MASK); | 
 |  | 
 | 		/* | 
 | 		 * If our current ASID was active during a rollover, we | 
 | 		 * can continue to use it and this was just a false alarm. | 
 | 		 */ | 
 | 		if (check_update_reserved_asid(asid, newasid)) | 
 | 			return newasid; | 
 |  | 
 | 		/* | 
 | 		 * We had a valid ASID in a previous life, so try to re-use | 
 | 		 * it if possible. | 
 | 		 */ | 
 | 		if (!__test_and_set_bit(asid2idx(asid), asid_map)) | 
 | 			return newasid; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Allocate a free ASID. If we can't find one, take a note of the | 
 | 	 * currently active ASIDs and mark the TLBs as requiring flushes.  We | 
 | 	 * always count from ASID #2 (index 1), as we use ASID #0 when setting | 
 | 	 * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd | 
 | 	 * pairs. | 
 | 	 */ | 
 | 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx); | 
 | 	if (asid != NUM_USER_ASIDS) | 
 | 		goto set_asid; | 
 |  | 
 | 	/* We're out of ASIDs, so increment the global generation count */ | 
 | 	generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION, | 
 | 						 &asid_generation); | 
 | 	flush_context(cpu); | 
 |  | 
 | 	/* We have more ASIDs than CPUs, so this will always succeed */ | 
 | 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1); | 
 |  | 
 | set_asid: | 
 | 	__set_bit(asid, asid_map); | 
 | 	cur_idx = asid; | 
 | 	return idx2asid(asid) | generation; | 
 | } | 
 |  | 
 | void check_and_switch_context(struct mm_struct *mm, unsigned int cpu) | 
 | { | 
 | 	unsigned long flags; | 
 | 	u64 asid, old_active_asid; | 
 |  | 
 | 	asid = atomic64_read(&mm->context.id); | 
 |  | 
 | 	/* | 
 | 	 * The memory ordering here is subtle. | 
 | 	 * If our active_asids is non-zero and the ASID matches the current | 
 | 	 * generation, then we update the active_asids entry with a relaxed | 
 | 	 * cmpxchg. Racing with a concurrent rollover means that either: | 
 | 	 * | 
 | 	 * - We get a zero back from the cmpxchg and end up waiting on the | 
 | 	 *   lock. Taking the lock synchronises with the rollover and so | 
 | 	 *   we are forced to see the updated generation. | 
 | 	 * | 
 | 	 * - We get a valid ASID back from the cmpxchg, which means the | 
 | 	 *   relaxed xchg in flush_context will treat us as reserved | 
 | 	 *   because atomic RmWs are totally ordered for a given location. | 
 | 	 */ | 
 | 	old_active_asid = atomic64_read(&per_cpu(active_asids, cpu)); | 
 | 	if (old_active_asid && | 
 | 	    !((asid ^ atomic64_read(&asid_generation)) >> asid_bits) && | 
 | 	    atomic64_cmpxchg_relaxed(&per_cpu(active_asids, cpu), | 
 | 				     old_active_asid, asid)) | 
 | 		goto switch_mm_fastpath; | 
 |  | 
 | 	raw_spin_lock_irqsave(&cpu_asid_lock, flags); | 
 | 	/* Check that our ASID belongs to the current generation. */ | 
 | 	asid = atomic64_read(&mm->context.id); | 
 | 	if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) { | 
 | 		asid = new_context(mm, cpu); | 
 | 		atomic64_set(&mm->context.id, asid); | 
 | 	} | 
 |  | 
 | 	if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) | 
 | 		local_flush_tlb_all(); | 
 |  | 
 | 	atomic64_set(&per_cpu(active_asids, cpu), asid); | 
 | 	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags); | 
 |  | 
 | switch_mm_fastpath: | 
 |  | 
 | 	arm64_apply_bp_hardening(); | 
 |  | 
 | 	/* | 
 | 	 * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when | 
 | 	 * emulating PAN. | 
 | 	 */ | 
 | 	if (!system_uses_ttbr0_pan()) | 
 | 		cpu_switch_mm(mm->pgd, mm); | 
 | } | 
 |  | 
 | /* Errata workaround post TTBRx_EL1 update. */ | 
 | asmlinkage void post_ttbr_update_workaround(void) | 
 | { | 
 | 	asm(ALTERNATIVE("nop; nop; nop", | 
 | 			"ic iallu; dsb nsh; isb", | 
 | 			ARM64_WORKAROUND_CAVIUM_27456, | 
 | 			CONFIG_CAVIUM_ERRATUM_27456)); | 
 | } | 
 |  | 
 | static int asids_init(void) | 
 | { | 
 | 	asid_bits = get_cpu_asid_bits(); | 
 | 	/* | 
 | 	 * Expect allocation after rollover to fail if we don't have at least | 
 | 	 * one more ASID than CPUs. ASID #0 is reserved for init_mm. | 
 | 	 */ | 
 | 	WARN_ON(NUM_USER_ASIDS - 1 <= num_possible_cpus()); | 
 | 	atomic64_set(&asid_generation, ASID_FIRST_VERSION); | 
 | 	asid_map = kcalloc(BITS_TO_LONGS(NUM_USER_ASIDS), sizeof(*asid_map), | 
 | 			   GFP_KERNEL); | 
 | 	if (!asid_map) | 
 | 		panic("Failed to allocate bitmap for %lu ASIDs\n", | 
 | 		      NUM_USER_ASIDS); | 
 |  | 
 | 	pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS); | 
 | 	return 0; | 
 | } | 
 | early_initcall(asids_init); |