| /* | 
 |  * Copyright (C) 2015 Anton Ivanov (aivanov@{brocade.com,kot-begemot.co.uk}) | 
 |  * Copyright (C) 2015 Thomas Meyer (thomas@m3y3r.de) | 
 |  * Copyright (C) 2004 PathScale, Inc | 
 |  * Copyright (C) 2004 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) | 
 |  * Licensed under the GPL | 
 |  */ | 
 |  | 
 | #include <stdlib.h> | 
 | #include <stdarg.h> | 
 | #include <errno.h> | 
 | #include <signal.h> | 
 | #include <strings.h> | 
 | #include <as-layout.h> | 
 | #include <kern_util.h> | 
 | #include <os.h> | 
 | #include <sysdep/mcontext.h> | 
 | #include <um_malloc.h> | 
 | #include <sys/ucontext.h> | 
 |  | 
 | void (*sig_info[NSIG])(int, struct siginfo *, struct uml_pt_regs *) = { | 
 | 	[SIGTRAP]	= relay_signal, | 
 | 	[SIGFPE]	= relay_signal, | 
 | 	[SIGILL]	= relay_signal, | 
 | 	[SIGWINCH]	= winch, | 
 | 	[SIGBUS]	= bus_handler, | 
 | 	[SIGSEGV]	= segv_handler, | 
 | 	[SIGIO]		= sigio_handler, | 
 | 	[SIGALRM]	= timer_handler | 
 | }; | 
 |  | 
 | static void sig_handler_common(int sig, struct siginfo *si, mcontext_t *mc) | 
 | { | 
 | 	struct uml_pt_regs *r; | 
 | 	int save_errno = errno; | 
 |  | 
 | 	r = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC); | 
 | 	if (!r) | 
 | 		panic("out of memory"); | 
 |  | 
 | 	r->is_user = 0; | 
 | 	if (sig == SIGSEGV) { | 
 | 		/* For segfaults, we want the data from the sigcontext. */ | 
 | 		get_regs_from_mc(r, mc); | 
 | 		GET_FAULTINFO_FROM_MC(r->faultinfo, mc); | 
 | 	} | 
 |  | 
 | 	/* enable signals if sig isn't IRQ signal */ | 
 | 	if ((sig != SIGIO) && (sig != SIGWINCH) && (sig != SIGALRM)) | 
 | 		unblock_signals(); | 
 |  | 
 | 	(*sig_info[sig])(sig, si, r); | 
 |  | 
 | 	errno = save_errno; | 
 |  | 
 | 	free(r); | 
 | } | 
 |  | 
 | /* | 
 |  * These are the asynchronous signals.  SIGPROF is excluded because we want to | 
 |  * be able to profile all of UML, not just the non-critical sections.  If | 
 |  * profiling is not thread-safe, then that is not my problem.  We can disable | 
 |  * profiling when SMP is enabled in that case. | 
 |  */ | 
 | #define SIGIO_BIT 0 | 
 | #define SIGIO_MASK (1 << SIGIO_BIT) | 
 |  | 
 | #define SIGALRM_BIT 1 | 
 | #define SIGALRM_MASK (1 << SIGALRM_BIT) | 
 |  | 
 | static int signals_enabled; | 
 | static unsigned int signals_pending; | 
 | static unsigned int signals_active = 0; | 
 |  | 
 | void sig_handler(int sig, struct siginfo *si, mcontext_t *mc) | 
 | { | 
 | 	int enabled; | 
 |  | 
 | 	enabled = signals_enabled; | 
 | 	if (!enabled && (sig == SIGIO)) { | 
 | 		signals_pending |= SIGIO_MASK; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	block_signals(); | 
 |  | 
 | 	sig_handler_common(sig, si, mc); | 
 |  | 
 | 	set_signals(enabled); | 
 | } | 
 |  | 
 | static void timer_real_alarm_handler(mcontext_t *mc) | 
 | { | 
 | 	struct uml_pt_regs *regs; | 
 |  | 
 | 	regs = uml_kmalloc(sizeof(struct uml_pt_regs), UM_GFP_ATOMIC); | 
 | 	if (!regs) | 
 | 		panic("out of memory"); | 
 |  | 
 | 	if (mc != NULL) | 
 | 		get_regs_from_mc(regs, mc); | 
 | 	timer_handler(SIGALRM, NULL, regs); | 
 |  | 
 | 	free(regs); | 
 | } | 
 |  | 
 | void timer_alarm_handler(int sig, struct siginfo *unused_si, mcontext_t *mc) | 
 | { | 
 | 	int enabled; | 
 |  | 
 | 	enabled = signals_enabled; | 
 | 	if (!signals_enabled) { | 
 | 		signals_pending |= SIGALRM_MASK; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	block_signals(); | 
 |  | 
 | 	signals_active |= SIGALRM_MASK; | 
 |  | 
 | 	timer_real_alarm_handler(mc); | 
 |  | 
 | 	signals_active &= ~SIGALRM_MASK; | 
 |  | 
 | 	set_signals(enabled); | 
 | } | 
 |  | 
 | void deliver_alarm(void) { | 
 |     timer_alarm_handler(SIGALRM, NULL, NULL); | 
 | } | 
 |  | 
 | void timer_set_signal_handler(void) | 
 | { | 
 | 	set_handler(SIGALRM); | 
 | } | 
 |  | 
 | void set_sigstack(void *sig_stack, int size) | 
 | { | 
 | 	stack_t stack = { | 
 | 		.ss_flags = 0, | 
 | 		.ss_sp = sig_stack, | 
 | 		.ss_size = size - sizeof(void *) | 
 | 	}; | 
 |  | 
 | 	if (sigaltstack(&stack, NULL) != 0) | 
 | 		panic("enabling signal stack failed, errno = %d\n", errno); | 
 | } | 
 |  | 
 | static void (*handlers[_NSIG])(int sig, struct siginfo *si, mcontext_t *mc) = { | 
 | 	[SIGSEGV] = sig_handler, | 
 | 	[SIGBUS] = sig_handler, | 
 | 	[SIGILL] = sig_handler, | 
 | 	[SIGFPE] = sig_handler, | 
 | 	[SIGTRAP] = sig_handler, | 
 |  | 
 | 	[SIGIO] = sig_handler, | 
 | 	[SIGWINCH] = sig_handler, | 
 | 	[SIGALRM] = timer_alarm_handler | 
 | }; | 
 |  | 
 | static void hard_handler(int sig, siginfo_t *si, void *p) | 
 | { | 
 | 	ucontext_t *uc = p; | 
 | 	mcontext_t *mc = &uc->uc_mcontext; | 
 | 	unsigned long pending = 1UL << sig; | 
 |  | 
 | 	do { | 
 | 		int nested, bail; | 
 |  | 
 | 		/* | 
 | 		 * pending comes back with one bit set for each | 
 | 		 * interrupt that arrived while setting up the stack, | 
 | 		 * plus a bit for this interrupt, plus the zero bit is | 
 | 		 * set if this is a nested interrupt. | 
 | 		 * If bail is true, then we interrupted another | 
 | 		 * handler setting up the stack.  In this case, we | 
 | 		 * have to return, and the upper handler will deal | 
 | 		 * with this interrupt. | 
 | 		 */ | 
 | 		bail = to_irq_stack(&pending); | 
 | 		if (bail) | 
 | 			return; | 
 |  | 
 | 		nested = pending & 1; | 
 | 		pending &= ~1; | 
 |  | 
 | 		while ((sig = ffs(pending)) != 0){ | 
 | 			sig--; | 
 | 			pending &= ~(1 << sig); | 
 | 			(*handlers[sig])(sig, (struct siginfo *)si, mc); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Again, pending comes back with a mask of signals | 
 | 		 * that arrived while tearing down the stack.  If this | 
 | 		 * is non-zero, we just go back, set up the stack | 
 | 		 * again, and handle the new interrupts. | 
 | 		 */ | 
 | 		if (!nested) | 
 | 			pending = from_irq_stack(nested); | 
 | 	} while (pending); | 
 | } | 
 |  | 
 | void set_handler(int sig) | 
 | { | 
 | 	struct sigaction action; | 
 | 	int flags = SA_SIGINFO | SA_ONSTACK; | 
 | 	sigset_t sig_mask; | 
 |  | 
 | 	action.sa_sigaction = hard_handler; | 
 |  | 
 | 	/* block irq ones */ | 
 | 	sigemptyset(&action.sa_mask); | 
 | 	sigaddset(&action.sa_mask, SIGIO); | 
 | 	sigaddset(&action.sa_mask, SIGWINCH); | 
 | 	sigaddset(&action.sa_mask, SIGALRM); | 
 |  | 
 | 	if (sig == SIGSEGV) | 
 | 		flags |= SA_NODEFER; | 
 |  | 
 | 	if (sigismember(&action.sa_mask, sig)) | 
 | 		flags |= SA_RESTART; /* if it's an irq signal */ | 
 |  | 
 | 	action.sa_flags = flags; | 
 | 	action.sa_restorer = NULL; | 
 | 	if (sigaction(sig, &action, NULL) < 0) | 
 | 		panic("sigaction failed - errno = %d\n", errno); | 
 |  | 
 | 	sigemptyset(&sig_mask); | 
 | 	sigaddset(&sig_mask, sig); | 
 | 	if (sigprocmask(SIG_UNBLOCK, &sig_mask, NULL) < 0) | 
 | 		panic("sigprocmask failed - errno = %d\n", errno); | 
 | } | 
 |  | 
 | int change_sig(int signal, int on) | 
 | { | 
 | 	sigset_t sigset; | 
 |  | 
 | 	sigemptyset(&sigset); | 
 | 	sigaddset(&sigset, signal); | 
 | 	if (sigprocmask(on ? SIG_UNBLOCK : SIG_BLOCK, &sigset, NULL) < 0) | 
 | 		return -errno; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void block_signals(void) | 
 | { | 
 | 	signals_enabled = 0; | 
 | 	/* | 
 | 	 * This must return with signals disabled, so this barrier | 
 | 	 * ensures that writes are flushed out before the return. | 
 | 	 * This might matter if gcc figures out how to inline this and | 
 | 	 * decides to shuffle this code into the caller. | 
 | 	 */ | 
 | 	barrier(); | 
 | } | 
 |  | 
 | void unblock_signals(void) | 
 | { | 
 | 	int save_pending; | 
 |  | 
 | 	if (signals_enabled == 1) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We loop because the IRQ handler returns with interrupts off.  So, | 
 | 	 * interrupts may have arrived and we need to re-enable them and | 
 | 	 * recheck signals_pending. | 
 | 	 */ | 
 | 	while (1) { | 
 | 		/* | 
 | 		 * Save and reset save_pending after enabling signals.  This | 
 | 		 * way, signals_pending won't be changed while we're reading it. | 
 | 		 */ | 
 | 		signals_enabled = 1; | 
 |  | 
 | 		/* | 
 | 		 * Setting signals_enabled and reading signals_pending must | 
 | 		 * happen in this order. | 
 | 		 */ | 
 | 		barrier(); | 
 |  | 
 | 		save_pending = signals_pending; | 
 | 		if (save_pending == 0) | 
 | 			return; | 
 |  | 
 | 		signals_pending = 0; | 
 |  | 
 | 		/* | 
 | 		 * We have pending interrupts, so disable signals, as the | 
 | 		 * handlers expect them off when they are called.  They will | 
 | 		 * be enabled again above. | 
 | 		 */ | 
 |  | 
 | 		signals_enabled = 0; | 
 |  | 
 | 		/* | 
 | 		 * Deal with SIGIO first because the alarm handler might | 
 | 		 * schedule, leaving the pending SIGIO stranded until we come | 
 | 		 * back here. | 
 | 		 * | 
 | 		 * SIGIO's handler doesn't use siginfo or mcontext, | 
 | 		 * so they can be NULL. | 
 | 		 */ | 
 | 		if (save_pending & SIGIO_MASK) | 
 | 			sig_handler_common(SIGIO, NULL, NULL); | 
 |  | 
 | 		/* Do not reenter the handler */ | 
 |  | 
 | 		if ((save_pending & SIGALRM_MASK) && (!(signals_active & SIGALRM_MASK))) | 
 | 			timer_real_alarm_handler(NULL); | 
 |  | 
 | 		/* Rerun the loop only if there is still pending SIGIO and not in TIMER handler */ | 
 |  | 
 | 		if (!(signals_pending & SIGIO_MASK) && (signals_active & SIGALRM_MASK)) | 
 | 			return; | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | int get_signals(void) | 
 | { | 
 | 	return signals_enabled; | 
 | } | 
 |  | 
 | int set_signals(int enable) | 
 | { | 
 | 	int ret; | 
 | 	if (signals_enabled == enable) | 
 | 		return enable; | 
 |  | 
 | 	ret = signals_enabled; | 
 | 	if (enable) | 
 | 		unblock_signals(); | 
 | 	else block_signals(); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int os_is_signal_stack(void) | 
 | { | 
 | 	stack_t ss; | 
 | 	sigaltstack(NULL, &ss); | 
 |  | 
 | 	return ss.ss_flags & SS_ONSTACK; | 
 | } |