|  | /* | 
|  | * TLB Management (flush/create/diagnostics) for ARC700 | 
|  | * | 
|  | * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * vineetg: Aug 2011 | 
|  | *  -Reintroduce duplicate PD fixup - some customer chips still have the issue | 
|  | * | 
|  | * vineetg: May 2011 | 
|  | *  -No need to flush_cache_page( ) for each call to update_mmu_cache() | 
|  | *   some of the LMBench tests improved amazingly | 
|  | *      = page-fault thrice as fast (75 usec to 28 usec) | 
|  | *      = mmap twice as fast (9.6 msec to 4.6 msec), | 
|  | *      = fork (5.3 msec to 3.7 msec) | 
|  | * | 
|  | * vineetg: April 2011 : | 
|  | *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore, | 
|  | *      helps avoid a shift when preparing PD0 from PTE | 
|  | * | 
|  | * vineetg: April 2011 : Preparing for MMU V3 | 
|  | *  -MMU v2/v3 BCRs decoded differently | 
|  | *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512 | 
|  | *  -tlb_entry_erase( ) can be void | 
|  | *  -local_flush_tlb_range( ): | 
|  | *      = need not "ceil" @end | 
|  | *      = walks MMU only if range spans < 32 entries, as opposed to 256 | 
|  | * | 
|  | * Vineetg: Sept 10th 2008 | 
|  | *  -Changes related to MMU v2 (Rel 4.8) | 
|  | * | 
|  | * Vineetg: Aug 29th 2008 | 
|  | *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to | 
|  | *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd, | 
|  | *    it fails. Thus need to load it with ANY valid value before invoking | 
|  | *    TLBIVUTLB cmd | 
|  | * | 
|  | * Vineetg: Aug 21th 2008: | 
|  | *  -Reduced the duration of IRQ lockouts in TLB Flush routines | 
|  | *  -Multiple copies of TLB erase code seperated into a "single" function | 
|  | *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID | 
|  | *       in interrupt-safe region. | 
|  | * | 
|  | * Vineetg: April 23rd Bug #93131 | 
|  | *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to | 
|  | *              flush is more than the size of TLB itself. | 
|  | * | 
|  | * Rahul Trivedi : Codito Technologies 2004 | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/mm_types.h> | 
|  |  | 
|  | #include <asm/arcregs.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/mmu.h> | 
|  |  | 
|  | /*			Need for ARC MMU v2 | 
|  | * | 
|  | * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc. | 
|  | * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages | 
|  | * map into same set, there would be contention for the 2 ways causing severe | 
|  | * Thrashing. | 
|  | * | 
|  | * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has | 
|  | * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways. | 
|  | * Given this, the thrasing problem should never happen because once the 3 | 
|  | * J-TLB entries are created (even though 3rd will knock out one of the prev | 
|  | * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy | 
|  | * | 
|  | * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs. | 
|  | * This is a simple design for keeping them in sync. So what do we do? | 
|  | * The solution which James came up was pretty neat. It utilised the assoc | 
|  | * of uTLBs by not invalidating always but only when absolutely necessary. | 
|  | * | 
|  | * - Existing TLB commands work as before | 
|  | * - New command (TLBWriteNI) for TLB write without clearing uTLBs | 
|  | * - New command (TLBIVUTLB) to invalidate uTLBs. | 
|  | * | 
|  | * The uTLBs need only be invalidated when pages are being removed from the | 
|  | * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB | 
|  | * as a result of a miss, the removed entry is still allowed to exist in the | 
|  | * uTLBs as it is still valid and present in the OS page table. This allows the | 
|  | * full associativity of the uTLBs to hide the limited associativity of the main | 
|  | * TLB. | 
|  | * | 
|  | * During a miss handler, the new "TLBWriteNI" command is used to load | 
|  | * entries without clearing the uTLBs. | 
|  | * | 
|  | * When the OS page table is updated, TLB entries that may be associated with a | 
|  | * removed page are removed (flushed) from the TLB using TLBWrite. In this | 
|  | * circumstance, the uTLBs must also be cleared. This is done by using the | 
|  | * existing TLBWrite command. An explicit IVUTLB is also required for those | 
|  | * corner cases when TLBWrite was not executed at all because the corresp | 
|  | * J-TLB entry got evicted/replaced. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* A copy of the ASID from the PID reg is kept in asid_cache */ | 
|  | DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE; | 
|  |  | 
|  | static int __read_mostly pae_exists; | 
|  |  | 
|  | /* | 
|  | * Utility Routine to erase a J-TLB entry | 
|  | * Caller needs to setup Index Reg (manually or via getIndex) | 
|  | */ | 
|  | static inline void __tlb_entry_erase(void) | 
|  | { | 
|  | write_aux_reg(ARC_REG_TLBPD1, 0); | 
|  |  | 
|  | if (is_pae40_enabled()) | 
|  | write_aux_reg(ARC_REG_TLBPD1HI, 0); | 
|  |  | 
|  | write_aux_reg(ARC_REG_TLBPD0, 0); | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); | 
|  | } | 
|  |  | 
|  | #if (CONFIG_ARC_MMU_VER < 4) | 
|  |  | 
|  | static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid) | 
|  | { | 
|  | unsigned int idx; | 
|  |  | 
|  | write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid); | 
|  |  | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe); | 
|  | idx = read_aux_reg(ARC_REG_TLBINDEX); | 
|  |  | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | static void tlb_entry_erase(unsigned int vaddr_n_asid) | 
|  | { | 
|  | unsigned int idx; | 
|  |  | 
|  | /* Locate the TLB entry for this vaddr + ASID */ | 
|  | idx = tlb_entry_lkup(vaddr_n_asid); | 
|  |  | 
|  | /* No error means entry found, zero it out */ | 
|  | if (likely(!(idx & TLB_LKUP_ERR))) { | 
|  | __tlb_entry_erase(); | 
|  | } else { | 
|  | /* Duplicate entry error */ | 
|  | WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n", | 
|  | vaddr_n_asid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /**************************************************************************** | 
|  | * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs) | 
|  | * | 
|  | * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB | 
|  | * | 
|  | * utlb_invalidate ( ) | 
|  | *  -For v2 MMU calls Flush uTLB Cmd | 
|  | *  -For v1 MMU does nothing (except for Metal Fix v1 MMU) | 
|  | *      This is because in v1 TLBWrite itself invalidate uTLBs | 
|  | ***************************************************************************/ | 
|  |  | 
|  | static void utlb_invalidate(void) | 
|  | { | 
|  | #if (CONFIG_ARC_MMU_VER >= 2) | 
|  |  | 
|  | #if (CONFIG_ARC_MMU_VER == 2) | 
|  | /* MMU v2 introduced the uTLB Flush command. | 
|  | * There was however an obscure hardware bug, where uTLB flush would | 
|  | * fail when a prior probe for J-TLB (both totally unrelated) would | 
|  | * return lkup err - because the entry didn't exist in MMU. | 
|  | * The Workround was to set Index reg with some valid value, prior to | 
|  | * flush. This was fixed in MMU v3 hence not needed any more | 
|  | */ | 
|  | unsigned int idx; | 
|  |  | 
|  | /* make sure INDEX Reg is valid */ | 
|  | idx = read_aux_reg(ARC_REG_TLBINDEX); | 
|  |  | 
|  | /* If not write some dummy val */ | 
|  | if (unlikely(idx & TLB_LKUP_ERR)) | 
|  | write_aux_reg(ARC_REG_TLBINDEX, 0xa); | 
|  | #endif | 
|  |  | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB); | 
|  | #endif | 
|  |  | 
|  | } | 
|  |  | 
|  | static void tlb_entry_insert(unsigned int pd0, pte_t pd1) | 
|  | { | 
|  | unsigned int idx; | 
|  |  | 
|  | /* | 
|  | * First verify if entry for this vaddr+ASID already exists | 
|  | * This also sets up PD0 (vaddr, ASID..) for final commit | 
|  | */ | 
|  | idx = tlb_entry_lkup(pd0); | 
|  |  | 
|  | /* | 
|  | * If Not already present get a free slot from MMU. | 
|  | * Otherwise, Probe would have located the entry and set INDEX Reg | 
|  | * with existing location. This will cause Write CMD to over-write | 
|  | * existing entry with new PD0 and PD1 | 
|  | */ | 
|  | if (likely(idx & TLB_LKUP_ERR)) | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex); | 
|  |  | 
|  | /* setup the other half of TLB entry (pfn, rwx..) */ | 
|  | write_aux_reg(ARC_REG_TLBPD1, pd1); | 
|  |  | 
|  | /* | 
|  | * Commit the Entry to MMU | 
|  | * It doesn't sound safe to use the TLBWriteNI cmd here | 
|  | * which doesn't flush uTLBs. I'd rather be safe than sorry. | 
|  | */ | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_ARC_MMU_VER >= 4) */ | 
|  |  | 
|  | static void utlb_invalidate(void) | 
|  | { | 
|  | /* No need since uTLB is always in sync with JTLB */ | 
|  | } | 
|  |  | 
|  | static void tlb_entry_erase(unsigned int vaddr_n_asid) | 
|  | { | 
|  | write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT); | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry); | 
|  | } | 
|  |  | 
|  | static void tlb_entry_insert(unsigned int pd0, pte_t pd1) | 
|  | { | 
|  | write_aux_reg(ARC_REG_TLBPD0, pd0); | 
|  | write_aux_reg(ARC_REG_TLBPD1, pd1); | 
|  |  | 
|  | if (is_pae40_enabled()) | 
|  | write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32); | 
|  |  | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Un-conditionally (without lookup) erase the entire MMU contents | 
|  | */ | 
|  |  | 
|  | noinline void local_flush_tlb_all(void) | 
|  | { | 
|  | struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; | 
|  | unsigned long flags; | 
|  | unsigned int entry; | 
|  | int num_tlb = mmu->sets * mmu->ways; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* Load PD0 and PD1 with template for a Blank Entry */ | 
|  | write_aux_reg(ARC_REG_TLBPD1, 0); | 
|  |  | 
|  | if (is_pae40_enabled()) | 
|  | write_aux_reg(ARC_REG_TLBPD1HI, 0); | 
|  |  | 
|  | write_aux_reg(ARC_REG_TLBPD0, 0); | 
|  |  | 
|  | for (entry = 0; entry < num_tlb; entry++) { | 
|  | /* write this entry to the TLB */ | 
|  | write_aux_reg(ARC_REG_TLBINDEX, entry); | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) { | 
|  | const int stlb_idx = 0x800; | 
|  |  | 
|  | /* Blank sTLB entry */ | 
|  | write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ); | 
|  |  | 
|  | for (entry = stlb_idx; entry < stlb_idx + 16; entry++) { | 
|  | write_aux_reg(ARC_REG_TLBINDEX, entry); | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite); | 
|  | } | 
|  | } | 
|  |  | 
|  | utlb_invalidate(); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush the entrie MM for userland. The fastest way is to move to Next ASID | 
|  | */ | 
|  | noinline void local_flush_tlb_mm(struct mm_struct *mm) | 
|  | { | 
|  | /* | 
|  | * Small optimisation courtesy IA64 | 
|  | * flush_mm called during fork,exit,munmap etc, multiple times as well. | 
|  | * Only for fork( ) do we need to move parent to a new MMU ctxt, | 
|  | * all other cases are NOPs, hence this check. | 
|  | */ | 
|  | if (atomic_read(&mm->mm_users) == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * - Move to a new ASID, but only if the mm is still wired in | 
|  | *   (Android Binder ended up calling this for vma->mm != tsk->mm, | 
|  | *    causing h/w - s/w ASID to get out of sync) | 
|  | * - Also get_new_mmu_context() new implementation allocates a new | 
|  | *   ASID only if it is not allocated already - so unallocate first | 
|  | */ | 
|  | destroy_context(mm); | 
|  | if (current->mm == mm) | 
|  | get_new_mmu_context(mm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush a Range of TLB entries for userland. | 
|  | * @start is inclusive, while @end is exclusive | 
|  | * Difference between this and Kernel Range Flush is | 
|  | *  -Here the fastest way (if range is too large) is to move to next ASID | 
|  | *      without doing any explicit Shootdown | 
|  | *  -In case of kernel Flush, entry has to be shot down explictly | 
|  | */ | 
|  | void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | const unsigned int cpu = smp_processor_id(); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* If range @start to @end is more than 32 TLB entries deep, | 
|  | * its better to move to a new ASID rather than searching for | 
|  | * individual entries and then shooting them down | 
|  | * | 
|  | * The calc above is rough, doesn't account for unaligned parts, | 
|  | * since this is heuristics based anyways | 
|  | */ | 
|  | if (unlikely((end - start) >= PAGE_SIZE * 32)) { | 
|  | local_flush_tlb_mm(vma->vm_mm); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @start moved to page start: this alone suffices for checking | 
|  | * loop end condition below, w/o need for aligning @end to end | 
|  | * e.g. 2000 to 4001 will anyhow loop twice | 
|  | */ | 
|  | start &= PAGE_MASK; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { | 
|  | while (start < end) { | 
|  | tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu)); | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | utlb_invalidate(); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective) | 
|  | *  @start, @end interpreted as kvaddr | 
|  | * Interestingly, shared TLB entries can also be flushed using just | 
|  | * @start,@end alone (interpreted as user vaddr), although technically SASID | 
|  | * is also needed. However our smart TLbProbe lookup takes care of that. | 
|  | */ | 
|  | void local_flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | /* exactly same as above, except for TLB entry not taking ASID */ | 
|  |  | 
|  | if (unlikely((end - start) >= PAGE_SIZE * 32)) { | 
|  | local_flush_tlb_all(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | start &= PAGE_MASK; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | while (start < end) { | 
|  | tlb_entry_erase(start); | 
|  | start += PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | utlb_invalidate(); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete TLB entry in MMU for a given page (??? address) | 
|  | * NOTE One TLB entry contains translation for single PAGE | 
|  | */ | 
|  |  | 
|  | void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page) | 
|  | { | 
|  | const unsigned int cpu = smp_processor_id(); | 
|  | unsigned long flags; | 
|  |  | 
|  | /* Note that it is critical that interrupts are DISABLED between | 
|  | * checking the ASID and using it flush the TLB entry | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) { | 
|  | tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu)); | 
|  | utlb_invalidate(); | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | struct tlb_args { | 
|  | struct vm_area_struct *ta_vma; | 
|  | unsigned long ta_start; | 
|  | unsigned long ta_end; | 
|  | }; | 
|  |  | 
|  | static inline void ipi_flush_tlb_page(void *arg) | 
|  | { | 
|  | struct tlb_args *ta = arg; | 
|  |  | 
|  | local_flush_tlb_page(ta->ta_vma, ta->ta_start); | 
|  | } | 
|  |  | 
|  | static inline void ipi_flush_tlb_range(void *arg) | 
|  | { | 
|  | struct tlb_args *ta = arg; | 
|  |  | 
|  | local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | static inline void ipi_flush_pmd_tlb_range(void *arg) | 
|  | { | 
|  | struct tlb_args *ta = arg; | 
|  |  | 
|  | local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void ipi_flush_tlb_kernel_range(void *arg) | 
|  | { | 
|  | struct tlb_args *ta = (struct tlb_args *)arg; | 
|  |  | 
|  | local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end); | 
|  | } | 
|  |  | 
|  | void flush_tlb_all(void) | 
|  | { | 
|  | on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1); | 
|  | } | 
|  |  | 
|  | void flush_tlb_mm(struct mm_struct *mm) | 
|  | { | 
|  | on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm, | 
|  | mm, 1); | 
|  | } | 
|  |  | 
|  | void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr) | 
|  | { | 
|  | struct tlb_args ta = { | 
|  | .ta_vma = vma, | 
|  | .ta_start = uaddr | 
|  | }; | 
|  |  | 
|  | on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1); | 
|  | } | 
|  |  | 
|  | void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | struct tlb_args ta = { | 
|  | .ta_vma = vma, | 
|  | .ta_start = start, | 
|  | .ta_end = end | 
|  | }; | 
|  |  | 
|  | on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  | void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | struct tlb_args ta = { | 
|  | .ta_vma = vma, | 
|  | .ta_start = start, | 
|  | .ta_end = end | 
|  | }; | 
|  |  | 
|  | on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void flush_tlb_kernel_range(unsigned long start, unsigned long end) | 
|  | { | 
|  | struct tlb_args ta = { | 
|  | .ta_start = start, | 
|  | .ta_end = end | 
|  | }; | 
|  |  | 
|  | on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Routine to create a TLB entry | 
|  | */ | 
|  | void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned int asid_or_sasid, rwx; | 
|  | unsigned long pd0; | 
|  | pte_t pd1; | 
|  |  | 
|  | /* | 
|  | * create_tlb() assumes that current->mm == vma->mm, since | 
|  | * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr) | 
|  | * -completes the lazy write to SASID reg (again valid for curr tsk) | 
|  | * | 
|  | * Removing the assumption involves | 
|  | * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg. | 
|  | * -Fix the TLB paranoid debug code to not trigger false negatives. | 
|  | * -More importantly it makes this handler inconsistent with fast-path | 
|  | *  TLB Refill handler which always deals with "current" | 
|  | * | 
|  | * Lets see the use cases when current->mm != vma->mm and we land here | 
|  | *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault | 
|  | *     Here VM wants to pre-install a TLB entry for user stack while | 
|  | *     current->mm still points to pre-execve mm (hence the condition). | 
|  | *     However the stack vaddr is soon relocated (randomization) and | 
|  | *     move_page_tables() tries to undo that TLB entry. | 
|  | *     Thus not creating TLB entry is not any worse. | 
|  | * | 
|  | *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a | 
|  | *     breakpoint in debugged task. Not creating a TLB now is not | 
|  | *     performance critical. | 
|  | * | 
|  | * Both the cases above are not good enough for code churn. | 
|  | */ | 
|  | if (current->active_mm != vma->vm_mm) | 
|  | return; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr); | 
|  |  | 
|  | vaddr &= PAGE_MASK; | 
|  |  | 
|  | /* update this PTE credentials */ | 
|  | pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED); | 
|  |  | 
|  | /* Create HW TLB(PD0,PD1) from PTE  */ | 
|  |  | 
|  | /* ASID for this task */ | 
|  | asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff; | 
|  |  | 
|  | pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0); | 
|  |  | 
|  | /* | 
|  | * ARC MMU provides fully orthogonal access bits for K/U mode, | 
|  | * however Linux only saves 1 set to save PTE real-estate | 
|  | * Here we convert 3 PTE bits into 6 MMU bits: | 
|  | * -Kernel only entries have Kr Kw Kx 0 0 0 | 
|  | * -User entries have mirrored K and U bits | 
|  | */ | 
|  | rwx = pte_val(*ptep) & PTE_BITS_RWX; | 
|  |  | 
|  | if (pte_val(*ptep) & _PAGE_GLOBAL) | 
|  | rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */ | 
|  | else | 
|  | rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */ | 
|  |  | 
|  | pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1); | 
|  |  | 
|  | tlb_entry_insert(pd0, pd1); | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called at the end of pagefault, for a userspace mapped page | 
|  | *  -pre-install the corresponding TLB entry into MMU | 
|  | *  -Finalize the delayed D-cache flush of kernel mapping of page due to | 
|  | *  	flush_dcache_page(), copy_user_page() | 
|  | * | 
|  | * Note that flush (when done) involves both WBACK - so physical page is | 
|  | * in sync as well as INV - so any non-congruent aliases don't remain | 
|  | */ | 
|  | void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned, | 
|  | pte_t *ptep) | 
|  | { | 
|  | unsigned long vaddr = vaddr_unaligned & PAGE_MASK; | 
|  | phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK; | 
|  | struct page *page = pfn_to_page(pte_pfn(*ptep)); | 
|  |  | 
|  | create_tlb(vma, vaddr, ptep); | 
|  |  | 
|  | if (page == ZERO_PAGE(0)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Exec page : Independent of aliasing/page-color considerations, | 
|  | *	       since icache doesn't snoop dcache on ARC, any dirty | 
|  | *	       K-mapping of a code page needs to be wback+inv so that | 
|  | *	       icache fetch by userspace sees code correctly. | 
|  | * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it | 
|  | *	       so userspace sees the right data. | 
|  | *  (Avoids the flush for Non-exec + congruent mapping case) | 
|  | */ | 
|  | if ((vma->vm_flags & VM_EXEC) || | 
|  | addr_not_cache_congruent(paddr, vaddr)) { | 
|  |  | 
|  | int dirty = !test_and_set_bit(PG_dc_clean, &page->flags); | 
|  | if (dirty) { | 
|  | /* wback + inv dcache lines (K-mapping) */ | 
|  | __flush_dcache_page(paddr, paddr); | 
|  |  | 
|  | /* invalidate any existing icache lines (U-mapping) */ | 
|  | if (vma->vm_flags & VM_EXEC) | 
|  | __inv_icache_page(paddr, vaddr); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
|  |  | 
|  | /* | 
|  | * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP | 
|  | * support. | 
|  | * | 
|  | * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a | 
|  | * new bit "SZ" in TLB page descriptor to distinguish between them. | 
|  | * Super Page size is configurable in hardware (4K to 16M), but fixed once | 
|  | * RTL builds. | 
|  | * | 
|  | * The exact THP size a Linx configuration will support is a function of: | 
|  | *  - MMU page size (typical 8K, RTL fixed) | 
|  | *  - software page walker address split between PGD:PTE:PFN (typical | 
|  | *    11:8:13, but can be changed with 1 line) | 
|  | * So for above default, THP size supported is 8K * (2^8) = 2M | 
|  | * | 
|  | * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime | 
|  | * reduces to 1 level (as PTE is folded into PGD and canonically referred | 
|  | * to as PMD). | 
|  | * Thus THP PMD accessors are implemented in terms of PTE (just like sparc) | 
|  | */ | 
|  |  | 
|  | void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, | 
|  | pmd_t *pmd) | 
|  | { | 
|  | pte_t pte = __pte(pmd_val(*pmd)); | 
|  | update_mmu_cache(vma, addr, &pte); | 
|  | } | 
|  |  | 
|  | void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, | 
|  | pgtable_t pgtable) | 
|  | { | 
|  | struct list_head *lh = (struct list_head *) pgtable; | 
|  |  | 
|  | assert_spin_locked(&mm->page_table_lock); | 
|  |  | 
|  | /* FIFO */ | 
|  | if (!pmd_huge_pte(mm, pmdp)) | 
|  | INIT_LIST_HEAD(lh); | 
|  | else | 
|  | list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp)); | 
|  | pmd_huge_pte(mm, pmdp) = pgtable; | 
|  | } | 
|  |  | 
|  | pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) | 
|  | { | 
|  | struct list_head *lh; | 
|  | pgtable_t pgtable; | 
|  |  | 
|  | assert_spin_locked(&mm->page_table_lock); | 
|  |  | 
|  | pgtable = pmd_huge_pte(mm, pmdp); | 
|  | lh = (struct list_head *) pgtable; | 
|  | if (list_empty(lh)) | 
|  | pmd_huge_pte(mm, pmdp) = NULL; | 
|  | else { | 
|  | pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next; | 
|  | list_del(lh); | 
|  | } | 
|  |  | 
|  | pte_val(pgtable[0]) = 0; | 
|  | pte_val(pgtable[1]) = 0; | 
|  |  | 
|  | return pgtable; | 
|  | } | 
|  |  | 
|  | void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | unsigned int cpu; | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) { | 
|  | unsigned int asid = hw_pid(vma->vm_mm, cpu); | 
|  |  | 
|  | /* No need to loop here: this will always be for 1 Huge Page */ | 
|  | tlb_entry_erase(start | _PAGE_HW_SZ | asid); | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* Read the Cache Build Confuration Registers, Decode them and save into | 
|  | * the cpuinfo structure for later use. | 
|  | * No Validation is done here, simply read/convert the BCRs | 
|  | */ | 
|  | void read_decode_mmu_bcr(void) | 
|  | { | 
|  | struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; | 
|  | unsigned int tmp; | 
|  | struct bcr_mmu_1_2 { | 
|  | #ifdef CONFIG_CPU_BIG_ENDIAN | 
|  | unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8; | 
|  | #else | 
|  | unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8; | 
|  | #endif | 
|  | } *mmu2; | 
|  |  | 
|  | struct bcr_mmu_3 { | 
|  | #ifdef CONFIG_CPU_BIG_ENDIAN | 
|  | unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4, | 
|  | u_itlb:4, u_dtlb:4; | 
|  | #else | 
|  | unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4, | 
|  | ways:4, ver:8; | 
|  | #endif | 
|  | } *mmu3; | 
|  |  | 
|  | struct bcr_mmu_4 { | 
|  | #ifdef CONFIG_CPU_BIG_ENDIAN | 
|  | unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1, | 
|  | n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3; | 
|  | #else | 
|  | /*           DTLB      ITLB      JES        JE         JA      */ | 
|  | unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2, | 
|  | pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8; | 
|  | #endif | 
|  | } *mmu4; | 
|  |  | 
|  | tmp = read_aux_reg(ARC_REG_MMU_BCR); | 
|  | mmu->ver = (tmp >> 24); | 
|  |  | 
|  | if (is_isa_arcompact()) { | 
|  | if (mmu->ver <= 2) { | 
|  | mmu2 = (struct bcr_mmu_1_2 *)&tmp; | 
|  | mmu->pg_sz_k = TO_KB(0x2000); | 
|  | mmu->sets = 1 << mmu2->sets; | 
|  | mmu->ways = 1 << mmu2->ways; | 
|  | mmu->u_dtlb = mmu2->u_dtlb; | 
|  | mmu->u_itlb = mmu2->u_itlb; | 
|  | } else { | 
|  | mmu3 = (struct bcr_mmu_3 *)&tmp; | 
|  | mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1); | 
|  | mmu->sets = 1 << mmu3->sets; | 
|  | mmu->ways = 1 << mmu3->ways; | 
|  | mmu->u_dtlb = mmu3->u_dtlb; | 
|  | mmu->u_itlb = mmu3->u_itlb; | 
|  | mmu->sasid = mmu3->sasid; | 
|  | } | 
|  | } else { | 
|  | mmu4 = (struct bcr_mmu_4 *)&tmp; | 
|  | mmu->pg_sz_k = 1 << (mmu4->sz0 - 1); | 
|  | mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11); | 
|  | mmu->sets = 64 << mmu4->n_entry; | 
|  | mmu->ways = mmu4->n_ways * 2; | 
|  | mmu->u_dtlb = mmu4->u_dtlb * 4; | 
|  | mmu->u_itlb = mmu4->u_itlb * 4; | 
|  | mmu->sasid = mmu4->sasid; | 
|  | pae_exists = mmu->pae = mmu4->pae; | 
|  | } | 
|  | } | 
|  |  | 
|  | char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len) | 
|  | { | 
|  | int n = 0; | 
|  | struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu; | 
|  | char super_pg[64] = ""; | 
|  |  | 
|  | if (p_mmu->s_pg_sz_m) | 
|  | scnprintf(super_pg, 64, "%dM Super Page %s", | 
|  | p_mmu->s_pg_sz_m, | 
|  | IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE)); | 
|  |  | 
|  | n += scnprintf(buf + n, len - n, | 
|  | "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n", | 
|  | p_mmu->ver, p_mmu->pg_sz_k, super_pg, | 
|  | p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways, | 
|  | p_mmu->u_dtlb, p_mmu->u_itlb, | 
|  | IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40)); | 
|  |  | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | int pae40_exist_but_not_enab(void) | 
|  | { | 
|  | return pae_exists && !is_pae40_enabled(); | 
|  | } | 
|  |  | 
|  | void arc_mmu_init(void) | 
|  | { | 
|  | struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; | 
|  | char str[256]; | 
|  | int compat = 0; | 
|  |  | 
|  | pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str))); | 
|  |  | 
|  | /* | 
|  | * Can't be done in processor.h due to header include depenedencies | 
|  | */ | 
|  | BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE)); | 
|  |  | 
|  | /* | 
|  | * stack top size sanity check, | 
|  | * Can't be done in processor.h due to header include depenedencies | 
|  | */ | 
|  | BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE)); | 
|  |  | 
|  | /* | 
|  | * Ensure that MMU features assumed by kernel exist in hardware. | 
|  | * For older ARC700 cpus, it has to be exact match, since the MMU | 
|  | * revisions were not backwards compatible (MMUv3 TLB layout changed | 
|  | * so even if kernel for v2 didn't use any new cmds of v3, it would | 
|  | * still not work. | 
|  | * For HS cpus, MMUv4 was baseline and v5 is backwards compatible | 
|  | * (will run older software). | 
|  | */ | 
|  | if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER) | 
|  | compat = 1; | 
|  | else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER) | 
|  | compat = 1; | 
|  |  | 
|  | if (!compat) { | 
|  | panic("MMU ver %d doesn't match kernel built for %d...\n", | 
|  | mmu->ver, CONFIG_ARC_MMU_VER); | 
|  | } | 
|  |  | 
|  | if (mmu->pg_sz_k != TO_KB(PAGE_SIZE)) | 
|  | panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE)); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && | 
|  | mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE)) | 
|  | panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n", | 
|  | (unsigned long)TO_MB(HPAGE_PMD_SIZE)); | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae) | 
|  | panic("Hardware doesn't support PAE40\n"); | 
|  |  | 
|  | /* Enable the MMU */ | 
|  | write_aux_reg(ARC_REG_PID, MMU_ENABLE); | 
|  |  | 
|  | /* In smp we use this reg for interrupt 1 scratch */ | 
|  | #ifndef CONFIG_SMP | 
|  | /* swapper_pg_dir is the pgd for the kernel, used by vmalloc */ | 
|  | write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir); | 
|  | #endif | 
|  |  | 
|  | if (pae40_exist_but_not_enab()) | 
|  | write_aux_reg(ARC_REG_TLBPD1HI, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4} | 
|  | * The mapping is Column-first. | 
|  | *		---------------------	----------- | 
|  | *		|way0|way1|way2|way3|	|way0|way1| | 
|  | *		---------------------	----------- | 
|  | * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 | | 
|  | * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 | | 
|  | *		~		    ~	~	  ~ | 
|  | * [set127]	| 508| 509| 510| 511|	| 254| 255| | 
|  | *		---------------------	----------- | 
|  | * For normal operations we don't(must not) care how above works since | 
|  | * MMU cmd getIndex(vaddr) abstracts that out. | 
|  | * However for walking WAYS of a SET, we need to know this | 
|  | */ | 
|  | #define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way)) | 
|  |  | 
|  | /* Handling of Duplicate PD (TLB entry) in MMU. | 
|  | * -Could be due to buggy customer tapeouts or obscure kernel bugs | 
|  | * -MMU complaints not at the time of duplicate PD installation, but at the | 
|  | *      time of lookup matching multiple ways. | 
|  | * -Ideally these should never happen - but if they do - workaround by deleting | 
|  | *      the duplicate one. | 
|  | * -Knob to be verbose abt it.(TODO: hook them up to debugfs) | 
|  | */ | 
|  | volatile int dup_pd_silent; /* Be slient abt it or complain (default) */ | 
|  |  | 
|  | void do_tlb_overlap_fault(unsigned long cause, unsigned long address, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu; | 
|  | unsigned long flags; | 
|  | int set, n_ways = mmu->ways; | 
|  |  | 
|  | n_ways = min(n_ways, 4); | 
|  | BUG_ON(mmu->ways > 4); | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* loop thru all sets of TLB */ | 
|  | for (set = 0; set < mmu->sets; set++) { | 
|  |  | 
|  | int is_valid, way; | 
|  | unsigned int pd0[4]; | 
|  |  | 
|  | /* read out all the ways of current set */ | 
|  | for (way = 0, is_valid = 0; way < n_ways; way++) { | 
|  | write_aux_reg(ARC_REG_TLBINDEX, | 
|  | SET_WAY_TO_IDX(mmu, set, way)); | 
|  | write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead); | 
|  | pd0[way] = read_aux_reg(ARC_REG_TLBPD0); | 
|  | is_valid |= pd0[way] & _PAGE_PRESENT; | 
|  | pd0[way] &= PAGE_MASK; | 
|  | } | 
|  |  | 
|  | /* If all the WAYS in SET are empty, skip to next SET */ | 
|  | if (!is_valid) | 
|  | continue; | 
|  |  | 
|  | /* Scan the set for duplicate ways: needs a nested loop */ | 
|  | for (way = 0; way < n_ways - 1; way++) { | 
|  |  | 
|  | int n; | 
|  |  | 
|  | if (!pd0[way]) | 
|  | continue; | 
|  |  | 
|  | for (n = way + 1; n < n_ways; n++) { | 
|  | if (pd0[way] != pd0[n]) | 
|  | continue; | 
|  |  | 
|  | if (!dup_pd_silent) | 
|  | pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n", | 
|  | pd0[way], set, way, n); | 
|  |  | 
|  | /* | 
|  | * clear entry @way and not @n. | 
|  | * This is critical to our optimised loop | 
|  | */ | 
|  | pd0[way] = 0; | 
|  | write_aux_reg(ARC_REG_TLBINDEX, | 
|  | SET_WAY_TO_IDX(mmu, set, way)); | 
|  | __tlb_entry_erase(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /*********************************************************************** | 
|  | * Diagnostic Routines | 
|  | *  -Called from Low Level TLB Hanlders if things don;t look good | 
|  | **********************************************************************/ | 
|  |  | 
|  | #ifdef CONFIG_ARC_DBG_TLB_PARANOIA | 
|  |  | 
|  | /* | 
|  | * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS | 
|  | * don't match | 
|  | */ | 
|  | void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path) | 
|  | { | 
|  | pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n", | 
|  | is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid); | 
|  |  | 
|  | __asm__ __volatile__("flag 1"); | 
|  | } | 
|  |  | 
|  | void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr) | 
|  | { | 
|  | unsigned int mmu_asid; | 
|  |  | 
|  | mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff; | 
|  |  | 
|  | /* | 
|  | * At the time of a TLB miss/installation | 
|  | *   - HW version needs to match SW version | 
|  | *   - SW needs to have a valid ASID | 
|  | */ | 
|  | if (addr < 0x70000000 && | 
|  | ((mm_asid == MM_CTXT_NO_ASID) || | 
|  | (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK)))) | 
|  | print_asid_mismatch(mm_asid, mmu_asid, 0); | 
|  | } | 
|  | #endif |