|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * Copyright (C) 2007 Oracle.  All rights reserved. | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/writeback.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/sort.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/ratelimit.h> | 
|  | #include <linux/percpu_counter.h> | 
|  | #include <linux/lockdep.h> | 
|  | #include <linux/crc32c.h> | 
|  | #include "tree-log.h" | 
|  | #include "disk-io.h" | 
|  | #include "print-tree.h" | 
|  | #include "volumes.h" | 
|  | #include "raid56.h" | 
|  | #include "locking.h" | 
|  | #include "free-space-cache.h" | 
|  | #include "free-space-tree.h" | 
|  | #include "math.h" | 
|  | #include "sysfs.h" | 
|  | #include "qgroup.h" | 
|  | #include "ref-verify.h" | 
|  |  | 
|  | #undef SCRAMBLE_DELAYED_REFS | 
|  |  | 
|  | /* | 
|  | * control flags for do_chunk_alloc's force field | 
|  | * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk | 
|  | * if we really need one. | 
|  | * | 
|  | * CHUNK_ALLOC_LIMITED means to only try and allocate one | 
|  | * if we have very few chunks already allocated.  This is | 
|  | * used as part of the clustering code to help make sure | 
|  | * we have a good pool of storage to cluster in, without | 
|  | * filling the FS with empty chunks | 
|  | * | 
|  | * CHUNK_ALLOC_FORCE means it must try to allocate one | 
|  | * | 
|  | */ | 
|  | enum { | 
|  | CHUNK_ALLOC_NO_FORCE = 0, | 
|  | CHUNK_ALLOC_LIMITED = 1, | 
|  | CHUNK_ALLOC_FORCE = 2, | 
|  | }; | 
|  |  | 
|  | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, u64 parent, | 
|  | u64 root_objectid, u64 owner_objectid, | 
|  | u64 owner_offset, int refs_to_drop, | 
|  | struct btrfs_delayed_extent_op *extra_op); | 
|  | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_extent_item *ei); | 
|  | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins, int ref_mod); | 
|  | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op); | 
|  | static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, | 
|  | int force); | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key); | 
|  | static void dump_space_info(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *info, u64 bytes, | 
|  | int dump_block_groups); | 
|  | static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes); | 
|  | static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | u64 num_bytes); | 
|  | static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | u64 num_bytes); | 
|  |  | 
|  | static noinline int | 
|  | block_group_cache_done(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | smp_mb(); | 
|  | return cache->cached == BTRFS_CACHE_FINISHED || | 
|  | cache->cached == BTRFS_CACHE_ERROR; | 
|  | } | 
|  |  | 
|  | static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits) | 
|  | { | 
|  | return (cache->flags & bits) == bits; | 
|  | } | 
|  |  | 
|  | void btrfs_get_block_group(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | atomic_inc(&cache->count); | 
|  | } | 
|  |  | 
|  | void btrfs_put_block_group(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | if (atomic_dec_and_test(&cache->count)) { | 
|  | WARN_ON(cache->pinned > 0); | 
|  | WARN_ON(cache->reserved > 0); | 
|  |  | 
|  | /* | 
|  | * If not empty, someone is still holding mutex of | 
|  | * full_stripe_lock, which can only be released by caller. | 
|  | * And it will definitely cause use-after-free when caller | 
|  | * tries to release full stripe lock. | 
|  | * | 
|  | * No better way to resolve, but only to warn. | 
|  | */ | 
|  | WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root)); | 
|  | kfree(cache->free_space_ctl); | 
|  | kfree(cache); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this adds the block group to the fs_info rb tree for the block group | 
|  | * cache | 
|  | */ | 
|  | static int btrfs_add_block_group_cache(struct btrfs_fs_info *info, | 
|  | struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct rb_node **p; | 
|  | struct rb_node *parent = NULL; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | p = &info->block_group_cache_tree.rb_node; | 
|  |  | 
|  | while (*p) { | 
|  | parent = *p; | 
|  | cache = rb_entry(parent, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | if (block_group->key.objectid < cache->key.objectid) { | 
|  | p = &(*p)->rb_left; | 
|  | } else if (block_group->key.objectid > cache->key.objectid) { | 
|  | p = &(*p)->rb_right; | 
|  | } else { | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  | return -EEXIST; | 
|  | } | 
|  | } | 
|  |  | 
|  | rb_link_node(&block_group->cache_node, parent, p); | 
|  | rb_insert_color(&block_group->cache_node, | 
|  | &info->block_group_cache_tree); | 
|  |  | 
|  | if (info->first_logical_byte > block_group->key.objectid) | 
|  | info->first_logical_byte = block_group->key.objectid; | 
|  |  | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will return the block group at or after bytenr if contains is 0, else | 
|  | * it will return the block group that contains the bytenr | 
|  | */ | 
|  | static struct btrfs_block_group_cache * | 
|  | block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr, | 
|  | int contains) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache, *ret = NULL; | 
|  | struct rb_node *n; | 
|  | u64 end, start; | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | n = info->block_group_cache_tree.rb_node; | 
|  |  | 
|  | while (n) { | 
|  | cache = rb_entry(n, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | end = cache->key.objectid + cache->key.offset - 1; | 
|  | start = cache->key.objectid; | 
|  |  | 
|  | if (bytenr < start) { | 
|  | if (!contains && (!ret || start < ret->key.objectid)) | 
|  | ret = cache; | 
|  | n = n->rb_left; | 
|  | } else if (bytenr > start) { | 
|  | if (contains && bytenr <= end) { | 
|  | ret = cache; | 
|  | break; | 
|  | } | 
|  | n = n->rb_right; | 
|  | } else { | 
|  | ret = cache; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ret) { | 
|  | btrfs_get_block_group(ret); | 
|  | if (bytenr == 0 && info->first_logical_byte > ret->key.objectid) | 
|  | info->first_logical_byte = ret->key.objectid; | 
|  | } | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int add_excluded_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 num_bytes) | 
|  | { | 
|  | u64 end = start + num_bytes - 1; | 
|  | set_extent_bits(&fs_info->freed_extents[0], | 
|  | start, end, EXTENT_UPTODATE); | 
|  | set_extent_bits(&fs_info->freed_extents[1], | 
|  | start, end, EXTENT_UPTODATE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_excluded_extents(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | u64 start, end; | 
|  |  | 
|  | start = cache->key.objectid; | 
|  | end = start + cache->key.offset - 1; | 
|  |  | 
|  | clear_extent_bits(&fs_info->freed_extents[0], | 
|  | start, end, EXTENT_UPTODATE); | 
|  | clear_extent_bits(&fs_info->freed_extents[1], | 
|  | start, end, EXTENT_UPTODATE); | 
|  | } | 
|  |  | 
|  | static int exclude_super_stripes(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | u64 bytenr; | 
|  | u64 *logical; | 
|  | int stripe_len; | 
|  | int i, nr, ret; | 
|  |  | 
|  | if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) { | 
|  | stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid; | 
|  | cache->bytes_super += stripe_len; | 
|  | ret = add_excluded_extent(fs_info, cache->key.objectid, | 
|  | stripe_len); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
|  | bytenr = btrfs_sb_offset(i); | 
|  | ret = btrfs_rmap_block(fs_info, cache->key.objectid, | 
|  | bytenr, &logical, &nr, &stripe_len); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | while (nr--) { | 
|  | u64 start, len; | 
|  |  | 
|  | if (logical[nr] > cache->key.objectid + | 
|  | cache->key.offset) | 
|  | continue; | 
|  |  | 
|  | if (logical[nr] + stripe_len <= cache->key.objectid) | 
|  | continue; | 
|  |  | 
|  | start = logical[nr]; | 
|  | if (start < cache->key.objectid) { | 
|  | start = cache->key.objectid; | 
|  | len = (logical[nr] + stripe_len) - start; | 
|  | } else { | 
|  | len = min_t(u64, stripe_len, | 
|  | cache->key.objectid + | 
|  | cache->key.offset - start); | 
|  | } | 
|  |  | 
|  | cache->bytes_super += len; | 
|  | ret = add_excluded_extent(fs_info, start, len); | 
|  | if (ret) { | 
|  | kfree(logical); | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(logical); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct btrfs_caching_control * | 
|  | get_caching_control(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_caching_control *ctl; | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | if (!cache->caching_ctl) { | 
|  | spin_unlock(&cache->lock); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | ctl = cache->caching_ctl; | 
|  | refcount_inc(&ctl->count); | 
|  | spin_unlock(&cache->lock); | 
|  | return ctl; | 
|  | } | 
|  |  | 
|  | static void put_caching_control(struct btrfs_caching_control *ctl) | 
|  | { | 
|  | if (refcount_dec_and_test(&ctl->count)) | 
|  | kfree(ctl); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | static void fragment_free_space(struct btrfs_block_group_cache *block_group) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | u64 start = block_group->key.objectid; | 
|  | u64 len = block_group->key.offset; | 
|  | u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ? | 
|  | fs_info->nodesize : fs_info->sectorsize; | 
|  | u64 step = chunk << 1; | 
|  |  | 
|  | while (len > chunk) { | 
|  | btrfs_remove_free_space(block_group, start, chunk); | 
|  | start += step; | 
|  | if (len < step) | 
|  | len = 0; | 
|  | else | 
|  | len -= step; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * this is only called by cache_block_group, since we could have freed extents | 
|  | * we need to check the pinned_extents for any extents that can't be used yet | 
|  | * since their free space will be released as soon as the transaction commits. | 
|  | */ | 
|  | u64 add_new_free_space(struct btrfs_block_group_cache *block_group, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | struct btrfs_fs_info *info = block_group->fs_info; | 
|  | u64 extent_start, extent_end, size, total_added = 0; | 
|  | int ret; | 
|  |  | 
|  | while (start < end) { | 
|  | ret = find_first_extent_bit(info->pinned_extents, start, | 
|  | &extent_start, &extent_end, | 
|  | EXTENT_DIRTY | EXTENT_UPTODATE, | 
|  | NULL); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (extent_start <= start) { | 
|  | start = extent_end + 1; | 
|  | } else if (extent_start > start && extent_start < end) { | 
|  | size = extent_start - start; | 
|  | total_added += size; | 
|  | ret = btrfs_add_free_space(block_group, start, | 
|  | size); | 
|  | BUG_ON(ret); /* -ENOMEM or logic error */ | 
|  | start = extent_end + 1; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (start < end) { | 
|  | size = end - start; | 
|  | total_added += size; | 
|  | ret = btrfs_add_free_space(block_group, start, size); | 
|  | BUG_ON(ret); /* -ENOMEM or logic error */ | 
|  | } | 
|  |  | 
|  | return total_added; | 
|  | } | 
|  |  | 
|  | static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group = caching_ctl->block_group; | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u64 total_found = 0; | 
|  | u64 last = 0; | 
|  | u32 nritems; | 
|  | int ret; | 
|  | bool wakeup = true; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | /* | 
|  | * If we're fragmenting we don't want to make anybody think we can | 
|  | * allocate from this block group until we've had a chance to fragment | 
|  | * the free space. | 
|  | */ | 
|  | if (btrfs_should_fragment_free_space(block_group)) | 
|  | wakeup = false; | 
|  | #endif | 
|  | /* | 
|  | * We don't want to deadlock with somebody trying to allocate a new | 
|  | * extent for the extent root while also trying to search the extent | 
|  | * root to add free space.  So we skip locking and search the commit | 
|  | * root, since its read-only | 
|  | */ | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | key.objectid = last; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | next: | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  |  | 
|  | while (1) { | 
|  | if (btrfs_fs_closing(fs_info) > 1) { | 
|  | last = (u64)-1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (path->slots[0] < nritems) { | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | } else { | 
|  | ret = find_next_key(path, 0, &key); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | if (need_resched() || | 
|  | rwsem_is_contended(&fs_info->commit_root_sem)) { | 
|  | if (wakeup) | 
|  | caching_ctl->progress = last; | 
|  | btrfs_release_path(path); | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  | cond_resched(); | 
|  | mutex_lock(&caching_ctl->mutex); | 
|  | down_read(&fs_info->commit_root_sem); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | ret = btrfs_next_leaf(extent_root, path); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret) | 
|  | break; | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (key.objectid < last) { | 
|  | key.objectid = last; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | if (wakeup) | 
|  | caching_ctl->progress = last; | 
|  | btrfs_release_path(path); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (key.objectid < block_group->key.objectid) { | 
|  | path->slots[0]++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (key.objectid >= block_group->key.objectid + | 
|  | block_group->key.offset) | 
|  | break; | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY || | 
|  | key.type == BTRFS_METADATA_ITEM_KEY) { | 
|  | total_found += add_new_free_space(block_group, last, | 
|  | key.objectid); | 
|  | if (key.type == BTRFS_METADATA_ITEM_KEY) | 
|  | last = key.objectid + | 
|  | fs_info->nodesize; | 
|  | else | 
|  | last = key.objectid + key.offset; | 
|  |  | 
|  | if (total_found > CACHING_CTL_WAKE_UP) { | 
|  | total_found = 0; | 
|  | if (wakeup) | 
|  | wake_up(&caching_ctl->wait); | 
|  | } | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | ret = 0; | 
|  |  | 
|  | total_found += add_new_free_space(block_group, last, | 
|  | block_group->key.objectid + | 
|  | block_group->key.offset); | 
|  | caching_ctl->progress = (u64)-1; | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline void caching_thread(struct btrfs_work *work) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | int ret; | 
|  |  | 
|  | caching_ctl = container_of(work, struct btrfs_caching_control, work); | 
|  | block_group = caching_ctl->block_group; | 
|  | fs_info = block_group->fs_info; | 
|  |  | 
|  | mutex_lock(&caching_ctl->mutex); | 
|  | down_read(&fs_info->commit_root_sem); | 
|  |  | 
|  | if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) | 
|  | ret = load_free_space_tree(caching_ctl); | 
|  | else | 
|  | ret = load_extent_tree_free(caching_ctl); | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->caching_ctl = NULL; | 
|  | block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED; | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | if (btrfs_should_fragment_free_space(block_group)) { | 
|  | u64 bytes_used; | 
|  |  | 
|  | spin_lock(&block_group->space_info->lock); | 
|  | spin_lock(&block_group->lock); | 
|  | bytes_used = block_group->key.offset - | 
|  | btrfs_block_group_used(&block_group->item); | 
|  | block_group->space_info->bytes_used += bytes_used >> 1; | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&block_group->space_info->lock); | 
|  | fragment_free_space(block_group); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | caching_ctl->progress = (u64)-1; | 
|  |  | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | free_excluded_extents(block_group); | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  |  | 
|  | wake_up(&caching_ctl->wait); | 
|  |  | 
|  | put_caching_control(caching_ctl); | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  |  | 
|  | static int cache_block_group(struct btrfs_block_group_cache *cache, | 
|  | int load_cache_only) | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | int ret = 0; | 
|  |  | 
|  | caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS); | 
|  | if (!caching_ctl) | 
|  | return -ENOMEM; | 
|  |  | 
|  | INIT_LIST_HEAD(&caching_ctl->list); | 
|  | mutex_init(&caching_ctl->mutex); | 
|  | init_waitqueue_head(&caching_ctl->wait); | 
|  | caching_ctl->block_group = cache; | 
|  | caching_ctl->progress = cache->key.objectid; | 
|  | refcount_set(&caching_ctl->count, 1); | 
|  | btrfs_init_work(&caching_ctl->work, btrfs_cache_helper, | 
|  | caching_thread, NULL, NULL); | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | /* | 
|  | * This should be a rare occasion, but this could happen I think in the | 
|  | * case where one thread starts to load the space cache info, and then | 
|  | * some other thread starts a transaction commit which tries to do an | 
|  | * allocation while the other thread is still loading the space cache | 
|  | * info.  The previous loop should have kept us from choosing this block | 
|  | * group, but if we've moved to the state where we will wait on caching | 
|  | * block groups we need to first check if we're doing a fast load here, | 
|  | * so we can wait for it to finish, otherwise we could end up allocating | 
|  | * from a block group who's cache gets evicted for one reason or | 
|  | * another. | 
|  | */ | 
|  | while (cache->cached == BTRFS_CACHE_FAST) { | 
|  | struct btrfs_caching_control *ctl; | 
|  |  | 
|  | ctl = cache->caching_ctl; | 
|  | refcount_inc(&ctl->count); | 
|  | prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | finish_wait(&ctl->wait, &wait); | 
|  | put_caching_control(ctl); | 
|  | spin_lock(&cache->lock); | 
|  | } | 
|  |  | 
|  | if (cache->cached != BTRFS_CACHE_NO) { | 
|  | spin_unlock(&cache->lock); | 
|  | kfree(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  | WARN_ON(cache->caching_ctl); | 
|  | cache->caching_ctl = caching_ctl; | 
|  | cache->cached = BTRFS_CACHE_FAST; | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, SPACE_CACHE)) { | 
|  | mutex_lock(&caching_ctl->mutex); | 
|  | ret = load_free_space_cache(fs_info, cache); | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | if (ret == 1) { | 
|  | cache->caching_ctl = NULL; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | caching_ctl->progress = (u64)-1; | 
|  | } else { | 
|  | if (load_cache_only) { | 
|  | cache->caching_ctl = NULL; | 
|  | cache->cached = BTRFS_CACHE_NO; | 
|  | } else { | 
|  | cache->cached = BTRFS_CACHE_STARTED; | 
|  | cache->has_caching_ctl = 1; | 
|  | } | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | if (ret == 1 && | 
|  | btrfs_should_fragment_free_space(cache)) { | 
|  | u64 bytes_used; | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | bytes_used = cache->key.offset - | 
|  | btrfs_block_group_used(&cache->item); | 
|  | cache->space_info->bytes_used += bytes_used >> 1; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  | fragment_free_space(cache); | 
|  | } | 
|  | #endif | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  |  | 
|  | wake_up(&caching_ctl->wait); | 
|  | if (ret == 1) { | 
|  | put_caching_control(caching_ctl); | 
|  | free_excluded_extents(cache); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * We're either using the free space tree or no caching at all. | 
|  | * Set cached to the appropriate value and wakeup any waiters. | 
|  | */ | 
|  | spin_lock(&cache->lock); | 
|  | if (load_cache_only) { | 
|  | cache->caching_ctl = NULL; | 
|  | cache->cached = BTRFS_CACHE_NO; | 
|  | } else { | 
|  | cache->cached = BTRFS_CACHE_STARTED; | 
|  | cache->has_caching_ctl = 1; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | wake_up(&caching_ctl->wait); | 
|  | } | 
|  |  | 
|  | if (load_cache_only) { | 
|  | put_caching_control(caching_ctl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | down_write(&fs_info->commit_root_sem); | 
|  | refcount_inc(&caching_ctl->count); | 
|  | list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups); | 
|  | up_write(&fs_info->commit_root_sem); | 
|  |  | 
|  | btrfs_get_block_group(cache); | 
|  |  | 
|  | btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the block group that starts at or after bytenr | 
|  | */ | 
|  | static struct btrfs_block_group_cache * | 
|  | btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr) | 
|  | { | 
|  | return block_group_cache_tree_search(info, bytenr, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * return the block group that contains the given bytenr | 
|  | */ | 
|  | struct btrfs_block_group_cache *btrfs_lookup_block_group( | 
|  | struct btrfs_fs_info *info, | 
|  | u64 bytenr) | 
|  | { | 
|  | return block_group_cache_tree_search(info, bytenr, 1); | 
|  | } | 
|  |  | 
|  | static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info, | 
|  | u64 flags) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | flags &= BTRFS_BLOCK_GROUP_TYPE_MASK; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) { | 
|  | if (found->flags & flags) { | 
|  | rcu_read_unlock(); | 
|  | return found; | 
|  | } | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes, | 
|  | bool metadata, u64 root_objectid) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  | u64 flags; | 
|  |  | 
|  | if (metadata) { | 
|  | if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID) | 
|  | flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
|  | else | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA; | 
|  | } else { | 
|  | flags = BTRFS_BLOCK_GROUP_DATA; | 
|  | } | 
|  |  | 
|  | space_info = __find_space_info(fs_info, flags); | 
|  | ASSERT(space_info); | 
|  | percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes, | 
|  | BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * after adding space to the filesystem, we need to clear the full flags | 
|  | * on all the space infos. | 
|  | */ | 
|  | void btrfs_clear_space_info_full(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) | 
|  | found->full = 0; | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | /* simple helper to search for an existing data extent at a given offset */ | 
|  | int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = start; | 
|  | key.offset = len; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper function to lookup reference count and flags of a tree block. | 
|  | * | 
|  | * the head node for delayed ref is used to store the sum of all the | 
|  | * reference count modifications queued up in the rbtree. the head | 
|  | * node may also store the extent flags to set. This way you can check | 
|  | * to see what the reference count and extent flags would be if all of | 
|  | * the delayed refs are not processed. | 
|  | */ | 
|  | int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | u64 offset, int metadata, u64 *refs, u64 *flags) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | u64 num_refs; | 
|  | u64 extent_flags; | 
|  | int ret; | 
|  |  | 
|  | /* | 
|  | * If we don't have skinny metadata, don't bother doing anything | 
|  | * different | 
|  | */ | 
|  | if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) { | 
|  | offset = fs_info->nodesize; | 
|  | metadata = 0; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (!trans) { | 
|  | path->skip_locking = 1; | 
|  | path->search_commit_root = 1; | 
|  | } | 
|  |  | 
|  | search_again: | 
|  | key.objectid = bytenr; | 
|  | key.offset = offset; | 
|  | if (metadata) | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | else | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out_free; | 
|  |  | 
|  | if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) { | 
|  | if (path->slots[0]) { | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == bytenr && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == fs_info->nodesize) | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | if (item_size >= sizeof(*ei)) { | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | num_refs = btrfs_extent_refs(leaf, ei); | 
|  | extent_flags = btrfs_extent_flags(leaf, ei); | 
|  | } else { | 
|  | ret = -EINVAL; | 
|  | btrfs_print_v0_err(fs_info); | 
|  | if (trans) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | else | 
|  | btrfs_handle_fs_error(fs_info, ret, NULL); | 
|  |  | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | BUG_ON(num_refs == 0); | 
|  | } else { | 
|  | num_refs = 0; | 
|  | extent_flags = 0; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (!trans) | 
|  | goto out; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
|  | if (head) { | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | refcount_inc(&head->refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Mutex was contended, block until it's released and try | 
|  | * again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | goto search_again; | 
|  | } | 
|  | spin_lock(&head->lock); | 
|  | if (head->extent_op && head->extent_op->update_flags) | 
|  | extent_flags |= head->extent_op->flags_to_set; | 
|  | else | 
|  | BUG_ON(num_refs == 0); | 
|  |  | 
|  | num_refs += head->ref_mod; | 
|  | spin_unlock(&head->lock); | 
|  | mutex_unlock(&head->mutex); | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | out: | 
|  | WARN_ON(num_refs == 0); | 
|  | if (refs) | 
|  | *refs = num_refs; | 
|  | if (flags) | 
|  | *flags = extent_flags; | 
|  | out_free: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Back reference rules.  Back refs have three main goals: | 
|  | * | 
|  | * 1) differentiate between all holders of references to an extent so that | 
|  | *    when a reference is dropped we can make sure it was a valid reference | 
|  | *    before freeing the extent. | 
|  | * | 
|  | * 2) Provide enough information to quickly find the holders of an extent | 
|  | *    if we notice a given block is corrupted or bad. | 
|  | * | 
|  | * 3) Make it easy to migrate blocks for FS shrinking or storage pool | 
|  | *    maintenance.  This is actually the same as #2, but with a slightly | 
|  | *    different use case. | 
|  | * | 
|  | * There are two kinds of back refs. The implicit back refs is optimized | 
|  | * for pointers in non-shared tree blocks. For a given pointer in a block, | 
|  | * back refs of this kind provide information about the block's owner tree | 
|  | * and the pointer's key. These information allow us to find the block by | 
|  | * b-tree searching. The full back refs is for pointers in tree blocks not | 
|  | * referenced by their owner trees. The location of tree block is recorded | 
|  | * in the back refs. Actually the full back refs is generic, and can be | 
|  | * used in all cases the implicit back refs is used. The major shortcoming | 
|  | * of the full back refs is its overhead. Every time a tree block gets | 
|  | * COWed, we have to update back refs entry for all pointers in it. | 
|  | * | 
|  | * For a newly allocated tree block, we use implicit back refs for | 
|  | * pointers in it. This means most tree related operations only involve | 
|  | * implicit back refs. For a tree block created in old transaction, the | 
|  | * only way to drop a reference to it is COW it. So we can detect the | 
|  | * event that tree block loses its owner tree's reference and do the | 
|  | * back refs conversion. | 
|  | * | 
|  | * When a tree block is COWed through a tree, there are four cases: | 
|  | * | 
|  | * The reference count of the block is one and the tree is the block's | 
|  | * owner tree. Nothing to do in this case. | 
|  | * | 
|  | * The reference count of the block is one and the tree is not the | 
|  | * block's owner tree. In this case, full back refs is used for pointers | 
|  | * in the block. Remove these full back refs, add implicit back refs for | 
|  | * every pointers in the new block. | 
|  | * | 
|  | * The reference count of the block is greater than one and the tree is | 
|  | * the block's owner tree. In this case, implicit back refs is used for | 
|  | * pointers in the block. Add full back refs for every pointers in the | 
|  | * block, increase lower level extents' reference counts. The original | 
|  | * implicit back refs are entailed to the new block. | 
|  | * | 
|  | * The reference count of the block is greater than one and the tree is | 
|  | * not the block's owner tree. Add implicit back refs for every pointer in | 
|  | * the new block, increase lower level extents' reference count. | 
|  | * | 
|  | * Back Reference Key composing: | 
|  | * | 
|  | * The key objectid corresponds to the first byte in the extent, | 
|  | * The key type is used to differentiate between types of back refs. | 
|  | * There are different meanings of the key offset for different types | 
|  | * of back refs. | 
|  | * | 
|  | * File extents can be referenced by: | 
|  | * | 
|  | * - multiple snapshots, subvolumes, or different generations in one subvol | 
|  | * - different files inside a single subvolume | 
|  | * - different offsets inside a file (bookend extents in file.c) | 
|  | * | 
|  | * The extent ref structure for the implicit back refs has fields for: | 
|  | * | 
|  | * - Objectid of the subvolume root | 
|  | * - objectid of the file holding the reference | 
|  | * - original offset in the file | 
|  | * - how many bookend extents | 
|  | * | 
|  | * The key offset for the implicit back refs is hash of the first | 
|  | * three fields. | 
|  | * | 
|  | * The extent ref structure for the full back refs has field for: | 
|  | * | 
|  | * - number of pointers in the tree leaf | 
|  | * | 
|  | * The key offset for the implicit back refs is the first byte of | 
|  | * the tree leaf | 
|  | * | 
|  | * When a file extent is allocated, The implicit back refs is used. | 
|  | * the fields are filled in: | 
|  | * | 
|  | *     (root_key.objectid, inode objectid, offset in file, 1) | 
|  | * | 
|  | * When a file extent is removed file truncation, we find the | 
|  | * corresponding implicit back refs and check the following fields: | 
|  | * | 
|  | *     (btrfs_header_owner(leaf), inode objectid, offset in file) | 
|  | * | 
|  | * Btree extents can be referenced by: | 
|  | * | 
|  | * - Different subvolumes | 
|  | * | 
|  | * Both the implicit back refs and the full back refs for tree blocks | 
|  | * only consist of key. The key offset for the implicit back refs is | 
|  | * objectid of block's owner tree. The key offset for the full back refs | 
|  | * is the first byte of parent block. | 
|  | * | 
|  | * When implicit back refs is used, information about the lowest key and | 
|  | * level of the tree block are required. These information are stored in | 
|  | * tree block info structure. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required, | 
|  | * is_data == BTRFS_REF_TYPE_DATA, data type is requried, | 
|  | * is_data == BTRFS_REF_TYPE_ANY, either type is OK. | 
|  | */ | 
|  | int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | enum btrfs_inline_ref_type is_data) | 
|  | { | 
|  | int type = btrfs_extent_inline_ref_type(eb, iref); | 
|  | u64 offset = btrfs_extent_inline_ref_offset(eb, iref); | 
|  |  | 
|  | if (type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | type == BTRFS_SHARED_BLOCK_REF_KEY || | 
|  | type == BTRFS_SHARED_DATA_REF_KEY || | 
|  | type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | if (is_data == BTRFS_REF_TYPE_BLOCK) { | 
|  | if (type == BTRFS_TREE_BLOCK_REF_KEY) | 
|  | return type; | 
|  | if (type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | ASSERT(eb->fs_info); | 
|  | /* | 
|  | * Every shared one has parent tree | 
|  | * block, which must be aligned to | 
|  | * nodesize. | 
|  | */ | 
|  | if (offset && | 
|  | IS_ALIGNED(offset, eb->fs_info->nodesize)) | 
|  | return type; | 
|  | } | 
|  | } else if (is_data == BTRFS_REF_TYPE_DATA) { | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | return type; | 
|  | if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ASSERT(eb->fs_info); | 
|  | /* | 
|  | * Every shared one has parent tree | 
|  | * block, which must be aligned to | 
|  | * nodesize. | 
|  | */ | 
|  | if (offset && | 
|  | IS_ALIGNED(offset, eb->fs_info->nodesize)) | 
|  | return type; | 
|  | } | 
|  | } else { | 
|  | ASSERT(is_data == BTRFS_REF_TYPE_ANY); | 
|  | return type; | 
|  | } | 
|  | } | 
|  |  | 
|  | btrfs_print_leaf((struct extent_buffer *)eb); | 
|  | btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d", | 
|  | eb->start, type); | 
|  | WARN_ON(1); | 
|  |  | 
|  | return BTRFS_REF_TYPE_INVALID; | 
|  | } | 
|  |  | 
|  | static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | u32 high_crc = ~(u32)0; | 
|  | u32 low_crc = ~(u32)0; | 
|  | __le64 lenum; | 
|  |  | 
|  | lenum = cpu_to_le64(root_objectid); | 
|  | high_crc = crc32c(high_crc, &lenum, sizeof(lenum)); | 
|  | lenum = cpu_to_le64(owner); | 
|  | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
|  | lenum = cpu_to_le64(offset); | 
|  | low_crc = crc32c(low_crc, &lenum, sizeof(lenum)); | 
|  |  | 
|  | return ((u64)high_crc << 31) ^ (u64)low_crc; | 
|  | } | 
|  |  | 
|  | static u64 hash_extent_data_ref_item(struct extent_buffer *leaf, | 
|  | struct btrfs_extent_data_ref *ref) | 
|  | { | 
|  | return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref), | 
|  | btrfs_extent_data_ref_objectid(leaf, ref), | 
|  | btrfs_extent_data_ref_offset(leaf, ref)); | 
|  | } | 
|  |  | 
|  | static int match_extent_data_ref(struct extent_buffer *leaf, | 
|  | struct btrfs_extent_data_ref *ref, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid || | 
|  | btrfs_extent_data_ref_objectid(leaf, ref) != owner || | 
|  | btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid, | 
|  | u64 owner, u64 offset) | 
|  | { | 
|  | struct btrfs_root *root = trans->fs_info->extent_root; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | struct extent_buffer *leaf; | 
|  | u32 nritems; | 
|  | int ret; | 
|  | int recow; | 
|  | int err = -ENOENT; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | key.offset = hash_extent_data_ref(root_objectid, | 
|  | owner, offset); | 
|  | } | 
|  | again: | 
|  | recow = 0; | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (parent) { | 
|  | if (!ret) | 
|  | return 0; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | while (1) { | 
|  | if (path->slots[0] >= nritems) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret < 0) | 
|  | err = ret; | 
|  | if (ret) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | nritems = btrfs_header_nritems(leaf); | 
|  | recow = 1; | 
|  | } | 
|  |  | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | if (key.objectid != bytenr || | 
|  | key.type != BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto fail; | 
|  |  | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  |  | 
|  | if (match_extent_data_ref(leaf, ref, root_objectid, | 
|  | owner, offset)) { | 
|  | if (recow) { | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | fail: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, int refs_to_add) | 
|  | { | 
|  | struct btrfs_root *root = trans->fs_info->extent_root; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | u32 size; | 
|  | u32 num_refs; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | key.offset = parent; | 
|  | size = sizeof(struct btrfs_shared_data_ref); | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | key.offset = hash_extent_data_ref(root_objectid, | 
|  | owner, offset); | 
|  | size = sizeof(struct btrfs_extent_data_ref); | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, size); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | if (parent) { | 
|  | struct btrfs_shared_data_ref *ref; | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | if (ret == 0) { | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add); | 
|  | } else { | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref); | 
|  | num_refs += refs_to_add; | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, num_refs); | 
|  | } | 
|  | } else { | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | while (ret == -EEXIST) { | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | if (match_extent_data_ref(leaf, ref, root_objectid, | 
|  | owner, offset)) | 
|  | break; | 
|  | btrfs_release_path(path); | 
|  | key.offset++; | 
|  | ret = btrfs_insert_empty_item(trans, root, path, &key, | 
|  | size); | 
|  | if (ret && ret != -EEXIST) | 
|  | goto fail; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | } | 
|  | ref = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | if (ret == 0) { | 
|  | btrfs_set_extent_data_ref_root(leaf, ref, | 
|  | root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add); | 
|  | } else { | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref); | 
|  | num_refs += refs_to_add; | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, num_refs); | 
|  | } | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | ret = 0; | 
|  | fail: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | int refs_to_drop, int *last_ref) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct btrfs_extent_data_ref *ref1 = NULL; | 
|  | struct btrfs_shared_data_ref *ref2 = NULL; | 
|  | struct extent_buffer *leaf; | 
|  | u32 num_refs = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { | 
|  | btrfs_print_v0_err(trans->fs_info); | 
|  | btrfs_abort_transaction(trans, -EINVAL); | 
|  | return -EINVAL; | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | BUG_ON(num_refs < refs_to_drop); | 
|  | num_refs -= refs_to_drop; | 
|  |  | 
|  | if (num_refs == 0) { | 
|  | ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); | 
|  | *last_ref = 1; | 
|  | } else { | 
|  | if (key.type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | btrfs_set_extent_data_ref_count(leaf, ref1, num_refs); | 
|  | else if (key.type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | btrfs_set_shared_data_ref_count(leaf, ref2, num_refs); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline u32 extent_data_ref_count(struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_data_ref *ref1; | 
|  | struct btrfs_shared_data_ref *ref2; | 
|  | u32 num_refs = 0; | 
|  | int type; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); | 
|  | if (iref) { | 
|  | /* | 
|  | * If type is invalid, we should have bailed out earlier than | 
|  | * this call. | 
|  | */ | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); | 
|  | ASSERT(type != BTRFS_REF_TYPE_INVALID); | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else { | 
|  | ref2 = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | } | 
|  | } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ref1 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_data_ref); | 
|  | num_refs = btrfs_extent_data_ref_count(leaf, ref1); | 
|  | } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | ref2 = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_shared_data_ref); | 
|  | num_refs = btrfs_shared_data_ref_count(leaf, ref2); | 
|  | } else { | 
|  | WARN_ON(1); | 
|  | } | 
|  | return num_refs; | 
|  | } | 
|  |  | 
|  | static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid) | 
|  | { | 
|  | struct btrfs_root *root = trans->fs_info->extent_root; | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | key.offset = root_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, | 
|  | u64 root_objectid) | 
|  | { | 
|  | struct btrfs_key key; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | if (parent) { | 
|  | key.type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | key.offset = parent; | 
|  | } else { | 
|  | key.type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | key.offset = root_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root, | 
|  | path, &key, 0); | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int extent_ref_type(u64 parent, u64 owner) | 
|  | { | 
|  | int type; | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_BLOCK_REF_KEY; | 
|  | else | 
|  | type = BTRFS_TREE_BLOCK_REF_KEY; | 
|  | } else { | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | else | 
|  | type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  | } | 
|  | return type; | 
|  | } | 
|  |  | 
|  | static int find_next_key(struct btrfs_path *path, int level, | 
|  | struct btrfs_key *key) | 
|  |  | 
|  | { | 
|  | for (; level < BTRFS_MAX_LEVEL; level++) { | 
|  | if (!path->nodes[level]) | 
|  | break; | 
|  | if (path->slots[level] + 1 >= | 
|  | btrfs_header_nritems(path->nodes[level])) | 
|  | continue; | 
|  | if (level == 0) | 
|  | btrfs_item_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | else | 
|  | btrfs_node_key_to_cpu(path->nodes[level], key, | 
|  | path->slots[level] + 1); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * look for inline back ref. if back ref is found, *ref_ret is set | 
|  | * to the address of inline back ref, and 0 is returned. | 
|  | * | 
|  | * if back ref isn't found, *ref_ret is set to the address where it | 
|  | * should be inserted, and -ENOENT is returned. | 
|  | * | 
|  | * if insert is true and there are too many inline back refs, the path | 
|  | * points to the extent item, and -EAGAIN is returned. | 
|  | * | 
|  | * NOTE: inline back refs are ordered in the same way that back ref | 
|  | *	 items in the tree are ordered. | 
|  | */ | 
|  | static noinline_for_stack | 
|  | int lookup_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref **ref_ret, | 
|  | u64 bytenr, u64 num_bytes, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int insert) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | u64 flags; | 
|  | u64 item_size; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | int extra_size; | 
|  | int type; | 
|  | int want; | 
|  | int ret; | 
|  | int err = 0; | 
|  | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); | 
|  | int needed; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | want = extent_ref_type(parent, owner); | 
|  | if (insert) { | 
|  | extra_size = btrfs_extent_inline_ref_size(want); | 
|  | path->keep_locks = 1; | 
|  | } else | 
|  | extra_size = -1; | 
|  |  | 
|  | /* | 
|  | * Owner is our level, so we can just add one to get the level for the | 
|  | * block we are interested in. | 
|  | */ | 
|  | if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key.offset = owner; | 
|  | } | 
|  |  | 
|  | again: | 
|  | ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We may be a newly converted file system which still has the old fat | 
|  | * extent entries for metadata, so try and see if we have one of those. | 
|  | */ | 
|  | if (ret > 0 && skinny_metadata) { | 
|  | skinny_metadata = false; | 
|  | if (path->slots[0]) { | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == bytenr && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == num_bytes) | 
|  | ret = 0; | 
|  | } | 
|  | if (ret) { | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  | btrfs_release_path(path); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ret && !insert) { | 
|  | err = -ENOENT; | 
|  | goto out; | 
|  | } else if (WARN_ON(ret)) { | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | if (unlikely(item_size < sizeof(*ei))) { | 
|  | err = -EINVAL; | 
|  | btrfs_print_v0_err(fs_info); | 
|  | btrfs_abort_transaction(trans, err); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | flags = btrfs_extent_flags(leaf, ei); | 
|  |  | 
|  | ptr = (unsigned long)(ei + 1); | 
|  | end = (unsigned long)ei + item_size; | 
|  |  | 
|  | if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) { | 
|  | ptr += sizeof(struct btrfs_tree_block_info); | 
|  | BUG_ON(ptr > end); | 
|  | } | 
|  |  | 
|  | if (owner >= BTRFS_FIRST_FREE_OBJECTID) | 
|  | needed = BTRFS_REF_TYPE_DATA; | 
|  | else | 
|  | needed = BTRFS_REF_TYPE_BLOCK; | 
|  |  | 
|  | err = -ENOENT; | 
|  | while (1) { | 
|  | if (ptr >= end) { | 
|  | WARN_ON(ptr > end); | 
|  | break; | 
|  | } | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, needed); | 
|  | if (type == BTRFS_REF_TYPE_INVALID) { | 
|  | err = -EUCLEAN; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (want < type) | 
|  | break; | 
|  | if (want > type) { | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | if (match_extent_data_ref(leaf, dref, root_objectid, | 
|  | owner, offset)) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (hash_extent_data_ref_item(leaf, dref) < | 
|  | hash_extent_data_ref(root_objectid, owner, offset)) | 
|  | break; | 
|  | } else { | 
|  | u64 ref_offset; | 
|  | ref_offset = btrfs_extent_inline_ref_offset(leaf, iref); | 
|  | if (parent > 0) { | 
|  | if (parent == ref_offset) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (ref_offset < parent) | 
|  | break; | 
|  | } else { | 
|  | if (root_objectid == ref_offset) { | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  | if (ref_offset < root_objectid) | 
|  | break; | 
|  | } | 
|  | } | 
|  | ptr += btrfs_extent_inline_ref_size(type); | 
|  | } | 
|  | if (err == -ENOENT && insert) { | 
|  | if (item_size + extra_size >= | 
|  | BTRFS_MAX_EXTENT_ITEM_SIZE(root)) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | /* | 
|  | * To add new inline back ref, we have to make sure | 
|  | * there is no corresponding back ref item. | 
|  | * For simplicity, we just do not add new inline back | 
|  | * ref if there is any kind of item for this block | 
|  | */ | 
|  | if (find_next_key(path, 0, &key) == 0 && | 
|  | key.objectid == bytenr && | 
|  | key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
|  | err = -EAGAIN; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | *ref_ret = (struct btrfs_extent_inline_ref *)ptr; | 
|  | out: | 
|  | if (insert) { | 
|  | path->keep_locks = 0; | 
|  | btrfs_unlock_up_safe(path, 1); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to add new inline back ref | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void setup_inline_extent_backref(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | unsigned long item_offset; | 
|  | u64 refs; | 
|  | int size; | 
|  | int type; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | item_offset = (unsigned long)iref - (unsigned long)ei; | 
|  |  | 
|  | type = extent_ref_type(parent, owner); | 
|  | size = btrfs_extent_inline_ref_size(type); | 
|  |  | 
|  | btrfs_extend_item(fs_info, path, size); | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | refs += refs_to_add; | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | ptr = (unsigned long)ei + item_offset; | 
|  | end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | if (ptr < end - size) | 
|  | memmove_extent_buffer(leaf, ptr + size, ptr, | 
|  | end - size - ptr); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)ptr; | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | struct btrfs_extent_data_ref *dref; | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | btrfs_set_extent_data_ref_root(leaf, dref, root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, dref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, dref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add); | 
|  | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | struct btrfs_shared_data_ref *sref; | 
|  | sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | } else { | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  |  | 
|  | static int lookup_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref **ref_ret, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr, | 
|  | num_bytes, parent, root_objectid, | 
|  | owner, offset, 0); | 
|  | if (ret != -ENOENT) | 
|  | return ret; | 
|  |  | 
|  | btrfs_release_path(path); | 
|  | *ref_ret = NULL; | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = lookup_tree_block_ref(trans, path, bytenr, parent, | 
|  | root_objectid); | 
|  | } else { | 
|  | ret = lookup_extent_data_ref(trans, path, bytenr, parent, | 
|  | root_objectid, owner, offset); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to update/remove inline back ref | 
|  | */ | 
|  | static noinline_for_stack | 
|  | void update_inline_extent_backref(struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | int refs_to_mod, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int *last_ref) | 
|  | { | 
|  | struct extent_buffer *leaf = path->nodes[0]; | 
|  | struct btrfs_fs_info *fs_info = leaf->fs_info; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_data_ref *dref = NULL; | 
|  | struct btrfs_shared_data_ref *sref = NULL; | 
|  | unsigned long ptr; | 
|  | unsigned long end; | 
|  | u32 item_size; | 
|  | int size; | 
|  | int type; | 
|  | u64 refs; | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0); | 
|  | refs += refs_to_mod; | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | /* | 
|  | * If type is invalid, we should have bailed out after | 
|  | * lookup_inline_extent_backref(). | 
|  | */ | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY); | 
|  | ASSERT(type != BTRFS_REF_TYPE_INVALID); | 
|  |  | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | dref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | refs = btrfs_extent_data_ref_count(leaf, dref); | 
|  | } else if (type == BTRFS_SHARED_DATA_REF_KEY) { | 
|  | sref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | refs = btrfs_shared_data_ref_count(leaf, sref); | 
|  | } else { | 
|  | refs = 1; | 
|  | BUG_ON(refs_to_mod != -1); | 
|  | } | 
|  |  | 
|  | BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod); | 
|  | refs += refs_to_mod; | 
|  |  | 
|  | if (refs > 0) { | 
|  | if (type == BTRFS_EXTENT_DATA_REF_KEY) | 
|  | btrfs_set_extent_data_ref_count(leaf, dref, refs); | 
|  | else | 
|  | btrfs_set_shared_data_ref_count(leaf, sref, refs); | 
|  | } else { | 
|  | *last_ref = 1; | 
|  | size =  btrfs_extent_inline_ref_size(type); | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | ptr = (unsigned long)iref; | 
|  | end = (unsigned long)ei + item_size; | 
|  | if (ptr + size < end) | 
|  | memmove_extent_buffer(leaf, ptr, ptr + size, | 
|  | end - ptr - size); | 
|  | item_size -= size; | 
|  | btrfs_truncate_item(fs_info, path, item_size, 1); | 
|  | } | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  |  | 
|  | static noinline_for_stack | 
|  | int insert_inline_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, | 
|  | u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  |  | 
|  | ret = lookup_inline_extent_backref(trans, path, &iref, bytenr, | 
|  | num_bytes, parent, root_objectid, | 
|  | owner, offset, 1); | 
|  | if (ret == 0) { | 
|  | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID); | 
|  | update_inline_extent_backref(path, iref, refs_to_add, | 
|  | extent_op, NULL); | 
|  | } else if (ret == -ENOENT) { | 
|  | setup_inline_extent_backref(trans->fs_info, path, iref, parent, | 
|  | root_objectid, owner, offset, | 
|  | refs_to_add, extent_op); | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int insert_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | u64 bytenr, u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add) | 
|  | { | 
|  | int ret; | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | BUG_ON(refs_to_add != 1); | 
|  | ret = insert_tree_block_ref(trans, path, bytenr, parent, | 
|  | root_objectid); | 
|  | } else { | 
|  | ret = insert_extent_data_ref(trans, path, bytenr, parent, | 
|  | root_objectid, owner, offset, | 
|  | refs_to_add); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int remove_extent_backref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_extent_inline_ref *iref, | 
|  | int refs_to_drop, int is_data, int *last_ref) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(!is_data && refs_to_drop != 1); | 
|  | if (iref) { | 
|  | update_inline_extent_backref(path, iref, -refs_to_drop, NULL, | 
|  | last_ref); | 
|  | } else if (is_data) { | 
|  | ret = remove_extent_data_ref(trans, path, refs_to_drop, | 
|  | last_ref); | 
|  | } else { | 
|  | *last_ref = 1; | 
|  | ret = btrfs_del_item(trans, trans->fs_info->extent_root, path); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len)) | 
|  | static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len, | 
|  | u64 *discarded_bytes) | 
|  | { | 
|  | int j, ret = 0; | 
|  | u64 bytes_left, end; | 
|  | u64 aligned_start = ALIGN(start, 1 << 9); | 
|  |  | 
|  | if (WARN_ON(start != aligned_start)) { | 
|  | len -= aligned_start - start; | 
|  | len = round_down(len, 1 << 9); | 
|  | start = aligned_start; | 
|  | } | 
|  |  | 
|  | *discarded_bytes = 0; | 
|  |  | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | end = start + len; | 
|  | bytes_left = len; | 
|  |  | 
|  | /* Skip any superblocks on this device. */ | 
|  | for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) { | 
|  | u64 sb_start = btrfs_sb_offset(j); | 
|  | u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE; | 
|  | u64 size = sb_start - start; | 
|  |  | 
|  | if (!in_range(sb_start, start, bytes_left) && | 
|  | !in_range(sb_end, start, bytes_left) && | 
|  | !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Superblock spans beginning of range.  Adjust start and | 
|  | * try again. | 
|  | */ | 
|  | if (sb_start <= start) { | 
|  | start += sb_end - start; | 
|  | if (start > end) { | 
|  | bytes_left = 0; | 
|  | break; | 
|  | } | 
|  | bytes_left = end - start; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (size) { | 
|  | ret = blkdev_issue_discard(bdev, start >> 9, size >> 9, | 
|  | GFP_NOFS, 0); | 
|  | if (!ret) | 
|  | *discarded_bytes += size; | 
|  | else if (ret != -EOPNOTSUPP) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | start = sb_end; | 
|  | if (start > end) { | 
|  | bytes_left = 0; | 
|  | break; | 
|  | } | 
|  | bytes_left = end - start; | 
|  | } | 
|  |  | 
|  | if (bytes_left) { | 
|  | ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9, | 
|  | GFP_NOFS, 0); | 
|  | if (!ret) | 
|  | *discarded_bytes += bytes_left; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr, | 
|  | u64 num_bytes, u64 *actual_bytes) | 
|  | { | 
|  | int ret; | 
|  | u64 discarded_bytes = 0; | 
|  | struct btrfs_bio *bbio = NULL; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Avoid races with device replace and make sure our bbio has devices | 
|  | * associated to its stripes that don't go away while we are discarding. | 
|  | */ | 
|  | btrfs_bio_counter_inc_blocked(fs_info); | 
|  | /* Tell the block device(s) that the sectors can be discarded */ | 
|  | ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes, | 
|  | &bbio, 0); | 
|  | /* Error condition is -ENOMEM */ | 
|  | if (!ret) { | 
|  | struct btrfs_bio_stripe *stripe = bbio->stripes; | 
|  | int i; | 
|  |  | 
|  |  | 
|  | for (i = 0; i < bbio->num_stripes; i++, stripe++) { | 
|  | u64 bytes; | 
|  | struct request_queue *req_q; | 
|  |  | 
|  | if (!stripe->dev->bdev) { | 
|  | ASSERT(btrfs_test_opt(fs_info, DEGRADED)); | 
|  | continue; | 
|  | } | 
|  | req_q = bdev_get_queue(stripe->dev->bdev); | 
|  | if (!blk_queue_discard(req_q)) | 
|  | continue; | 
|  |  | 
|  | ret = btrfs_issue_discard(stripe->dev->bdev, | 
|  | stripe->physical, | 
|  | stripe->length, | 
|  | &bytes); | 
|  | if (!ret) | 
|  | discarded_bytes += bytes; | 
|  | else if (ret != -EOPNOTSUPP) | 
|  | break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */ | 
|  |  | 
|  | /* | 
|  | * Just in case we get back EOPNOTSUPP for some reason, | 
|  | * just ignore the return value so we don't screw up | 
|  | * people calling discard_extent. | 
|  | */ | 
|  | ret = 0; | 
|  | } | 
|  | btrfs_put_bbio(bbio); | 
|  | } | 
|  | btrfs_bio_counter_dec(fs_info); | 
|  |  | 
|  | if (actual_bytes) | 
|  | *actual_bytes = discarded_bytes; | 
|  |  | 
|  |  | 
|  | if (ret == -EOPNOTSUPP) | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Can return -ENOMEM */ | 
|  | int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, | 
|  | u64 root_objectid, u64 owner, u64 offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int old_ref_mod, new_ref_mod; | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID && | 
|  | root_objectid == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid, | 
|  | owner, offset, BTRFS_ADD_DELAYED_REF); | 
|  |  | 
|  | if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_add_delayed_tree_ref(trans, bytenr, | 
|  | num_bytes, parent, | 
|  | root_objectid, (int)owner, | 
|  | BTRFS_ADD_DELAYED_REF, NULL, | 
|  | &old_ref_mod, &new_ref_mod); | 
|  | } else { | 
|  | ret = btrfs_add_delayed_data_ref(trans, bytenr, | 
|  | num_bytes, parent, | 
|  | root_objectid, owner, offset, | 
|  | 0, BTRFS_ADD_DELAYED_REF, | 
|  | &old_ref_mod, &new_ref_mod); | 
|  | } | 
|  |  | 
|  | if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) { | 
|  | bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; | 
|  |  | 
|  | add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __btrfs_inc_extent_ref - insert backreference for a given extent | 
|  | * | 
|  | * @trans:	    Handle of transaction | 
|  | * | 
|  | * @node:	    The delayed ref node used to get the bytenr/length for | 
|  | *		    extent whose references are incremented. | 
|  | * | 
|  | * @parent:	    If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/ | 
|  | *		    BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical | 
|  | *		    bytenr of the parent block. Since new extents are always | 
|  | *		    created with indirect references, this will only be the case | 
|  | *		    when relocating a shared extent. In that case, root_objectid | 
|  | *		    will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must | 
|  | *		    be 0 | 
|  | * | 
|  | * @root_objectid:  The id of the root where this modification has originated, | 
|  | *		    this can be either one of the well-known metadata trees or | 
|  | *		    the subvolume id which references this extent. | 
|  | * | 
|  | * @owner:	    For data extents it is the inode number of the owning file. | 
|  | *		    For metadata extents this parameter holds the level in the | 
|  | *		    tree of the extent. | 
|  | * | 
|  | * @offset:	    For metadata extents the offset is ignored and is currently | 
|  | *		    always passed as 0. For data extents it is the fileoffset | 
|  | *		    this extent belongs to. | 
|  | * | 
|  | * @refs_to_add     Number of references to add | 
|  | * | 
|  | * @extent_op       Pointer to a structure, holding information necessary when | 
|  | *                  updating a tree block's flags | 
|  | * | 
|  | */ | 
|  | static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset, int refs_to_add, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *item; | 
|  | struct btrfs_key key; | 
|  | u64 bytenr = node->bytenr; | 
|  | u64 num_bytes = node->num_bytes; | 
|  | u64 refs; | 
|  | int ret; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | path->leave_spinning = 1; | 
|  | /* this will setup the path even if it fails to insert the back ref */ | 
|  | ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes, | 
|  | parent, root_objectid, owner, | 
|  | offset, refs_to_add, extent_op); | 
|  | if ((ret < 0 && ret != -EAGAIN) || !ret) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Ok we had -EAGAIN which means we didn't have space to insert and | 
|  | * inline extent ref, so just update the reference count and add a | 
|  | * normal backref. | 
|  | */ | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  | item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | refs = btrfs_extent_refs(leaf, item); | 
|  | btrfs_set_extent_refs(leaf, item, refs + refs_to_add); | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, item); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | path->leave_spinning = 1; | 
|  | /* now insert the actual backref */ | 
|  | ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid, | 
|  | owner, offset, refs_to_add); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int run_delayed_data_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_delayed_data_ref *ref; | 
|  | struct btrfs_key ins; | 
|  | u64 parent = 0; | 
|  | u64 ref_root = 0; | 
|  | u64 flags = 0; | 
|  |  | 
|  | ins.objectid = node->bytenr; | 
|  | ins.offset = node->num_bytes; | 
|  | ins.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_data_ref(node); | 
|  | trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action); | 
|  |  | 
|  | if (node->type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | parent = ref->parent; | 
|  | ref_root = ref->root; | 
|  |  | 
|  | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
|  | if (extent_op) | 
|  | flags |= extent_op->flags_to_set; | 
|  | ret = alloc_reserved_file_extent(trans, parent, ref_root, | 
|  | flags, ref->objectid, | 
|  | ref->offset, &ins, | 
|  | node->ref_mod); | 
|  | } else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
|  | ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, | 
|  | ref->objectid, ref->offset, | 
|  | node->ref_mod, extent_op); | 
|  | } else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
|  | ret = __btrfs_free_extent(trans, node, parent, | 
|  | ref_root, ref->objectid, | 
|  | ref->offset, node->ref_mod, | 
|  | extent_op); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op, | 
|  | struct extent_buffer *leaf, | 
|  | struct btrfs_extent_item *ei) | 
|  | { | 
|  | u64 flags = btrfs_extent_flags(leaf, ei); | 
|  | if (extent_op->update_flags) { | 
|  | flags |= extent_op->flags_to_set; | 
|  | btrfs_set_extent_flags(leaf, ei, flags); | 
|  | } | 
|  |  | 
|  | if (extent_op->update_key) { | 
|  | struct btrfs_tree_block_info *bi; | 
|  | BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)); | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | btrfs_set_tree_block_key(leaf, bi, &extent_op->key); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int run_delayed_extent_op(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *head, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct extent_buffer *leaf; | 
|  | u32 item_size; | 
|  | int ret; | 
|  | int err = 0; | 
|  | int metadata = !extent_op->is_data; | 
|  |  | 
|  | if (trans->aborted) | 
|  | return 0; | 
|  |  | 
|  | if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | metadata = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | key.objectid = head->bytenr; | 
|  |  | 
|  | if (metadata) { | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key.offset = extent_op->level; | 
|  | } else { | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = head->num_bytes; | 
|  | } | 
|  |  | 
|  | again: | 
|  | path->reada = READA_FORWARD; | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out; | 
|  | } | 
|  | if (ret > 0) { | 
|  | if (metadata) { | 
|  | if (path->slots[0] > 0) { | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == head->bytenr && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == head->num_bytes) | 
|  | ret = 0; | 
|  | } | 
|  | if (ret > 0) { | 
|  | btrfs_release_path(path); | 
|  | metadata = 0; | 
|  |  | 
|  | key.objectid = head->bytenr; | 
|  | key.offset = head->num_bytes; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | goto again; | 
|  | } | 
|  | } else { | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  |  | 
|  | if (unlikely(item_size < sizeof(*ei))) { | 
|  | err = -EINVAL; | 
|  | btrfs_print_v0_err(fs_info); | 
|  | btrfs_abort_transaction(trans, err); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int run_delayed_tree_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_delayed_tree_ref *ref; | 
|  | u64 parent = 0; | 
|  | u64 ref_root = 0; | 
|  |  | 
|  | ref = btrfs_delayed_node_to_tree_ref(node); | 
|  | trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action); | 
|  |  | 
|  | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | parent = ref->parent; | 
|  | ref_root = ref->root; | 
|  |  | 
|  | if (node->ref_mod != 1) { | 
|  | btrfs_err(trans->fs_info, | 
|  | "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu", | 
|  | node->bytenr, node->ref_mod, node->action, ref_root, | 
|  | parent); | 
|  | return -EIO; | 
|  | } | 
|  | if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) { | 
|  | BUG_ON(!extent_op || !extent_op->update_flags); | 
|  | ret = alloc_reserved_tree_block(trans, node, extent_op); | 
|  | } else if (node->action == BTRFS_ADD_DELAYED_REF) { | 
|  | ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root, | 
|  | ref->level, 0, 1, extent_op); | 
|  | } else if (node->action == BTRFS_DROP_DELAYED_REF) { | 
|  | ret = __btrfs_free_extent(trans, node, parent, ref_root, | 
|  | ref->level, 0, 1, extent_op); | 
|  | } else { | 
|  | BUG(); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* helper function to actually process a single delayed ref entry */ | 
|  | static int run_one_delayed_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op, | 
|  | int insert_reserved) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (trans->aborted) { | 
|  | if (insert_reserved) | 
|  | btrfs_pin_extent(trans->fs_info, node->bytenr, | 
|  | node->num_bytes, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (node->type == BTRFS_TREE_BLOCK_REF_KEY || | 
|  | node->type == BTRFS_SHARED_BLOCK_REF_KEY) | 
|  | ret = run_delayed_tree_ref(trans, node, extent_op, | 
|  | insert_reserved); | 
|  | else if (node->type == BTRFS_EXTENT_DATA_REF_KEY || | 
|  | node->type == BTRFS_SHARED_DATA_REF_KEY) | 
|  | ret = run_delayed_data_ref(trans, node, extent_op, | 
|  | insert_reserved); | 
|  | else | 
|  | BUG(); | 
|  | if (ret && insert_reserved) | 
|  | btrfs_pin_extent(trans->fs_info, node->bytenr, | 
|  | node->num_bytes, 1); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline struct btrfs_delayed_ref_node * | 
|  | select_delayed_ref(struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  |  | 
|  | if (RB_EMPTY_ROOT(&head->ref_tree)) | 
|  | return NULL; | 
|  |  | 
|  | /* | 
|  | * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first. | 
|  | * This is to prevent a ref count from going down to zero, which deletes | 
|  | * the extent item from the extent tree, when there still are references | 
|  | * to add, which would fail because they would not find the extent item. | 
|  | */ | 
|  | if (!list_empty(&head->ref_add_list)) | 
|  | return list_first_entry(&head->ref_add_list, | 
|  | struct btrfs_delayed_ref_node, add_list); | 
|  |  | 
|  | ref = rb_entry(rb_first(&head->ref_tree), | 
|  | struct btrfs_delayed_ref_node, ref_node); | 
|  | ASSERT(list_empty(&ref->add_list)); | 
|  | return ref; | 
|  | } | 
|  |  | 
|  | static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs, | 
|  | struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head->processing = 0; | 
|  | delayed_refs->num_heads_ready++; | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | btrfs_delayed_ref_unlock(head); | 
|  | } | 
|  |  | 
|  | static int cleanup_extent_op(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  | struct btrfs_delayed_extent_op *extent_op = head->extent_op; | 
|  | int ret; | 
|  |  | 
|  | if (!extent_op) | 
|  | return 0; | 
|  | head->extent_op = NULL; | 
|  | if (head->must_insert_reserved) { | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | return 0; | 
|  | } | 
|  | spin_unlock(&head->lock); | 
|  | ret = run_delayed_extent_op(trans, head, extent_op); | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | return ret ? ret : 1; | 
|  | } | 
|  |  | 
|  | static int cleanup_ref_head(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_head *head) | 
|  | { | 
|  |  | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | int ret; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  |  | 
|  | ret = cleanup_extent_op(trans, head); | 
|  | if (ret < 0) { | 
|  | unselect_delayed_ref_head(delayed_refs, head); | 
|  | btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret); | 
|  | return ret; | 
|  | } else if (ret) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Need to drop our head ref lock and re-acquire the delayed ref lock | 
|  | * and then re-check to make sure nobody got added. | 
|  | */ | 
|  | spin_unlock(&head->lock); | 
|  | spin_lock(&delayed_refs->lock); | 
|  | spin_lock(&head->lock); | 
|  | if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) { | 
|  | spin_unlock(&head->lock); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return 1; | 
|  | } | 
|  | delayed_refs->num_heads--; | 
|  | rb_erase(&head->href_node, &delayed_refs->href_root); | 
|  | RB_CLEAR_NODE(&head->href_node); | 
|  | spin_unlock(&head->lock); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | atomic_dec(&delayed_refs->num_entries); | 
|  |  | 
|  | trace_run_delayed_ref_head(fs_info, head, 0); | 
|  |  | 
|  | if (head->total_ref_mod < 0) { | 
|  | struct btrfs_space_info *space_info; | 
|  | u64 flags; | 
|  |  | 
|  | if (head->is_data) | 
|  | flags = BTRFS_BLOCK_GROUP_DATA; | 
|  | else if (head->is_system) | 
|  | flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
|  | else | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA; | 
|  | space_info = __find_space_info(fs_info, flags); | 
|  | ASSERT(space_info); | 
|  | percpu_counter_add_batch(&space_info->total_bytes_pinned, | 
|  | -head->num_bytes, | 
|  | BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
|  |  | 
|  | if (head->is_data) { | 
|  | spin_lock(&delayed_refs->lock); | 
|  | delayed_refs->pending_csums -= head->num_bytes; | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (head->must_insert_reserved) { | 
|  | btrfs_pin_extent(fs_info, head->bytenr, | 
|  | head->num_bytes, 1); | 
|  | if (head->is_data) { | 
|  | ret = btrfs_del_csums(trans, fs_info->csum_root, | 
|  | head->bytenr, head->num_bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Also free its reserved qgroup space */ | 
|  | btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root, | 
|  | head->qgroup_reserved); | 
|  | btrfs_delayed_ref_unlock(head); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns 0 on success or if called with an already aborted transaction. | 
|  | * Returns -ENOMEM or -EIO on failure and will abort the transaction. | 
|  | */ | 
|  | static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, | 
|  | unsigned long nr) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct btrfs_delayed_ref_head *locked_ref = NULL; | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | ktime_t start = ktime_get(); | 
|  | int ret; | 
|  | unsigned long count = 0; | 
|  | unsigned long actual_count = 0; | 
|  | int must_insert_reserved = 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | while (1) { | 
|  | if (!locked_ref) { | 
|  | if (count >= nr) | 
|  | break; | 
|  |  | 
|  | spin_lock(&delayed_refs->lock); | 
|  | locked_ref = btrfs_select_ref_head(trans); | 
|  | if (!locked_ref) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* grab the lock that says we are going to process | 
|  | * all the refs for this head */ | 
|  | ret = btrfs_delayed_ref_lock(trans, locked_ref); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | /* | 
|  | * we may have dropped the spin lock to get the head | 
|  | * mutex lock, and that might have given someone else | 
|  | * time to free the head.  If that's true, it has been | 
|  | * removed from our list and we can move on. | 
|  | */ | 
|  | if (ret == -EAGAIN) { | 
|  | locked_ref = NULL; | 
|  | count++; | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We need to try and merge add/drops of the same ref since we | 
|  | * can run into issues with relocate dropping the implicit ref | 
|  | * and then it being added back again before the drop can | 
|  | * finish.  If we merged anything we need to re-loop so we can | 
|  | * get a good ref. | 
|  | * Or we can get node references of the same type that weren't | 
|  | * merged when created due to bumps in the tree mod seq, and | 
|  | * we need to merge them to prevent adding an inline extent | 
|  | * backref before dropping it (triggering a BUG_ON at | 
|  | * insert_inline_extent_backref()). | 
|  | */ | 
|  | spin_lock(&locked_ref->lock); | 
|  | btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref); | 
|  |  | 
|  | ref = select_delayed_ref(locked_ref); | 
|  |  | 
|  | if (ref && ref->seq && | 
|  | btrfs_check_delayed_seq(fs_info, ref->seq)) { | 
|  | spin_unlock(&locked_ref->lock); | 
|  | unselect_delayed_ref_head(delayed_refs, locked_ref); | 
|  | locked_ref = NULL; | 
|  | cond_resched(); | 
|  | count++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're done processing refs in this ref_head, clean everything | 
|  | * up and move on to the next ref_head. | 
|  | */ | 
|  | if (!ref) { | 
|  | ret = cleanup_ref_head(trans, locked_ref); | 
|  | if (ret > 0 ) { | 
|  | /* We dropped our lock, we need to loop. */ | 
|  | ret = 0; | 
|  | continue; | 
|  | } else if (ret) { | 
|  | return ret; | 
|  | } | 
|  | locked_ref = NULL; | 
|  | count++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | actual_count++; | 
|  | ref->in_tree = 0; | 
|  | rb_erase(&ref->ref_node, &locked_ref->ref_tree); | 
|  | RB_CLEAR_NODE(&ref->ref_node); | 
|  | if (!list_empty(&ref->add_list)) | 
|  | list_del(&ref->add_list); | 
|  | /* | 
|  | * When we play the delayed ref, also correct the ref_mod on | 
|  | * head | 
|  | */ | 
|  | switch (ref->action) { | 
|  | case BTRFS_ADD_DELAYED_REF: | 
|  | case BTRFS_ADD_DELAYED_EXTENT: | 
|  | locked_ref->ref_mod -= ref->ref_mod; | 
|  | break; | 
|  | case BTRFS_DROP_DELAYED_REF: | 
|  | locked_ref->ref_mod += ref->ref_mod; | 
|  | break; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | } | 
|  | atomic_dec(&delayed_refs->num_entries); | 
|  |  | 
|  | /* | 
|  | * Record the must-insert_reserved flag before we drop the spin | 
|  | * lock. | 
|  | */ | 
|  | must_insert_reserved = locked_ref->must_insert_reserved; | 
|  | locked_ref->must_insert_reserved = 0; | 
|  |  | 
|  | extent_op = locked_ref->extent_op; | 
|  | locked_ref->extent_op = NULL; | 
|  | spin_unlock(&locked_ref->lock); | 
|  |  | 
|  | ret = run_one_delayed_ref(trans, ref, extent_op, | 
|  | must_insert_reserved); | 
|  |  | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | if (ret) { | 
|  | unselect_delayed_ref_head(delayed_refs, locked_ref); | 
|  | btrfs_put_delayed_ref(ref); | 
|  | btrfs_debug(fs_info, "run_one_delayed_ref returned %d", | 
|  | ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | btrfs_put_delayed_ref(ref); | 
|  | count++; | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We don't want to include ref heads since we can have empty ref heads | 
|  | * and those will drastically skew our runtime down since we just do | 
|  | * accounting, no actual extent tree updates. | 
|  | */ | 
|  | if (actual_count > 0) { | 
|  | u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start)); | 
|  | u64 avg; | 
|  |  | 
|  | /* | 
|  | * We weigh the current average higher than our current runtime | 
|  | * to avoid large swings in the average. | 
|  | */ | 
|  | spin_lock(&delayed_refs->lock); | 
|  | avg = fs_info->avg_delayed_ref_runtime * 3 + runtime; | 
|  | fs_info->avg_delayed_ref_runtime = avg >> 2;	/* div by 4 */ | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef SCRAMBLE_DELAYED_REFS | 
|  | /* | 
|  | * Normally delayed refs get processed in ascending bytenr order. This | 
|  | * correlates in most cases to the order added. To expose dependencies on this | 
|  | * order, we start to process the tree in the middle instead of the beginning | 
|  | */ | 
|  | static u64 find_middle(struct rb_root *root) | 
|  | { | 
|  | struct rb_node *n = root->rb_node; | 
|  | struct btrfs_delayed_ref_node *entry; | 
|  | int alt = 1; | 
|  | u64 middle; | 
|  | u64 first = 0, last = 0; | 
|  |  | 
|  | n = rb_first(root); | 
|  | if (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | first = entry->bytenr; | 
|  | } | 
|  | n = rb_last(root); | 
|  | if (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | last = entry->bytenr; | 
|  | } | 
|  | n = root->rb_node; | 
|  |  | 
|  | while (n) { | 
|  | entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node); | 
|  | WARN_ON(!entry->in_tree); | 
|  |  | 
|  | middle = entry->bytenr; | 
|  |  | 
|  | if (alt) | 
|  | n = n->rb_left; | 
|  | else | 
|  | n = n->rb_right; | 
|  |  | 
|  | alt = 1 - alt; | 
|  | } | 
|  | return middle; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads) | 
|  | { | 
|  | u64 num_bytes; | 
|  |  | 
|  | num_bytes = heads * (sizeof(struct btrfs_extent_item) + | 
|  | sizeof(struct btrfs_extent_inline_ref)); | 
|  | if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA)) | 
|  | num_bytes += heads * sizeof(struct btrfs_tree_block_info); | 
|  |  | 
|  | /* | 
|  | * We don't ever fill up leaves all the way so multiply by 2 just to be | 
|  | * closer to what we're really going to want to use. | 
|  | */ | 
|  | return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Takes the number of bytes to be csumm'ed and figures out how many leaves it | 
|  | * would require to store the csums for that many bytes. | 
|  | */ | 
|  | u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes) | 
|  | { | 
|  | u64 csum_size; | 
|  | u64 num_csums_per_leaf; | 
|  | u64 num_csums; | 
|  |  | 
|  | csum_size = BTRFS_MAX_ITEM_SIZE(fs_info); | 
|  | num_csums_per_leaf = div64_u64(csum_size, | 
|  | (u64)btrfs_super_csum_size(fs_info->super_copy)); | 
|  | num_csums = div64_u64(csum_bytes, fs_info->sectorsize); | 
|  | num_csums += num_csums_per_leaf - 1; | 
|  | num_csums = div64_u64(num_csums, num_csums_per_leaf); | 
|  | return num_csums; | 
|  | } | 
|  |  | 
|  | int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv; | 
|  | u64 num_heads = trans->transaction->delayed_refs.num_heads_ready; | 
|  | u64 csum_bytes = trans->transaction->delayed_refs.pending_csums; | 
|  | unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs; | 
|  | u64 num_bytes, num_dirty_bgs_bytes; | 
|  | int ret = 0; | 
|  |  | 
|  | num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1); | 
|  | num_heads = heads_to_leaves(fs_info, num_heads); | 
|  | if (num_heads > 1) | 
|  | num_bytes += (num_heads - 1) * fs_info->nodesize; | 
|  | num_bytes <<= 1; | 
|  | num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) * | 
|  | fs_info->nodesize; | 
|  | num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info, | 
|  | num_dirty_bgs); | 
|  | global_rsv = &fs_info->global_block_rsv; | 
|  |  | 
|  | /* | 
|  | * If we can't allocate any more chunks lets make sure we have _lots_ of | 
|  | * wiggle room since running delayed refs can create more delayed refs. | 
|  | */ | 
|  | if (global_rsv->space_info->full) { | 
|  | num_dirty_bgs_bytes <<= 1; | 
|  | num_bytes <<= 1; | 
|  | } | 
|  |  | 
|  | spin_lock(&global_rsv->lock); | 
|  | if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes) | 
|  | ret = 1; | 
|  | spin_unlock(&global_rsv->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | u64 num_entries = | 
|  | atomic_read(&trans->transaction->delayed_refs.num_entries); | 
|  | u64 avg_runtime; | 
|  | u64 val; | 
|  |  | 
|  | smp_mb(); | 
|  | avg_runtime = fs_info->avg_delayed_ref_runtime; | 
|  | val = num_entries * avg_runtime; | 
|  | if (val >= NSEC_PER_SEC) | 
|  | return 1; | 
|  | if (val >= NSEC_PER_SEC / 2) | 
|  | return 2; | 
|  |  | 
|  | return btrfs_check_space_for_delayed_refs(trans, fs_info); | 
|  | } | 
|  |  | 
|  | struct async_delayed_refs { | 
|  | struct btrfs_root *root; | 
|  | u64 transid; | 
|  | int count; | 
|  | int error; | 
|  | int sync; | 
|  | struct completion wait; | 
|  | struct btrfs_work work; | 
|  | }; | 
|  |  | 
|  | static inline struct async_delayed_refs * | 
|  | to_async_delayed_refs(struct btrfs_work *work) | 
|  | { | 
|  | return container_of(work, struct async_delayed_refs, work); | 
|  | } | 
|  |  | 
|  | static void delayed_ref_async_start(struct btrfs_work *work) | 
|  | { | 
|  | struct async_delayed_refs *async = to_async_delayed_refs(work); | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_fs_info *fs_info = async->root->fs_info; | 
|  | int ret; | 
|  |  | 
|  | /* if the commit is already started, we don't need to wait here */ | 
|  | if (btrfs_transaction_blocked(fs_info)) | 
|  | goto done; | 
|  |  | 
|  | trans = btrfs_join_transaction(async->root); | 
|  | if (IS_ERR(trans)) { | 
|  | async->error = PTR_ERR(trans); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * trans->sync means that when we call end_transaction, we won't | 
|  | * wait on delayed refs | 
|  | */ | 
|  | trans->sync = true; | 
|  |  | 
|  | /* Don't bother flushing if we got into a different transaction */ | 
|  | if (trans->transid > async->transid) | 
|  | goto end; | 
|  |  | 
|  | ret = btrfs_run_delayed_refs(trans, async->count); | 
|  | if (ret) | 
|  | async->error = ret; | 
|  | end: | 
|  | ret = btrfs_end_transaction(trans); | 
|  | if (ret && !async->error) | 
|  | async->error = ret; | 
|  | done: | 
|  | if (async->sync) | 
|  | complete(&async->wait); | 
|  | else | 
|  | kfree(async); | 
|  | } | 
|  |  | 
|  | int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info, | 
|  | unsigned long count, u64 transid, int wait) | 
|  | { | 
|  | struct async_delayed_refs *async; | 
|  | int ret; | 
|  |  | 
|  | async = kmalloc(sizeof(*async), GFP_NOFS); | 
|  | if (!async) | 
|  | return -ENOMEM; | 
|  |  | 
|  | async->root = fs_info->tree_root; | 
|  | async->count = count; | 
|  | async->error = 0; | 
|  | async->transid = transid; | 
|  | if (wait) | 
|  | async->sync = 1; | 
|  | else | 
|  | async->sync = 0; | 
|  | init_completion(&async->wait); | 
|  |  | 
|  | btrfs_init_work(&async->work, btrfs_extent_refs_helper, | 
|  | delayed_ref_async_start, NULL, NULL); | 
|  |  | 
|  | btrfs_queue_work(fs_info->extent_workers, &async->work); | 
|  |  | 
|  | if (wait) { | 
|  | wait_for_completion(&async->wait); | 
|  | ret = async->error; | 
|  | kfree(async); | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this starts processing the delayed reference count updates and | 
|  | * extent insertions we have queued up so far.  count can be | 
|  | * 0, which means to process everything in the tree at the start | 
|  | * of the run (but not newly added entries), or it can be some target | 
|  | * number you'd like to process. | 
|  | * | 
|  | * Returns 0 on success or if called with an aborted transaction | 
|  | * Returns <0 on error and aborts the transaction | 
|  | */ | 
|  | int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans, | 
|  | unsigned long count) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct rb_node *node; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | int ret; | 
|  | int run_all = count == (unsigned long)-1; | 
|  |  | 
|  | /* We'll clean this up in btrfs_cleanup_transaction */ | 
|  | if (trans->aborted) | 
|  | return 0; | 
|  |  | 
|  | if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags)) | 
|  | return 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | if (count == 0) | 
|  | count = atomic_read(&delayed_refs->num_entries) * 2; | 
|  |  | 
|  | again: | 
|  | #ifdef SCRAMBLE_DELAYED_REFS | 
|  | delayed_refs->run_delayed_start = find_middle(&delayed_refs->root); | 
|  | #endif | 
|  | ret = __btrfs_run_delayed_refs(trans, count); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (run_all) { | 
|  | if (!list_empty(&trans->new_bgs)) | 
|  | btrfs_create_pending_block_groups(trans); | 
|  |  | 
|  | spin_lock(&delayed_refs->lock); | 
|  | node = rb_first(&delayed_refs->href_root); | 
|  | if (!node) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | goto out; | 
|  | } | 
|  | head = rb_entry(node, struct btrfs_delayed_ref_head, | 
|  | href_node); | 
|  | refcount_inc(&head->refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | /* Mutex was contended, block until it's released and retry. */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  |  | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | cond_resched(); | 
|  | goto again; | 
|  | } | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | u64 bytenr, u64 num_bytes, u64 flags, | 
|  | int level, int is_data) | 
|  | { | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | int ret; | 
|  |  | 
|  | extent_op = btrfs_alloc_delayed_extent_op(); | 
|  | if (!extent_op) | 
|  | return -ENOMEM; | 
|  |  | 
|  | extent_op->flags_to_set = flags; | 
|  | extent_op->update_flags = true; | 
|  | extent_op->update_key = false; | 
|  | extent_op->is_data = is_data ? true : false; | 
|  | extent_op->level = level; | 
|  |  | 
|  | ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr, | 
|  | num_bytes, extent_op); | 
|  | if (ret) | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_delayed_ref(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_node *ref; | 
|  | struct btrfs_delayed_data_ref *data_ref; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | struct btrfs_transaction *cur_trans; | 
|  | struct rb_node *node; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&root->fs_info->trans_lock); | 
|  | cur_trans = root->fs_info->running_transaction; | 
|  | if (cur_trans) | 
|  | refcount_inc(&cur_trans->use_count); | 
|  | spin_unlock(&root->fs_info->trans_lock); | 
|  | if (!cur_trans) | 
|  | return 0; | 
|  |  | 
|  | delayed_refs = &cur_trans->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
|  | if (!head) { | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!mutex_trylock(&head->mutex)) { | 
|  | refcount_inc(&head->refs); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * Mutex was contended, block until it's released and let | 
|  | * caller try again | 
|  | */ | 
|  | mutex_lock(&head->mutex); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | return -EAGAIN; | 
|  | } | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | spin_lock(&head->lock); | 
|  | /* | 
|  | * XXX: We should replace this with a proper search function in the | 
|  | * future. | 
|  | */ | 
|  | for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) { | 
|  | ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node); | 
|  | /* If it's a shared ref we know a cross reference exists */ | 
|  | if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | data_ref = btrfs_delayed_node_to_data_ref(ref); | 
|  |  | 
|  | /* | 
|  | * If our ref doesn't match the one we're currently looking at | 
|  | * then we have a cross reference. | 
|  | */ | 
|  | if (data_ref->root != root->root_key.objectid || | 
|  | data_ref->objectid != objectid || | 
|  | data_ref->offset != offset) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | spin_unlock(&head->lock); | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_transaction(cur_trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static noinline int check_committed_ref(struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | u64 objectid, u64 offset, u64 bytenr) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_key key; | 
|  | u32 item_size; | 
|  | int type; | 
|  | int ret; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.offset = (u64)-1; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | BUG_ON(ret == 0); /* Corruption */ | 
|  |  | 
|  | ret = -ENOENT; | 
|  | if (path->slots[0] == 0) | 
|  | goto out; | 
|  |  | 
|  | path->slots[0]--; | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); | 
|  |  | 
|  | if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY) | 
|  | goto out; | 
|  |  | 
|  | ret = 1; | 
|  | item_size = btrfs_item_size_nr(leaf, path->slots[0]); | 
|  | ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item); | 
|  |  | 
|  | if (item_size != sizeof(*ei) + | 
|  | btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY)) | 
|  | goto out; | 
|  |  | 
|  | if (btrfs_extent_generation(leaf, ei) <= | 
|  | btrfs_root_last_snapshot(&root->root_item)) | 
|  | goto out; | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(ei + 1); | 
|  |  | 
|  | type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA); | 
|  | if (type != BTRFS_EXTENT_DATA_REF_KEY) | 
|  | goto out; | 
|  |  | 
|  | ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | if (btrfs_extent_refs(leaf, ei) != | 
|  | btrfs_extent_data_ref_count(leaf, ref) || | 
|  | btrfs_extent_data_ref_root(leaf, ref) != | 
|  | root->root_key.objectid || | 
|  | btrfs_extent_data_ref_objectid(leaf, ref) != objectid || | 
|  | btrfs_extent_data_ref_offset(leaf, ref) != offset) | 
|  | goto out; | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | int ret2; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | do { | 
|  | ret = check_committed_ref(root, path, objectid, | 
|  | offset, bytenr); | 
|  | if (ret && ret != -ENOENT) | 
|  | goto out; | 
|  |  | 
|  | ret2 = check_delayed_ref(root, path, objectid, | 
|  | offset, bytenr); | 
|  | } while (ret2 == -EAGAIN); | 
|  |  | 
|  | if (ret2 && ret2 != -ENOENT) { | 
|  | ret = ret2; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ret != -ENOENT || ret2 != -ENOENT) | 
|  | ret = 0; | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID) | 
|  | WARN_ON(ret > 0); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_mod_ref(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | int full_backref, int inc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 bytenr; | 
|  | u64 num_bytes; | 
|  | u64 parent; | 
|  | u64 ref_root; | 
|  | u32 nritems; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_file_extent_item *fi; | 
|  | int i; | 
|  | int level; | 
|  | int ret = 0; | 
|  | int (*process_func)(struct btrfs_trans_handle *, | 
|  | struct btrfs_root *, | 
|  | u64, u64, u64, u64, u64, u64); | 
|  |  | 
|  |  | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return 0; | 
|  |  | 
|  | ref_root = btrfs_header_owner(buf); | 
|  | nritems = btrfs_header_nritems(buf); | 
|  | level = btrfs_header_level(buf); | 
|  |  | 
|  | if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0) | 
|  | return 0; | 
|  |  | 
|  | if (inc) | 
|  | process_func = btrfs_inc_extent_ref; | 
|  | else | 
|  | process_func = btrfs_free_extent; | 
|  |  | 
|  | if (full_backref) | 
|  | parent = buf->start; | 
|  | else | 
|  | parent = 0; | 
|  |  | 
|  | for (i = 0; i < nritems; i++) { | 
|  | if (level == 0) { | 
|  | btrfs_item_key_to_cpu(buf, &key, i); | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | fi = btrfs_item_ptr(buf, i, | 
|  | struct btrfs_file_extent_item); | 
|  | if (btrfs_file_extent_type(buf, fi) == | 
|  | BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | bytenr = btrfs_file_extent_disk_bytenr(buf, fi); | 
|  | if (bytenr == 0) | 
|  | continue; | 
|  |  | 
|  | num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi); | 
|  | key.offset -= btrfs_file_extent_offset(buf, fi); | 
|  | ret = process_func(trans, root, bytenr, num_bytes, | 
|  | parent, ref_root, key.objectid, | 
|  | key.offset); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } else { | 
|  | bytenr = btrfs_node_blockptr(buf, i); | 
|  | num_bytes = fs_info->nodesize; | 
|  | ret = process_func(trans, root, bytenr, num_bytes, | 
|  | parent, ref_root, level - 1, 0); | 
|  | if (ret) | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | fail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, int full_backref) | 
|  | { | 
|  | return __btrfs_mod_ref(trans, root, buf, full_backref, 1); | 
|  | } | 
|  |  | 
|  | int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | struct extent_buffer *buf, int full_backref) | 
|  | { | 
|  | return __btrfs_mod_ref(trans, root, buf, full_backref, 0); | 
|  | } | 
|  |  | 
|  | static int write_one_cache_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | unsigned long bi; | 
|  | struct extent_buffer *leaf; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1); | 
|  | if (ret) { | 
|  | if (ret > 0) | 
|  | ret = -ENOENT; | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | bi = btrfs_item_ptr_offset(leaf, path->slots[0]); | 
|  | write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item)); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | fail: | 
|  | btrfs_release_path(path); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_group_cache * | 
|  | next_block_group(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct rb_node *node; | 
|  |  | 
|  | spin_lock(&fs_info->block_group_cache_lock); | 
|  |  | 
|  | /* If our block group was removed, we need a full search. */ | 
|  | if (RB_EMPTY_NODE(&cache->cache_node)) { | 
|  | const u64 next_bytenr = cache->key.objectid + cache->key.offset; | 
|  |  | 
|  | spin_unlock(&fs_info->block_group_cache_lock); | 
|  | btrfs_put_block_group(cache); | 
|  | cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache; | 
|  | } | 
|  | node = rb_next(&cache->cache_node); | 
|  | btrfs_put_block_group(cache); | 
|  | if (node) { | 
|  | cache = rb_entry(node, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | btrfs_get_block_group(cache); | 
|  | } else | 
|  | cache = NULL; | 
|  | spin_unlock(&fs_info->block_group_cache_lock); | 
|  | return cache; | 
|  | } | 
|  |  | 
|  | static int cache_save_setup(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_trans_handle *trans, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = block_group->fs_info; | 
|  | struct btrfs_root *root = fs_info->tree_root; | 
|  | struct inode *inode = NULL; | 
|  | struct extent_changeset *data_reserved = NULL; | 
|  | u64 alloc_hint = 0; | 
|  | int dcs = BTRFS_DC_ERROR; | 
|  | u64 num_pages = 0; | 
|  | int retries = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * If this block group is smaller than 100 megs don't bother caching the | 
|  | * block group. | 
|  | */ | 
|  | if (block_group->key.offset < (100 * SZ_1M)) { | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->disk_cache_state = BTRFS_DC_WRITTEN; | 
|  | spin_unlock(&block_group->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (trans->aborted) | 
|  | return 0; | 
|  | again: | 
|  | inode = lookup_free_space_inode(fs_info, block_group, path); | 
|  | if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) { | 
|  | ret = PTR_ERR(inode); | 
|  | btrfs_release_path(path); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (IS_ERR(inode)) { | 
|  | BUG_ON(retries); | 
|  | retries++; | 
|  |  | 
|  | if (block_group->ro) | 
|  | goto out_free; | 
|  |  | 
|  | ret = create_free_space_inode(fs_info, trans, block_group, | 
|  | path); | 
|  | if (ret) | 
|  | goto out_free; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We want to set the generation to 0, that way if anything goes wrong | 
|  | * from here on out we know not to trust this cache when we load up next | 
|  | * time. | 
|  | */ | 
|  | BTRFS_I(inode)->generation = 0; | 
|  | ret = btrfs_update_inode(trans, root, inode); | 
|  | if (ret) { | 
|  | /* | 
|  | * So theoretically we could recover from this, simply set the | 
|  | * super cache generation to 0 so we know to invalidate the | 
|  | * cache, but then we'd have to keep track of the block groups | 
|  | * that fail this way so we know we _have_ to reset this cache | 
|  | * before the next commit or risk reading stale cache.  So to | 
|  | * limit our exposure to horrible edge cases lets just abort the | 
|  | * transaction, this only happens in really bad situations | 
|  | * anyway. | 
|  | */ | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out_put; | 
|  | } | 
|  | WARN_ON(ret); | 
|  |  | 
|  | /* We've already setup this transaction, go ahead and exit */ | 
|  | if (block_group->cache_generation == trans->transid && | 
|  | i_size_read(inode)) { | 
|  | dcs = BTRFS_DC_SETUP; | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | if (i_size_read(inode) > 0) { | 
|  | ret = btrfs_check_trunc_cache_free_space(fs_info, | 
|  | &fs_info->global_block_rsv); | 
|  | if (ret) | 
|  | goto out_put; | 
|  |  | 
|  | ret = btrfs_truncate_free_space_cache(trans, NULL, inode); | 
|  | if (ret) | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->cached != BTRFS_CACHE_FINISHED || | 
|  | !btrfs_test_opt(fs_info, SPACE_CACHE)) { | 
|  | /* | 
|  | * don't bother trying to write stuff out _if_ | 
|  | * a) we're not cached, | 
|  | * b) we're with nospace_cache mount option, | 
|  | * c) we're with v2 space_cache (FREE_SPACE_TREE). | 
|  | */ | 
|  | dcs = BTRFS_DC_WRITTEN; | 
|  | spin_unlock(&block_group->lock); | 
|  | goto out_put; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | /* | 
|  | * We hit an ENOSPC when setting up the cache in this transaction, just | 
|  | * skip doing the setup, we've already cleared the cache so we're safe. | 
|  | */ | 
|  | if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) { | 
|  | ret = -ENOSPC; | 
|  | goto out_put; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to preallocate enough space based on how big the block group is. | 
|  | * Keep in mind this has to include any pinned space which could end up | 
|  | * taking up quite a bit since it's not folded into the other space | 
|  | * cache. | 
|  | */ | 
|  | num_pages = div_u64(block_group->key.offset, SZ_256M); | 
|  | if (!num_pages) | 
|  | num_pages = 1; | 
|  |  | 
|  | num_pages *= 16; | 
|  | num_pages *= PAGE_SIZE; | 
|  |  | 
|  | ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages); | 
|  | if (ret) | 
|  | goto out_put; | 
|  |  | 
|  | ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages, | 
|  | num_pages, num_pages, | 
|  | &alloc_hint); | 
|  | /* | 
|  | * Our cache requires contiguous chunks so that we don't modify a bunch | 
|  | * of metadata or split extents when writing the cache out, which means | 
|  | * we can enospc if we are heavily fragmented in addition to just normal | 
|  | * out of space conditions.  So if we hit this just skip setting up any | 
|  | * other block groups for this transaction, maybe we'll unpin enough | 
|  | * space the next time around. | 
|  | */ | 
|  | if (!ret) | 
|  | dcs = BTRFS_DC_SETUP; | 
|  | else if (ret == -ENOSPC) | 
|  | set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags); | 
|  |  | 
|  | out_put: | 
|  | iput(inode); | 
|  | out_free: | 
|  | btrfs_release_path(path); | 
|  | out: | 
|  | spin_lock(&block_group->lock); | 
|  | if (!ret && dcs == BTRFS_DC_SETUP) | 
|  | block_group->cache_generation = trans->transid; | 
|  | block_group->disk_cache_state = dcs; | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | extent_changeset_free(data_reserved); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_setup_space_cache(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache, *tmp; | 
|  | struct btrfs_transaction *cur_trans = trans->transaction; | 
|  | struct btrfs_path *path; | 
|  |  | 
|  | if (list_empty(&cur_trans->dirty_bgs) || | 
|  | !btrfs_test_opt(fs_info, SPACE_CACHE)) | 
|  | return 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Could add new block groups, use _safe just in case */ | 
|  | list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs, | 
|  | dirty_list) { | 
|  | if (cache->disk_cache_state == BTRFS_DC_CLEAR) | 
|  | cache_save_setup(cache, trans, path); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * transaction commit does final block group cache writeback during a | 
|  | * critical section where nothing is allowed to change the FS.  This is | 
|  | * required in order for the cache to actually match the block group, | 
|  | * but can introduce a lot of latency into the commit. | 
|  | * | 
|  | * So, btrfs_start_dirty_block_groups is here to kick off block group | 
|  | * cache IO.  There's a chance we'll have to redo some of it if the | 
|  | * block group changes again during the commit, but it greatly reduces | 
|  | * the commit latency by getting rid of the easy block groups while | 
|  | * we're still allowing others to join the commit. | 
|  | */ | 
|  | int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_block_group_cache *cache; | 
|  | struct btrfs_transaction *cur_trans = trans->transaction; | 
|  | int ret = 0; | 
|  | int should_put; | 
|  | struct btrfs_path *path = NULL; | 
|  | LIST_HEAD(dirty); | 
|  | struct list_head *io = &cur_trans->io_bgs; | 
|  | int num_started = 0; | 
|  | int loops = 0; | 
|  |  | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | if (list_empty(&cur_trans->dirty_bgs)) { | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | return 0; | 
|  | } | 
|  | list_splice_init(&cur_trans->dirty_bgs, &dirty); | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  |  | 
|  | again: | 
|  | /* | 
|  | * make sure all the block groups on our dirty list actually | 
|  | * exist | 
|  | */ | 
|  | btrfs_create_pending_block_groups(trans); | 
|  |  | 
|  | if (!path) { | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cache_write_mutex is here only to save us from balance or automatic | 
|  | * removal of empty block groups deleting this block group while we are | 
|  | * writing out the cache | 
|  | */ | 
|  | mutex_lock(&trans->transaction->cache_write_mutex); | 
|  | while (!list_empty(&dirty)) { | 
|  | cache = list_first_entry(&dirty, | 
|  | struct btrfs_block_group_cache, | 
|  | dirty_list); | 
|  | /* | 
|  | * this can happen if something re-dirties a block | 
|  | * group that is already under IO.  Just wait for it to | 
|  | * finish and then do it all again | 
|  | */ | 
|  | if (!list_empty(&cache->io_list)) { | 
|  | list_del_init(&cache->io_list); | 
|  | btrfs_wait_cache_io(trans, cache, path); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * btrfs_wait_cache_io uses the cache->dirty_list to decide | 
|  | * if it should update the cache_state.  Don't delete | 
|  | * until after we wait. | 
|  | * | 
|  | * Since we're not running in the commit critical section | 
|  | * we need the dirty_bgs_lock to protect from update_block_group | 
|  | */ | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | list_del_init(&cache->dirty_list); | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  |  | 
|  | should_put = 1; | 
|  |  | 
|  | cache_save_setup(cache, trans, path); | 
|  |  | 
|  | if (cache->disk_cache_state == BTRFS_DC_SETUP) { | 
|  | cache->io_ctl.inode = NULL; | 
|  | ret = btrfs_write_out_cache(fs_info, trans, | 
|  | cache, path); | 
|  | if (ret == 0 && cache->io_ctl.inode) { | 
|  | num_started++; | 
|  | should_put = 0; | 
|  |  | 
|  | /* | 
|  | * The cache_write_mutex is protecting the | 
|  | * io_list, also refer to the definition of | 
|  | * btrfs_transaction::io_bgs for more details | 
|  | */ | 
|  | list_add_tail(&cache->io_list, io); | 
|  | } else { | 
|  | /* | 
|  | * if we failed to write the cache, the | 
|  | * generation will be bad and life goes on | 
|  | */ | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  | if (!ret) { | 
|  | ret = write_one_cache_group(trans, fs_info, | 
|  | path, cache); | 
|  | /* | 
|  | * Our block group might still be attached to the list | 
|  | * of new block groups in the transaction handle of some | 
|  | * other task (struct btrfs_trans_handle->new_bgs). This | 
|  | * means its block group item isn't yet in the extent | 
|  | * tree. If this happens ignore the error, as we will | 
|  | * try again later in the critical section of the | 
|  | * transaction commit. | 
|  | */ | 
|  | if (ret == -ENOENT) { | 
|  | ret = 0; | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | if (list_empty(&cache->dirty_list)) { | 
|  | list_add_tail(&cache->dirty_list, | 
|  | &cur_trans->dirty_bgs); | 
|  | btrfs_get_block_group(cache); | 
|  | } | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | } else if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if its not on the io list, we need to put the block group */ | 
|  | if (should_put) | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Avoid blocking other tasks for too long. It might even save | 
|  | * us from writing caches for block groups that are going to be | 
|  | * removed. | 
|  | */ | 
|  | mutex_unlock(&trans->transaction->cache_write_mutex); | 
|  | mutex_lock(&trans->transaction->cache_write_mutex); | 
|  | } | 
|  | mutex_unlock(&trans->transaction->cache_write_mutex); | 
|  |  | 
|  | /* | 
|  | * go through delayed refs for all the stuff we've just kicked off | 
|  | * and then loop back (just once) | 
|  | */ | 
|  | ret = btrfs_run_delayed_refs(trans, 0); | 
|  | if (!ret && loops == 0) { | 
|  | loops++; | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | list_splice_init(&cur_trans->dirty_bgs, &dirty); | 
|  | /* | 
|  | * dirty_bgs_lock protects us from concurrent block group | 
|  | * deletes too (not just cache_write_mutex). | 
|  | */ | 
|  | if (!list_empty(&dirty)) { | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | goto again; | 
|  | } | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | } else if (ret < 0) { | 
|  | btrfs_cleanup_dirty_bgs(cur_trans, fs_info); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | struct btrfs_transaction *cur_trans = trans->transaction; | 
|  | int ret = 0; | 
|  | int should_put; | 
|  | struct btrfs_path *path; | 
|  | struct list_head *io = &cur_trans->io_bgs; | 
|  | int num_started = 0; | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Even though we are in the critical section of the transaction commit, | 
|  | * we can still have concurrent tasks adding elements to this | 
|  | * transaction's list of dirty block groups. These tasks correspond to | 
|  | * endio free space workers started when writeback finishes for a | 
|  | * space cache, which run inode.c:btrfs_finish_ordered_io(), and can | 
|  | * allocate new block groups as a result of COWing nodes of the root | 
|  | * tree when updating the free space inode. The writeback for the space | 
|  | * caches is triggered by an earlier call to | 
|  | * btrfs_start_dirty_block_groups() and iterations of the following | 
|  | * loop. | 
|  | * Also we want to do the cache_save_setup first and then run the | 
|  | * delayed refs to make sure we have the best chance at doing this all | 
|  | * in one shot. | 
|  | */ | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | while (!list_empty(&cur_trans->dirty_bgs)) { | 
|  | cache = list_first_entry(&cur_trans->dirty_bgs, | 
|  | struct btrfs_block_group_cache, | 
|  | dirty_list); | 
|  |  | 
|  | /* | 
|  | * this can happen if cache_save_setup re-dirties a block | 
|  | * group that is already under IO.  Just wait for it to | 
|  | * finish and then do it all again | 
|  | */ | 
|  | if (!list_empty(&cache->io_list)) { | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | list_del_init(&cache->io_list); | 
|  | btrfs_wait_cache_io(trans, cache, path); | 
|  | btrfs_put_block_group(cache); | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * don't remove from the dirty list until after we've waited | 
|  | * on any pending IO | 
|  | */ | 
|  | list_del_init(&cache->dirty_list); | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  | should_put = 1; | 
|  |  | 
|  | cache_save_setup(cache, trans, path); | 
|  |  | 
|  | if (!ret) | 
|  | ret = btrfs_run_delayed_refs(trans, | 
|  | (unsigned long) -1); | 
|  |  | 
|  | if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) { | 
|  | cache->io_ctl.inode = NULL; | 
|  | ret = btrfs_write_out_cache(fs_info, trans, | 
|  | cache, path); | 
|  | if (ret == 0 && cache->io_ctl.inode) { | 
|  | num_started++; | 
|  | should_put = 0; | 
|  | list_add_tail(&cache->io_list, io); | 
|  | } else { | 
|  | /* | 
|  | * if we failed to write the cache, the | 
|  | * generation will be bad and life goes on | 
|  | */ | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  | if (!ret) { | 
|  | ret = write_one_cache_group(trans, fs_info, | 
|  | path, cache); | 
|  | /* | 
|  | * One of the free space endio workers might have | 
|  | * created a new block group while updating a free space | 
|  | * cache's inode (at inode.c:btrfs_finish_ordered_io()) | 
|  | * and hasn't released its transaction handle yet, in | 
|  | * which case the new block group is still attached to | 
|  | * its transaction handle and its creation has not | 
|  | * finished yet (no block group item in the extent tree | 
|  | * yet, etc). If this is the case, wait for all free | 
|  | * space endio workers to finish and retry. This is a | 
|  | * a very rare case so no need for a more efficient and | 
|  | * complex approach. | 
|  | */ | 
|  | if (ret == -ENOENT) { | 
|  | wait_event(cur_trans->writer_wait, | 
|  | atomic_read(&cur_trans->num_writers) == 1); | 
|  | ret = write_one_cache_group(trans, fs_info, | 
|  | path, cache); | 
|  | } | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | } | 
|  |  | 
|  | /* if its not on the io list, we need to put the block group */ | 
|  | if (should_put) | 
|  | btrfs_put_block_group(cache); | 
|  | spin_lock(&cur_trans->dirty_bgs_lock); | 
|  | } | 
|  | spin_unlock(&cur_trans->dirty_bgs_lock); | 
|  |  | 
|  | /* | 
|  | * Refer to the definition of io_bgs member for details why it's safe | 
|  | * to use it without any locking | 
|  | */ | 
|  | while (!list_empty(io)) { | 
|  | cache = list_first_entry(io, struct btrfs_block_group_cache, | 
|  | io_list); | 
|  | list_del_init(&cache->io_list); | 
|  | btrfs_wait_cache_io(trans, cache, path); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | int readonly = 0; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | if (!block_group || block_group->ro) | 
|  | readonly = 1; | 
|  | if (block_group) | 
|  | btrfs_put_block_group(block_group); | 
|  | return readonly; | 
|  | } | 
|  |  | 
|  | bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *bg; | 
|  | bool ret = true; | 
|  |  | 
|  | bg = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | if (!bg) | 
|  | return false; | 
|  |  | 
|  | spin_lock(&bg->lock); | 
|  | if (bg->ro) | 
|  | ret = false; | 
|  | else | 
|  | atomic_inc(&bg->nocow_writers); | 
|  | spin_unlock(&bg->lock); | 
|  |  | 
|  | /* no put on block group, done by btrfs_dec_nocow_writers */ | 
|  | if (!ret) | 
|  | btrfs_put_block_group(bg); | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_block_group_cache *bg; | 
|  |  | 
|  | bg = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | ASSERT(bg); | 
|  | if (atomic_dec_and_test(&bg->nocow_writers)) | 
|  | wake_up_var(&bg->nocow_writers); | 
|  | /* | 
|  | * Once for our lookup and once for the lookup done by a previous call | 
|  | * to btrfs_inc_nocow_writers() | 
|  | */ | 
|  | btrfs_put_block_group(bg); | 
|  | btrfs_put_block_group(bg); | 
|  | } | 
|  |  | 
|  | void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg) | 
|  | { | 
|  | wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers)); | 
|  | } | 
|  |  | 
|  | static const char *alloc_name(u64 flags) | 
|  | { | 
|  | switch (flags) { | 
|  | case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA: | 
|  | return "mixed"; | 
|  | case BTRFS_BLOCK_GROUP_METADATA: | 
|  | return "metadata"; | 
|  | case BTRFS_BLOCK_GROUP_DATA: | 
|  | return "data"; | 
|  | case BTRFS_BLOCK_GROUP_SYSTEM: | 
|  | return "system"; | 
|  | default: | 
|  | WARN_ON(1); | 
|  | return "invalid-combination"; | 
|  | }; | 
|  | } | 
|  |  | 
|  | static int create_space_info(struct btrfs_fs_info *info, u64 flags) | 
|  | { | 
|  |  | 
|  | struct btrfs_space_info *space_info; | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | space_info = kzalloc(sizeof(*space_info), GFP_NOFS); | 
|  | if (!space_info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ret = percpu_counter_init(&space_info->total_bytes_pinned, 0, | 
|  | GFP_KERNEL); | 
|  | if (ret) { | 
|  | kfree(space_info); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) | 
|  | INIT_LIST_HEAD(&space_info->block_groups[i]); | 
|  | init_rwsem(&space_info->groups_sem); | 
|  | spin_lock_init(&space_info->lock); | 
|  | space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK; | 
|  | space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; | 
|  | init_waitqueue_head(&space_info->wait); | 
|  | INIT_LIST_HEAD(&space_info->ro_bgs); | 
|  | INIT_LIST_HEAD(&space_info->tickets); | 
|  | INIT_LIST_HEAD(&space_info->priority_tickets); | 
|  |  | 
|  | ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype, | 
|  | info->space_info_kobj, "%s", | 
|  | alloc_name(space_info->flags)); | 
|  | if (ret) { | 
|  | kobject_put(&space_info->kobj); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | list_add_rcu(&space_info->list, &info->space_info); | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | info->data_sinfo = space_info; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void update_space_info(struct btrfs_fs_info *info, u64 flags, | 
|  | u64 total_bytes, u64 bytes_used, | 
|  | u64 bytes_readonly, | 
|  | struct btrfs_space_info **space_info) | 
|  | { | 
|  | struct btrfs_space_info *found; | 
|  | int factor; | 
|  |  | 
|  | factor = btrfs_bg_type_to_factor(flags); | 
|  |  | 
|  | found = __find_space_info(info, flags); | 
|  | ASSERT(found); | 
|  | spin_lock(&found->lock); | 
|  | found->total_bytes += total_bytes; | 
|  | found->disk_total += total_bytes * factor; | 
|  | found->bytes_used += bytes_used; | 
|  | found->disk_used += bytes_used * factor; | 
|  | found->bytes_readonly += bytes_readonly; | 
|  | if (total_bytes > 0) | 
|  | found->full = 0; | 
|  | space_info_add_new_bytes(info, found, total_bytes - | 
|  | bytes_used - bytes_readonly); | 
|  | spin_unlock(&found->lock); | 
|  | *space_info = found; | 
|  | } | 
|  |  | 
|  | static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | u64 extra_flags = chunk_to_extended(flags) & | 
|  | BTRFS_EXTENDED_PROFILE_MASK; | 
|  |  | 
|  | write_seqlock(&fs_info->profiles_lock); | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | fs_info->avail_data_alloc_bits |= extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | fs_info->avail_metadata_alloc_bits |= extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | fs_info->avail_system_alloc_bits |= extra_flags; | 
|  | write_sequnlock(&fs_info->profiles_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * returns target flags in extended format or 0 if restripe for this | 
|  | * chunk_type is not in progress | 
|  | * | 
|  | * should be called with balance_lock held | 
|  | */ | 
|  | static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | struct btrfs_balance_control *bctl = fs_info->balance_ctl; | 
|  | u64 target = 0; | 
|  |  | 
|  | if (!bctl) | 
|  | return 0; | 
|  |  | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA && | 
|  | bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
|  | target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target; | 
|  | } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM && | 
|  | bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
|  | target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target; | 
|  | } else if (flags & BTRFS_BLOCK_GROUP_METADATA && | 
|  | bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) { | 
|  | target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target; | 
|  | } | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * @flags: available profiles in extended format (see ctree.h) | 
|  | * | 
|  | * Returns reduced profile in chunk format.  If profile changing is in | 
|  | * progress (either running or paused) picks the target profile (if it's | 
|  | * already available), otherwise falls back to plain reducing. | 
|  | */ | 
|  | static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | u64 num_devices = fs_info->fs_devices->rw_devices; | 
|  | u64 target; | 
|  | u64 raid_type; | 
|  | u64 allowed = 0; | 
|  |  | 
|  | /* | 
|  | * see if restripe for this chunk_type is in progress, if so | 
|  | * try to reduce to the target profile | 
|  | */ | 
|  | spin_lock(&fs_info->balance_lock); | 
|  | target = get_restripe_target(fs_info, flags); | 
|  | if (target) { | 
|  | /* pick target profile only if it's already available */ | 
|  | if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) { | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  | return extended_to_chunk(target); | 
|  | } | 
|  | } | 
|  | spin_unlock(&fs_info->balance_lock); | 
|  |  | 
|  | /* First, mask out the RAID levels which aren't possible */ | 
|  | for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) { | 
|  | if (num_devices >= btrfs_raid_array[raid_type].devs_min) | 
|  | allowed |= btrfs_raid_array[raid_type].bg_flag; | 
|  | } | 
|  | allowed &= flags; | 
|  |  | 
|  | if (allowed & BTRFS_BLOCK_GROUP_RAID6) | 
|  | allowed = BTRFS_BLOCK_GROUP_RAID6; | 
|  | else if (allowed & BTRFS_BLOCK_GROUP_RAID5) | 
|  | allowed = BTRFS_BLOCK_GROUP_RAID5; | 
|  | else if (allowed & BTRFS_BLOCK_GROUP_RAID10) | 
|  | allowed = BTRFS_BLOCK_GROUP_RAID10; | 
|  | else if (allowed & BTRFS_BLOCK_GROUP_RAID1) | 
|  | allowed = BTRFS_BLOCK_GROUP_RAID1; | 
|  | else if (allowed & BTRFS_BLOCK_GROUP_RAID0) | 
|  | allowed = BTRFS_BLOCK_GROUP_RAID0; | 
|  |  | 
|  | flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK; | 
|  |  | 
|  | return extended_to_chunk(flags | allowed); | 
|  | } | 
|  |  | 
|  | static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags) | 
|  | { | 
|  | unsigned seq; | 
|  | u64 flags; | 
|  |  | 
|  | do { | 
|  | flags = orig_flags; | 
|  | seq = read_seqbegin(&fs_info->profiles_lock); | 
|  |  | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | flags |= fs_info->avail_data_alloc_bits; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | flags |= fs_info->avail_system_alloc_bits; | 
|  | else if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | flags |= fs_info->avail_metadata_alloc_bits; | 
|  | } while (read_seqretry(&fs_info->profiles_lock, seq)); | 
|  |  | 
|  | return btrfs_reduce_alloc_profile(fs_info, flags); | 
|  | } | 
|  |  | 
|  | static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 flags; | 
|  | u64 ret; | 
|  |  | 
|  | if (data) | 
|  | flags = BTRFS_BLOCK_GROUP_DATA; | 
|  | else if (root == fs_info->chunk_root) | 
|  | flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
|  | else | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA; | 
|  |  | 
|  | ret = get_alloc_profile(fs_info, flags); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA); | 
|  | } | 
|  |  | 
|  | u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  | } | 
|  |  | 
|  | u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
|  | } | 
|  |  | 
|  | static u64 btrfs_space_info_used(struct btrfs_space_info *s_info, | 
|  | bool may_use_included) | 
|  | { | 
|  | ASSERT(s_info); | 
|  | return s_info->bytes_used + s_info->bytes_reserved + | 
|  | s_info->bytes_pinned + s_info->bytes_readonly + | 
|  | (may_use_included ? s_info->bytes_may_use : 0); | 
|  | } | 
|  |  | 
|  | int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_space_info *data_sinfo = fs_info->data_sinfo; | 
|  | u64 used; | 
|  | int ret = 0; | 
|  | int need_commit = 2; | 
|  | int have_pinned_space; | 
|  |  | 
|  | /* make sure bytes are sectorsize aligned */ | 
|  | bytes = ALIGN(bytes, fs_info->sectorsize); | 
|  |  | 
|  | if (btrfs_is_free_space_inode(inode)) { | 
|  | need_commit = 0; | 
|  | ASSERT(current->journal_info); | 
|  | } | 
|  |  | 
|  | again: | 
|  | /* make sure we have enough space to handle the data first */ | 
|  | spin_lock(&data_sinfo->lock); | 
|  | used = btrfs_space_info_used(data_sinfo, true); | 
|  |  | 
|  | if (used + bytes > data_sinfo->total_bytes) { | 
|  | struct btrfs_trans_handle *trans; | 
|  |  | 
|  | /* | 
|  | * if we don't have enough free bytes in this space then we need | 
|  | * to alloc a new chunk. | 
|  | */ | 
|  | if (!data_sinfo->full) { | 
|  | u64 alloc_target; | 
|  |  | 
|  | data_sinfo->force_alloc = CHUNK_ALLOC_FORCE; | 
|  | spin_unlock(&data_sinfo->lock); | 
|  |  | 
|  | alloc_target = btrfs_data_alloc_profile(fs_info); | 
|  | /* | 
|  | * It is ugly that we don't call nolock join | 
|  | * transaction for the free space inode case here. | 
|  | * But it is safe because we only do the data space | 
|  | * reservation for the free space cache in the | 
|  | * transaction context, the common join transaction | 
|  | * just increase the counter of the current transaction | 
|  | * handler, doesn't try to acquire the trans_lock of | 
|  | * the fs. | 
|  | */ | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | ret = do_chunk_alloc(trans, alloc_target, | 
|  | CHUNK_ALLOC_NO_FORCE); | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret < 0) { | 
|  | if (ret != -ENOSPC) | 
|  | return ret; | 
|  | else { | 
|  | have_pinned_space = 1; | 
|  | goto commit_trans; | 
|  | } | 
|  | } | 
|  |  | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we don't have enough pinned space to deal with this | 
|  | * allocation, and no removed chunk in current transaction, | 
|  | * don't bother committing the transaction. | 
|  | */ | 
|  | have_pinned_space = __percpu_counter_compare( | 
|  | &data_sinfo->total_bytes_pinned, | 
|  | used + bytes - data_sinfo->total_bytes, | 
|  | BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
|  | spin_unlock(&data_sinfo->lock); | 
|  |  | 
|  | /* commit the current transaction and try again */ | 
|  | commit_trans: | 
|  | if (need_commit) { | 
|  | need_commit--; | 
|  |  | 
|  | if (need_commit > 0) { | 
|  | btrfs_start_delalloc_roots(fs_info, -1); | 
|  | btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, | 
|  | (u64)-1); | 
|  | } | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  | if (have_pinned_space >= 0 || | 
|  | test_bit(BTRFS_TRANS_HAVE_FREE_BGS, | 
|  | &trans->transaction->flags) || | 
|  | need_commit > 0) { | 
|  | ret = btrfs_commit_transaction(trans); | 
|  | if (ret) | 
|  | return ret; | 
|  | /* | 
|  | * The cleaner kthread might still be doing iput | 
|  | * operations. Wait for it to finish so that | 
|  | * more space is released. | 
|  | */ | 
|  | mutex_lock(&fs_info->cleaner_delayed_iput_mutex); | 
|  | mutex_unlock(&fs_info->cleaner_delayed_iput_mutex); | 
|  | goto again; | 
|  | } else { | 
|  | btrfs_end_transaction(trans); | 
|  | } | 
|  | } | 
|  |  | 
|  | trace_btrfs_space_reservation(fs_info, | 
|  | "space_info:enospc", | 
|  | data_sinfo->flags, bytes, 1); | 
|  | return -ENOSPC; | 
|  | } | 
|  | data_sinfo->bytes_may_use += bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | data_sinfo->flags, bytes, 1); | 
|  | spin_unlock(&data_sinfo->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_check_data_free_space(struct inode *inode, | 
|  | struct extent_changeset **reserved, u64 start, u64 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | int ret; | 
|  |  | 
|  | /* align the range */ | 
|  | len = round_up(start + len, fs_info->sectorsize) - | 
|  | round_down(start, fs_info->sectorsize); | 
|  | start = round_down(start, fs_info->sectorsize); | 
|  |  | 
|  | ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */ | 
|  | ret = btrfs_qgroup_reserve_data(inode, reserved, start, len); | 
|  | if (ret < 0) | 
|  | btrfs_free_reserved_data_space_noquota(inode, start, len); | 
|  | else | 
|  | ret = 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called if we need to clear a data reservation for this inode | 
|  | * Normally in a error case. | 
|  | * | 
|  | * This one will *NOT* use accurate qgroup reserved space API, just for case | 
|  | * which we can't sleep and is sure it won't affect qgroup reserved space. | 
|  | * Like clear_bit_hook(). | 
|  | */ | 
|  | void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start, | 
|  | u64 len) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); | 
|  | struct btrfs_space_info *data_sinfo; | 
|  |  | 
|  | /* Make sure the range is aligned to sectorsize */ | 
|  | len = round_up(start + len, fs_info->sectorsize) - | 
|  | round_down(start, fs_info->sectorsize); | 
|  | start = round_down(start, fs_info->sectorsize); | 
|  |  | 
|  | data_sinfo = fs_info->data_sinfo; | 
|  | spin_lock(&data_sinfo->lock); | 
|  | if (WARN_ON(data_sinfo->bytes_may_use < len)) | 
|  | data_sinfo->bytes_may_use = 0; | 
|  | else | 
|  | data_sinfo->bytes_may_use -= len; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | data_sinfo->flags, len, 0); | 
|  | spin_unlock(&data_sinfo->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called if we need to clear a data reservation for this inode | 
|  | * Normally in a error case. | 
|  | * | 
|  | * This one will handle the per-inode data rsv map for accurate reserved | 
|  | * space framework. | 
|  | */ | 
|  | void btrfs_free_reserved_data_space(struct inode *inode, | 
|  | struct extent_changeset *reserved, u64 start, u64 len) | 
|  | { | 
|  | struct btrfs_root *root = BTRFS_I(inode)->root; | 
|  |  | 
|  | /* Make sure the range is aligned to sectorsize */ | 
|  | len = round_up(start + len, root->fs_info->sectorsize) - | 
|  | round_down(start, root->fs_info->sectorsize); | 
|  | start = round_down(start, root->fs_info->sectorsize); | 
|  |  | 
|  | btrfs_free_reserved_data_space_noquota(inode, start, len); | 
|  | btrfs_qgroup_free_data(inode, reserved, start, len); | 
|  | } | 
|  |  | 
|  | static void force_metadata_allocation(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct list_head *head = &info->space_info; | 
|  | struct btrfs_space_info *found; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | list_for_each_entry_rcu(found, head, list) { | 
|  | if (found->flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | found->force_alloc = CHUNK_ALLOC_FORCE; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | } | 
|  |  | 
|  | static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global) | 
|  | { | 
|  | return (global->size << 1); | 
|  | } | 
|  |  | 
|  | static int should_alloc_chunk(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *sinfo, int force) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | u64 bytes_used = btrfs_space_info_used(sinfo, false); | 
|  | u64 thresh; | 
|  |  | 
|  | if (force == CHUNK_ALLOC_FORCE) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * We need to take into account the global rsv because for all intents | 
|  | * and purposes it's used space.  Don't worry about locking the | 
|  | * global_rsv, it doesn't change except when the transaction commits. | 
|  | */ | 
|  | if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | bytes_used += calc_global_rsv_need_space(global_rsv); | 
|  |  | 
|  | /* | 
|  | * in limited mode, we want to have some free space up to | 
|  | * about 1% of the FS size. | 
|  | */ | 
|  | if (force == CHUNK_ALLOC_LIMITED) { | 
|  | thresh = btrfs_super_total_bytes(fs_info->super_copy); | 
|  | thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1)); | 
|  |  | 
|  | if (sinfo->total_bytes - bytes_used < thresh) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type) | 
|  | { | 
|  | u64 num_dev; | 
|  |  | 
|  | if (type & (BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | | 
|  | BTRFS_BLOCK_GROUP_RAID6)) | 
|  | num_dev = fs_info->fs_devices->rw_devices; | 
|  | else if (type & BTRFS_BLOCK_GROUP_RAID1) | 
|  | num_dev = 2; | 
|  | else | 
|  | num_dev = 1;	/* DUP or single */ | 
|  |  | 
|  | return num_dev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If @is_allocation is true, reserve space in the system space info necessary | 
|  | * for allocating a chunk, otherwise if it's false, reserve space necessary for | 
|  | * removing a chunk. | 
|  | */ | 
|  | void check_system_chunk(struct btrfs_trans_handle *trans, u64 type) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_space_info *info; | 
|  | u64 left; | 
|  | u64 thresh; | 
|  | int ret = 0; | 
|  | u64 num_devs; | 
|  |  | 
|  | /* | 
|  | * Needed because we can end up allocating a system chunk and for an | 
|  | * atomic and race free space reservation in the chunk block reserve. | 
|  | */ | 
|  | lockdep_assert_held(&fs_info->chunk_mutex); | 
|  |  | 
|  | info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
|  | spin_lock(&info->lock); | 
|  | left = info->total_bytes - btrfs_space_info_used(info, true); | 
|  | spin_unlock(&info->lock); | 
|  |  | 
|  | num_devs = get_profile_num_devs(fs_info, type); | 
|  |  | 
|  | /* num_devs device items to update and 1 chunk item to add or remove */ | 
|  | thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) + | 
|  | btrfs_calc_trans_metadata_size(fs_info, 1); | 
|  |  | 
|  | if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { | 
|  | btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu", | 
|  | left, thresh, type); | 
|  | dump_space_info(fs_info, info, 0, 0); | 
|  | } | 
|  |  | 
|  | if (left < thresh) { | 
|  | u64 flags = btrfs_system_alloc_profile(fs_info); | 
|  |  | 
|  | /* | 
|  | * Ignore failure to create system chunk. We might end up not | 
|  | * needing it, as we might not need to COW all nodes/leafs from | 
|  | * the paths we visit in the chunk tree (they were already COWed | 
|  | * or created in the current transaction for example). | 
|  | */ | 
|  | ret = btrfs_alloc_chunk(trans, flags); | 
|  | } | 
|  |  | 
|  | if (!ret) { | 
|  | ret = btrfs_block_rsv_add(fs_info->chunk_root, | 
|  | &fs_info->chunk_block_rsv, | 
|  | thresh, BTRFS_RESERVE_NO_FLUSH); | 
|  | if (!ret) | 
|  | trans->chunk_bytes_reserved += thresh; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If force is CHUNK_ALLOC_FORCE: | 
|  | *    - return 1 if it successfully allocates a chunk, | 
|  | *    - return errors including -ENOSPC otherwise. | 
|  | * If force is NOT CHUNK_ALLOC_FORCE: | 
|  | *    - return 0 if it doesn't need to allocate a new chunk, | 
|  | *    - return 1 if it successfully allocates a chunk, | 
|  | *    - return errors including -ENOSPC otherwise. | 
|  | */ | 
|  | static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags, | 
|  | int force) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_space_info *space_info; | 
|  | bool wait_for_alloc = false; | 
|  | bool should_alloc = false; | 
|  | int ret = 0; | 
|  |  | 
|  | /* Don't re-enter if we're already allocating a chunk */ | 
|  | if (trans->allocating_chunk) | 
|  | return -ENOSPC; | 
|  |  | 
|  | space_info = __find_space_info(fs_info, flags); | 
|  | ASSERT(space_info); | 
|  |  | 
|  | do { | 
|  | spin_lock(&space_info->lock); | 
|  | if (force < space_info->force_alloc) | 
|  | force = space_info->force_alloc; | 
|  | should_alloc = should_alloc_chunk(fs_info, space_info, force); | 
|  | if (space_info->full) { | 
|  | /* No more free physical space */ | 
|  | if (should_alloc) | 
|  | ret = -ENOSPC; | 
|  | else | 
|  | ret = 0; | 
|  | spin_unlock(&space_info->lock); | 
|  | return ret; | 
|  | } else if (!should_alloc) { | 
|  | spin_unlock(&space_info->lock); | 
|  | return 0; | 
|  | } else if (space_info->chunk_alloc) { | 
|  | /* | 
|  | * Someone is already allocating, so we need to block | 
|  | * until this someone is finished and then loop to | 
|  | * recheck if we should continue with our allocation | 
|  | * attempt. | 
|  | */ | 
|  | wait_for_alloc = true; | 
|  | spin_unlock(&space_info->lock); | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } else { | 
|  | /* Proceed with allocation */ | 
|  | space_info->chunk_alloc = 1; | 
|  | wait_for_alloc = false; | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | } while (wait_for_alloc); | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | trans->allocating_chunk = true; | 
|  |  | 
|  | /* | 
|  | * If we have mixed data/metadata chunks we want to make sure we keep | 
|  | * allocating mixed chunks instead of individual chunks. | 
|  | */ | 
|  | if (btrfs_mixed_space_info(space_info)) | 
|  | flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA); | 
|  |  | 
|  | /* | 
|  | * if we're doing a data chunk, go ahead and make sure that | 
|  | * we keep a reasonable number of metadata chunks allocated in the | 
|  | * FS as well. | 
|  | */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) { | 
|  | fs_info->data_chunk_allocations++; | 
|  | if (!(fs_info->data_chunk_allocations % | 
|  | fs_info->metadata_ratio)) | 
|  | force_metadata_allocation(fs_info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check if we have enough space in SYSTEM chunk because we may need | 
|  | * to update devices. | 
|  | */ | 
|  | check_system_chunk(trans, flags); | 
|  |  | 
|  | ret = btrfs_alloc_chunk(trans, flags); | 
|  | trans->allocating_chunk = false; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | if (ret < 0) { | 
|  | if (ret == -ENOSPC) | 
|  | space_info->full = 1; | 
|  | else | 
|  | goto out; | 
|  | } else { | 
|  | ret = 1; | 
|  | space_info->max_extent_size = 0; | 
|  | } | 
|  |  | 
|  | space_info->force_alloc = CHUNK_ALLOC_NO_FORCE; | 
|  | out: | 
|  | space_info->chunk_alloc = 0; | 
|  | spin_unlock(&space_info->lock); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | /* | 
|  | * When we allocate a new chunk we reserve space in the chunk block | 
|  | * reserve to make sure we can COW nodes/leafs in the chunk tree or | 
|  | * add new nodes/leafs to it if we end up needing to do it when | 
|  | * inserting the chunk item and updating device items as part of the | 
|  | * second phase of chunk allocation, performed by | 
|  | * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a | 
|  | * large number of new block groups to create in our transaction | 
|  | * handle's new_bgs list to avoid exhausting the chunk block reserve | 
|  | * in extreme cases - like having a single transaction create many new | 
|  | * block groups when starting to write out the free space caches of all | 
|  | * the block groups that were made dirty during the lifetime of the | 
|  | * transaction. | 
|  | */ | 
|  | if (trans->chunk_bytes_reserved >= (u64)SZ_2M) | 
|  | btrfs_create_pending_block_groups(trans); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int can_overcommit(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, u64 bytes, | 
|  | enum btrfs_reserve_flush_enum flush, | 
|  | bool system_chunk) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | u64 profile; | 
|  | u64 space_size; | 
|  | u64 avail; | 
|  | u64 used; | 
|  | int factor; | 
|  |  | 
|  | /* Don't overcommit when in mixed mode. */ | 
|  | if (space_info->flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | return 0; | 
|  |  | 
|  | if (system_chunk) | 
|  | profile = btrfs_system_alloc_profile(fs_info); | 
|  | else | 
|  | profile = btrfs_metadata_alloc_profile(fs_info); | 
|  |  | 
|  | used = btrfs_space_info_used(space_info, false); | 
|  |  | 
|  | /* | 
|  | * We only want to allow over committing if we have lots of actual space | 
|  | * free, but if we don't have enough space to handle the global reserve | 
|  | * space then we could end up having a real enospc problem when trying | 
|  | * to allocate a chunk or some other such important allocation. | 
|  | */ | 
|  | spin_lock(&global_rsv->lock); | 
|  | space_size = calc_global_rsv_need_space(global_rsv); | 
|  | spin_unlock(&global_rsv->lock); | 
|  | if (used + space_size >= space_info->total_bytes) | 
|  | return 0; | 
|  |  | 
|  | used += space_info->bytes_may_use; | 
|  |  | 
|  | avail = atomic64_read(&fs_info->free_chunk_space); | 
|  |  | 
|  | /* | 
|  | * If we have dup, raid1 or raid10 then only half of the free | 
|  | * space is actually useable.  For raid56, the space info used | 
|  | * doesn't include the parity drive, so we don't have to | 
|  | * change the math | 
|  | */ | 
|  | factor = btrfs_bg_type_to_factor(profile); | 
|  | avail = div_u64(avail, factor); | 
|  |  | 
|  | /* | 
|  | * If we aren't flushing all things, let us overcommit up to | 
|  | * 1/2th of the space. If we can flush, don't let us overcommit | 
|  | * too much, let it overcommit up to 1/8 of the space. | 
|  | */ | 
|  | if (flush == BTRFS_RESERVE_FLUSH_ALL) | 
|  | avail >>= 3; | 
|  | else | 
|  | avail >>= 1; | 
|  |  | 
|  | if (used + bytes < space_info->total_bytes + avail) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info, | 
|  | unsigned long nr_pages, int nr_items) | 
|  | { | 
|  | struct super_block *sb = fs_info->sb; | 
|  |  | 
|  | if (down_read_trylock(&sb->s_umount)) { | 
|  | writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE); | 
|  | up_read(&sb->s_umount); | 
|  | } else { | 
|  | /* | 
|  | * We needn't worry the filesystem going from r/w to r/o though | 
|  | * we don't acquire ->s_umount mutex, because the filesystem | 
|  | * should guarantee the delalloc inodes list be empty after | 
|  | * the filesystem is readonly(all dirty pages are written to | 
|  | * the disk). | 
|  | */ | 
|  | btrfs_start_delalloc_roots(fs_info, nr_items); | 
|  | if (!current->journal_info) | 
|  | btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info, | 
|  | u64 to_reclaim) | 
|  | { | 
|  | u64 bytes; | 
|  | u64 nr; | 
|  |  | 
|  | bytes = btrfs_calc_trans_metadata_size(fs_info, 1); | 
|  | nr = div64_u64(to_reclaim, bytes); | 
|  | if (!nr) | 
|  | nr = 1; | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | #define EXTENT_SIZE_PER_ITEM	SZ_256K | 
|  |  | 
|  | /* | 
|  | * shrink metadata reservation for delalloc | 
|  | */ | 
|  | static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim, | 
|  | u64 orig, bool wait_ordered) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 delalloc_bytes; | 
|  | u64 max_reclaim; | 
|  | u64 items; | 
|  | long time_left; | 
|  | unsigned long nr_pages; | 
|  | int loops; | 
|  |  | 
|  | /* Calc the number of the pages we need flush for space reservation */ | 
|  | items = calc_reclaim_items_nr(fs_info, to_reclaim); | 
|  | to_reclaim = items * EXTENT_SIZE_PER_ITEM; | 
|  |  | 
|  | trans = (struct btrfs_trans_handle *)current->journal_info; | 
|  | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  |  | 
|  | delalloc_bytes = percpu_counter_sum_positive( | 
|  | &fs_info->delalloc_bytes); | 
|  | if (delalloc_bytes == 0) { | 
|  | if (trans) | 
|  | return; | 
|  | if (wait_ordered) | 
|  | btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | loops = 0; | 
|  | while (delalloc_bytes && loops < 3) { | 
|  | max_reclaim = min(delalloc_bytes, to_reclaim); | 
|  | nr_pages = max_reclaim >> PAGE_SHIFT; | 
|  | btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items); | 
|  | /* | 
|  | * We need to wait for the async pages to actually start before | 
|  | * we do anything. | 
|  | */ | 
|  | max_reclaim = atomic_read(&fs_info->async_delalloc_pages); | 
|  | if (!max_reclaim) | 
|  | goto skip_async; | 
|  |  | 
|  | if (max_reclaim <= nr_pages) | 
|  | max_reclaim = 0; | 
|  | else | 
|  | max_reclaim -= nr_pages; | 
|  |  | 
|  | wait_event(fs_info->async_submit_wait, | 
|  | atomic_read(&fs_info->async_delalloc_pages) <= | 
|  | (int)max_reclaim); | 
|  | skip_async: | 
|  | spin_lock(&space_info->lock); | 
|  | if (list_empty(&space_info->tickets) && | 
|  | list_empty(&space_info->priority_tickets)) { | 
|  | spin_unlock(&space_info->lock); | 
|  | break; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | loops++; | 
|  | if (wait_ordered && !trans) { | 
|  | btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1); | 
|  | } else { | 
|  | time_left = schedule_timeout_killable(1); | 
|  | if (time_left) | 
|  | break; | 
|  | } | 
|  | delalloc_bytes = percpu_counter_sum_positive( | 
|  | &fs_info->delalloc_bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct reserve_ticket { | 
|  | u64 bytes; | 
|  | int error; | 
|  | struct list_head list; | 
|  | wait_queue_head_t wait; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * maybe_commit_transaction - possibly commit the transaction if its ok to | 
|  | * @root - the root we're allocating for | 
|  | * @bytes - the number of bytes we want to reserve | 
|  | * @force - force the commit | 
|  | * | 
|  | * This will check to make sure that committing the transaction will actually | 
|  | * get us somewhere and then commit the transaction if it does.  Otherwise it | 
|  | * will return -ENOSPC. | 
|  | */ | 
|  | static int may_commit_transaction(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info) | 
|  | { | 
|  | struct reserve_ticket *ticket = NULL; | 
|  | struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 bytes; | 
|  |  | 
|  | trans = (struct btrfs_trans_handle *)current->journal_info; | 
|  | if (trans) | 
|  | return -EAGAIN; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | if (!list_empty(&space_info->priority_tickets)) | 
|  | ticket = list_first_entry(&space_info->priority_tickets, | 
|  | struct reserve_ticket, list); | 
|  | else if (!list_empty(&space_info->tickets)) | 
|  | ticket = list_first_entry(&space_info->tickets, | 
|  | struct reserve_ticket, list); | 
|  | bytes = (ticket) ? ticket->bytes : 0; | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | if (!bytes) | 
|  | return 0; | 
|  |  | 
|  | /* See if there is enough pinned space to make this reservation */ | 
|  | if (__percpu_counter_compare(&space_info->total_bytes_pinned, | 
|  | bytes, | 
|  | BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0) | 
|  | goto commit; | 
|  |  | 
|  | /* | 
|  | * See if there is some space in the delayed insertion reservation for | 
|  | * this reservation. | 
|  | */ | 
|  | if (space_info != delayed_rsv->space_info) | 
|  | return -ENOSPC; | 
|  |  | 
|  | spin_lock(&delayed_rsv->lock); | 
|  | if (delayed_rsv->size > bytes) | 
|  | bytes = 0; | 
|  | else | 
|  | bytes -= delayed_rsv->size; | 
|  | spin_unlock(&delayed_rsv->lock); | 
|  |  | 
|  | if (__percpu_counter_compare(&space_info->total_bytes_pinned, | 
|  | bytes, | 
|  | BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) { | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | commit: | 
|  | trans = btrfs_join_transaction(fs_info->extent_root); | 
|  | if (IS_ERR(trans)) | 
|  | return -ENOSPC; | 
|  |  | 
|  | return btrfs_commit_transaction(trans); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to flush some data based on policy set by @state. This is only advisory | 
|  | * and may fail for various reasons. The caller is supposed to examine the | 
|  | * state of @space_info to detect the outcome. | 
|  | */ | 
|  | static void flush_space(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, u64 num_bytes, | 
|  | int state) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | struct btrfs_trans_handle *trans; | 
|  | int nr; | 
|  | int ret = 0; | 
|  |  | 
|  | switch (state) { | 
|  | case FLUSH_DELAYED_ITEMS_NR: | 
|  | case FLUSH_DELAYED_ITEMS: | 
|  | if (state == FLUSH_DELAYED_ITEMS_NR) | 
|  | nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2; | 
|  | else | 
|  | nr = -1; | 
|  |  | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | break; | 
|  | } | 
|  | ret = btrfs_run_delayed_items_nr(trans, nr); | 
|  | btrfs_end_transaction(trans); | 
|  | break; | 
|  | case FLUSH_DELALLOC: | 
|  | case FLUSH_DELALLOC_WAIT: | 
|  | shrink_delalloc(fs_info, num_bytes * 2, num_bytes, | 
|  | state == FLUSH_DELALLOC_WAIT); | 
|  | break; | 
|  | case ALLOC_CHUNK: | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | break; | 
|  | } | 
|  | ret = do_chunk_alloc(trans, | 
|  | btrfs_metadata_alloc_profile(fs_info), | 
|  | CHUNK_ALLOC_NO_FORCE); | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret > 0 || ret == -ENOSPC) | 
|  | ret = 0; | 
|  | break; | 
|  | case COMMIT_TRANS: | 
|  | ret = may_commit_transaction(fs_info, space_info); | 
|  | break; | 
|  | default: | 
|  | ret = -ENOSPC; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state, | 
|  | ret); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline u64 | 
|  | btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | bool system_chunk) | 
|  | { | 
|  | struct reserve_ticket *ticket; | 
|  | u64 used; | 
|  | u64 expected; | 
|  | u64 to_reclaim = 0; | 
|  |  | 
|  | list_for_each_entry(ticket, &space_info->tickets, list) | 
|  | to_reclaim += ticket->bytes; | 
|  | list_for_each_entry(ticket, &space_info->priority_tickets, list) | 
|  | to_reclaim += ticket->bytes; | 
|  | if (to_reclaim) | 
|  | return to_reclaim; | 
|  |  | 
|  | to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M); | 
|  | if (can_overcommit(fs_info, space_info, to_reclaim, | 
|  | BTRFS_RESERVE_FLUSH_ALL, system_chunk)) | 
|  | return 0; | 
|  |  | 
|  | used = btrfs_space_info_used(space_info, true); | 
|  |  | 
|  | if (can_overcommit(fs_info, space_info, SZ_1M, | 
|  | BTRFS_RESERVE_FLUSH_ALL, system_chunk)) | 
|  | expected = div_factor_fine(space_info->total_bytes, 95); | 
|  | else | 
|  | expected = div_factor_fine(space_info->total_bytes, 90); | 
|  |  | 
|  | if (used > expected) | 
|  | to_reclaim = used - expected; | 
|  | else | 
|  | to_reclaim = 0; | 
|  | to_reclaim = min(to_reclaim, space_info->bytes_may_use + | 
|  | space_info->bytes_reserved); | 
|  | return to_reclaim; | 
|  | } | 
|  |  | 
|  | static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | u64 used, bool system_chunk) | 
|  | { | 
|  | u64 thresh = div_factor_fine(space_info->total_bytes, 98); | 
|  |  | 
|  | /* If we're just plain full then async reclaim just slows us down. */ | 
|  | if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh) | 
|  | return 0; | 
|  |  | 
|  | if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info, | 
|  | system_chunk)) | 
|  | return 0; | 
|  |  | 
|  | return (used >= thresh && !btrfs_fs_closing(fs_info) && | 
|  | !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state)); | 
|  | } | 
|  |  | 
|  | static void wake_all_tickets(struct list_head *head) | 
|  | { | 
|  | struct reserve_ticket *ticket; | 
|  |  | 
|  | while (!list_empty(head)) { | 
|  | ticket = list_first_entry(head, struct reserve_ticket, list); | 
|  | list_del_init(&ticket->list); | 
|  | ticket->error = -ENOSPC; | 
|  | wake_up(&ticket->wait); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is for normal flushers, we can wait all goddamned day if we want to.  We | 
|  | * will loop and continuously try to flush as long as we are making progress. | 
|  | * We count progress as clearing off tickets each time we have to loop. | 
|  | */ | 
|  | static void btrfs_async_reclaim_metadata_space(struct work_struct *work) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info; | 
|  | struct btrfs_space_info *space_info; | 
|  | u64 to_reclaim; | 
|  | int flush_state; | 
|  | int commit_cycles = 0; | 
|  | u64 last_tickets_id; | 
|  |  | 
|  | fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work); | 
|  | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, | 
|  | false); | 
|  | if (!to_reclaim) { | 
|  | space_info->flush = 0; | 
|  | spin_unlock(&space_info->lock); | 
|  | return; | 
|  | } | 
|  | last_tickets_id = space_info->tickets_id; | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | flush_state = FLUSH_DELAYED_ITEMS_NR; | 
|  | do { | 
|  | flush_space(fs_info, space_info, to_reclaim, flush_state); | 
|  | spin_lock(&space_info->lock); | 
|  | if (list_empty(&space_info->tickets)) { | 
|  | space_info->flush = 0; | 
|  | spin_unlock(&space_info->lock); | 
|  | return; | 
|  | } | 
|  | to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, | 
|  | space_info, | 
|  | false); | 
|  | if (last_tickets_id == space_info->tickets_id) { | 
|  | flush_state++; | 
|  | } else { | 
|  | last_tickets_id = space_info->tickets_id; | 
|  | flush_state = FLUSH_DELAYED_ITEMS_NR; | 
|  | if (commit_cycles) | 
|  | commit_cycles--; | 
|  | } | 
|  |  | 
|  | if (flush_state > COMMIT_TRANS) { | 
|  | commit_cycles++; | 
|  | if (commit_cycles > 2) { | 
|  | wake_all_tickets(&space_info->tickets); | 
|  | space_info->flush = 0; | 
|  | } else { | 
|  | flush_state = FLUSH_DELAYED_ITEMS_NR; | 
|  | } | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  | } while (flush_state <= COMMIT_TRANS); | 
|  | } | 
|  |  | 
|  | void btrfs_init_async_reclaim_work(struct work_struct *work) | 
|  | { | 
|  | INIT_WORK(work, btrfs_async_reclaim_metadata_space); | 
|  | } | 
|  |  | 
|  | static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | struct reserve_ticket *ticket) | 
|  | { | 
|  | u64 to_reclaim; | 
|  | int flush_state = FLUSH_DELAYED_ITEMS_NR; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info, | 
|  | false); | 
|  | if (!to_reclaim) { | 
|  | spin_unlock(&space_info->lock); | 
|  | return; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | do { | 
|  | flush_space(fs_info, space_info, to_reclaim, flush_state); | 
|  | flush_state++; | 
|  | spin_lock(&space_info->lock); | 
|  | if (ticket->bytes == 0) { | 
|  | spin_unlock(&space_info->lock); | 
|  | return; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | /* | 
|  | * Priority flushers can't wait on delalloc without | 
|  | * deadlocking. | 
|  | */ | 
|  | if (flush_state == FLUSH_DELALLOC || | 
|  | flush_state == FLUSH_DELALLOC_WAIT) | 
|  | flush_state = ALLOC_CHUNK; | 
|  | } while (flush_state < COMMIT_TRANS); | 
|  | } | 
|  |  | 
|  | static int wait_reserve_ticket(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | struct reserve_ticket *ticket, u64 orig_bytes) | 
|  |  | 
|  | { | 
|  | DEFINE_WAIT(wait); | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | while (ticket->bytes > 0 && ticket->error == 0) { | 
|  | ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE); | 
|  | if (ret) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | finish_wait(&ticket->wait, &wait); | 
|  | spin_lock(&space_info->lock); | 
|  | } | 
|  | if (!ret) | 
|  | ret = ticket->error; | 
|  | if (!list_empty(&ticket->list)) | 
|  | list_del_init(&ticket->list); | 
|  | if (ticket->bytes && ticket->bytes < orig_bytes) { | 
|  | u64 num_bytes = orig_bytes - ticket->bytes; | 
|  | space_info->bytes_may_use -= num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | space_info->flags, num_bytes, 0); | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space | 
|  | * @root - the root we're allocating for | 
|  | * @space_info - the space info we want to allocate from | 
|  | * @orig_bytes - the number of bytes we want | 
|  | * @flush - whether or not we can flush to make our reservation | 
|  | * | 
|  | * This will reserve orig_bytes number of bytes from the space info associated | 
|  | * with the block_rsv.  If there is not enough space it will make an attempt to | 
|  | * flush out space to make room.  It will do this by flushing delalloc if | 
|  | * possible or committing the transaction.  If flush is 0 then no attempts to | 
|  | * regain reservations will be made and this will fail if there is not enough | 
|  | * space already. | 
|  | */ | 
|  | static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | u64 orig_bytes, | 
|  | enum btrfs_reserve_flush_enum flush, | 
|  | bool system_chunk) | 
|  | { | 
|  | struct reserve_ticket ticket; | 
|  | u64 used; | 
|  | int ret = 0; | 
|  |  | 
|  | ASSERT(orig_bytes); | 
|  | ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL); | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | ret = -ENOSPC; | 
|  | used = btrfs_space_info_used(space_info, true); | 
|  |  | 
|  | /* | 
|  | * If we have enough space then hooray, make our reservation and carry | 
|  | * on.  If not see if we can overcommit, and if we can, hooray carry on. | 
|  | * If not things get more complicated. | 
|  | */ | 
|  | if (used + orig_bytes <= space_info->total_bytes) { | 
|  | space_info->bytes_may_use += orig_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | space_info->flags, orig_bytes, 1); | 
|  | ret = 0; | 
|  | } else if (can_overcommit(fs_info, space_info, orig_bytes, flush, | 
|  | system_chunk)) { | 
|  | space_info->bytes_may_use += orig_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | space_info->flags, orig_bytes, 1); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we couldn't make a reservation then setup our reservation ticket | 
|  | * and kick the async worker if it's not already running. | 
|  | * | 
|  | * If we are a priority flusher then we just need to add our ticket to | 
|  | * the list and we will do our own flushing further down. | 
|  | */ | 
|  | if (ret && flush != BTRFS_RESERVE_NO_FLUSH) { | 
|  | ticket.bytes = orig_bytes; | 
|  | ticket.error = 0; | 
|  | init_waitqueue_head(&ticket.wait); | 
|  | if (flush == BTRFS_RESERVE_FLUSH_ALL) { | 
|  | list_add_tail(&ticket.list, &space_info->tickets); | 
|  | if (!space_info->flush) { | 
|  | space_info->flush = 1; | 
|  | trace_btrfs_trigger_flush(fs_info, | 
|  | space_info->flags, | 
|  | orig_bytes, flush, | 
|  | "enospc"); | 
|  | queue_work(system_unbound_wq, | 
|  | &fs_info->async_reclaim_work); | 
|  | } | 
|  | } else { | 
|  | list_add_tail(&ticket.list, | 
|  | &space_info->priority_tickets); | 
|  | } | 
|  | } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | used += orig_bytes; | 
|  | /* | 
|  | * We will do the space reservation dance during log replay, | 
|  | * which means we won't have fs_info->fs_root set, so don't do | 
|  | * the async reclaim as we will panic. | 
|  | */ | 
|  | if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) && | 
|  | need_do_async_reclaim(fs_info, space_info, | 
|  | used, system_chunk) && | 
|  | !work_busy(&fs_info->async_reclaim_work)) { | 
|  | trace_btrfs_trigger_flush(fs_info, space_info->flags, | 
|  | orig_bytes, flush, "preempt"); | 
|  | queue_work(system_unbound_wq, | 
|  | &fs_info->async_reclaim_work); | 
|  | } | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  | if (!ret || flush == BTRFS_RESERVE_NO_FLUSH) | 
|  | return ret; | 
|  |  | 
|  | if (flush == BTRFS_RESERVE_FLUSH_ALL) | 
|  | return wait_reserve_ticket(fs_info, space_info, &ticket, | 
|  | orig_bytes); | 
|  |  | 
|  | ret = 0; | 
|  | priority_reclaim_metadata_space(fs_info, space_info, &ticket); | 
|  | spin_lock(&space_info->lock); | 
|  | if (ticket.bytes) { | 
|  | if (ticket.bytes < orig_bytes) { | 
|  | u64 num_bytes = orig_bytes - ticket.bytes; | 
|  | space_info->bytes_may_use -= num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | space_info->flags, | 
|  | num_bytes, 0); | 
|  |  | 
|  | } | 
|  | list_del_init(&ticket.list); | 
|  | ret = -ENOSPC; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  | ASSERT(list_empty(&ticket.list)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space | 
|  | * @root - the root we're allocating for | 
|  | * @block_rsv - the block_rsv we're allocating for | 
|  | * @orig_bytes - the number of bytes we want | 
|  | * @flush - whether or not we can flush to make our reservation | 
|  | * | 
|  | * This will reserve orgi_bytes number of bytes from the space info associated | 
|  | * with the block_rsv.  If there is not enough space it will make an attempt to | 
|  | * flush out space to make room.  It will do this by flushing delalloc if | 
|  | * possible or committing the transaction.  If flush is 0 then no attempts to | 
|  | * regain reservations will be made and this will fail if there is not enough | 
|  | * space already. | 
|  | */ | 
|  | static int reserve_metadata_bytes(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | u64 orig_bytes, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | int ret; | 
|  | bool system_chunk = (root == fs_info->chunk_root); | 
|  |  | 
|  | ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info, | 
|  | orig_bytes, flush, system_chunk); | 
|  | if (ret == -ENOSPC && | 
|  | unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) { | 
|  | if (block_rsv != global_rsv && | 
|  | !block_rsv_use_bytes(global_rsv, orig_bytes)) | 
|  | ret = 0; | 
|  | } | 
|  | if (ret == -ENOSPC) { | 
|  | trace_btrfs_space_reservation(fs_info, "space_info:enospc", | 
|  | block_rsv->space_info->flags, | 
|  | orig_bytes, 1); | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) | 
|  | dump_space_info(fs_info, block_rsv->space_info, | 
|  | orig_bytes, 0); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_rsv *get_block_rsv( | 
|  | const struct btrfs_trans_handle *trans, | 
|  | const struct btrfs_root *root) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_rsv *block_rsv = NULL; | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) || | 
|  | (root == fs_info->csum_root && trans->adding_csums) || | 
|  | (root == fs_info->uuid_root)) | 
|  | block_rsv = trans->block_rsv; | 
|  |  | 
|  | if (!block_rsv) | 
|  | block_rsv = root->block_rsv; | 
|  |  | 
|  | if (!block_rsv) | 
|  | block_rsv = &fs_info->empty_block_rsv; | 
|  |  | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | int ret = -ENOSPC; | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (block_rsv->reserved >= num_bytes) { | 
|  | block_rsv->reserved -= num_bytes; | 
|  | if (block_rsv->reserved < block_rsv->size) | 
|  | block_rsv->full = 0; | 
|  | ret = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes, int update_size) | 
|  | { | 
|  | spin_lock(&block_rsv->lock); | 
|  | block_rsv->reserved += num_bytes; | 
|  | if (update_size) | 
|  | block_rsv->size += num_bytes; | 
|  | else if (block_rsv->reserved >= block_rsv->size) | 
|  | block_rsv->full = 1; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | } | 
|  |  | 
|  | int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *dest, u64 num_bytes, | 
|  | int min_factor) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | u64 min_bytes; | 
|  |  | 
|  | if (global_rsv->space_info != dest->space_info) | 
|  | return -ENOSPC; | 
|  |  | 
|  | spin_lock(&global_rsv->lock); | 
|  | min_bytes = div_factor(global_rsv->size, min_factor); | 
|  | if (global_rsv->reserved < min_bytes + num_bytes) { | 
|  | spin_unlock(&global_rsv->lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | global_rsv->reserved -= num_bytes; | 
|  | if (global_rsv->reserved < global_rsv->size) | 
|  | global_rsv->full = 0; | 
|  | spin_unlock(&global_rsv->lock); | 
|  |  | 
|  | block_rsv_add_bytes(dest, num_bytes, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is for space we already have accounted in space_info->bytes_may_use, so | 
|  | * basically when we're returning space from block_rsv's. | 
|  | */ | 
|  | static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct reserve_ticket *ticket; | 
|  | struct list_head *head; | 
|  | u64 used; | 
|  | enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH; | 
|  | bool check_overcommit = false; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | head = &space_info->priority_tickets; | 
|  |  | 
|  | /* | 
|  | * If we are over our limit then we need to check and see if we can | 
|  | * overcommit, and if we can't then we just need to free up our space | 
|  | * and not satisfy any requests. | 
|  | */ | 
|  | used = btrfs_space_info_used(space_info, true); | 
|  | if (used - num_bytes >= space_info->total_bytes) | 
|  | check_overcommit = true; | 
|  | again: | 
|  | while (!list_empty(head) && num_bytes) { | 
|  | ticket = list_first_entry(head, struct reserve_ticket, | 
|  | list); | 
|  | /* | 
|  | * We use 0 bytes because this space is already reserved, so | 
|  | * adding the ticket space would be a double count. | 
|  | */ | 
|  | if (check_overcommit && | 
|  | !can_overcommit(fs_info, space_info, 0, flush, false)) | 
|  | break; | 
|  | if (num_bytes >= ticket->bytes) { | 
|  | list_del_init(&ticket->list); | 
|  | num_bytes -= ticket->bytes; | 
|  | ticket->bytes = 0; | 
|  | space_info->tickets_id++; | 
|  | wake_up(&ticket->wait); | 
|  | } else { | 
|  | ticket->bytes -= num_bytes; | 
|  | num_bytes = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num_bytes && head == &space_info->priority_tickets) { | 
|  | head = &space_info->tickets; | 
|  | flush = BTRFS_RESERVE_FLUSH_ALL; | 
|  | goto again; | 
|  | } | 
|  | space_info->bytes_may_use -= num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | space_info->flags, num_bytes, 0); | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is for newly allocated space that isn't accounted in | 
|  | * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent | 
|  | * we use this helper. | 
|  | */ | 
|  | static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct reserve_ticket *ticket; | 
|  | struct list_head *head = &space_info->priority_tickets; | 
|  |  | 
|  | again: | 
|  | while (!list_empty(head) && num_bytes) { | 
|  | ticket = list_first_entry(head, struct reserve_ticket, | 
|  | list); | 
|  | if (num_bytes >= ticket->bytes) { | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | space_info->flags, | 
|  | ticket->bytes, 1); | 
|  | list_del_init(&ticket->list); | 
|  | num_bytes -= ticket->bytes; | 
|  | space_info->bytes_may_use += ticket->bytes; | 
|  | ticket->bytes = 0; | 
|  | space_info->tickets_id++; | 
|  | wake_up(&ticket->wait); | 
|  | } else { | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | space_info->flags, | 
|  | num_bytes, 1); | 
|  | space_info->bytes_may_use += num_bytes; | 
|  | ticket->bytes -= num_bytes; | 
|  | num_bytes = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (num_bytes && head == &space_info->priority_tickets) { | 
|  | head = &space_info->tickets; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  |  | 
|  | static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | struct btrfs_block_rsv *dest, u64 num_bytes, | 
|  | u64 *qgroup_to_release_ret) | 
|  | { | 
|  | struct btrfs_space_info *space_info = block_rsv->space_info; | 
|  | u64 qgroup_to_release = 0; | 
|  | u64 ret; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (num_bytes == (u64)-1) { | 
|  | num_bytes = block_rsv->size; | 
|  | qgroup_to_release = block_rsv->qgroup_rsv_size; | 
|  | } | 
|  | block_rsv->size -= num_bytes; | 
|  | if (block_rsv->reserved >= block_rsv->size) { | 
|  | num_bytes = block_rsv->reserved - block_rsv->size; | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | block_rsv->full = 1; | 
|  | } else { | 
|  | num_bytes = 0; | 
|  | } | 
|  | if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { | 
|  | qgroup_to_release = block_rsv->qgroup_rsv_reserved - | 
|  | block_rsv->qgroup_rsv_size; | 
|  | block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; | 
|  | } else { | 
|  | qgroup_to_release = 0; | 
|  | } | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | ret = num_bytes; | 
|  | if (num_bytes > 0) { | 
|  | if (dest) { | 
|  | spin_lock(&dest->lock); | 
|  | if (!dest->full) { | 
|  | u64 bytes_to_add; | 
|  |  | 
|  | bytes_to_add = dest->size - dest->reserved; | 
|  | bytes_to_add = min(num_bytes, bytes_to_add); | 
|  | dest->reserved += bytes_to_add; | 
|  | if (dest->reserved >= dest->size) | 
|  | dest->full = 1; | 
|  | num_bytes -= bytes_to_add; | 
|  | } | 
|  | spin_unlock(&dest->lock); | 
|  | } | 
|  | if (num_bytes) | 
|  | space_info_add_old_bytes(fs_info, space_info, | 
|  | num_bytes); | 
|  | } | 
|  | if (qgroup_to_release_ret) | 
|  | *qgroup_to_release_ret = qgroup_to_release; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, | 
|  | struct btrfs_block_rsv *dst, u64 num_bytes, | 
|  | int update_size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = block_rsv_use_bytes(src, num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | block_rsv_add_bytes(dst, num_bytes, update_size); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) | 
|  | { | 
|  | memset(rsv, 0, sizeof(*rsv)); | 
|  | spin_lock_init(&rsv->lock); | 
|  | rsv->type = type; | 
|  | } | 
|  |  | 
|  | void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *rsv, | 
|  | unsigned short type) | 
|  | { | 
|  | btrfs_init_block_rsv(rsv, type); | 
|  | rsv->space_info = __find_space_info(fs_info, | 
|  | BTRFS_BLOCK_GROUP_METADATA); | 
|  | } | 
|  |  | 
|  | struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | unsigned short type) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  |  | 
|  | block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); | 
|  | if (!block_rsv) | 
|  | return NULL; | 
|  |  | 
|  | btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); | 
|  | return block_rsv; | 
|  | } | 
|  |  | 
|  | void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | if (!rsv) | 
|  | return; | 
|  | btrfs_block_rsv_release(fs_info, rsv, (u64)-1); | 
|  | kfree(rsv); | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_add(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, u64 num_bytes, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (num_bytes == 0) | 
|  | return 0; | 
|  |  | 
|  | ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); | 
|  | if (!ret) { | 
|  | block_rsv_add_bytes(block_rsv, num_bytes, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) | 
|  | { | 
|  | u64 num_bytes = 0; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | if (!block_rsv) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | num_bytes = div_factor(block_rsv->size, min_factor); | 
|  | if (block_rsv->reserved >= num_bytes) | 
|  | ret = 0; | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_block_rsv_refill(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, u64 min_reserved, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | u64 num_bytes = 0; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | if (!block_rsv) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | num_bytes = min_reserved; | 
|  | if (block_rsv->reserved >= num_bytes) | 
|  | ret = 0; | 
|  | else | 
|  | num_bytes -= block_rsv->reserved; | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | if (!ret) | 
|  | return 0; | 
|  |  | 
|  | ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); | 
|  | if (!ret) { | 
|  | block_rsv_add_bytes(block_rsv, num_bytes, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_inode_rsv_refill - refill the inode block rsv. | 
|  | * @inode - the inode we are refilling. | 
|  | * @flush - the flusing restriction. | 
|  | * | 
|  | * Essentially the same as btrfs_block_rsv_refill, except it uses the | 
|  | * block_rsv->size as the minimum size.  We'll either refill the missing amount | 
|  | * or return if we already have enough space.  This will also handle the resreve | 
|  | * tracepoint for the reserved amount. | 
|  | */ | 
|  | static int btrfs_inode_rsv_refill(struct btrfs_inode *inode, | 
|  | enum btrfs_reserve_flush_enum flush) | 
|  | { | 
|  | struct btrfs_root *root = inode->root; | 
|  | struct btrfs_block_rsv *block_rsv = &inode->block_rsv; | 
|  | u64 num_bytes = 0; | 
|  | u64 qgroup_num_bytes = 0; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | if (block_rsv->reserved < block_rsv->size) | 
|  | num_bytes = block_rsv->size - block_rsv->reserved; | 
|  | if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size) | 
|  | qgroup_num_bytes = block_rsv->qgroup_rsv_size - | 
|  | block_rsv->qgroup_rsv_reserved; | 
|  | spin_unlock(&block_rsv->lock); | 
|  |  | 
|  | if (num_bytes == 0) | 
|  | return 0; | 
|  |  | 
|  | ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush); | 
|  | if (!ret) { | 
|  | block_rsv_add_bytes(block_rsv, num_bytes, 0); | 
|  | trace_btrfs_space_reservation(root->fs_info, "delalloc", | 
|  | btrfs_ino(inode), num_bytes, 1); | 
|  |  | 
|  | /* Don't forget to increase qgroup_rsv_reserved */ | 
|  | spin_lock(&block_rsv->lock); | 
|  | block_rsv->qgroup_rsv_reserved += qgroup_num_bytes; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | } else | 
|  | btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_inode_rsv_release - release any excessive reservation. | 
|  | * @inode - the inode we need to release from. | 
|  | * @qgroup_free - free or convert qgroup meta. | 
|  | *   Unlike normal operation, qgroup meta reservation needs to know if we are | 
|  | *   freeing qgroup reservation or just converting it into per-trans.  Normally | 
|  | *   @qgroup_free is true for error handling, and false for normal release. | 
|  | * | 
|  | * This is the same as btrfs_block_rsv_release, except that it handles the | 
|  | * tracepoint for the reservation. | 
|  | */ | 
|  | static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_block_rsv *block_rsv = &inode->block_rsv; | 
|  | u64 released = 0; | 
|  | u64 qgroup_to_release = 0; | 
|  |  | 
|  | /* | 
|  | * Since we statically set the block_rsv->size we just want to say we | 
|  | * are releasing 0 bytes, and then we'll just get the reservation over | 
|  | * the size free'd. | 
|  | */ | 
|  | released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0, | 
|  | &qgroup_to_release); | 
|  | if (released > 0) | 
|  | trace_btrfs_space_reservation(fs_info, "delalloc", | 
|  | btrfs_ino(inode), released, 0); | 
|  | if (qgroup_free) | 
|  | btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release); | 
|  | else | 
|  | btrfs_qgroup_convert_reserved_meta(inode->root, | 
|  | qgroup_to_release); | 
|  | } | 
|  |  | 
|  | void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  |  | 
|  | if (global_rsv == block_rsv || | 
|  | block_rsv->space_info != global_rsv->space_info) | 
|  | global_rsv = NULL; | 
|  | block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL); | 
|  | } | 
|  |  | 
|  | static void update_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_space_info *sinfo = block_rsv->space_info; | 
|  | u64 num_bytes; | 
|  |  | 
|  | /* | 
|  | * The global block rsv is based on the size of the extent tree, the | 
|  | * checksum tree and the root tree.  If the fs is empty we want to set | 
|  | * it to a minimal amount for safety. | 
|  | */ | 
|  | num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + | 
|  | btrfs_root_used(&fs_info->csum_root->root_item) + | 
|  | btrfs_root_used(&fs_info->tree_root->root_item); | 
|  | num_bytes = max_t(u64, num_bytes, SZ_16M); | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&block_rsv->lock); | 
|  |  | 
|  | block_rsv->size = min_t(u64, num_bytes, SZ_512M); | 
|  |  | 
|  | if (block_rsv->reserved < block_rsv->size) { | 
|  | num_bytes = btrfs_space_info_used(sinfo, true); | 
|  | if (sinfo->total_bytes > num_bytes) { | 
|  | num_bytes = sinfo->total_bytes - num_bytes; | 
|  | num_bytes = min(num_bytes, | 
|  | block_rsv->size - block_rsv->reserved); | 
|  | block_rsv->reserved += num_bytes; | 
|  | sinfo->bytes_may_use += num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | sinfo->flags, num_bytes, | 
|  | 1); | 
|  | } | 
|  | } else if (block_rsv->reserved > block_rsv->size) { | 
|  | num_bytes = block_rsv->reserved - block_rsv->size; | 
|  | sinfo->bytes_may_use -= num_bytes; | 
|  | trace_btrfs_space_reservation(fs_info, "space_info", | 
|  | sinfo->flags, num_bytes, 0); | 
|  | block_rsv->reserved = block_rsv->size; | 
|  | } | 
|  |  | 
|  | if (block_rsv->reserved == block_rsv->size) | 
|  | block_rsv->full = 1; | 
|  | else | 
|  | block_rsv->full = 0; | 
|  |  | 
|  | spin_unlock(&block_rsv->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | } | 
|  |  | 
|  | static void init_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  |  | 
|  | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); | 
|  | fs_info->chunk_block_rsv.space_info = space_info; | 
|  |  | 
|  | space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); | 
|  | fs_info->global_block_rsv.space_info = space_info; | 
|  | fs_info->trans_block_rsv.space_info = space_info; | 
|  | fs_info->empty_block_rsv.space_info = space_info; | 
|  | fs_info->delayed_block_rsv.space_info = space_info; | 
|  |  | 
|  | fs_info->extent_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->csum_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; | 
|  | if (fs_info->quota_root) | 
|  | fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; | 
|  | fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; | 
|  |  | 
|  | update_global_block_rsv(fs_info); | 
|  | } | 
|  |  | 
|  | static void release_global_block_rsv(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL, | 
|  | (u64)-1, NULL); | 
|  | WARN_ON(fs_info->trans_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->trans_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->chunk_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->chunk_block_rsv.reserved > 0); | 
|  | WARN_ON(fs_info->delayed_block_rsv.size > 0); | 
|  | WARN_ON(fs_info->delayed_block_rsv.reserved > 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * To be called after all the new block groups attached to the transaction | 
|  | * handle have been created (btrfs_create_pending_block_groups()). | 
|  | */ | 
|  | void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  |  | 
|  | if (!trans->chunk_bytes_reserved) | 
|  | return; | 
|  |  | 
|  | WARN_ON_ONCE(!list_empty(&trans->new_bgs)); | 
|  |  | 
|  | block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL, | 
|  | trans->chunk_bytes_reserved, NULL); | 
|  | trans->chunk_bytes_reserved = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation | 
|  | * root: the root of the parent directory | 
|  | * rsv: block reservation | 
|  | * items: the number of items that we need do reservation | 
|  | * use_global_rsv: allow fallback to the global block reservation | 
|  | * | 
|  | * This function is used to reserve the space for snapshot/subvolume | 
|  | * creation and deletion. Those operations are different with the | 
|  | * common file/directory operations, they change two fs/file trees | 
|  | * and root tree, the number of items that the qgroup reserves is | 
|  | * different with the free space reservation. So we can not use | 
|  | * the space reservation mechanism in start_transaction(). | 
|  | */ | 
|  | int btrfs_subvolume_reserve_metadata(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *rsv, int items, | 
|  | bool use_global_rsv) | 
|  | { | 
|  | u64 qgroup_num_bytes = 0; | 
|  | u64 num_bytes; | 
|  | int ret; | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  |  | 
|  | if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { | 
|  | /* One for parent inode, two for dir entries */ | 
|  | qgroup_num_bytes = 3 * fs_info->nodesize; | 
|  | ret = btrfs_qgroup_reserve_meta_prealloc(root, | 
|  | qgroup_num_bytes, true); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | num_bytes = btrfs_calc_trans_metadata_size(fs_info, items); | 
|  | rsv->space_info = __find_space_info(fs_info, | 
|  | BTRFS_BLOCK_GROUP_METADATA); | 
|  | ret = btrfs_block_rsv_add(root, rsv, num_bytes, | 
|  | BTRFS_RESERVE_FLUSH_ALL); | 
|  |  | 
|  | if (ret == -ENOSPC && use_global_rsv) | 
|  | ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1); | 
|  |  | 
|  | if (ret && qgroup_num_bytes) | 
|  | btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *rsv) | 
|  | { | 
|  | btrfs_block_rsv_release(fs_info, rsv, (u64)-1); | 
|  | } | 
|  |  | 
|  | static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_inode *inode) | 
|  | { | 
|  | struct btrfs_block_rsv *block_rsv = &inode->block_rsv; | 
|  | u64 reserve_size = 0; | 
|  | u64 qgroup_rsv_size = 0; | 
|  | u64 csum_leaves; | 
|  | unsigned outstanding_extents; | 
|  |  | 
|  | lockdep_assert_held(&inode->lock); | 
|  | outstanding_extents = inode->outstanding_extents; | 
|  | if (outstanding_extents) | 
|  | reserve_size = btrfs_calc_trans_metadata_size(fs_info, | 
|  | outstanding_extents + 1); | 
|  | csum_leaves = btrfs_csum_bytes_to_leaves(fs_info, | 
|  | inode->csum_bytes); | 
|  | reserve_size += btrfs_calc_trans_metadata_size(fs_info, | 
|  | csum_leaves); | 
|  | /* | 
|  | * For qgroup rsv, the calculation is very simple: | 
|  | * account one nodesize for each outstanding extent | 
|  | * | 
|  | * This is overestimating in most cases. | 
|  | */ | 
|  | qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize; | 
|  |  | 
|  | spin_lock(&block_rsv->lock); | 
|  | block_rsv->size = reserve_size; | 
|  | block_rsv->qgroup_rsv_size = qgroup_rsv_size; | 
|  | spin_unlock(&block_rsv->lock); | 
|  | } | 
|  |  | 
|  | int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | unsigned nr_extents; | 
|  | enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL; | 
|  | int ret = 0; | 
|  | bool delalloc_lock = true; | 
|  |  | 
|  | /* If we are a free space inode we need to not flush since we will be in | 
|  | * the middle of a transaction commit.  We also don't need the delalloc | 
|  | * mutex since we won't race with anybody.  We need this mostly to make | 
|  | * lockdep shut its filthy mouth. | 
|  | * | 
|  | * If we have a transaction open (can happen if we call truncate_block | 
|  | * from truncate), then we need FLUSH_LIMIT so we don't deadlock. | 
|  | */ | 
|  | if (btrfs_is_free_space_inode(inode)) { | 
|  | flush = BTRFS_RESERVE_NO_FLUSH; | 
|  | delalloc_lock = false; | 
|  | } else { | 
|  | if (current->journal_info) | 
|  | flush = BTRFS_RESERVE_FLUSH_LIMIT; | 
|  |  | 
|  | if (btrfs_transaction_in_commit(fs_info)) | 
|  | schedule_timeout(1); | 
|  | } | 
|  |  | 
|  | if (delalloc_lock) | 
|  | mutex_lock(&inode->delalloc_mutex); | 
|  |  | 
|  | num_bytes = ALIGN(num_bytes, fs_info->sectorsize); | 
|  |  | 
|  | /* Add our new extents and calculate the new rsv size. */ | 
|  | spin_lock(&inode->lock); | 
|  | nr_extents = count_max_extents(num_bytes); | 
|  | btrfs_mod_outstanding_extents(inode, nr_extents); | 
|  | inode->csum_bytes += num_bytes; | 
|  | btrfs_calculate_inode_block_rsv_size(fs_info, inode); | 
|  | spin_unlock(&inode->lock); | 
|  |  | 
|  | ret = btrfs_inode_rsv_refill(inode, flush); | 
|  | if (unlikely(ret)) | 
|  | goto out_fail; | 
|  |  | 
|  | if (delalloc_lock) | 
|  | mutex_unlock(&inode->delalloc_mutex); | 
|  | return 0; | 
|  |  | 
|  | out_fail: | 
|  | spin_lock(&inode->lock); | 
|  | nr_extents = count_max_extents(num_bytes); | 
|  | btrfs_mod_outstanding_extents(inode, -nr_extents); | 
|  | inode->csum_bytes -= num_bytes; | 
|  | btrfs_calculate_inode_block_rsv_size(fs_info, inode); | 
|  | spin_unlock(&inode->lock); | 
|  |  | 
|  | btrfs_inode_rsv_release(inode, true); | 
|  | if (delalloc_lock) | 
|  | mutex_unlock(&inode->delalloc_mutex); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_delalloc_release_metadata - release a metadata reservation for an inode | 
|  | * @inode: the inode to release the reservation for. | 
|  | * @num_bytes: the number of bytes we are releasing. | 
|  | * @qgroup_free: free qgroup reservation or convert it to per-trans reservation | 
|  | * | 
|  | * This will release the metadata reservation for an inode.  This can be called | 
|  | * once we complete IO for a given set of bytes to release their metadata | 
|  | * reservations, or on error for the same reason. | 
|  | */ | 
|  | void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes, | 
|  | bool qgroup_free) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  |  | 
|  | num_bytes = ALIGN(num_bytes, fs_info->sectorsize); | 
|  | spin_lock(&inode->lock); | 
|  | inode->csum_bytes -= num_bytes; | 
|  | btrfs_calculate_inode_block_rsv_size(fs_info, inode); | 
|  | spin_unlock(&inode->lock); | 
|  |  | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return; | 
|  |  | 
|  | btrfs_inode_rsv_release(inode, qgroup_free); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_delalloc_release_extents - release our outstanding_extents | 
|  | * @inode: the inode to balance the reservation for. | 
|  | * @num_bytes: the number of bytes we originally reserved with | 
|  | * @qgroup_free: do we need to free qgroup meta reservation or convert them. | 
|  | * | 
|  | * When we reserve space we increase outstanding_extents for the extents we may | 
|  | * add.  Once we've set the range as delalloc or created our ordered extents we | 
|  | * have outstanding_extents to track the real usage, so we use this to free our | 
|  | * temporarily tracked outstanding_extents.  This _must_ be used in conjunction | 
|  | * with btrfs_delalloc_reserve_metadata. | 
|  | */ | 
|  | void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = inode->root->fs_info; | 
|  | unsigned num_extents; | 
|  |  | 
|  | spin_lock(&inode->lock); | 
|  | num_extents = count_max_extents(num_bytes); | 
|  | btrfs_mod_outstanding_extents(inode, -num_extents); | 
|  | btrfs_calculate_inode_block_rsv_size(fs_info, inode); | 
|  | spin_unlock(&inode->lock); | 
|  |  | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return; | 
|  |  | 
|  | btrfs_inode_rsv_release(inode, true); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_delalloc_reserve_space - reserve data and metadata space for | 
|  | * delalloc | 
|  | * @inode: inode we're writing to | 
|  | * @start: start range we are writing to | 
|  | * @len: how long the range we are writing to | 
|  | * @reserved: mandatory parameter, record actually reserved qgroup ranges of | 
|  | * 	      current reservation. | 
|  | * | 
|  | * This will do the following things | 
|  | * | 
|  | * o reserve space in data space info for num bytes | 
|  | *   and reserve precious corresponding qgroup space | 
|  | *   (Done in check_data_free_space) | 
|  | * | 
|  | * o reserve space for metadata space, based on the number of outstanding | 
|  | *   extents and how much csums will be needed | 
|  | *   also reserve metadata space in a per root over-reserve method. | 
|  | * o add to the inodes->delalloc_bytes | 
|  | * o add it to the fs_info's delalloc inodes list. | 
|  | *   (Above 3 all done in delalloc_reserve_metadata) | 
|  | * | 
|  | * Return 0 for success | 
|  | * Return <0 for error(-ENOSPC or -EQUOT) | 
|  | */ | 
|  | int btrfs_delalloc_reserve_space(struct inode *inode, | 
|  | struct extent_changeset **reserved, u64 start, u64 len) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_check_data_free_space(inode, reserved, start, len); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  | ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len); | 
|  | if (ret < 0) | 
|  | btrfs_free_reserved_data_space(inode, *reserved, start, len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_delalloc_release_space - release data and metadata space for delalloc | 
|  | * @inode: inode we're releasing space for | 
|  | * @start: start position of the space already reserved | 
|  | * @len: the len of the space already reserved | 
|  | * @release_bytes: the len of the space we consumed or didn't use | 
|  | * | 
|  | * This function will release the metadata space that was not used and will | 
|  | * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes | 
|  | * list if there are no delalloc bytes left. | 
|  | * Also it will handle the qgroup reserved space. | 
|  | */ | 
|  | void btrfs_delalloc_release_space(struct inode *inode, | 
|  | struct extent_changeset *reserved, | 
|  | u64 start, u64 len, bool qgroup_free) | 
|  | { | 
|  | btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free); | 
|  | btrfs_free_reserved_data_space(inode, reserved, start, len); | 
|  | } | 
|  |  | 
|  | static int update_block_group(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_fs_info *info, u64 bytenr, | 
|  | u64 num_bytes, int alloc) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | u64 total = num_bytes; | 
|  | u64 old_val; | 
|  | u64 byte_in_group; | 
|  | int factor; | 
|  |  | 
|  | /* block accounting for super block */ | 
|  | spin_lock(&info->delalloc_root_lock); | 
|  | old_val = btrfs_super_bytes_used(info->super_copy); | 
|  | if (alloc) | 
|  | old_val += num_bytes; | 
|  | else | 
|  | old_val -= num_bytes; | 
|  | btrfs_set_super_bytes_used(info->super_copy, old_val); | 
|  | spin_unlock(&info->delalloc_root_lock); | 
|  |  | 
|  | while (total) { | 
|  | cache = btrfs_lookup_block_group(info, bytenr); | 
|  | if (!cache) | 
|  | return -ENOENT; | 
|  | factor = btrfs_bg_type_to_factor(cache->flags); | 
|  |  | 
|  | /* | 
|  | * If this block group has free space cache written out, we | 
|  | * need to make sure to load it if we are removing space.  This | 
|  | * is because we need the unpinning stage to actually add the | 
|  | * space back to the block group, otherwise we will leak space. | 
|  | */ | 
|  | if (!alloc && cache->cached == BTRFS_CACHE_NO) | 
|  | cache_block_group(cache, 1); | 
|  |  | 
|  | byte_in_group = bytenr - cache->key.objectid; | 
|  | WARN_ON(byte_in_group > cache->key.offset); | 
|  |  | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  |  | 
|  | if (btrfs_test_opt(info, SPACE_CACHE) && | 
|  | cache->disk_cache_state < BTRFS_DC_CLEAR) | 
|  | cache->disk_cache_state = BTRFS_DC_CLEAR; | 
|  |  | 
|  | old_val = btrfs_block_group_used(&cache->item); | 
|  | num_bytes = min(total, cache->key.offset - byte_in_group); | 
|  | if (alloc) { | 
|  | old_val += num_bytes; | 
|  | btrfs_set_block_group_used(&cache->item, old_val); | 
|  | cache->reserved -= num_bytes; | 
|  | cache->space_info->bytes_reserved -= num_bytes; | 
|  | cache->space_info->bytes_used += num_bytes; | 
|  | cache->space_info->disk_used += num_bytes * factor; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  | } else { | 
|  | old_val -= num_bytes; | 
|  | btrfs_set_block_group_used(&cache->item, old_val); | 
|  | cache->pinned += num_bytes; | 
|  | cache->space_info->bytes_pinned += num_bytes; | 
|  | cache->space_info->bytes_used -= num_bytes; | 
|  | cache->space_info->disk_used -= num_bytes * factor; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | trace_btrfs_space_reservation(info, "pinned", | 
|  | cache->space_info->flags, | 
|  | num_bytes, 1); | 
|  | percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, | 
|  | num_bytes, | 
|  | BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
|  | set_extent_dirty(info->pinned_extents, | 
|  | bytenr, bytenr + num_bytes - 1, | 
|  | GFP_NOFS | __GFP_NOFAIL); | 
|  | } | 
|  |  | 
|  | spin_lock(&trans->transaction->dirty_bgs_lock); | 
|  | if (list_empty(&cache->dirty_list)) { | 
|  | list_add_tail(&cache->dirty_list, | 
|  | &trans->transaction->dirty_bgs); | 
|  | trans->transaction->num_dirty_bgs++; | 
|  | btrfs_get_block_group(cache); | 
|  | } | 
|  | spin_unlock(&trans->transaction->dirty_bgs_lock); | 
|  |  | 
|  | /* | 
|  | * No longer have used bytes in this block group, queue it for | 
|  | * deletion. We do this after adding the block group to the | 
|  | * dirty list to avoid races between cleaner kthread and space | 
|  | * cache writeout. | 
|  | */ | 
|  | if (!alloc && old_val == 0) | 
|  | btrfs_mark_bg_unused(cache); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | total -= num_bytes; | 
|  | bytenr += num_bytes; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | u64 bytenr; | 
|  |  | 
|  | spin_lock(&fs_info->block_group_cache_lock); | 
|  | bytenr = fs_info->first_logical_byte; | 
|  | spin_unlock(&fs_info->block_group_cache_lock); | 
|  |  | 
|  | if (bytenr < (u64)-1) | 
|  | return bytenr; | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(fs_info, search_start); | 
|  | if (!cache) | 
|  | return 0; | 
|  |  | 
|  | bytenr = cache->key.objectid; | 
|  | btrfs_put_block_group(cache); | 
|  |  | 
|  | return bytenr; | 
|  | } | 
|  |  | 
|  | static int pin_down_extent(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_group_cache *cache, | 
|  | u64 bytenr, u64 num_bytes, int reserved) | 
|  | { | 
|  | spin_lock(&cache->space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned += num_bytes; | 
|  | cache->space_info->bytes_pinned += num_bytes; | 
|  | if (reserved) { | 
|  | cache->reserved -= num_bytes; | 
|  | cache->space_info->bytes_reserved -= num_bytes; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&cache->space_info->lock); | 
|  |  | 
|  | trace_btrfs_space_reservation(fs_info, "pinned", | 
|  | cache->space_info->flags, num_bytes, 1); | 
|  | percpu_counter_add_batch(&cache->space_info->total_bytes_pinned, | 
|  | num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
|  | set_extent_dirty(fs_info->pinned_extents, bytenr, | 
|  | bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this function must be called within transaction | 
|  | */ | 
|  | int btrfs_pin_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 bytenr, u64 num_bytes, int reserved) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | BUG_ON(!cache); /* Logic error */ | 
|  |  | 
|  | pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved); | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this function must be called within transaction | 
|  | */ | 
|  | int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info, | 
|  | u64 bytenr, u64 num_bytes) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int ret; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, bytenr); | 
|  | if (!cache) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * pull in the free space cache (if any) so that our pin | 
|  | * removes the free space from the cache.  We have load_only set | 
|  | * to one because the slow code to read in the free extents does check | 
|  | * the pinned extents. | 
|  | */ | 
|  | cache_block_group(cache, 1); | 
|  |  | 
|  | pin_down_extent(fs_info, cache, bytenr, num_bytes, 0); | 
|  |  | 
|  | /* remove us from the free space cache (if we're there at all) */ | 
|  | ret = btrfs_remove_free_space(cache, bytenr, num_bytes); | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __exclude_logged_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 num_bytes) | 
|  | { | 
|  | int ret; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, start); | 
|  | if (!block_group) | 
|  | return -EINVAL; | 
|  |  | 
|  | cache_block_group(block_group, 0); | 
|  | caching_ctl = get_caching_control(block_group); | 
|  |  | 
|  | if (!caching_ctl) { | 
|  | /* Logic error */ | 
|  | BUG_ON(!block_group_cache_done(block_group)); | 
|  | ret = btrfs_remove_free_space(block_group, start, num_bytes); | 
|  | } else { | 
|  | mutex_lock(&caching_ctl->mutex); | 
|  |  | 
|  | if (start >= caching_ctl->progress) { | 
|  | ret = add_excluded_extent(fs_info, start, num_bytes); | 
|  | } else if (start + num_bytes <= caching_ctl->progress) { | 
|  | ret = btrfs_remove_free_space(block_group, | 
|  | start, num_bytes); | 
|  | } else { | 
|  | num_bytes = caching_ctl->progress - start; | 
|  | ret = btrfs_remove_free_space(block_group, | 
|  | start, num_bytes); | 
|  | if (ret) | 
|  | goto out_lock; | 
|  |  | 
|  | num_bytes = (start + num_bytes) - | 
|  | caching_ctl->progress; | 
|  | start = caching_ctl->progress; | 
|  | ret = add_excluded_extent(fs_info, start, num_bytes); | 
|  | } | 
|  | out_lock: | 
|  | mutex_unlock(&caching_ctl->mutex); | 
|  | put_caching_control(caching_ctl); | 
|  | } | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info, | 
|  | struct extent_buffer *eb) | 
|  | { | 
|  | struct btrfs_file_extent_item *item; | 
|  | struct btrfs_key key; | 
|  | int found_type; | 
|  | int i; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) | 
|  | return 0; | 
|  |  | 
|  | for (i = 0; i < btrfs_header_nritems(eb); i++) { | 
|  | btrfs_item_key_to_cpu(eb, &key, i); | 
|  | if (key.type != BTRFS_EXTENT_DATA_KEY) | 
|  | continue; | 
|  | item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item); | 
|  | found_type = btrfs_file_extent_type(eb, item); | 
|  | if (found_type == BTRFS_FILE_EXTENT_INLINE) | 
|  | continue; | 
|  | if (btrfs_file_extent_disk_bytenr(eb, item) == 0) | 
|  | continue; | 
|  | key.objectid = btrfs_file_extent_disk_bytenr(eb, item); | 
|  | key.offset = btrfs_file_extent_disk_num_bytes(eb, item); | 
|  | ret = __exclude_logged_extent(fs_info, key.objectid, key.offset); | 
|  | if (ret) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg) | 
|  | { | 
|  | atomic_inc(&bg->reservations); | 
|  | } | 
|  |  | 
|  | void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info, | 
|  | const u64 start) | 
|  | { | 
|  | struct btrfs_block_group_cache *bg; | 
|  |  | 
|  | bg = btrfs_lookup_block_group(fs_info, start); | 
|  | ASSERT(bg); | 
|  | if (atomic_dec_and_test(&bg->reservations)) | 
|  | wake_up_var(&bg->reservations); | 
|  | btrfs_put_block_group(bg); | 
|  | } | 
|  |  | 
|  | void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg) | 
|  | { | 
|  | struct btrfs_space_info *space_info = bg->space_info; | 
|  |  | 
|  | ASSERT(bg->ro); | 
|  |  | 
|  | if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Our block group is read only but before we set it to read only, | 
|  | * some task might have had allocated an extent from it already, but it | 
|  | * has not yet created a respective ordered extent (and added it to a | 
|  | * root's list of ordered extents). | 
|  | * Therefore wait for any task currently allocating extents, since the | 
|  | * block group's reservations counter is incremented while a read lock | 
|  | * on the groups' semaphore is held and decremented after releasing | 
|  | * the read access on that semaphore and creating the ordered extent. | 
|  | */ | 
|  | down_write(&space_info->groups_sem); | 
|  | up_write(&space_info->groups_sem); | 
|  |  | 
|  | wait_var_event(&bg->reservations, !atomic_read(&bg->reservations)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_add_reserved_bytes - update the block_group and space info counters | 
|  | * @cache:	The cache we are manipulating | 
|  | * @ram_bytes:  The number of bytes of file content, and will be same to | 
|  | *              @num_bytes except for the compress path. | 
|  | * @num_bytes:	The number of bytes in question | 
|  | * @delalloc:   The blocks are allocated for the delalloc write | 
|  | * | 
|  | * This is called by the allocator when it reserves space. If this is a | 
|  | * reservation and the block group has become read only we cannot make the | 
|  | * reservation and return -EAGAIN, otherwise this function always succeeds. | 
|  | */ | 
|  | static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache, | 
|  | u64 ram_bytes, u64 num_bytes, int delalloc) | 
|  | { | 
|  | struct btrfs_space_info *space_info = cache->space_info; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | if (cache->ro) { | 
|  | ret = -EAGAIN; | 
|  | } else { | 
|  | cache->reserved += num_bytes; | 
|  | space_info->bytes_reserved += num_bytes; | 
|  |  | 
|  | trace_btrfs_space_reservation(cache->fs_info, | 
|  | "space_info", space_info->flags, | 
|  | ram_bytes, 0); | 
|  | space_info->bytes_may_use -= ram_bytes; | 
|  | if (delalloc) | 
|  | cache->delalloc_bytes += num_bytes; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * btrfs_free_reserved_bytes - update the block_group and space info counters | 
|  | * @cache:      The cache we are manipulating | 
|  | * @num_bytes:  The number of bytes in question | 
|  | * @delalloc:   The blocks are allocated for the delalloc write | 
|  | * | 
|  | * This is called by somebody who is freeing space that was never actually used | 
|  | * on disk.  For example if you reserve some space for a new leaf in transaction | 
|  | * A and before transaction A commits you free that leaf, you call this with | 
|  | * reserve set to 0 in order to clear the reservation. | 
|  | */ | 
|  |  | 
|  | static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache, | 
|  | u64 num_bytes, int delalloc) | 
|  | { | 
|  | struct btrfs_space_info *space_info = cache->space_info; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | if (cache->ro) | 
|  | space_info->bytes_readonly += num_bytes; | 
|  | cache->reserved -= num_bytes; | 
|  | space_info->bytes_reserved -= num_bytes; | 
|  | space_info->max_extent_size = 0; | 
|  |  | 
|  | if (delalloc) | 
|  | cache->delalloc_bytes -= num_bytes; | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  | return ret; | 
|  | } | 
|  | void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_caching_control *next; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | down_write(&fs_info->commit_root_sem); | 
|  |  | 
|  | list_for_each_entry_safe(caching_ctl, next, | 
|  | &fs_info->caching_block_groups, list) { | 
|  | cache = caching_ctl->block_group; | 
|  | if (block_group_cache_done(cache)) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | list_del_init(&caching_ctl->list); | 
|  | put_caching_control(caching_ctl); | 
|  | } else { | 
|  | cache->last_byte_to_unpin = caching_ctl->progress; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) | 
|  | fs_info->pinned_extents = &fs_info->freed_extents[1]; | 
|  | else | 
|  | fs_info->pinned_extents = &fs_info->freed_extents[0]; | 
|  |  | 
|  | up_write(&fs_info->commit_root_sem); | 
|  |  | 
|  | update_global_block_rsv(fs_info); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Returns the free cluster for the given space info and sets empty_cluster to | 
|  | * what it should be based on the mount options. | 
|  | */ | 
|  | static struct btrfs_free_cluster * | 
|  | fetch_cluster_info(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *space_info, u64 *empty_cluster) | 
|  | { | 
|  | struct btrfs_free_cluster *ret = NULL; | 
|  |  | 
|  | *empty_cluster = 0; | 
|  | if (btrfs_mixed_space_info(space_info)) | 
|  | return ret; | 
|  |  | 
|  | if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
|  | ret = &fs_info->meta_alloc_cluster; | 
|  | if (btrfs_test_opt(fs_info, SSD)) | 
|  | *empty_cluster = SZ_2M; | 
|  | else | 
|  | *empty_cluster = SZ_64K; | 
|  | } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && | 
|  | btrfs_test_opt(fs_info, SSD_SPREAD)) { | 
|  | *empty_cluster = SZ_2M; | 
|  | ret = &fs_info->data_alloc_cluster; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int unpin_extent_range(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 end, | 
|  | const bool return_free_space) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | struct btrfs_free_cluster *cluster = NULL; | 
|  | u64 len; | 
|  | u64 total_unpinned = 0; | 
|  | u64 empty_cluster = 0; | 
|  | bool readonly; | 
|  |  | 
|  | while (start <= end) { | 
|  | readonly = false; | 
|  | if (!cache || | 
|  | start >= cache->key.objectid + cache->key.offset) { | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | total_unpinned = 0; | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | BUG_ON(!cache); /* Logic error */ | 
|  |  | 
|  | cluster = fetch_cluster_info(fs_info, | 
|  | cache->space_info, | 
|  | &empty_cluster); | 
|  | empty_cluster <<= 1; | 
|  | } | 
|  |  | 
|  | len = cache->key.objectid + cache->key.offset - start; | 
|  | len = min(len, end + 1 - start); | 
|  |  | 
|  | if (start < cache->last_byte_to_unpin) { | 
|  | len = min(len, cache->last_byte_to_unpin - start); | 
|  | if (return_free_space) | 
|  | btrfs_add_free_space(cache, start, len); | 
|  | } | 
|  |  | 
|  | start += len; | 
|  | total_unpinned += len; | 
|  | space_info = cache->space_info; | 
|  |  | 
|  | /* | 
|  | * If this space cluster has been marked as fragmented and we've | 
|  | * unpinned enough in this block group to potentially allow a | 
|  | * cluster to be created inside of it go ahead and clear the | 
|  | * fragmented check. | 
|  | */ | 
|  | if (cluster && cluster->fragmented && | 
|  | total_unpinned > empty_cluster) { | 
|  | spin_lock(&cluster->lock); | 
|  | cluster->fragmented = 0; | 
|  | spin_unlock(&cluster->lock); | 
|  | } | 
|  |  | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&cache->lock); | 
|  | cache->pinned -= len; | 
|  | space_info->bytes_pinned -= len; | 
|  |  | 
|  | trace_btrfs_space_reservation(fs_info, "pinned", | 
|  | space_info->flags, len, 0); | 
|  | space_info->max_extent_size = 0; | 
|  | percpu_counter_add_batch(&space_info->total_bytes_pinned, | 
|  | -len, BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
|  | if (cache->ro) { | 
|  | space_info->bytes_readonly += len; | 
|  | readonly = true; | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | if (!readonly && return_free_space && | 
|  | global_rsv->space_info == space_info) { | 
|  | u64 to_add = len; | 
|  |  | 
|  | spin_lock(&global_rsv->lock); | 
|  | if (!global_rsv->full) { | 
|  | to_add = min(len, global_rsv->size - | 
|  | global_rsv->reserved); | 
|  | global_rsv->reserved += to_add; | 
|  | space_info->bytes_may_use += to_add; | 
|  | if (global_rsv->reserved >= global_rsv->size) | 
|  | global_rsv->full = 1; | 
|  | trace_btrfs_space_reservation(fs_info, | 
|  | "space_info", | 
|  | space_info->flags, | 
|  | to_add, 1); | 
|  | len -= to_add; | 
|  | } | 
|  | spin_unlock(&global_rsv->lock); | 
|  | /* Add to any tickets we may have */ | 
|  | if (len) | 
|  | space_info_add_new_bytes(fs_info, space_info, | 
|  | len); | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | if (cache) | 
|  | btrfs_put_block_group(cache); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_block_group_cache *block_group, *tmp; | 
|  | struct list_head *deleted_bgs; | 
|  | struct extent_io_tree *unpin; | 
|  | u64 start; | 
|  | u64 end; | 
|  | int ret; | 
|  |  | 
|  | if (fs_info->pinned_extents == &fs_info->freed_extents[0]) | 
|  | unpin = &fs_info->freed_extents[1]; | 
|  | else | 
|  | unpin = &fs_info->freed_extents[0]; | 
|  |  | 
|  | while (!trans->aborted) { | 
|  | struct extent_state *cached_state = NULL; | 
|  |  | 
|  | mutex_lock(&fs_info->unused_bg_unpin_mutex); | 
|  | ret = find_first_extent_bit(unpin, 0, &start, &end, | 
|  | EXTENT_DIRTY, &cached_state); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, DISCARD)) | 
|  | ret = btrfs_discard_extent(fs_info, start, | 
|  | end + 1 - start, NULL); | 
|  |  | 
|  | clear_extent_dirty(unpin, start, end, &cached_state); | 
|  | unpin_extent_range(fs_info, start, end, true); | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | free_extent_state(cached_state); | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Transaction is finished.  We don't need the lock anymore.  We | 
|  | * do need to clean up the block groups in case of a transaction | 
|  | * abort. | 
|  | */ | 
|  | deleted_bgs = &trans->transaction->deleted_bgs; | 
|  | list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) { | 
|  | u64 trimmed = 0; | 
|  |  | 
|  | ret = -EROFS; | 
|  | if (!trans->aborted) | 
|  | ret = btrfs_discard_extent(fs_info, | 
|  | block_group->key.objectid, | 
|  | block_group->key.offset, | 
|  | &trimmed); | 
|  |  | 
|  | list_del_init(&block_group->bg_list); | 
|  | btrfs_put_block_group_trimming(block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | if (ret) { | 
|  | const char *errstr = btrfs_decode_error(ret); | 
|  | btrfs_warn(fs_info, | 
|  | "discard failed while removing blockgroup: errno=%d %s", | 
|  | ret, errstr); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, u64 parent, | 
|  | u64 root_objectid, u64 owner_objectid, | 
|  | u64 owner_offset, int refs_to_drop, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_fs_info *info = trans->fs_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_root *extent_root = info->extent_root; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_extent_item *ei; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | int ret; | 
|  | int is_data; | 
|  | int extent_slot = 0; | 
|  | int found_extent = 0; | 
|  | int num_to_del = 1; | 
|  | u32 item_size; | 
|  | u64 refs; | 
|  | u64 bytenr = node->bytenr; | 
|  | u64 num_bytes = node->num_bytes; | 
|  | int last_ref = 0; | 
|  | bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->reada = READA_FORWARD; | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID; | 
|  | BUG_ON(!is_data && refs_to_drop != 1); | 
|  |  | 
|  | if (is_data) | 
|  | skinny_metadata = false; | 
|  |  | 
|  | ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes, | 
|  | parent, root_objectid, owner_objectid, | 
|  | owner_offset); | 
|  | if (ret == 0) { | 
|  | extent_slot = path->slots[0]; | 
|  | while (extent_slot >= 0) { | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | extent_slot); | 
|  | if (key.objectid != bytenr) | 
|  | break; | 
|  | if (key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == num_bytes) { | 
|  | found_extent = 1; | 
|  | break; | 
|  | } | 
|  | if (key.type == BTRFS_METADATA_ITEM_KEY && | 
|  | key.offset == owner_objectid) { | 
|  | found_extent = 1; | 
|  | break; | 
|  | } | 
|  | if (path->slots[0] - extent_slot > 5) | 
|  | break; | 
|  | extent_slot--; | 
|  | } | 
|  |  | 
|  | if (!found_extent) { | 
|  | BUG_ON(iref); | 
|  | ret = remove_extent_backref(trans, path, NULL, | 
|  | refs_to_drop, | 
|  | is_data, &last_ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | path->leave_spinning = 1; | 
|  |  | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  |  | 
|  | if (!is_data && skinny_metadata) { | 
|  | key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | key.offset = owner_objectid; | 
|  | } | 
|  |  | 
|  | ret = btrfs_search_slot(trans, extent_root, | 
|  | &key, path, -1, 1); | 
|  | if (ret > 0 && skinny_metadata && path->slots[0]) { | 
|  | /* | 
|  | * Couldn't find our skinny metadata item, | 
|  | * see if we have ye olde extent item. | 
|  | */ | 
|  | path->slots[0]--; | 
|  | btrfs_item_key_to_cpu(path->nodes[0], &key, | 
|  | path->slots[0]); | 
|  | if (key.objectid == bytenr && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY && | 
|  | key.offset == num_bytes) | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (ret > 0 && skinny_metadata) { | 
|  | skinny_metadata = false; | 
|  | key.objectid = bytenr; | 
|  | key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | key.offset = num_bytes; | 
|  | btrfs_release_path(path); | 
|  | ret = btrfs_search_slot(trans, extent_root, | 
|  | &key, path, -1, 1); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | btrfs_err(info, | 
|  | "umm, got %d back from search, was looking for %llu", | 
|  | ret, bytenr); | 
|  | if (ret > 0) | 
|  | btrfs_print_leaf(path->nodes[0]); | 
|  | } | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | extent_slot = path->slots[0]; | 
|  | } | 
|  | } else if (WARN_ON(ret == -ENOENT)) { | 
|  | btrfs_print_leaf(path->nodes[0]); | 
|  | btrfs_err(info, | 
|  | "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu", | 
|  | bytenr, parent, root_objectid, owner_objectid, | 
|  | owner_offset); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } else { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | item_size = btrfs_item_size_nr(leaf, extent_slot); | 
|  | if (unlikely(item_size < sizeof(*ei))) { | 
|  | ret = -EINVAL; | 
|  | btrfs_print_v0_err(info); | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | ei = btrfs_item_ptr(leaf, extent_slot, | 
|  | struct btrfs_extent_item); | 
|  | if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID && | 
|  | key.type == BTRFS_EXTENT_ITEM_KEY) { | 
|  | struct btrfs_tree_block_info *bi; | 
|  | BUG_ON(item_size < sizeof(*ei) + sizeof(*bi)); | 
|  | bi = (struct btrfs_tree_block_info *)(ei + 1); | 
|  | WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi)); | 
|  | } | 
|  |  | 
|  | refs = btrfs_extent_refs(leaf, ei); | 
|  | if (refs < refs_to_drop) { | 
|  | btrfs_err(info, | 
|  | "trying to drop %d refs but we only have %Lu for bytenr %Lu", | 
|  | refs_to_drop, refs, bytenr); | 
|  | ret = -EINVAL; | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | refs -= refs_to_drop; | 
|  |  | 
|  | if (refs > 0) { | 
|  | if (extent_op) | 
|  | __run_delayed_extent_op(extent_op, leaf, ei); | 
|  | /* | 
|  | * In the case of inline back ref, reference count will | 
|  | * be updated by remove_extent_backref | 
|  | */ | 
|  | if (iref) { | 
|  | BUG_ON(!found_extent); | 
|  | } else { | 
|  | btrfs_set_extent_refs(leaf, ei, refs); | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | } | 
|  | if (found_extent) { | 
|  | ret = remove_extent_backref(trans, path, iref, | 
|  | refs_to_drop, is_data, | 
|  | &last_ref); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (found_extent) { | 
|  | BUG_ON(is_data && refs_to_drop != | 
|  | extent_data_ref_count(path, iref)); | 
|  | if (iref) { | 
|  | BUG_ON(path->slots[0] != extent_slot); | 
|  | } else { | 
|  | BUG_ON(path->slots[0] != extent_slot + 1); | 
|  | path->slots[0] = extent_slot; | 
|  | num_to_del = 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | last_ref = 1; | 
|  | ret = btrfs_del_items(trans, extent_root, path, path->slots[0], | 
|  | num_to_del); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | if (is_data) { | 
|  | ret = btrfs_del_csums(trans, info->csum_root, bytenr, | 
|  | num_bytes); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = add_to_free_space_tree(trans, bytenr, num_bytes); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = update_block_group(trans, info, bytenr, num_bytes, 0); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when we free an block, it is possible (and likely) that we free the last | 
|  | * delayed ref for that extent as well.  This searches the delayed ref tree for | 
|  | * a given extent, and if there are no other delayed refs to be processed, it | 
|  | * removes it from the tree. | 
|  | */ | 
|  | static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans, | 
|  | u64 bytenr) | 
|  | { | 
|  | struct btrfs_delayed_ref_head *head; | 
|  | struct btrfs_delayed_ref_root *delayed_refs; | 
|  | int ret = 0; | 
|  |  | 
|  | delayed_refs = &trans->transaction->delayed_refs; | 
|  | spin_lock(&delayed_refs->lock); | 
|  | head = btrfs_find_delayed_ref_head(delayed_refs, bytenr); | 
|  | if (!head) | 
|  | goto out_delayed_unlock; | 
|  |  | 
|  | spin_lock(&head->lock); | 
|  | if (!RB_EMPTY_ROOT(&head->ref_tree)) | 
|  | goto out; | 
|  |  | 
|  | if (head->extent_op) { | 
|  | if (!head->must_insert_reserved) | 
|  | goto out; | 
|  | btrfs_free_delayed_extent_op(head->extent_op); | 
|  | head->extent_op = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * waiting for the lock here would deadlock.  If someone else has it | 
|  | * locked they are already in the process of dropping it anyway | 
|  | */ | 
|  | if (!mutex_trylock(&head->mutex)) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * at this point we have a head with no other entries.  Go | 
|  | * ahead and process it. | 
|  | */ | 
|  | rb_erase(&head->href_node, &delayed_refs->href_root); | 
|  | RB_CLEAR_NODE(&head->href_node); | 
|  | atomic_dec(&delayed_refs->num_entries); | 
|  |  | 
|  | /* | 
|  | * we don't take a ref on the node because we're removing it from the | 
|  | * tree, so we just steal the ref the tree was holding. | 
|  | */ | 
|  | delayed_refs->num_heads--; | 
|  | if (head->processing == 0) | 
|  | delayed_refs->num_heads_ready--; | 
|  | head->processing = 0; | 
|  | spin_unlock(&head->lock); | 
|  | spin_unlock(&delayed_refs->lock); | 
|  |  | 
|  | BUG_ON(head->extent_op); | 
|  | if (head->must_insert_reserved) | 
|  | ret = 1; | 
|  |  | 
|  | mutex_unlock(&head->mutex); | 
|  | btrfs_put_delayed_ref_head(head); | 
|  | return ret; | 
|  | out: | 
|  | spin_unlock(&head->lock); | 
|  |  | 
|  | out_delayed_unlock: | 
|  | spin_unlock(&delayed_refs->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void btrfs_free_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *buf, | 
|  | u64 parent, int last_ref) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int pin = 1; | 
|  | int ret; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | int old_ref_mod, new_ref_mod; | 
|  |  | 
|  | btrfs_ref_tree_mod(root, buf->start, buf->len, parent, | 
|  | root->root_key.objectid, | 
|  | btrfs_header_level(buf), 0, | 
|  | BTRFS_DROP_DELAYED_REF); | 
|  | ret = btrfs_add_delayed_tree_ref(trans, buf->start, | 
|  | buf->len, parent, | 
|  | root->root_key.objectid, | 
|  | btrfs_header_level(buf), | 
|  | BTRFS_DROP_DELAYED_REF, NULL, | 
|  | &old_ref_mod, &new_ref_mod); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | pin = old_ref_mod >= 0 && new_ref_mod < 0; | 
|  | } | 
|  |  | 
|  | if (last_ref && btrfs_header_generation(buf) == trans->transid) { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | ret = check_ref_cleanup(trans, buf->start); | 
|  | if (!ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | pin = 0; | 
|  | cache = btrfs_lookup_block_group(fs_info, buf->start); | 
|  |  | 
|  | if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { | 
|  | pin_down_extent(fs_info, cache, buf->start, | 
|  | buf->len, 1); | 
|  | btrfs_put_block_group(cache); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)); | 
|  |  | 
|  | btrfs_add_free_space(cache, buf->start, buf->len); | 
|  | btrfs_free_reserved_bytes(cache, buf->len, 0); | 
|  | btrfs_put_block_group(cache); | 
|  | trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len); | 
|  | } | 
|  | out: | 
|  | if (pin) | 
|  | add_pinned_bytes(fs_info, buf->len, true, | 
|  | root->root_key.objectid); | 
|  |  | 
|  | if (last_ref) { | 
|  | /* | 
|  | * Deleting the buffer, clear the corrupt flag since it doesn't | 
|  | * matter anymore. | 
|  | */ | 
|  | clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Can return -ENOMEM */ | 
|  | int btrfs_free_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid, | 
|  | u64 owner, u64 offset) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int old_ref_mod, new_ref_mod; | 
|  | int ret; | 
|  |  | 
|  | if (btrfs_is_testing(fs_info)) | 
|  | return 0; | 
|  |  | 
|  | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) | 
|  | btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, | 
|  | root_objectid, owner, offset, | 
|  | BTRFS_DROP_DELAYED_REF); | 
|  |  | 
|  | /* | 
|  | * tree log blocks never actually go into the extent allocation | 
|  | * tree, just update pinning info and exit early. | 
|  | */ | 
|  | if (root_objectid == BTRFS_TREE_LOG_OBJECTID) { | 
|  | WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID); | 
|  | /* unlocks the pinned mutex */ | 
|  | btrfs_pin_extent(fs_info, bytenr, num_bytes, 1); | 
|  | old_ref_mod = new_ref_mod = 0; | 
|  | ret = 0; | 
|  | } else if (owner < BTRFS_FIRST_FREE_OBJECTID) { | 
|  | ret = btrfs_add_delayed_tree_ref(trans, bytenr, | 
|  | num_bytes, parent, | 
|  | root_objectid, (int)owner, | 
|  | BTRFS_DROP_DELAYED_REF, NULL, | 
|  | &old_ref_mod, &new_ref_mod); | 
|  | } else { | 
|  | ret = btrfs_add_delayed_data_ref(trans, bytenr, | 
|  | num_bytes, parent, | 
|  | root_objectid, owner, offset, | 
|  | 0, BTRFS_DROP_DELAYED_REF, | 
|  | &old_ref_mod, &new_ref_mod); | 
|  | } | 
|  |  | 
|  | if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) { | 
|  | bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID; | 
|  |  | 
|  | add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * when we wait for progress in the block group caching, its because | 
|  | * our allocation attempt failed at least once.  So, we must sleep | 
|  | * and let some progress happen before we try again. | 
|  | * | 
|  | * This function will sleep at least once waiting for new free space to | 
|  | * show up, and then it will check the block group free space numbers | 
|  | * for our min num_bytes.  Another option is to have it go ahead | 
|  | * and look in the rbtree for a free extent of a given size, but this | 
|  | * is a good start. | 
|  | * | 
|  | * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using | 
|  | * any of the information in this block group. | 
|  | */ | 
|  | static noinline void | 
|  | wait_block_group_cache_progress(struct btrfs_block_group_cache *cache, | 
|  | u64 num_bytes) | 
|  | { | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  |  | 
|  | caching_ctl = get_caching_control(cache); | 
|  | if (!caching_ctl) | 
|  | return; | 
|  |  | 
|  | wait_event(caching_ctl->wait, block_group_cache_done(cache) || | 
|  | (cache->free_space_ctl->free_space >= num_bytes)); | 
|  |  | 
|  | put_caching_control(caching_ctl); | 
|  | } | 
|  |  | 
|  | static noinline int | 
|  | wait_block_group_cache_done(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | int ret = 0; | 
|  |  | 
|  | caching_ctl = get_caching_control(cache); | 
|  | if (!caching_ctl) | 
|  | return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0; | 
|  |  | 
|  | wait_event(caching_ctl->wait, block_group_cache_done(cache)); | 
|  | if (cache->cached == BTRFS_CACHE_ERROR) | 
|  | ret = -EIO; | 
|  | put_caching_control(caching_ctl); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | enum btrfs_loop_type { | 
|  | LOOP_CACHING_NOWAIT = 0, | 
|  | LOOP_CACHING_WAIT = 1, | 
|  | LOOP_ALLOC_CHUNK = 2, | 
|  | LOOP_NO_EMPTY_SIZE = 3, | 
|  | }; | 
|  |  | 
|  | static inline void | 
|  | btrfs_lock_block_group(struct btrfs_block_group_cache *cache, | 
|  | int delalloc) | 
|  | { | 
|  | if (delalloc) | 
|  | down_read(&cache->data_rwsem); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | btrfs_grab_block_group(struct btrfs_block_group_cache *cache, | 
|  | int delalloc) | 
|  | { | 
|  | btrfs_get_block_group(cache); | 
|  | if (delalloc) | 
|  | down_read(&cache->data_rwsem); | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_group_cache * | 
|  | btrfs_lock_cluster(struct btrfs_block_group_cache *block_group, | 
|  | struct btrfs_free_cluster *cluster, | 
|  | int delalloc) | 
|  | { | 
|  | struct btrfs_block_group_cache *used_bg = NULL; | 
|  |  | 
|  | spin_lock(&cluster->refill_lock); | 
|  | while (1) { | 
|  | used_bg = cluster->block_group; | 
|  | if (!used_bg) | 
|  | return NULL; | 
|  |  | 
|  | if (used_bg == block_group) | 
|  | return used_bg; | 
|  |  | 
|  | btrfs_get_block_group(used_bg); | 
|  |  | 
|  | if (!delalloc) | 
|  | return used_bg; | 
|  |  | 
|  | if (down_read_trylock(&used_bg->data_rwsem)) | 
|  | return used_bg; | 
|  |  | 
|  | spin_unlock(&cluster->refill_lock); | 
|  |  | 
|  | /* We should only have one-level nested. */ | 
|  | down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING); | 
|  |  | 
|  | spin_lock(&cluster->refill_lock); | 
|  | if (used_bg == cluster->block_group) | 
|  | return used_bg; | 
|  |  | 
|  | up_read(&used_bg->data_rwsem); | 
|  | btrfs_put_block_group(used_bg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | btrfs_release_block_group(struct btrfs_block_group_cache *cache, | 
|  | int delalloc) | 
|  | { | 
|  | if (delalloc) | 
|  | up_read(&cache->data_rwsem); | 
|  | btrfs_put_block_group(cache); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * walks the btree of allocated extents and find a hole of a given size. | 
|  | * The key ins is changed to record the hole: | 
|  | * ins->objectid == start position | 
|  | * ins->flags = BTRFS_EXTENT_ITEM_KEY | 
|  | * ins->offset == the size of the hole. | 
|  | * Any available blocks before search_start are skipped. | 
|  | * | 
|  | * If there is no suitable free space, we will record the max size of | 
|  | * the free space extent currently. | 
|  | */ | 
|  | static noinline int find_free_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 ram_bytes, u64 num_bytes, u64 empty_size, | 
|  | u64 hint_byte, struct btrfs_key *ins, | 
|  | u64 flags, int delalloc) | 
|  | { | 
|  | int ret = 0; | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | struct btrfs_free_cluster *last_ptr = NULL; | 
|  | struct btrfs_block_group_cache *block_group = NULL; | 
|  | u64 search_start = 0; | 
|  | u64 max_extent_size = 0; | 
|  | u64 max_free_space = 0; | 
|  | u64 empty_cluster = 0; | 
|  | struct btrfs_space_info *space_info; | 
|  | int loop = 0; | 
|  | int index = btrfs_bg_flags_to_raid_index(flags); | 
|  | bool failed_cluster_refill = false; | 
|  | bool failed_alloc = false; | 
|  | bool use_cluster = true; | 
|  | bool have_caching_bg = false; | 
|  | bool orig_have_caching_bg = false; | 
|  | bool full_search = false; | 
|  |  | 
|  | WARN_ON(num_bytes < fs_info->sectorsize); | 
|  | ins->type = BTRFS_EXTENT_ITEM_KEY; | 
|  | ins->objectid = 0; | 
|  | ins->offset = 0; | 
|  |  | 
|  | trace_find_free_extent(fs_info, num_bytes, empty_size, flags); | 
|  |  | 
|  | space_info = __find_space_info(fs_info, flags); | 
|  | if (!space_info) { | 
|  | btrfs_err(fs_info, "No space info for %llu", flags); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If our free space is heavily fragmented we may not be able to make | 
|  | * big contiguous allocations, so instead of doing the expensive search | 
|  | * for free space, simply return ENOSPC with our max_extent_size so we | 
|  | * can go ahead and search for a more manageable chunk. | 
|  | * | 
|  | * If our max_extent_size is large enough for our allocation simply | 
|  | * disable clustering since we will likely not be able to find enough | 
|  | * space to create a cluster and induce latency trying. | 
|  | */ | 
|  | if (unlikely(space_info->max_extent_size)) { | 
|  | spin_lock(&space_info->lock); | 
|  | if (space_info->max_extent_size && | 
|  | num_bytes > space_info->max_extent_size) { | 
|  | ins->offset = space_info->max_extent_size; | 
|  | spin_unlock(&space_info->lock); | 
|  | return -ENOSPC; | 
|  | } else if (space_info->max_extent_size) { | 
|  | use_cluster = false; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  | } | 
|  |  | 
|  | last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster); | 
|  | if (last_ptr) { | 
|  | spin_lock(&last_ptr->lock); | 
|  | if (last_ptr->block_group) | 
|  | hint_byte = last_ptr->window_start; | 
|  | if (last_ptr->fragmented) { | 
|  | /* | 
|  | * We still set window_start so we can keep track of the | 
|  | * last place we found an allocation to try and save | 
|  | * some time. | 
|  | */ | 
|  | hint_byte = last_ptr->window_start; | 
|  | use_cluster = false; | 
|  | } | 
|  | spin_unlock(&last_ptr->lock); | 
|  | } | 
|  |  | 
|  | search_start = max(search_start, first_logical_byte(fs_info, 0)); | 
|  | search_start = max(search_start, hint_byte); | 
|  | if (search_start == hint_byte) { | 
|  | block_group = btrfs_lookup_block_group(fs_info, search_start); | 
|  | /* | 
|  | * we don't want to use the block group if it doesn't match our | 
|  | * allocation bits, or if its not cached. | 
|  | * | 
|  | * However if we are re-searching with an ideal block group | 
|  | * picked out then we don't care that the block group is cached. | 
|  | */ | 
|  | if (block_group && block_group_bits(block_group, flags) && | 
|  | block_group->cached != BTRFS_CACHE_NO) { | 
|  | down_read(&space_info->groups_sem); | 
|  | if (list_empty(&block_group->list) || | 
|  | block_group->ro) { | 
|  | /* | 
|  | * someone is removing this block group, | 
|  | * we can't jump into the have_block_group | 
|  | * target because our list pointers are not | 
|  | * valid | 
|  | */ | 
|  | btrfs_put_block_group(block_group); | 
|  | up_read(&space_info->groups_sem); | 
|  | } else { | 
|  | index = btrfs_bg_flags_to_raid_index( | 
|  | block_group->flags); | 
|  | btrfs_lock_block_group(block_group, delalloc); | 
|  | goto have_block_group; | 
|  | } | 
|  | } else if (block_group) { | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | } | 
|  | search: | 
|  | have_caching_bg = false; | 
|  | if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags)) | 
|  | full_search = true; | 
|  | down_read(&space_info->groups_sem); | 
|  | list_for_each_entry(block_group, &space_info->block_groups[index], | 
|  | list) { | 
|  | u64 offset; | 
|  | int cached; | 
|  |  | 
|  | /* If the block group is read-only, we can skip it entirely. */ | 
|  | if (unlikely(block_group->ro)) | 
|  | continue; | 
|  |  | 
|  | btrfs_grab_block_group(block_group, delalloc); | 
|  | search_start = block_group->key.objectid; | 
|  |  | 
|  | /* | 
|  | * this can happen if we end up cycling through all the | 
|  | * raid types, but we want to make sure we only allocate | 
|  | * for the proper type. | 
|  | */ | 
|  | if (!block_group_bits(block_group, flags)) { | 
|  | u64 extra = BTRFS_BLOCK_GROUP_DUP | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | | 
|  | BTRFS_BLOCK_GROUP_RAID6 | | 
|  | BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | /* | 
|  | * if they asked for extra copies and this block group | 
|  | * doesn't provide them, bail.  This does allow us to | 
|  | * fill raid0 from raid1. | 
|  | */ | 
|  | if ((flags & extra) && !(block_group->flags & extra)) | 
|  | goto loop; | 
|  |  | 
|  | /* | 
|  | * This block group has different flags than we want. | 
|  | * It's possible that we have MIXED_GROUP flag but no | 
|  | * block group is mixed.  Just skip such block group. | 
|  | */ | 
|  | btrfs_release_block_group(block_group, delalloc); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | have_block_group: | 
|  | cached = block_group_cache_done(block_group); | 
|  | if (unlikely(!cached)) { | 
|  | have_caching_bg = true; | 
|  | ret = cache_block_group(block_group, 0); | 
|  | BUG_ON(ret < 0); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | if (unlikely(block_group->cached == BTRFS_CACHE_ERROR)) | 
|  | goto loop; | 
|  |  | 
|  | /* | 
|  | * Ok we want to try and use the cluster allocator, so | 
|  | * lets look there | 
|  | */ | 
|  | if (last_ptr && use_cluster) { | 
|  | struct btrfs_block_group_cache *used_block_group; | 
|  | unsigned long aligned_cluster; | 
|  | /* | 
|  | * the refill lock keeps out other | 
|  | * people trying to start a new cluster | 
|  | */ | 
|  | used_block_group = btrfs_lock_cluster(block_group, | 
|  | last_ptr, | 
|  | delalloc); | 
|  | if (!used_block_group) | 
|  | goto refill_cluster; | 
|  |  | 
|  | if (used_block_group != block_group && | 
|  | (used_block_group->ro || | 
|  | !block_group_bits(used_block_group, flags))) | 
|  | goto release_cluster; | 
|  |  | 
|  | offset = btrfs_alloc_from_cluster(used_block_group, | 
|  | last_ptr, | 
|  | num_bytes, | 
|  | used_block_group->key.objectid, | 
|  | &max_extent_size); | 
|  | if (offset) { | 
|  | /* we have a block, we're done */ | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | trace_btrfs_reserve_extent_cluster( | 
|  | used_block_group, | 
|  | search_start, num_bytes); | 
|  | if (used_block_group != block_group) { | 
|  | btrfs_release_block_group(block_group, | 
|  | delalloc); | 
|  | block_group = used_block_group; | 
|  | } | 
|  | goto checks; | 
|  | } | 
|  |  | 
|  | WARN_ON(last_ptr->block_group != used_block_group); | 
|  | release_cluster: | 
|  | /* If we are on LOOP_NO_EMPTY_SIZE, we can't | 
|  | * set up a new clusters, so lets just skip it | 
|  | * and let the allocator find whatever block | 
|  | * it can find.  If we reach this point, we | 
|  | * will have tried the cluster allocator | 
|  | * plenty of times and not have found | 
|  | * anything, so we are likely way too | 
|  | * fragmented for the clustering stuff to find | 
|  | * anything. | 
|  | * | 
|  | * However, if the cluster is taken from the | 
|  | * current block group, release the cluster | 
|  | * first, so that we stand a better chance of | 
|  | * succeeding in the unclustered | 
|  | * allocation.  */ | 
|  | if (loop >= LOOP_NO_EMPTY_SIZE && | 
|  | used_block_group != block_group) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | btrfs_release_block_group(used_block_group, | 
|  | delalloc); | 
|  | goto unclustered_alloc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this cluster didn't work out, free it and | 
|  | * start over | 
|  | */ | 
|  | btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
|  |  | 
|  | if (used_block_group != block_group) | 
|  | btrfs_release_block_group(used_block_group, | 
|  | delalloc); | 
|  | refill_cluster: | 
|  | if (loop >= LOOP_NO_EMPTY_SIZE) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | goto unclustered_alloc; | 
|  | } | 
|  |  | 
|  | aligned_cluster = max_t(unsigned long, | 
|  | empty_cluster + empty_size, | 
|  | block_group->full_stripe_len); | 
|  |  | 
|  | /* allocate a cluster in this block group */ | 
|  | ret = btrfs_find_space_cluster(fs_info, block_group, | 
|  | last_ptr, search_start, | 
|  | num_bytes, | 
|  | aligned_cluster); | 
|  | if (ret == 0) { | 
|  | /* | 
|  | * now pull our allocation out of this | 
|  | * cluster | 
|  | */ | 
|  | offset = btrfs_alloc_from_cluster(block_group, | 
|  | last_ptr, | 
|  | num_bytes, | 
|  | search_start, | 
|  | &max_extent_size); | 
|  | if (offset) { | 
|  | /* we found one, proceed */ | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | trace_btrfs_reserve_extent_cluster( | 
|  | block_group, search_start, | 
|  | num_bytes); | 
|  | goto checks; | 
|  | } | 
|  | } else if (!cached && loop > LOOP_CACHING_NOWAIT | 
|  | && !failed_cluster_refill) { | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  |  | 
|  | failed_cluster_refill = true; | 
|  | wait_block_group_cache_progress(block_group, | 
|  | num_bytes + empty_cluster + empty_size); | 
|  | goto have_block_group; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * at this point we either didn't find a cluster | 
|  | * or we weren't able to allocate a block from our | 
|  | * cluster.  Free the cluster we've been trying | 
|  | * to use, and go to the next block group | 
|  | */ | 
|  | btrfs_return_cluster_to_free_space(NULL, last_ptr); | 
|  | spin_unlock(&last_ptr->refill_lock); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | unclustered_alloc: | 
|  | /* | 
|  | * We are doing an unclustered alloc, set the fragmented flag so | 
|  | * we don't bother trying to setup a cluster again until we get | 
|  | * more space. | 
|  | */ | 
|  | if (unlikely(last_ptr)) { | 
|  | spin_lock(&last_ptr->lock); | 
|  | last_ptr->fragmented = 1; | 
|  | spin_unlock(&last_ptr->lock); | 
|  | } | 
|  | if (cached) { | 
|  | struct btrfs_free_space_ctl *ctl = | 
|  | block_group->free_space_ctl; | 
|  |  | 
|  | spin_lock(&ctl->tree_lock); | 
|  | if (ctl->free_space < | 
|  | num_bytes + empty_cluster + empty_size) { | 
|  | max_free_space = max(max_free_space, | 
|  | ctl->free_space); | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | goto loop; | 
|  | } | 
|  | spin_unlock(&ctl->tree_lock); | 
|  | } | 
|  |  | 
|  | offset = btrfs_find_space_for_alloc(block_group, search_start, | 
|  | num_bytes, empty_size, | 
|  | &max_extent_size); | 
|  | /* | 
|  | * If we didn't find a chunk, and we haven't failed on this | 
|  | * block group before, and this block group is in the middle of | 
|  | * caching and we are ok with waiting, then go ahead and wait | 
|  | * for progress to be made, and set failed_alloc to true. | 
|  | * | 
|  | * If failed_alloc is true then we've already waited on this | 
|  | * block group once and should move on to the next block group. | 
|  | */ | 
|  | if (!offset && !failed_alloc && !cached && | 
|  | loop > LOOP_CACHING_NOWAIT) { | 
|  | wait_block_group_cache_progress(block_group, | 
|  | num_bytes + empty_size); | 
|  | failed_alloc = true; | 
|  | goto have_block_group; | 
|  | } else if (!offset) { | 
|  | goto loop; | 
|  | } | 
|  | checks: | 
|  | search_start = round_up(offset, fs_info->stripesize); | 
|  |  | 
|  | /* move on to the next group */ | 
|  | if (search_start + num_bytes > | 
|  | block_group->key.objectid + block_group->key.offset) { | 
|  | btrfs_add_free_space(block_group, offset, num_bytes); | 
|  | goto loop; | 
|  | } | 
|  |  | 
|  | if (offset < search_start) | 
|  | btrfs_add_free_space(block_group, offset, | 
|  | search_start - offset); | 
|  |  | 
|  | ret = btrfs_add_reserved_bytes(block_group, ram_bytes, | 
|  | num_bytes, delalloc); | 
|  | if (ret == -EAGAIN) { | 
|  | btrfs_add_free_space(block_group, offset, num_bytes); | 
|  | goto loop; | 
|  | } | 
|  | btrfs_inc_block_group_reservations(block_group); | 
|  |  | 
|  | /* we are all good, lets return */ | 
|  | ins->objectid = search_start; | 
|  | ins->offset = num_bytes; | 
|  |  | 
|  | trace_btrfs_reserve_extent(block_group, search_start, num_bytes); | 
|  | btrfs_release_block_group(block_group, delalloc); | 
|  | break; | 
|  | loop: | 
|  | failed_cluster_refill = false; | 
|  | failed_alloc = false; | 
|  | BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) != | 
|  | index); | 
|  | btrfs_release_block_group(block_group, delalloc); | 
|  | cond_resched(); | 
|  | } | 
|  | up_read(&space_info->groups_sem); | 
|  |  | 
|  | if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg | 
|  | && !orig_have_caching_bg) | 
|  | orig_have_caching_bg = true; | 
|  |  | 
|  | if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg) | 
|  | goto search; | 
|  |  | 
|  | if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES) | 
|  | goto search; | 
|  |  | 
|  | /* | 
|  | * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking | 
|  | *			caching kthreads as we move along | 
|  | * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching | 
|  | * LOOP_ALLOC_CHUNK, force a chunk allocation and try again | 
|  | * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try | 
|  | *			again | 
|  | */ | 
|  | if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) { | 
|  | index = 0; | 
|  | if (loop == LOOP_CACHING_NOWAIT) { | 
|  | /* | 
|  | * We want to skip the LOOP_CACHING_WAIT step if we | 
|  | * don't have any uncached bgs and we've already done a | 
|  | * full search through. | 
|  | */ | 
|  | if (orig_have_caching_bg || !full_search) | 
|  | loop = LOOP_CACHING_WAIT; | 
|  | else | 
|  | loop = LOOP_ALLOC_CHUNK; | 
|  | } else { | 
|  | loop++; | 
|  | } | 
|  |  | 
|  | if (loop == LOOP_ALLOC_CHUNK) { | 
|  | struct btrfs_trans_handle *trans; | 
|  | int exist = 0; | 
|  |  | 
|  | trans = current->journal_info; | 
|  | if (trans) | 
|  | exist = 1; | 
|  | else | 
|  | trans = btrfs_join_transaction(root); | 
|  |  | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE); | 
|  |  | 
|  | /* | 
|  | * If we can't allocate a new chunk we've already looped | 
|  | * through at least once, move on to the NO_EMPTY_SIZE | 
|  | * case. | 
|  | */ | 
|  | if (ret == -ENOSPC) | 
|  | loop = LOOP_NO_EMPTY_SIZE; | 
|  |  | 
|  | /* | 
|  | * Do not bail out on ENOSPC since we | 
|  | * can do more things. | 
|  | */ | 
|  | if (ret < 0 && ret != -ENOSPC) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | else | 
|  | ret = 0; | 
|  | if (!exist) | 
|  | btrfs_end_transaction(trans); | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (loop == LOOP_NO_EMPTY_SIZE) { | 
|  | /* | 
|  | * Don't loop again if we already have no empty_size and | 
|  | * no empty_cluster. | 
|  | */ | 
|  | if (empty_size == 0 && | 
|  | empty_cluster == 0) { | 
|  | ret = -ENOSPC; | 
|  | goto out; | 
|  | } | 
|  | empty_size = 0; | 
|  | empty_cluster = 0; | 
|  | } | 
|  |  | 
|  | goto search; | 
|  | } else if (!ins->objectid) { | 
|  | ret = -ENOSPC; | 
|  | } else if (ins->objectid) { | 
|  | if (!use_cluster && last_ptr) { | 
|  | spin_lock(&last_ptr->lock); | 
|  | last_ptr->window_start = ins->objectid; | 
|  | spin_unlock(&last_ptr->lock); | 
|  | } | 
|  | ret = 0; | 
|  | } | 
|  | out: | 
|  | if (ret == -ENOSPC) { | 
|  | if (!max_extent_size) | 
|  | max_extent_size = max_free_space; | 
|  | spin_lock(&space_info->lock); | 
|  | space_info->max_extent_size = max_extent_size; | 
|  | spin_unlock(&space_info->lock); | 
|  | ins->offset = max_extent_size; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dump_space_info(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_space_info *info, u64 bytes, | 
|  | int dump_block_groups) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int index = 0; | 
|  |  | 
|  | spin_lock(&info->lock); | 
|  | btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull", | 
|  | info->flags, | 
|  | info->total_bytes - btrfs_space_info_used(info, true), | 
|  | info->full ? "" : "not "); | 
|  | btrfs_info(fs_info, | 
|  | "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu", | 
|  | info->total_bytes, info->bytes_used, info->bytes_pinned, | 
|  | info->bytes_reserved, info->bytes_may_use, | 
|  | info->bytes_readonly); | 
|  | spin_unlock(&info->lock); | 
|  |  | 
|  | if (!dump_block_groups) | 
|  | return; | 
|  |  | 
|  | down_read(&info->groups_sem); | 
|  | again: | 
|  | list_for_each_entry(cache, &info->block_groups[index], list) { | 
|  | spin_lock(&cache->lock); | 
|  | btrfs_info(fs_info, | 
|  | "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s", | 
|  | cache->key.objectid, cache->key.offset, | 
|  | btrfs_block_group_used(&cache->item), cache->pinned, | 
|  | cache->reserved, cache->ro ? "[readonly]" : ""); | 
|  | btrfs_dump_free_space(cache, bytes); | 
|  | spin_unlock(&cache->lock); | 
|  | } | 
|  | if (++index < BTRFS_NR_RAID_TYPES) | 
|  | goto again; | 
|  | up_read(&info->groups_sem); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a | 
|  | *			  hole that is at least as big as @num_bytes. | 
|  | * | 
|  | * @root           -	The root that will contain this extent | 
|  | * | 
|  | * @ram_bytes      -	The amount of space in ram that @num_bytes take. This | 
|  | *			is used for accounting purposes. This value differs | 
|  | *			from @num_bytes only in the case of compressed extents. | 
|  | * | 
|  | * @num_bytes      -	Number of bytes to allocate on-disk. | 
|  | * | 
|  | * @min_alloc_size -	Indicates the minimum amount of space that the | 
|  | *			allocator should try to satisfy. In some cases | 
|  | *			@num_bytes may be larger than what is required and if | 
|  | *			the filesystem is fragmented then allocation fails. | 
|  | *			However, the presence of @min_alloc_size gives a | 
|  | *			chance to try and satisfy the smaller allocation. | 
|  | * | 
|  | * @empty_size     -	A hint that you plan on doing more COW. This is the | 
|  | *			size in bytes the allocator should try to find free | 
|  | *			next to the block it returns.  This is just a hint and | 
|  | *			may be ignored by the allocator. | 
|  | * | 
|  | * @hint_byte      -	Hint to the allocator to start searching above the byte | 
|  | *			address passed. It might be ignored. | 
|  | * | 
|  | * @ins            -	This key is modified to record the found hole. It will | 
|  | *			have the following values: | 
|  | *			ins->objectid == start position | 
|  | *			ins->flags = BTRFS_EXTENT_ITEM_KEY | 
|  | *			ins->offset == the size of the hole. | 
|  | * | 
|  | * @is_data        -	Boolean flag indicating whether an extent is | 
|  | *			allocated for data (true) or metadata (false) | 
|  | * | 
|  | * @delalloc       -	Boolean flag indicating whether this allocation is for | 
|  | *			delalloc or not. If 'true' data_rwsem of block groups | 
|  | *			is going to be acquired. | 
|  | * | 
|  | * | 
|  | * Returns 0 when an allocation succeeded or < 0 when an error occurred. In | 
|  | * case -ENOSPC is returned then @ins->offset will contain the size of the | 
|  | * largest available hole the allocator managed to find. | 
|  | */ | 
|  | int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, | 
|  | u64 num_bytes, u64 min_alloc_size, | 
|  | u64 empty_size, u64 hint_byte, | 
|  | struct btrfs_key *ins, int is_data, int delalloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | bool final_tried = num_bytes == min_alloc_size; | 
|  | u64 flags; | 
|  | int ret; | 
|  |  | 
|  | flags = get_alloc_profile_by_root(root, is_data); | 
|  | again: | 
|  | WARN_ON(num_bytes < fs_info->sectorsize); | 
|  | ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size, | 
|  | hint_byte, ins, flags, delalloc); | 
|  | if (!ret && !is_data) { | 
|  | btrfs_dec_block_group_reservations(fs_info, ins->objectid); | 
|  | } else if (ret == -ENOSPC) { | 
|  | if (!final_tried && ins->offset) { | 
|  | num_bytes = min(num_bytes >> 1, ins->offset); | 
|  | num_bytes = round_down(num_bytes, | 
|  | fs_info->sectorsize); | 
|  | num_bytes = max(num_bytes, min_alloc_size); | 
|  | ram_bytes = num_bytes; | 
|  | if (num_bytes == min_alloc_size) | 
|  | final_tried = true; | 
|  | goto again; | 
|  | } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { | 
|  | struct btrfs_space_info *sinfo; | 
|  |  | 
|  | sinfo = __find_space_info(fs_info, flags); | 
|  | btrfs_err(fs_info, | 
|  | "allocation failed flags %llu, wanted %llu", | 
|  | flags, num_bytes); | 
|  | if (sinfo) | 
|  | dump_space_info(fs_info, sinfo, num_bytes, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 len, | 
|  | int pin, int delalloc) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int ret = 0; | 
|  |  | 
|  | cache = btrfs_lookup_block_group(fs_info, start); | 
|  | if (!cache) { | 
|  | btrfs_err(fs_info, "Unable to find block group for %llu", | 
|  | start); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | if (pin) | 
|  | pin_down_extent(fs_info, cache, start, len, 1); | 
|  | else { | 
|  | if (btrfs_test_opt(fs_info, DISCARD)) | 
|  | ret = btrfs_discard_extent(fs_info, start, len, NULL); | 
|  | btrfs_add_free_space(cache, start, len); | 
|  | btrfs_free_reserved_bytes(cache, len, delalloc); | 
|  | trace_btrfs_reserved_extent_free(fs_info, start, len); | 
|  | } | 
|  |  | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 len, int delalloc) | 
|  | { | 
|  | return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc); | 
|  | } | 
|  |  | 
|  | int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 len) | 
|  | { | 
|  | return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0); | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | u64 parent, u64 root_objectid, | 
|  | u64 flags, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins, int ref_mod) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  | struct btrfs_extent_item *extent_item; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | int type; | 
|  | u32 size; | 
|  |  | 
|  | if (parent > 0) | 
|  | type = BTRFS_SHARED_DATA_REF_KEY; | 
|  | else | 
|  | type = BTRFS_EXTENT_DATA_REF_KEY; | 
|  |  | 
|  | size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, | 
|  | ins, size); | 
|  | if (ret) { | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, extent_item, ref_mod); | 
|  | btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
|  | btrfs_set_extent_flags(leaf, extent_item, | 
|  | flags | BTRFS_EXTENT_FLAG_DATA); | 
|  |  | 
|  | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, type); | 
|  | if (parent > 0) { | 
|  | struct btrfs_shared_data_ref *ref; | 
|  | ref = (struct btrfs_shared_data_ref *)(iref + 1); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, parent); | 
|  | btrfs_set_shared_data_ref_count(leaf, ref, ref_mod); | 
|  | } else { | 
|  | struct btrfs_extent_data_ref *ref; | 
|  | ref = (struct btrfs_extent_data_ref *)(&iref->offset); | 
|  | btrfs_set_extent_data_ref_root(leaf, ref, root_objectid); | 
|  | btrfs_set_extent_data_ref_objectid(leaf, ref, owner); | 
|  | btrfs_set_extent_data_ref_offset(leaf, ref, offset); | 
|  | btrfs_set_extent_data_ref_count(leaf, ref, ref_mod); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(path->nodes[0]); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1); | 
|  | if (ret) { /* -ENOENT, logic error */ | 
|  | btrfs_err(fs_info, "update block group failed for %llu %llu", | 
|  | ins->objectid, ins->offset); | 
|  | BUG(); | 
|  | } | 
|  | trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_delayed_ref_node *node, | 
|  | struct btrfs_delayed_extent_op *extent_op) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  | struct btrfs_extent_item *extent_item; | 
|  | struct btrfs_key extent_key; | 
|  | struct btrfs_tree_block_info *block_info; | 
|  | struct btrfs_extent_inline_ref *iref; | 
|  | struct btrfs_path *path; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_delayed_tree_ref *ref; | 
|  | u32 size = sizeof(*extent_item) + sizeof(*iref); | 
|  | u64 num_bytes; | 
|  | u64 flags = extent_op->flags_to_set; | 
|  | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); | 
|  |  | 
|  | ref = btrfs_delayed_node_to_tree_ref(node); | 
|  |  | 
|  | extent_key.objectid = node->bytenr; | 
|  | if (skinny_metadata) { | 
|  | extent_key.offset = ref->level; | 
|  | extent_key.type = BTRFS_METADATA_ITEM_KEY; | 
|  | num_bytes = fs_info->nodesize; | 
|  | } else { | 
|  | extent_key.offset = node->num_bytes; | 
|  | extent_key.type = BTRFS_EXTENT_ITEM_KEY; | 
|  | size += sizeof(*block_info); | 
|  | num_bytes = node->num_bytes; | 
|  | } | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | path->leave_spinning = 1; | 
|  | ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path, | 
|  | &extent_key, size); | 
|  | if (ret) { | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | extent_item = btrfs_item_ptr(leaf, path->slots[0], | 
|  | struct btrfs_extent_item); | 
|  | btrfs_set_extent_refs(leaf, extent_item, 1); | 
|  | btrfs_set_extent_generation(leaf, extent_item, trans->transid); | 
|  | btrfs_set_extent_flags(leaf, extent_item, | 
|  | flags | BTRFS_EXTENT_FLAG_TREE_BLOCK); | 
|  |  | 
|  | if (skinny_metadata) { | 
|  | iref = (struct btrfs_extent_inline_ref *)(extent_item + 1); | 
|  | } else { | 
|  | block_info = (struct btrfs_tree_block_info *)(extent_item + 1); | 
|  | btrfs_set_tree_block_key(leaf, block_info, &extent_op->key); | 
|  | btrfs_set_tree_block_level(leaf, block_info, ref->level); | 
|  | iref = (struct btrfs_extent_inline_ref *)(block_info + 1); | 
|  | } | 
|  |  | 
|  | if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) { | 
|  | BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_SHARED_BLOCK_REF_KEY); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent); | 
|  | } else { | 
|  | btrfs_set_extent_inline_ref_type(leaf, iref, | 
|  | BTRFS_TREE_BLOCK_REF_KEY); | 
|  | btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root); | 
|  | } | 
|  |  | 
|  | btrfs_mark_buffer_dirty(leaf); | 
|  | btrfs_free_path(path); | 
|  |  | 
|  | ret = remove_from_free_space_tree(trans, extent_key.objectid, | 
|  | num_bytes); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = update_block_group(trans, fs_info, extent_key.objectid, | 
|  | fs_info->nodesize, 1); | 
|  | if (ret) { /* -ENOENT, logic error */ | 
|  | btrfs_err(fs_info, "update block group failed for %llu %llu", | 
|  | extent_key.objectid, extent_key.offset); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid, | 
|  | fs_info->nodesize); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u64 owner, | 
|  | u64 offset, u64 ram_bytes, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); | 
|  |  | 
|  | btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0, | 
|  | root->root_key.objectid, owner, offset, | 
|  | BTRFS_ADD_DELAYED_EXTENT); | 
|  |  | 
|  | ret = btrfs_add_delayed_data_ref(trans, ins->objectid, | 
|  | ins->offset, 0, | 
|  | root->root_key.objectid, owner, | 
|  | offset, ram_bytes, | 
|  | BTRFS_ADD_DELAYED_EXTENT, NULL, NULL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this is used by the tree logging recovery code.  It records that | 
|  | * an extent has been allocated and makes sure to clear the free | 
|  | * space cache bits as well | 
|  | */ | 
|  | int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans, | 
|  | u64 root_objectid, u64 owner, u64 offset, | 
|  | struct btrfs_key *ins) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | int ret; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  |  | 
|  | /* | 
|  | * Mixed block groups will exclude before processing the log so we only | 
|  | * need to do the exclude dance if this fs isn't mixed. | 
|  | */ | 
|  | if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { | 
|  | ret = __exclude_logged_extent(fs_info, ins->objectid, | 
|  | ins->offset); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, ins->objectid); | 
|  | if (!block_group) | 
|  | return -EINVAL; | 
|  |  | 
|  | space_info = block_group->space_info; | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&block_group->lock); | 
|  | space_info->bytes_reserved += ins->offset; | 
|  | block_group->reserved += ins->offset; | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner, | 
|  | offset, ins, 1); | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static struct extent_buffer * | 
|  | btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root, | 
|  | u64 bytenr, int level, u64 owner) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct extent_buffer *buf; | 
|  |  | 
|  | buf = btrfs_find_create_tree_block(fs_info, bytenr); | 
|  | if (IS_ERR(buf)) | 
|  | return buf; | 
|  |  | 
|  | /* | 
|  | * Extra safety check in case the extent tree is corrupted and extent | 
|  | * allocator chooses to use a tree block which is already used and | 
|  | * locked. | 
|  | */ | 
|  | if (buf->lock_owner == current->pid) { | 
|  | btrfs_err_rl(fs_info, | 
|  | "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected", | 
|  | buf->start, btrfs_header_owner(buf), current->pid); | 
|  | free_extent_buffer(buf); | 
|  | return ERR_PTR(-EUCLEAN); | 
|  | } | 
|  |  | 
|  | btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level); | 
|  | btrfs_tree_lock(buf); | 
|  | clean_tree_block(fs_info, buf); | 
|  | clear_bit(EXTENT_BUFFER_STALE, &buf->bflags); | 
|  |  | 
|  | btrfs_set_lock_blocking(buf); | 
|  | set_extent_buffer_uptodate(buf); | 
|  |  | 
|  | memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header)); | 
|  | btrfs_set_header_level(buf, level); | 
|  | btrfs_set_header_bytenr(buf, buf->start); | 
|  | btrfs_set_header_generation(buf, trans->transid); | 
|  | btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV); | 
|  | btrfs_set_header_owner(buf, owner); | 
|  | write_extent_buffer_fsid(buf, fs_info->fsid); | 
|  | write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid); | 
|  | if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { | 
|  | buf->log_index = root->log_transid % 2; | 
|  | /* | 
|  | * we allow two log transactions at a time, use different | 
|  | * EXENT bit to differentiate dirty pages. | 
|  | */ | 
|  | if (buf->log_index == 0) | 
|  | set_extent_dirty(&root->dirty_log_pages, buf->start, | 
|  | buf->start + buf->len - 1, GFP_NOFS); | 
|  | else | 
|  | set_extent_new(&root->dirty_log_pages, buf->start, | 
|  | buf->start + buf->len - 1); | 
|  | } else { | 
|  | buf->log_index = -1; | 
|  | set_extent_dirty(&trans->transaction->dirty_pages, buf->start, | 
|  | buf->start + buf->len - 1, GFP_NOFS); | 
|  | } | 
|  | trans->dirty = true; | 
|  | /* this returns a buffer locked for blocking */ | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_rsv * | 
|  | use_block_rsv(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, u32 blocksize) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; | 
|  | int ret; | 
|  | bool global_updated = false; | 
|  |  | 
|  | block_rsv = get_block_rsv(trans, root); | 
|  |  | 
|  | if (unlikely(block_rsv->size == 0)) | 
|  | goto try_reserve; | 
|  | again: | 
|  | ret = block_rsv_use_bytes(block_rsv, blocksize); | 
|  | if (!ret) | 
|  | return block_rsv; | 
|  |  | 
|  | if (block_rsv->failfast) | 
|  | return ERR_PTR(ret); | 
|  |  | 
|  | if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { | 
|  | global_updated = true; | 
|  | update_global_block_rsv(fs_info); | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { | 
|  | static DEFINE_RATELIMIT_STATE(_rs, | 
|  | DEFAULT_RATELIMIT_INTERVAL * 10, | 
|  | /*DEFAULT_RATELIMIT_BURST*/ 1); | 
|  | if (__ratelimit(&_rs)) | 
|  | WARN(1, KERN_DEBUG | 
|  | "BTRFS: block rsv returned %d\n", ret); | 
|  | } | 
|  | try_reserve: | 
|  | ret = reserve_metadata_bytes(root, block_rsv, blocksize, | 
|  | BTRFS_RESERVE_NO_FLUSH); | 
|  | if (!ret) | 
|  | return block_rsv; | 
|  | /* | 
|  | * If we couldn't reserve metadata bytes try and use some from | 
|  | * the global reserve if its space type is the same as the global | 
|  | * reservation. | 
|  | */ | 
|  | if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && | 
|  | block_rsv->space_info == global_rsv->space_info) { | 
|  | ret = block_rsv_use_bytes(global_rsv, blocksize); | 
|  | if (!ret) | 
|  | return global_rsv; | 
|  | } | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static void unuse_block_rsv(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_block_rsv *block_rsv, u32 blocksize) | 
|  | { | 
|  | block_rsv_add_bytes(block_rsv, blocksize, 0); | 
|  | block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * finds a free extent and does all the dirty work required for allocation | 
|  | * returns the tree buffer or an ERR_PTR on error. | 
|  | */ | 
|  | struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | u64 parent, u64 root_objectid, | 
|  | const struct btrfs_disk_key *key, | 
|  | int level, u64 hint, | 
|  | u64 empty_size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_key ins; | 
|  | struct btrfs_block_rsv *block_rsv; | 
|  | struct extent_buffer *buf; | 
|  | struct btrfs_delayed_extent_op *extent_op; | 
|  | u64 flags = 0; | 
|  | int ret; | 
|  | u32 blocksize = fs_info->nodesize; | 
|  | bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS | 
|  | if (btrfs_is_testing(fs_info)) { | 
|  | buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr, | 
|  | level, root_objectid); | 
|  | if (!IS_ERR(buf)) | 
|  | root->alloc_bytenr += blocksize; | 
|  | return buf; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | block_rsv = use_block_rsv(trans, root, blocksize); | 
|  | if (IS_ERR(block_rsv)) | 
|  | return ERR_CAST(block_rsv); | 
|  |  | 
|  | ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize, | 
|  | empty_size, hint, &ins, 0, 0); | 
|  | if (ret) | 
|  | goto out_unuse; | 
|  |  | 
|  | buf = btrfs_init_new_buffer(trans, root, ins.objectid, level, | 
|  | root_objectid); | 
|  | if (IS_ERR(buf)) { | 
|  | ret = PTR_ERR(buf); | 
|  | goto out_free_reserved; | 
|  | } | 
|  |  | 
|  | if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) { | 
|  | if (parent == 0) | 
|  | parent = ins.objectid; | 
|  | flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | } else | 
|  | BUG_ON(parent > 0); | 
|  |  | 
|  | if (root_objectid != BTRFS_TREE_LOG_OBJECTID) { | 
|  | extent_op = btrfs_alloc_delayed_extent_op(); | 
|  | if (!extent_op) { | 
|  | ret = -ENOMEM; | 
|  | goto out_free_buf; | 
|  | } | 
|  | if (key) | 
|  | memcpy(&extent_op->key, key, sizeof(extent_op->key)); | 
|  | else | 
|  | memset(&extent_op->key, 0, sizeof(extent_op->key)); | 
|  | extent_op->flags_to_set = flags; | 
|  | extent_op->update_key = skinny_metadata ? false : true; | 
|  | extent_op->update_flags = true; | 
|  | extent_op->is_data = false; | 
|  | extent_op->level = level; | 
|  |  | 
|  | btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent, | 
|  | root_objectid, level, 0, | 
|  | BTRFS_ADD_DELAYED_EXTENT); | 
|  | ret = btrfs_add_delayed_tree_ref(trans, ins.objectid, | 
|  | ins.offset, parent, | 
|  | root_objectid, level, | 
|  | BTRFS_ADD_DELAYED_EXTENT, | 
|  | extent_op, NULL, NULL); | 
|  | if (ret) | 
|  | goto out_free_delayed; | 
|  | } | 
|  | return buf; | 
|  |  | 
|  | out_free_delayed: | 
|  | btrfs_free_delayed_extent_op(extent_op); | 
|  | out_free_buf: | 
|  | free_extent_buffer(buf); | 
|  | out_free_reserved: | 
|  | btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0); | 
|  | out_unuse: | 
|  | unuse_block_rsv(fs_info, block_rsv, blocksize); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | struct walk_control { | 
|  | u64 refs[BTRFS_MAX_LEVEL]; | 
|  | u64 flags[BTRFS_MAX_LEVEL]; | 
|  | struct btrfs_key update_progress; | 
|  | int stage; | 
|  | int level; | 
|  | int shared_level; | 
|  | int update_ref; | 
|  | int keep_locks; | 
|  | int reada_slot; | 
|  | int reada_count; | 
|  | }; | 
|  |  | 
|  | #define DROP_REFERENCE	1 | 
|  | #define UPDATE_BACKREF	2 | 
|  |  | 
|  | static noinline void reada_walk_down(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct walk_control *wc, | 
|  | struct btrfs_path *path) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | u64 refs; | 
|  | u64 flags; | 
|  | u32 nritems; | 
|  | struct btrfs_key key; | 
|  | struct extent_buffer *eb; | 
|  | int ret; | 
|  | int slot; | 
|  | int nread = 0; | 
|  |  | 
|  | if (path->slots[wc->level] < wc->reada_slot) { | 
|  | wc->reada_count = wc->reada_count * 2 / 3; | 
|  | wc->reada_count = max(wc->reada_count, 2); | 
|  | } else { | 
|  | wc->reada_count = wc->reada_count * 3 / 2; | 
|  | wc->reada_count = min_t(int, wc->reada_count, | 
|  | BTRFS_NODEPTRS_PER_BLOCK(fs_info)); | 
|  | } | 
|  |  | 
|  | eb = path->nodes[wc->level]; | 
|  | nritems = btrfs_header_nritems(eb); | 
|  |  | 
|  | for (slot = path->slots[wc->level]; slot < nritems; slot++) { | 
|  | if (nread >= wc->reada_count) | 
|  | break; | 
|  |  | 
|  | cond_resched(); | 
|  | bytenr = btrfs_node_blockptr(eb, slot); | 
|  | generation = btrfs_node_ptr_generation(eb, slot); | 
|  |  | 
|  | if (slot == path->slots[wc->level]) | 
|  | goto reada; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | generation <= root->root_key.offset) | 
|  | continue; | 
|  |  | 
|  | /* We don't lock the tree block, it's OK to be racy here */ | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, | 
|  | wc->level - 1, 1, &refs, | 
|  | &flags); | 
|  | /* We don't care about errors in readahead. */ | 
|  | if (ret < 0) | 
|  | continue; | 
|  | BUG_ON(refs == 0); | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (refs == 1) | 
|  | goto reada; | 
|  |  | 
|  | if (wc->level == 1 && | 
|  | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | continue; | 
|  | if (!wc->update_ref || | 
|  | generation <= root->root_key.offset) | 
|  | continue; | 
|  | btrfs_node_key_to_cpu(eb, &key, slot); | 
|  | ret = btrfs_comp_cpu_keys(&key, | 
|  | &wc->update_progress); | 
|  | if (ret < 0) | 
|  | continue; | 
|  | } else { | 
|  | if (wc->level == 1 && | 
|  | (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | continue; | 
|  | } | 
|  | reada: | 
|  | readahead_tree_block(fs_info, bytenr); | 
|  | nread++; | 
|  | } | 
|  | wc->reada_slot = slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block while walking down the tree. | 
|  | * | 
|  | * when wc->stage == UPDATE_BACKREF, this function updates | 
|  | * back refs for pointers in the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking down. | 
|  | */ | 
|  | static noinline int walk_down_proc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int lookup_info) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int level = wc->level; | 
|  | struct extent_buffer *eb = path->nodes[level]; | 
|  | u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | int ret; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | btrfs_header_owner(eb) != root->root_key.objectid) | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * when reference count of tree block is 1, it won't increase | 
|  | * again. once full backref flag is set, we never clear it. | 
|  | */ | 
|  | if (lookup_info && | 
|  | ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) || | 
|  | (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) { | 
|  | BUG_ON(!path->locks[level]); | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, | 
|  | eb->start, level, 1, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | BUG_ON(ret == -ENOMEM); | 
|  | if (ret) | 
|  | return ret; | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  | } | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->refs[level] > 1) | 
|  | return 1; | 
|  |  | 
|  | if (path->locks[level] && !wc->keep_locks) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* wc->stage == UPDATE_BACKREF */ | 
|  | if (!(wc->flags[level] & flag)) { | 
|  | BUG_ON(!path->locks[level]); | 
|  | ret = btrfs_inc_ref(trans, root, eb, 1); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | ret = btrfs_dec_ref(trans, root, eb, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start, | 
|  | eb->len, flag, | 
|  | btrfs_header_level(eb), 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | wc->flags[level] |= flag; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the block is shared by multiple trees, so it's not good to | 
|  | * keep the tree lock | 
|  | */ | 
|  | if (path->locks[level] && level > 0) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block pointer. | 
|  | * | 
|  | * when wc->stage == DROP_REFERENCE, this function checks | 
|  | * reference count of the block pointed to. if the block | 
|  | * is shared and we need update back refs for the subtree | 
|  | * rooted at the block, this function changes wc->stage to | 
|  | * UPDATE_BACKREF. if the block is shared and there is no | 
|  | * need to update back, this function drops the reference | 
|  | * to the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking down. | 
|  | */ | 
|  | static noinline int do_walk_down(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int *lookup_info) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | u64 bytenr; | 
|  | u64 generation; | 
|  | u64 parent; | 
|  | u32 blocksize; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key first_key; | 
|  | struct extent_buffer *next; | 
|  | int level = wc->level; | 
|  | int reada = 0; | 
|  | int ret = 0; | 
|  | bool need_account = false; | 
|  |  | 
|  | generation = btrfs_node_ptr_generation(path->nodes[level], | 
|  | path->slots[level]); | 
|  | /* | 
|  | * if the lower level block was created before the snapshot | 
|  | * was created, we know there is no need to update back refs | 
|  | * for the subtree | 
|  | */ | 
|  | if (wc->stage == UPDATE_BACKREF && | 
|  | generation <= root->root_key.offset) { | 
|  | *lookup_info = 1; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]); | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &first_key, | 
|  | path->slots[level]); | 
|  | blocksize = fs_info->nodesize; | 
|  |  | 
|  | next = find_extent_buffer(fs_info, bytenr); | 
|  | if (!next) { | 
|  | next = btrfs_find_create_tree_block(fs_info, bytenr); | 
|  | if (IS_ERR(next)) | 
|  | return PTR_ERR(next); | 
|  |  | 
|  | btrfs_set_buffer_lockdep_class(root->root_key.objectid, next, | 
|  | level - 1); | 
|  | reada = 1; | 
|  | } | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1, | 
|  | &wc->refs[level - 1], | 
|  | &wc->flags[level - 1]); | 
|  | if (ret < 0) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (unlikely(wc->refs[level - 1] == 0)) { | 
|  | btrfs_err(fs_info, "Missing references."); | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | *lookup_info = 0; | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->refs[level - 1] > 1) { | 
|  | need_account = true; | 
|  | if (level == 1 && | 
|  | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | goto skip; | 
|  |  | 
|  | if (!wc->update_ref || | 
|  | generation <= root->root_key.offset) | 
|  | goto skip; | 
|  |  | 
|  | btrfs_node_key_to_cpu(path->nodes[level], &key, | 
|  | path->slots[level]); | 
|  | ret = btrfs_comp_cpu_keys(&key, &wc->update_progress); | 
|  | if (ret < 0) | 
|  | goto skip; | 
|  |  | 
|  | wc->stage = UPDATE_BACKREF; | 
|  | wc->shared_level = level - 1; | 
|  | } | 
|  | } else { | 
|  | if (level == 1 && | 
|  | (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF)) | 
|  | goto skip; | 
|  | } | 
|  |  | 
|  | if (!btrfs_buffer_uptodate(next, generation, 0)) { | 
|  | btrfs_tree_unlock(next); | 
|  | free_extent_buffer(next); | 
|  | next = NULL; | 
|  | *lookup_info = 1; | 
|  | } | 
|  |  | 
|  | if (!next) { | 
|  | if (reada && level == 1) | 
|  | reada_walk_down(trans, root, wc, path); | 
|  | next = read_tree_block(fs_info, bytenr, generation, level - 1, | 
|  | &first_key); | 
|  | if (IS_ERR(next)) { | 
|  | return PTR_ERR(next); | 
|  | } else if (!extent_buffer_uptodate(next)) { | 
|  | free_extent_buffer(next); | 
|  | return -EIO; | 
|  | } | 
|  | btrfs_tree_lock(next); | 
|  | btrfs_set_lock_blocking(next); | 
|  | } | 
|  |  | 
|  | level--; | 
|  | ASSERT(level == btrfs_header_level(next)); | 
|  | if (level != btrfs_header_level(next)) { | 
|  | btrfs_err(root->fs_info, "mismatched level"); | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | path->nodes[level] = next; | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  | wc->level = level; | 
|  | if (wc->level == 1) | 
|  | wc->reada_slot = 0; | 
|  | return 0; | 
|  | skip: | 
|  | wc->refs[level - 1] = 0; | 
|  | wc->flags[level - 1] = 0; | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) { | 
|  | parent = path->nodes[level]->start; | 
|  | } else { | 
|  | ASSERT(root->root_key.objectid == | 
|  | btrfs_header_owner(path->nodes[level])); | 
|  | if (root->root_key.objectid != | 
|  | btrfs_header_owner(path->nodes[level])) { | 
|  | btrfs_err(root->fs_info, | 
|  | "mismatched block owner"); | 
|  | ret = -EIO; | 
|  | goto out_unlock; | 
|  | } | 
|  | parent = 0; | 
|  | } | 
|  |  | 
|  | if (need_account) { | 
|  | ret = btrfs_qgroup_trace_subtree(trans, next, | 
|  | generation, level - 1); | 
|  | if (ret) { | 
|  | btrfs_err_rl(fs_info, | 
|  | "Error %d accounting shared subtree. Quota is out of sync, rescan required.", | 
|  | ret); | 
|  | } | 
|  | } | 
|  | ret = btrfs_free_extent(trans, root, bytenr, blocksize, | 
|  | parent, root->root_key.objectid, | 
|  | level - 1, 0); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | *lookup_info = 1; | 
|  | ret = 1; | 
|  |  | 
|  | out_unlock: | 
|  | btrfs_tree_unlock(next); | 
|  | free_extent_buffer(next); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to process tree block while walking up the tree. | 
|  | * | 
|  | * when wc->stage == DROP_REFERENCE, this function drops | 
|  | * reference count on the block. | 
|  | * | 
|  | * when wc->stage == UPDATE_BACKREF, this function changes | 
|  | * wc->stage back to DROP_REFERENCE if we changed wc->stage | 
|  | * to UPDATE_BACKREF previously while processing the block. | 
|  | * | 
|  | * NOTE: return value 1 means we should stop walking up. | 
|  | */ | 
|  | static noinline int walk_up_proc(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | int ret; | 
|  | int level = wc->level; | 
|  | struct extent_buffer *eb = path->nodes[level]; | 
|  | u64 parent = 0; | 
|  |  | 
|  | if (wc->stage == UPDATE_BACKREF) { | 
|  | BUG_ON(wc->shared_level < level); | 
|  | if (level < wc->shared_level) | 
|  | goto out; | 
|  |  | 
|  | ret = find_next_key(path, level + 1, &wc->update_progress); | 
|  | if (ret > 0) | 
|  | wc->update_ref = 0; | 
|  |  | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->shared_level = -1; | 
|  | path->slots[level] = 0; | 
|  |  | 
|  | /* | 
|  | * check reference count again if the block isn't locked. | 
|  | * we should start walking down the tree again if reference | 
|  | * count is one. | 
|  | */ | 
|  | if (!path->locks[level]) { | 
|  | BUG_ON(level == 0); | 
|  | btrfs_tree_lock(eb); | 
|  | btrfs_set_lock_blocking(eb); | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, | 
|  | eb->start, level, 1, | 
|  | &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | if (ret < 0) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | return ret; | 
|  | } | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  | if (wc->refs[level] == 1) { | 
|  | btrfs_tree_unlock_rw(eb, path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* wc->stage == DROP_REFERENCE */ | 
|  | BUG_ON(wc->refs[level] > 1 && !path->locks[level]); | 
|  |  | 
|  | if (wc->refs[level] == 1) { | 
|  | if (level == 0) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | ret = btrfs_dec_ref(trans, root, eb, 1); | 
|  | else | 
|  | ret = btrfs_dec_ref(trans, root, eb, 0); | 
|  | BUG_ON(ret); /* -ENOMEM */ | 
|  | ret = btrfs_qgroup_trace_leaf_items(trans, eb); | 
|  | if (ret) { | 
|  | btrfs_err_rl(fs_info, | 
|  | "error %d accounting leaf items. Quota is out of sync, rescan required.", | 
|  | ret); | 
|  | } | 
|  | } | 
|  | /* make block locked assertion in clean_tree_block happy */ | 
|  | if (!path->locks[level] && | 
|  | btrfs_header_generation(eb) == trans->transid) { | 
|  | btrfs_tree_lock(eb); | 
|  | btrfs_set_lock_blocking(eb); | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  | } | 
|  | clean_tree_block(fs_info, eb); | 
|  | } | 
|  |  | 
|  | if (eb == root->node) { | 
|  | if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | parent = eb->start; | 
|  | else if (root->root_key.objectid != btrfs_header_owner(eb)) | 
|  | goto owner_mismatch; | 
|  | } else { | 
|  | if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF) | 
|  | parent = path->nodes[level + 1]->start; | 
|  | else if (root->root_key.objectid != | 
|  | btrfs_header_owner(path->nodes[level + 1])) | 
|  | goto owner_mismatch; | 
|  | } | 
|  |  | 
|  | btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1); | 
|  | out: | 
|  | wc->refs[level] = 0; | 
|  | wc->flags[level] = 0; | 
|  | return 0; | 
|  |  | 
|  | owner_mismatch: | 
|  | btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu", | 
|  | btrfs_header_owner(eb), root->root_key.objectid); | 
|  | return -EUCLEAN; | 
|  | } | 
|  |  | 
|  | static noinline int walk_down_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc) | 
|  | { | 
|  | int level = wc->level; | 
|  | int lookup_info = 1; | 
|  | int ret; | 
|  |  | 
|  | while (level >= 0) { | 
|  | ret = walk_down_proc(trans, root, path, wc, lookup_info); | 
|  | if (ret > 0) | 
|  | break; | 
|  |  | 
|  | if (level == 0) | 
|  | break; | 
|  |  | 
|  | if (path->slots[level] >= | 
|  | btrfs_header_nritems(path->nodes[level])) | 
|  | break; | 
|  |  | 
|  | ret = do_walk_down(trans, root, path, wc, &lookup_info); | 
|  | if (ret > 0) { | 
|  | path->slots[level]++; | 
|  | continue; | 
|  | } else if (ret < 0) | 
|  | return ret; | 
|  | level = wc->level; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline int walk_up_tree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct btrfs_path *path, | 
|  | struct walk_control *wc, int max_level) | 
|  | { | 
|  | int level = wc->level; | 
|  | int ret; | 
|  |  | 
|  | path->slots[level] = btrfs_header_nritems(path->nodes[level]); | 
|  | while (level < max_level && path->nodes[level]) { | 
|  | wc->level = level; | 
|  | if (path->slots[level] + 1 < | 
|  | btrfs_header_nritems(path->nodes[level])) { | 
|  | path->slots[level]++; | 
|  | return 0; | 
|  | } else { | 
|  | ret = walk_up_proc(trans, root, path, wc); | 
|  | if (ret > 0) | 
|  | return 0; | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (path->locks[level]) { | 
|  | btrfs_tree_unlock_rw(path->nodes[level], | 
|  | path->locks[level]); | 
|  | path->locks[level] = 0; | 
|  | } | 
|  | free_extent_buffer(path->nodes[level]); | 
|  | path->nodes[level] = NULL; | 
|  | level++; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop a subvolume tree. | 
|  | * | 
|  | * this function traverses the tree freeing any blocks that only | 
|  | * referenced by the tree. | 
|  | * | 
|  | * when a shared tree block is found. this function decreases its | 
|  | * reference count by one. if update_ref is true, this function | 
|  | * also make sure backrefs for the shared block and all lower level | 
|  | * blocks are properly updated. | 
|  | * | 
|  | * If called with for_reloc == 0, may exit early with -EAGAIN | 
|  | */ | 
|  | int btrfs_drop_snapshot(struct btrfs_root *root, | 
|  | struct btrfs_block_rsv *block_rsv, int update_ref, | 
|  | int for_reloc) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_trans_handle *trans; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct btrfs_root_item *root_item = &root->root_item; | 
|  | struct walk_control *wc; | 
|  | struct btrfs_key key; | 
|  | int err = 0; | 
|  | int ret; | 
|  | int level; | 
|  | bool root_dropped = false; | 
|  |  | 
|  | btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
|  | if (!wc) { | 
|  | btrfs_free_path(path); | 
|  | err = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | trans = btrfs_start_transaction(tree_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | err = btrfs_run_delayed_items(trans); | 
|  | if (err) | 
|  | goto out_end_trans; | 
|  |  | 
|  | if (block_rsv) | 
|  | trans->block_rsv = block_rsv; | 
|  |  | 
|  | if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { | 
|  | level = btrfs_header_level(root->node); | 
|  | path->nodes[level] = btrfs_lock_root_node(root); | 
|  | btrfs_set_lock_blocking(path->nodes[level]); | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  | memset(&wc->update_progress, 0, | 
|  | sizeof(wc->update_progress)); | 
|  | } else { | 
|  | btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); | 
|  | memcpy(&wc->update_progress, &key, | 
|  | sizeof(wc->update_progress)); | 
|  |  | 
|  | level = root_item->drop_level; | 
|  | BUG_ON(level == 0); | 
|  | path->lowest_level = level; | 
|  | ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
|  | path->lowest_level = 0; | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  | WARN_ON(ret > 0); | 
|  |  | 
|  | /* | 
|  | * unlock our path, this is safe because only this | 
|  | * function is allowed to delete this snapshot | 
|  | */ | 
|  | btrfs_unlock_up_safe(path, 0); | 
|  |  | 
|  | level = btrfs_header_level(root->node); | 
|  | while (1) { | 
|  | btrfs_tree_lock(path->nodes[level]); | 
|  | btrfs_set_lock_blocking(path->nodes[level]); | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  |  | 
|  | ret = btrfs_lookup_extent_info(trans, fs_info, | 
|  | path->nodes[level]->start, | 
|  | level, 1, &wc->refs[level], | 
|  | &wc->flags[level]); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  | BUG_ON(wc->refs[level] == 0); | 
|  |  | 
|  | if (level == root_item->drop_level) | 
|  | break; | 
|  |  | 
|  | btrfs_tree_unlock(path->nodes[level]); | 
|  | path->locks[level] = 0; | 
|  | WARN_ON(wc->refs[level] != 1); | 
|  | level--; | 
|  | } | 
|  | } | 
|  |  | 
|  | wc->level = level; | 
|  | wc->shared_level = -1; | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->update_ref = update_ref; | 
|  | wc->keep_locks = 0; | 
|  | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); | 
|  |  | 
|  | while (1) { | 
|  |  | 
|  | ret = walk_down_tree(trans, root, path, wc); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL); | 
|  | if (ret < 0) { | 
|  | err = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret > 0) { | 
|  | BUG_ON(wc->stage != DROP_REFERENCE); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (wc->stage == DROP_REFERENCE) { | 
|  | level = wc->level; | 
|  | btrfs_node_key(path->nodes[level], | 
|  | &root_item->drop_progress, | 
|  | path->slots[level]); | 
|  | root_item->drop_level = level; | 
|  | } | 
|  |  | 
|  | BUG_ON(wc->level == 0); | 
|  | if (btrfs_should_end_transaction(trans) || | 
|  | (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) { | 
|  | ret = btrfs_update_root(trans, tree_root, | 
|  | &root->root_key, | 
|  | root_item); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  |  | 
|  | btrfs_end_transaction_throttle(trans); | 
|  | if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) { | 
|  | btrfs_debug(fs_info, | 
|  | "drop snapshot early exit"); | 
|  | err = -EAGAIN; | 
|  | goto out_free; | 
|  | } | 
|  |  | 
|  | trans = btrfs_start_transaction(tree_root, 0); | 
|  | if (IS_ERR(trans)) { | 
|  | err = PTR_ERR(trans); | 
|  | goto out_free; | 
|  | } | 
|  | if (block_rsv) | 
|  | trans->block_rsv = block_rsv; | 
|  | } | 
|  | } | 
|  | btrfs_release_path(path); | 
|  | if (err) | 
|  | goto out_end_trans; | 
|  |  | 
|  | ret = btrfs_del_root(trans, &root->root_key); | 
|  | if (ret) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } | 
|  |  | 
|  | if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { | 
|  | ret = btrfs_find_root(tree_root, &root->root_key, path, | 
|  | NULL, NULL); | 
|  | if (ret < 0) { | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | err = ret; | 
|  | goto out_end_trans; | 
|  | } else if (ret > 0) { | 
|  | /* if we fail to delete the orphan item this time | 
|  | * around, it'll get picked up the next time. | 
|  | * | 
|  | * The most common failure here is just -ENOENT. | 
|  | */ | 
|  | btrfs_del_orphan_item(trans, tree_root, | 
|  | root->root_key.objectid); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) { | 
|  | btrfs_add_dropped_root(trans, root); | 
|  | } else { | 
|  | free_extent_buffer(root->node); | 
|  | free_extent_buffer(root->commit_root); | 
|  | btrfs_put_fs_root(root); | 
|  | } | 
|  | root_dropped = true; | 
|  | out_end_trans: | 
|  | btrfs_end_transaction_throttle(trans); | 
|  | out_free: | 
|  | kfree(wc); | 
|  | btrfs_free_path(path); | 
|  | out: | 
|  | /* | 
|  | * So if we need to stop dropping the snapshot for whatever reason we | 
|  | * need to make sure to add it back to the dead root list so that we | 
|  | * keep trying to do the work later.  This also cleans up roots if we | 
|  | * don't have it in the radix (like when we recover after a power fail | 
|  | * or unmount) so we don't leak memory. | 
|  | */ | 
|  | if (!for_reloc && !root_dropped) | 
|  | btrfs_add_dead_root(root); | 
|  | if (err && err != -EAGAIN) | 
|  | btrfs_handle_fs_error(fs_info, err, NULL); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * drop subtree rooted at tree block 'node'. | 
|  | * | 
|  | * NOTE: this function will unlock and release tree block 'node' | 
|  | * only used by relocation code | 
|  | */ | 
|  | int btrfs_drop_subtree(struct btrfs_trans_handle *trans, | 
|  | struct btrfs_root *root, | 
|  | struct extent_buffer *node, | 
|  | struct extent_buffer *parent) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = root->fs_info; | 
|  | struct btrfs_path *path; | 
|  | struct walk_control *wc; | 
|  | int level; | 
|  | int parent_level; | 
|  | int ret = 0; | 
|  | int wret; | 
|  |  | 
|  | BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  |  | 
|  | wc = kzalloc(sizeof(*wc), GFP_NOFS); | 
|  | if (!wc) { | 
|  | btrfs_free_path(path); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | btrfs_assert_tree_locked(parent); | 
|  | parent_level = btrfs_header_level(parent); | 
|  | extent_buffer_get(parent); | 
|  | path->nodes[parent_level] = parent; | 
|  | path->slots[parent_level] = btrfs_header_nritems(parent); | 
|  |  | 
|  | btrfs_assert_tree_locked(node); | 
|  | level = btrfs_header_level(node); | 
|  | path->nodes[level] = node; | 
|  | path->slots[level] = 0; | 
|  | path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; | 
|  |  | 
|  | wc->refs[parent_level] = 1; | 
|  | wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF; | 
|  | wc->level = level; | 
|  | wc->shared_level = -1; | 
|  | wc->stage = DROP_REFERENCE; | 
|  | wc->update_ref = 0; | 
|  | wc->keep_locks = 1; | 
|  | wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info); | 
|  |  | 
|  | while (1) { | 
|  | wret = walk_down_tree(trans, root, path, wc); | 
|  | if (wret < 0) { | 
|  | ret = wret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | wret = walk_up_tree(trans, root, path, wc, parent_level); | 
|  | if (wret < 0) | 
|  | ret = wret; | 
|  | if (wret != 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | kfree(wc); | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | u64 num_devices; | 
|  | u64 stripped; | 
|  |  | 
|  | /* | 
|  | * if restripe for this chunk_type is on pick target profile and | 
|  | * return, otherwise do the usual balance | 
|  | */ | 
|  | stripped = get_restripe_target(fs_info, flags); | 
|  | if (stripped) | 
|  | return extended_to_chunk(stripped); | 
|  |  | 
|  | num_devices = fs_info->fs_devices->rw_devices; | 
|  |  | 
|  | stripped = BTRFS_BLOCK_GROUP_RAID0 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10; | 
|  |  | 
|  | if (num_devices == 1) { | 
|  | stripped |= BTRFS_BLOCK_GROUP_DUP; | 
|  | stripped = flags & ~stripped; | 
|  |  | 
|  | /* turn raid0 into single device chunks */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_RAID0) | 
|  | return stripped; | 
|  |  | 
|  | /* turn mirroring into duplication */ | 
|  | if (flags & (BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID10)) | 
|  | return stripped | BTRFS_BLOCK_GROUP_DUP; | 
|  | } else { | 
|  | /* they already had raid on here, just return */ | 
|  | if (flags & stripped) | 
|  | return flags; | 
|  |  | 
|  | stripped |= BTRFS_BLOCK_GROUP_DUP; | 
|  | stripped = flags & ~stripped; | 
|  |  | 
|  | /* switch duplicated blocks with raid1 */ | 
|  | if (flags & BTRFS_BLOCK_GROUP_DUP) | 
|  | return stripped | BTRFS_BLOCK_GROUP_RAID1; | 
|  |  | 
|  | /* this is drive concat, leave it alone */ | 
|  | } | 
|  |  | 
|  | return flags; | 
|  | } | 
|  |  | 
|  | static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force) | 
|  | { | 
|  | struct btrfs_space_info *sinfo = cache->space_info; | 
|  | u64 num_bytes; | 
|  | u64 min_allocable_bytes; | 
|  | int ret = -ENOSPC; | 
|  |  | 
|  | /* | 
|  | * We need some metadata space and system metadata space for | 
|  | * allocating chunks in some corner cases until we force to set | 
|  | * it to be readonly. | 
|  | */ | 
|  | if ((sinfo->flags & | 
|  | (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) && | 
|  | !force) | 
|  | min_allocable_bytes = SZ_1M; | 
|  | else | 
|  | min_allocable_bytes = 0; | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&cache->lock); | 
|  |  | 
|  | if (cache->ro) { | 
|  | cache->ro++; | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | num_bytes = cache->key.offset - cache->reserved - cache->pinned - | 
|  | cache->bytes_super - btrfs_block_group_used(&cache->item); | 
|  |  | 
|  | if (btrfs_space_info_used(sinfo, true) + num_bytes + | 
|  | min_allocable_bytes <= sinfo->total_bytes) { | 
|  | sinfo->bytes_readonly += num_bytes; | 
|  | cache->ro++; | 
|  | list_add_tail(&cache->ro_list, &sinfo->ro_bgs); | 
|  | ret = 0; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache) | 
|  |  | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 alloc_flags; | 
|  | int ret; | 
|  |  | 
|  | again: | 
|  | trans = btrfs_join_transaction(fs_info->extent_root); | 
|  | if (IS_ERR(trans)) | 
|  | return PTR_ERR(trans); | 
|  |  | 
|  | /* | 
|  | * we're not allowed to set block groups readonly after the dirty | 
|  | * block groups cache has started writing.  If it already started, | 
|  | * back off and let this transaction commit | 
|  | */ | 
|  | mutex_lock(&fs_info->ro_block_group_mutex); | 
|  | if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) { | 
|  | u64 transid = trans->transid; | 
|  |  | 
|  | mutex_unlock(&fs_info->ro_block_group_mutex); | 
|  | btrfs_end_transaction(trans); | 
|  |  | 
|  | ret = btrfs_wait_for_commit(fs_info, transid); | 
|  | if (ret) | 
|  | return ret; | 
|  | goto again; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if we are changing raid levels, try to allocate a corresponding | 
|  | * block group with the new raid level. | 
|  | */ | 
|  | alloc_flags = update_block_group_flags(fs_info, cache->flags); | 
|  | if (alloc_flags != cache->flags) { | 
|  | ret = do_chunk_alloc(trans, alloc_flags, | 
|  | CHUNK_ALLOC_FORCE); | 
|  | /* | 
|  | * ENOSPC is allowed here, we may have enough space | 
|  | * already allocated at the new raid level to | 
|  | * carry on | 
|  | */ | 
|  | if (ret == -ENOSPC) | 
|  | ret = 0; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = inc_block_group_ro(cache, 0); | 
|  | if (!ret) | 
|  | goto out; | 
|  | alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags); | 
|  | ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | ret = inc_block_group_ro(cache, 0); | 
|  | out: | 
|  | if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) { | 
|  | alloc_flags = update_block_group_flags(fs_info, cache->flags); | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | check_system_chunk(trans, alloc_flags); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | } | 
|  | mutex_unlock(&fs_info->ro_block_group_mutex); | 
|  |  | 
|  | btrfs_end_transaction(trans); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type) | 
|  | { | 
|  | u64 alloc_flags = get_alloc_profile(trans->fs_info, type); | 
|  |  | 
|  | return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * helper to account the unused space of all the readonly block group in the | 
|  | * space_info. takes mirrors into account. | 
|  | */ | 
|  | u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | u64 free_bytes = 0; | 
|  | int factor; | 
|  |  | 
|  | /* It's df, we don't care if it's racy */ | 
|  | if (list_empty(&sinfo->ro_bgs)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) { | 
|  | spin_lock(&block_group->lock); | 
|  |  | 
|  | if (!block_group->ro) { | 
|  | spin_unlock(&block_group->lock); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | factor = btrfs_bg_type_to_factor(block_group->flags); | 
|  | free_bytes += (block_group->key.offset - | 
|  | btrfs_block_group_used(&block_group->item)) * | 
|  | factor; | 
|  |  | 
|  | spin_unlock(&block_group->lock); | 
|  | } | 
|  | spin_unlock(&sinfo->lock); | 
|  |  | 
|  | return free_bytes; | 
|  | } | 
|  |  | 
|  | void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_space_info *sinfo = cache->space_info; | 
|  | u64 num_bytes; | 
|  |  | 
|  | BUG_ON(!cache->ro); | 
|  |  | 
|  | spin_lock(&sinfo->lock); | 
|  | spin_lock(&cache->lock); | 
|  | if (!--cache->ro) { | 
|  | num_bytes = cache->key.offset - cache->reserved - | 
|  | cache->pinned - cache->bytes_super - | 
|  | btrfs_block_group_used(&cache->item); | 
|  | sinfo->bytes_readonly -= num_bytes; | 
|  | list_del_init(&cache->ro_list); | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | spin_unlock(&sinfo->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * checks to see if its even possible to relocate this block group. | 
|  | * | 
|  | * @return - -1 if it's not a good idea to relocate this block group, 0 if its | 
|  | * ok to go ahead and try. | 
|  | */ | 
|  | int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
|  | struct btrfs_device *device; | 
|  | struct btrfs_trans_handle *trans; | 
|  | u64 min_free; | 
|  | u64 dev_min = 1; | 
|  | u64 dev_nr = 0; | 
|  | u64 target; | 
|  | int debug; | 
|  | int index; | 
|  | int full = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG); | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, bytenr); | 
|  |  | 
|  | /* odd, couldn't find the block group, leave it alone */ | 
|  | if (!block_group) { | 
|  | if (debug) | 
|  | btrfs_warn(fs_info, | 
|  | "can't find block group for bytenr %llu", | 
|  | bytenr); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | min_free = btrfs_block_group_used(&block_group->item); | 
|  |  | 
|  | /* no bytes used, we're good */ | 
|  | if (!min_free) | 
|  | goto out; | 
|  |  | 
|  | space_info = block_group->space_info; | 
|  | spin_lock(&space_info->lock); | 
|  |  | 
|  | full = space_info->full; | 
|  |  | 
|  | /* | 
|  | * if this is the last block group we have in this space, we can't | 
|  | * relocate it unless we're able to allocate a new chunk below. | 
|  | * | 
|  | * Otherwise, we need to make sure we have room in the space to handle | 
|  | * all of the extents from this block group.  If we can, we're good | 
|  | */ | 
|  | if ((space_info->total_bytes != block_group->key.offset) && | 
|  | (btrfs_space_info_used(space_info, false) + min_free < | 
|  | space_info->total_bytes)) { | 
|  | spin_unlock(&space_info->lock); | 
|  | goto out; | 
|  | } | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | /* | 
|  | * ok we don't have enough space, but maybe we have free space on our | 
|  | * devices to allocate new chunks for relocation, so loop through our | 
|  | * alloc devices and guess if we have enough space.  if this block | 
|  | * group is going to be restriped, run checks against the target | 
|  | * profile instead of the current one. | 
|  | */ | 
|  | ret = -1; | 
|  |  | 
|  | /* | 
|  | * index: | 
|  | *      0: raid10 | 
|  | *      1: raid1 | 
|  | *      2: dup | 
|  | *      3: raid0 | 
|  | *      4: single | 
|  | */ | 
|  | target = get_restripe_target(fs_info, block_group->flags); | 
|  | if (target) { | 
|  | index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target)); | 
|  | } else { | 
|  | /* | 
|  | * this is just a balance, so if we were marked as full | 
|  | * we know there is no space for a new chunk | 
|  | */ | 
|  | if (full) { | 
|  | if (debug) | 
|  | btrfs_warn(fs_info, | 
|  | "no space to alloc new chunk for block group %llu", | 
|  | block_group->key.objectid); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | index = btrfs_bg_flags_to_raid_index(block_group->flags); | 
|  | } | 
|  |  | 
|  | if (index == BTRFS_RAID_RAID10) { | 
|  | dev_min = 4; | 
|  | /* Divide by 2 */ | 
|  | min_free >>= 1; | 
|  | } else if (index == BTRFS_RAID_RAID1) { | 
|  | dev_min = 2; | 
|  | } else if (index == BTRFS_RAID_DUP) { | 
|  | /* Multiply by 2 */ | 
|  | min_free <<= 1; | 
|  | } else if (index == BTRFS_RAID_RAID0) { | 
|  | dev_min = fs_devices->rw_devices; | 
|  | min_free = div64_u64(min_free, dev_min); | 
|  | } | 
|  |  | 
|  | /* We need to do this so that we can look at pending chunks */ | 
|  | trans = btrfs_join_transaction(root); | 
|  | if (IS_ERR(trans)) { | 
|  | ret = PTR_ERR(trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { | 
|  | u64 dev_offset; | 
|  |  | 
|  | /* | 
|  | * check to make sure we can actually find a chunk with enough | 
|  | * space to fit our block group in. | 
|  | */ | 
|  | if (device->total_bytes > device->bytes_used + min_free && | 
|  | !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { | 
|  | ret = find_free_dev_extent(trans, device, min_free, | 
|  | &dev_offset, NULL); | 
|  | if (!ret) | 
|  | dev_nr++; | 
|  |  | 
|  | if (dev_nr >= dev_min) | 
|  | break; | 
|  |  | 
|  | ret = -1; | 
|  | } | 
|  | } | 
|  | if (debug && ret == -1) | 
|  | btrfs_warn(fs_info, | 
|  | "no space to allocate a new chunk for block group %llu", | 
|  | block_group->key.objectid); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | btrfs_end_transaction(trans); | 
|  | out: | 
|  | btrfs_put_block_group(block_group); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int find_first_block_group(struct btrfs_fs_info *fs_info, | 
|  | struct btrfs_path *path, | 
|  | struct btrfs_key *key) | 
|  | { | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | int ret = 0; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | struct btrfs_block_group_item bg; | 
|  | u64 flags; | 
|  | int slot; | 
|  |  | 
|  | ret = btrfs_search_slot(NULL, root, key, path, 0, 0); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | while (1) { | 
|  | slot = path->slots[0]; | 
|  | leaf = path->nodes[0]; | 
|  | if (slot >= btrfs_header_nritems(leaf)) { | 
|  | ret = btrfs_next_leaf(root, path); | 
|  | if (ret == 0) | 
|  | continue; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | break; | 
|  | } | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, slot); | 
|  |  | 
|  | if (found_key.objectid >= key->objectid && | 
|  | found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) { | 
|  | struct extent_map_tree *em_tree; | 
|  | struct extent_map *em; | 
|  |  | 
|  | em_tree = &root->fs_info->mapping_tree.map_tree; | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, found_key.objectid, | 
|  | found_key.offset); | 
|  | read_unlock(&em_tree->lock); | 
|  | if (!em) { | 
|  | btrfs_err(fs_info, | 
|  | "logical %llu len %llu found bg but no related chunk", | 
|  | found_key.objectid, found_key.offset); | 
|  | ret = -ENOENT; | 
|  | } else if (em->start != found_key.objectid || | 
|  | em->len != found_key.offset) { | 
|  | btrfs_err(fs_info, | 
|  | "block group %llu len %llu mismatch with chunk %llu len %llu", | 
|  | found_key.objectid, found_key.offset, | 
|  | em->start, em->len); | 
|  | ret = -EUCLEAN; | 
|  | } else { | 
|  | read_extent_buffer(leaf, &bg, | 
|  | btrfs_item_ptr_offset(leaf, slot), | 
|  | sizeof(bg)); | 
|  | flags = btrfs_block_group_flags(&bg) & | 
|  | BTRFS_BLOCK_GROUP_TYPE_MASK; | 
|  |  | 
|  | if (flags != (em->map_lookup->type & | 
|  | BTRFS_BLOCK_GROUP_TYPE_MASK)) { | 
|  | btrfs_err(fs_info, | 
|  | "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx", | 
|  | found_key.objectid, | 
|  | found_key.offset, flags, | 
|  | (BTRFS_BLOCK_GROUP_TYPE_MASK & | 
|  | em->map_lookup->type)); | 
|  | ret = -EUCLEAN; | 
|  | } else { | 
|  | ret = 0; | 
|  | } | 
|  | } | 
|  | free_extent_map(em); | 
|  | goto out; | 
|  | } | 
|  | path->slots[0]++; | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_put_block_group_cache(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | u64 last = 0; | 
|  |  | 
|  | while (1) { | 
|  | struct inode *inode; | 
|  |  | 
|  | block_group = btrfs_lookup_first_block_group(info, last); | 
|  | while (block_group) { | 
|  | wait_block_group_cache_done(block_group); | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->iref) | 
|  | break; | 
|  | spin_unlock(&block_group->lock); | 
|  | block_group = next_block_group(info, block_group); | 
|  | } | 
|  | if (!block_group) { | 
|  | if (last == 0) | 
|  | break; | 
|  | last = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | inode = block_group->inode; | 
|  | block_group->iref = 0; | 
|  | block_group->inode = NULL; | 
|  | spin_unlock(&block_group->lock); | 
|  | ASSERT(block_group->io_ctl.inode == NULL); | 
|  | iput(inode); | 
|  | last = block_group->key.objectid + block_group->key.offset; | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called only after stopping all workers, since we could have block | 
|  | * group caching kthreads running, and therefore they could race with us if we | 
|  | * freed the block groups before stopping them. | 
|  | */ | 
|  | int btrfs_free_block_groups(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_caching_control *caching_ctl; | 
|  | struct rb_node *n; | 
|  |  | 
|  | down_write(&info->commit_root_sem); | 
|  | while (!list_empty(&info->caching_block_groups)) { | 
|  | caching_ctl = list_entry(info->caching_block_groups.next, | 
|  | struct btrfs_caching_control, list); | 
|  | list_del(&caching_ctl->list); | 
|  | put_caching_control(caching_ctl); | 
|  | } | 
|  | up_write(&info->commit_root_sem); | 
|  |  | 
|  | spin_lock(&info->unused_bgs_lock); | 
|  | while (!list_empty(&info->unused_bgs)) { | 
|  | block_group = list_first_entry(&info->unused_bgs, | 
|  | struct btrfs_block_group_cache, | 
|  | bg_list); | 
|  | list_del_init(&block_group->bg_list); | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | spin_unlock(&info->unused_bgs_lock); | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | while ((n = rb_last(&info->block_group_cache_tree)) != NULL) { | 
|  | block_group = rb_entry(n, struct btrfs_block_group_cache, | 
|  | cache_node); | 
|  | rb_erase(&block_group->cache_node, | 
|  | &info->block_group_cache_tree); | 
|  | RB_CLEAR_NODE(&block_group->cache_node); | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | down_write(&block_group->space_info->groups_sem); | 
|  | list_del(&block_group->list); | 
|  | up_write(&block_group->space_info->groups_sem); | 
|  |  | 
|  | /* | 
|  | * We haven't cached this block group, which means we could | 
|  | * possibly have excluded extents on this block group. | 
|  | */ | 
|  | if (block_group->cached == BTRFS_CACHE_NO || | 
|  | block_group->cached == BTRFS_CACHE_ERROR) | 
|  | free_excluded_extents(block_group); | 
|  |  | 
|  | btrfs_remove_free_space_cache(block_group); | 
|  | ASSERT(block_group->cached != BTRFS_CACHE_STARTED); | 
|  | ASSERT(list_empty(&block_group->dirty_list)); | 
|  | ASSERT(list_empty(&block_group->io_list)); | 
|  | ASSERT(list_empty(&block_group->bg_list)); | 
|  | ASSERT(atomic_read(&block_group->count) == 1); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | spin_lock(&info->block_group_cache_lock); | 
|  | } | 
|  | spin_unlock(&info->block_group_cache_lock); | 
|  |  | 
|  | /* now that all the block groups are freed, go through and | 
|  | * free all the space_info structs.  This is only called during | 
|  | * the final stages of unmount, and so we know nobody is | 
|  | * using them.  We call synchronize_rcu() once before we start, | 
|  | * just to be on the safe side. | 
|  | */ | 
|  | synchronize_rcu(); | 
|  |  | 
|  | release_global_block_rsv(info); | 
|  |  | 
|  | while (!list_empty(&info->space_info)) { | 
|  | int i; | 
|  |  | 
|  | space_info = list_entry(info->space_info.next, | 
|  | struct btrfs_space_info, | 
|  | list); | 
|  |  | 
|  | /* | 
|  | * Do not hide this behind enospc_debug, this is actually | 
|  | * important and indicates a real bug if this happens. | 
|  | */ | 
|  | if (WARN_ON(space_info->bytes_pinned > 0 || | 
|  | space_info->bytes_reserved > 0 || | 
|  | space_info->bytes_may_use > 0)) | 
|  | dump_space_info(info, space_info, 0, 0); | 
|  | list_del(&space_info->list); | 
|  | for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { | 
|  | struct kobject *kobj; | 
|  | kobj = space_info->block_group_kobjs[i]; | 
|  | space_info->block_group_kobjs[i] = NULL; | 
|  | if (kobj) { | 
|  | kobject_del(kobj); | 
|  | kobject_put(kobj); | 
|  | } | 
|  | } | 
|  | kobject_del(&space_info->kobj); | 
|  | kobject_put(&space_info->kobj); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* link_block_group will queue up kobjects to add when we're reclaim-safe */ | 
|  | void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_space_info *space_info; | 
|  | struct raid_kobject *rkobj; | 
|  | LIST_HEAD(list); | 
|  | int index; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&fs_info->pending_raid_kobjs_lock); | 
|  | list_splice_init(&fs_info->pending_raid_kobjs, &list); | 
|  | spin_unlock(&fs_info->pending_raid_kobjs_lock); | 
|  |  | 
|  | list_for_each_entry(rkobj, &list, list) { | 
|  | space_info = __find_space_info(fs_info, rkobj->flags); | 
|  | index = btrfs_bg_flags_to_raid_index(rkobj->flags); | 
|  |  | 
|  | ret = kobject_add(&rkobj->kobj, &space_info->kobj, | 
|  | "%s", get_raid_name(index)); | 
|  | if (ret) { | 
|  | kobject_put(&rkobj->kobj); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (ret) | 
|  | btrfs_warn(fs_info, | 
|  | "failed to add kobject for block cache, ignoring"); | 
|  | } | 
|  |  | 
|  | static void link_block_group(struct btrfs_block_group_cache *cache) | 
|  | { | 
|  | struct btrfs_space_info *space_info = cache->space_info; | 
|  | struct btrfs_fs_info *fs_info = cache->fs_info; | 
|  | int index = btrfs_bg_flags_to_raid_index(cache->flags); | 
|  | bool first = false; | 
|  |  | 
|  | down_write(&space_info->groups_sem); | 
|  | if (list_empty(&space_info->block_groups[index])) | 
|  | first = true; | 
|  | list_add_tail(&cache->list, &space_info->block_groups[index]); | 
|  | up_write(&space_info->groups_sem); | 
|  |  | 
|  | if (first) { | 
|  | struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS); | 
|  | if (!rkobj) { | 
|  | btrfs_warn(cache->fs_info, | 
|  | "couldn't alloc memory for raid level kobject"); | 
|  | return; | 
|  | } | 
|  | rkobj->flags = cache->flags; | 
|  | kobject_init(&rkobj->kobj, &btrfs_raid_ktype); | 
|  |  | 
|  | spin_lock(&fs_info->pending_raid_kobjs_lock); | 
|  | list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs); | 
|  | spin_unlock(&fs_info->pending_raid_kobjs_lock); | 
|  | space_info->block_group_kobjs[index] = &rkobj->kobj; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct btrfs_block_group_cache * | 
|  | btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 size) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache; | 
|  |  | 
|  | cache = kzalloc(sizeof(*cache), GFP_NOFS); | 
|  | if (!cache) | 
|  | return NULL; | 
|  |  | 
|  | cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl), | 
|  | GFP_NOFS); | 
|  | if (!cache->free_space_ctl) { | 
|  | kfree(cache); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | cache->key.objectid = start; | 
|  | cache->key.offset = size; | 
|  | cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
|  |  | 
|  | cache->fs_info = fs_info; | 
|  | cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start); | 
|  | set_free_space_tree_thresholds(cache); | 
|  |  | 
|  | atomic_set(&cache->count, 1); | 
|  | spin_lock_init(&cache->lock); | 
|  | init_rwsem(&cache->data_rwsem); | 
|  | INIT_LIST_HEAD(&cache->list); | 
|  | INIT_LIST_HEAD(&cache->cluster_list); | 
|  | INIT_LIST_HEAD(&cache->bg_list); | 
|  | INIT_LIST_HEAD(&cache->ro_list); | 
|  | INIT_LIST_HEAD(&cache->dirty_list); | 
|  | INIT_LIST_HEAD(&cache->io_list); | 
|  | btrfs_init_free_space_ctl(cache); | 
|  | atomic_set(&cache->trimming, 0); | 
|  | mutex_init(&cache->free_space_lock); | 
|  | btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root); | 
|  |  | 
|  | return cache; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Iterate all chunks and verify that each of them has the corresponding block | 
|  | * group | 
|  | */ | 
|  | static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; | 
|  | struct extent_map *em; | 
|  | struct btrfs_block_group_cache *bg; | 
|  | u64 start = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | while (1) { | 
|  | read_lock(&map_tree->map_tree.lock); | 
|  | /* | 
|  | * lookup_extent_mapping will return the first extent map | 
|  | * intersecting the range, so setting @len to 1 is enough to | 
|  | * get the first chunk. | 
|  | */ | 
|  | em = lookup_extent_mapping(&map_tree->map_tree, start, 1); | 
|  | read_unlock(&map_tree->map_tree.lock); | 
|  | if (!em) | 
|  | break; | 
|  |  | 
|  | bg = btrfs_lookup_block_group(fs_info, em->start); | 
|  | if (!bg) { | 
|  | btrfs_err(fs_info, | 
|  | "chunk start=%llu len=%llu doesn't have corresponding block group", | 
|  | em->start, em->len); | 
|  | ret = -EUCLEAN; | 
|  | free_extent_map(em); | 
|  | break; | 
|  | } | 
|  | if (bg->key.objectid != em->start || | 
|  | bg->key.offset != em->len || | 
|  | (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) != | 
|  | (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { | 
|  | btrfs_err(fs_info, | 
|  | "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx", | 
|  | em->start, em->len, | 
|  | em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK, | 
|  | bg->key.objectid, bg->key.offset, | 
|  | bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK); | 
|  | ret = -EUCLEAN; | 
|  | free_extent_map(em); | 
|  | btrfs_put_block_group(bg); | 
|  | break; | 
|  | } | 
|  | start = em->start + em->len; | 
|  | free_extent_map(em); | 
|  | btrfs_put_block_group(bg); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_read_block_groups(struct btrfs_fs_info *info) | 
|  | { | 
|  | struct btrfs_path *path; | 
|  | int ret; | 
|  | struct btrfs_block_group_cache *cache; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_key key; | 
|  | struct btrfs_key found_key; | 
|  | struct extent_buffer *leaf; | 
|  | int need_clear = 0; | 
|  | u64 cache_gen; | 
|  | u64 feature; | 
|  | int mixed; | 
|  |  | 
|  | feature = btrfs_super_incompat_flags(info->super_copy); | 
|  | mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS); | 
|  |  | 
|  | key.objectid = 0; | 
|  | key.offset = 0; | 
|  | key.type = BTRFS_BLOCK_GROUP_ITEM_KEY; | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) | 
|  | return -ENOMEM; | 
|  | path->reada = READA_FORWARD; | 
|  |  | 
|  | cache_gen = btrfs_super_cache_generation(info->super_copy); | 
|  | if (btrfs_test_opt(info, SPACE_CACHE) && | 
|  | btrfs_super_generation(info->super_copy) != cache_gen) | 
|  | need_clear = 1; | 
|  | if (btrfs_test_opt(info, CLEAR_CACHE)) | 
|  | need_clear = 1; | 
|  |  | 
|  | while (1) { | 
|  | ret = find_first_block_group(info, path, &key); | 
|  | if (ret > 0) | 
|  | break; | 
|  | if (ret != 0) | 
|  | goto error; | 
|  |  | 
|  | leaf = path->nodes[0]; | 
|  | btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); | 
|  |  | 
|  | cache = btrfs_create_block_group_cache(info, found_key.objectid, | 
|  | found_key.offset); | 
|  | if (!cache) { | 
|  | ret = -ENOMEM; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (need_clear) { | 
|  | /* | 
|  | * When we mount with old space cache, we need to | 
|  | * set BTRFS_DC_CLEAR and set dirty flag. | 
|  | * | 
|  | * a) Setting 'BTRFS_DC_CLEAR' makes sure that we | 
|  | *    truncate the old free space cache inode and | 
|  | *    setup a new one. | 
|  | * b) Setting 'dirty flag' makes sure that we flush | 
|  | *    the new space cache info onto disk. | 
|  | */ | 
|  | if (btrfs_test_opt(info, SPACE_CACHE)) | 
|  | cache->disk_cache_state = BTRFS_DC_CLEAR; | 
|  | } | 
|  |  | 
|  | read_extent_buffer(leaf, &cache->item, | 
|  | btrfs_item_ptr_offset(leaf, path->slots[0]), | 
|  | sizeof(cache->item)); | 
|  | cache->flags = btrfs_block_group_flags(&cache->item); | 
|  | if (!mixed && | 
|  | ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) && | 
|  | (cache->flags & BTRFS_BLOCK_GROUP_DATA))) { | 
|  | btrfs_err(info, | 
|  | "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups", | 
|  | cache->key.objectid); | 
|  | btrfs_put_block_group(cache); | 
|  | ret = -EINVAL; | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | key.objectid = found_key.objectid + found_key.offset; | 
|  | btrfs_release_path(path); | 
|  |  | 
|  | /* | 
|  | * We need to exclude the super stripes now so that the space | 
|  | * info has super bytes accounted for, otherwise we'll think | 
|  | * we have more space than we actually do. | 
|  | */ | 
|  | ret = exclude_super_stripes(cache); | 
|  | if (ret) { | 
|  | /* | 
|  | * We may have excluded something, so call this just in | 
|  | * case. | 
|  | */ | 
|  | free_excluded_extents(cache); | 
|  | btrfs_put_block_group(cache); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check for two cases, either we are full, and therefore | 
|  | * don't need to bother with the caching work since we won't | 
|  | * find any space, or we are empty, and we can just add all | 
|  | * the space in and be done with it.  This saves us _alot_ of | 
|  | * time, particularly in the full case. | 
|  | */ | 
|  | if (found_key.offset == btrfs_block_group_used(&cache->item)) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | free_excluded_extents(cache); | 
|  | } else if (btrfs_block_group_used(&cache->item) == 0) { | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | add_new_free_space(cache, found_key.objectid, | 
|  | found_key.objectid + | 
|  | found_key.offset); | 
|  | free_excluded_extents(cache); | 
|  | } | 
|  |  | 
|  | ret = btrfs_add_block_group_cache(info, cache); | 
|  | if (ret) { | 
|  | btrfs_remove_free_space_cache(cache); | 
|  | btrfs_put_block_group(cache); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | trace_btrfs_add_block_group(info, cache, 0); | 
|  | update_space_info(info, cache->flags, found_key.offset, | 
|  | btrfs_block_group_used(&cache->item), | 
|  | cache->bytes_super, &space_info); | 
|  |  | 
|  | cache->space_info = space_info; | 
|  |  | 
|  | link_block_group(cache); | 
|  |  | 
|  | set_avail_alloc_bits(info, cache->flags); | 
|  | if (btrfs_chunk_readonly(info, cache->key.objectid)) { | 
|  | inc_block_group_ro(cache, 1); | 
|  | } else if (btrfs_block_group_used(&cache->item) == 0) { | 
|  | ASSERT(list_empty(&cache->bg_list)); | 
|  | btrfs_mark_bg_unused(cache); | 
|  | } | 
|  | } | 
|  |  | 
|  | list_for_each_entry_rcu(space_info, &info->space_info, list) { | 
|  | if (!(get_alloc_profile(info, space_info->flags) & | 
|  | (BTRFS_BLOCK_GROUP_RAID10 | | 
|  | BTRFS_BLOCK_GROUP_RAID1 | | 
|  | BTRFS_BLOCK_GROUP_RAID5 | | 
|  | BTRFS_BLOCK_GROUP_RAID6 | | 
|  | BTRFS_BLOCK_GROUP_DUP))) | 
|  | continue; | 
|  | /* | 
|  | * avoid allocating from un-mirrored block group if there are | 
|  | * mirrored block groups. | 
|  | */ | 
|  | list_for_each_entry(cache, | 
|  | &space_info->block_groups[BTRFS_RAID_RAID0], | 
|  | list) | 
|  | inc_block_group_ro(cache, 1); | 
|  | list_for_each_entry(cache, | 
|  | &space_info->block_groups[BTRFS_RAID_SINGLE], | 
|  | list) | 
|  | inc_block_group_ro(cache, 1); | 
|  | } | 
|  |  | 
|  | btrfs_add_raid_kobjects(info); | 
|  | init_global_block_rsv(info); | 
|  | ret = check_chunk_block_group_mappings(info); | 
|  | error: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_root *extent_root = fs_info->extent_root; | 
|  | struct btrfs_block_group_item item; | 
|  | struct btrfs_key key; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!trans->can_flush_pending_bgs) | 
|  | return; | 
|  |  | 
|  | while (!list_empty(&trans->new_bgs)) { | 
|  | block_group = list_first_entry(&trans->new_bgs, | 
|  | struct btrfs_block_group_cache, | 
|  | bg_list); | 
|  | if (ret) | 
|  | goto next; | 
|  |  | 
|  | spin_lock(&block_group->lock); | 
|  | memcpy(&item, &block_group->item, sizeof(item)); | 
|  | memcpy(&key, &block_group->key, sizeof(key)); | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | ret = btrfs_insert_item(trans, extent_root, &key, &item, | 
|  | sizeof(item)); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset); | 
|  | if (ret) | 
|  | btrfs_abort_transaction(trans, ret); | 
|  | add_block_group_free_space(trans, block_group); | 
|  | /* already aborted the transaction if it failed. */ | 
|  | next: | 
|  | list_del_init(&block_group->bg_list); | 
|  | } | 
|  | btrfs_trans_release_chunk_metadata(trans); | 
|  | } | 
|  |  | 
|  | int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used, | 
|  | u64 type, u64 chunk_offset, u64 size) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_block_group_cache *cache; | 
|  | int ret; | 
|  |  | 
|  | btrfs_set_log_full_commit(fs_info, trans); | 
|  |  | 
|  | cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size); | 
|  | if (!cache) | 
|  | return -ENOMEM; | 
|  |  | 
|  | btrfs_set_block_group_used(&cache->item, bytes_used); | 
|  | btrfs_set_block_group_chunk_objectid(&cache->item, | 
|  | BTRFS_FIRST_CHUNK_TREE_OBJECTID); | 
|  | btrfs_set_block_group_flags(&cache->item, type); | 
|  |  | 
|  | cache->flags = type; | 
|  | cache->last_byte_to_unpin = (u64)-1; | 
|  | cache->cached = BTRFS_CACHE_FINISHED; | 
|  | cache->needs_free_space = 1; | 
|  | ret = exclude_super_stripes(cache); | 
|  | if (ret) { | 
|  | /* | 
|  | * We may have excluded something, so call this just in | 
|  | * case. | 
|  | */ | 
|  | free_excluded_extents(cache); | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | add_new_free_space(cache, chunk_offset, chunk_offset + size); | 
|  |  | 
|  | free_excluded_extents(cache); | 
|  |  | 
|  | #ifdef CONFIG_BTRFS_DEBUG | 
|  | if (btrfs_should_fragment_free_space(cache)) { | 
|  | u64 new_bytes_used = size - bytes_used; | 
|  |  | 
|  | bytes_used += new_bytes_used >> 1; | 
|  | fragment_free_space(cache); | 
|  | } | 
|  | #endif | 
|  | /* | 
|  | * Ensure the corresponding space_info object is created and | 
|  | * assigned to our block group. We want our bg to be added to the rbtree | 
|  | * with its ->space_info set. | 
|  | */ | 
|  | cache->space_info = __find_space_info(fs_info, cache->flags); | 
|  | ASSERT(cache->space_info); | 
|  |  | 
|  | ret = btrfs_add_block_group_cache(fs_info, cache); | 
|  | if (ret) { | 
|  | btrfs_remove_free_space_cache(cache); | 
|  | btrfs_put_block_group(cache); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that our block group has its ->space_info set and is inserted in | 
|  | * the rbtree, update the space info's counters. | 
|  | */ | 
|  | trace_btrfs_add_block_group(fs_info, cache, 1); | 
|  | update_space_info(fs_info, cache->flags, size, bytes_used, | 
|  | cache->bytes_super, &cache->space_info); | 
|  | update_global_block_rsv(fs_info); | 
|  |  | 
|  | link_block_group(cache); | 
|  |  | 
|  | list_add_tail(&cache->bg_list, &trans->new_bgs); | 
|  |  | 
|  | set_avail_alloc_bits(fs_info, type); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags) | 
|  | { | 
|  | u64 extra_flags = chunk_to_extended(flags) & | 
|  | BTRFS_EXTENDED_PROFILE_MASK; | 
|  |  | 
|  | write_seqlock(&fs_info->profiles_lock); | 
|  | if (flags & BTRFS_BLOCK_GROUP_DATA) | 
|  | fs_info->avail_data_alloc_bits &= ~extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_METADATA) | 
|  | fs_info->avail_metadata_alloc_bits &= ~extra_flags; | 
|  | if (flags & BTRFS_BLOCK_GROUP_SYSTEM) | 
|  | fs_info->avail_system_alloc_bits &= ~extra_flags; | 
|  | write_sequnlock(&fs_info->profiles_lock); | 
|  | } | 
|  |  | 
|  | int btrfs_remove_block_group(struct btrfs_trans_handle *trans, | 
|  | u64 group_start, struct extent_map *em) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = trans->fs_info; | 
|  | struct btrfs_root *root = fs_info->extent_root; | 
|  | struct btrfs_path *path; | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_free_cluster *cluster; | 
|  | struct btrfs_root *tree_root = fs_info->tree_root; | 
|  | struct btrfs_key key; | 
|  | struct inode *inode; | 
|  | struct kobject *kobj = NULL; | 
|  | int ret; | 
|  | int index; | 
|  | int factor; | 
|  | struct btrfs_caching_control *caching_ctl = NULL; | 
|  | bool remove_em; | 
|  |  | 
|  | block_group = btrfs_lookup_block_group(fs_info, group_start); | 
|  | BUG_ON(!block_group); | 
|  | BUG_ON(!block_group->ro); | 
|  |  | 
|  | trace_btrfs_remove_block_group(block_group); | 
|  | /* | 
|  | * Free the reserved super bytes from this block group before | 
|  | * remove it. | 
|  | */ | 
|  | free_excluded_extents(block_group); | 
|  | btrfs_free_ref_tree_range(fs_info, block_group->key.objectid, | 
|  | block_group->key.offset); | 
|  |  | 
|  | memcpy(&key, &block_group->key, sizeof(key)); | 
|  | index = btrfs_bg_flags_to_raid_index(block_group->flags); | 
|  | factor = btrfs_bg_type_to_factor(block_group->flags); | 
|  |  | 
|  | /* make sure this block group isn't part of an allocation cluster */ | 
|  | cluster = &fs_info->data_alloc_cluster; | 
|  | spin_lock(&cluster->refill_lock); | 
|  | btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&cluster->refill_lock); | 
|  |  | 
|  | /* | 
|  | * make sure this block group isn't part of a metadata | 
|  | * allocation cluster | 
|  | */ | 
|  | cluster = &fs_info->meta_alloc_cluster; | 
|  | spin_lock(&cluster->refill_lock); | 
|  | btrfs_return_cluster_to_free_space(block_group, cluster); | 
|  | spin_unlock(&cluster->refill_lock); | 
|  |  | 
|  | path = btrfs_alloc_path(); | 
|  | if (!path) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * get the inode first so any iput calls done for the io_list | 
|  | * aren't the final iput (no unlinks allowed now) | 
|  | */ | 
|  | inode = lookup_free_space_inode(fs_info, block_group, path); | 
|  |  | 
|  | mutex_lock(&trans->transaction->cache_write_mutex); | 
|  | /* | 
|  | * make sure our free spache cache IO is done before remove the | 
|  | * free space inode | 
|  | */ | 
|  | spin_lock(&trans->transaction->dirty_bgs_lock); | 
|  | if (!list_empty(&block_group->io_list)) { | 
|  | list_del_init(&block_group->io_list); | 
|  |  | 
|  | WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode); | 
|  |  | 
|  | spin_unlock(&trans->transaction->dirty_bgs_lock); | 
|  | btrfs_wait_cache_io(trans, block_group, path); | 
|  | btrfs_put_block_group(block_group); | 
|  | spin_lock(&trans->transaction->dirty_bgs_lock); | 
|  | } | 
|  |  | 
|  | if (!list_empty(&block_group->dirty_list)) { | 
|  | list_del_init(&block_group->dirty_list); | 
|  | btrfs_put_block_group(block_group); | 
|  | } | 
|  | spin_unlock(&trans->transaction->dirty_bgs_lock); | 
|  | mutex_unlock(&trans->transaction->cache_write_mutex); | 
|  |  | 
|  | if (!IS_ERR(inode)) { | 
|  | ret = btrfs_orphan_add(trans, BTRFS_I(inode)); | 
|  | if (ret) { | 
|  | btrfs_add_delayed_iput(inode); | 
|  | goto out; | 
|  | } | 
|  | clear_nlink(inode); | 
|  | /* One for the block groups ref */ | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->iref) { | 
|  | block_group->iref = 0; | 
|  | block_group->inode = NULL; | 
|  | spin_unlock(&block_group->lock); | 
|  | iput(inode); | 
|  | } else { | 
|  | spin_unlock(&block_group->lock); | 
|  | } | 
|  | /* One for our lookup ref */ | 
|  | btrfs_add_delayed_iput(inode); | 
|  | } | 
|  |  | 
|  | key.objectid = BTRFS_FREE_SPACE_OBJECTID; | 
|  | key.offset = block_group->key.objectid; | 
|  | key.type = 0; | 
|  |  | 
|  | ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1); | 
|  | if (ret < 0) | 
|  | goto out; | 
|  | if (ret > 0) | 
|  | btrfs_release_path(path); | 
|  | if (ret == 0) { | 
|  | ret = btrfs_del_item(trans, tree_root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  | btrfs_release_path(path); | 
|  | } | 
|  |  | 
|  | spin_lock(&fs_info->block_group_cache_lock); | 
|  | rb_erase(&block_group->cache_node, | 
|  | &fs_info->block_group_cache_tree); | 
|  | RB_CLEAR_NODE(&block_group->cache_node); | 
|  |  | 
|  | if (fs_info->first_logical_byte == block_group->key.objectid) | 
|  | fs_info->first_logical_byte = (u64)-1; | 
|  | spin_unlock(&fs_info->block_group_cache_lock); | 
|  |  | 
|  | down_write(&block_group->space_info->groups_sem); | 
|  | /* | 
|  | * we must use list_del_init so people can check to see if they | 
|  | * are still on the list after taking the semaphore | 
|  | */ | 
|  | list_del_init(&block_group->list); | 
|  | if (list_empty(&block_group->space_info->block_groups[index])) { | 
|  | kobj = block_group->space_info->block_group_kobjs[index]; | 
|  | block_group->space_info->block_group_kobjs[index] = NULL; | 
|  | clear_avail_alloc_bits(fs_info, block_group->flags); | 
|  | } | 
|  | up_write(&block_group->space_info->groups_sem); | 
|  | if (kobj) { | 
|  | kobject_del(kobj); | 
|  | kobject_put(kobj); | 
|  | } | 
|  |  | 
|  | if (block_group->has_caching_ctl) | 
|  | caching_ctl = get_caching_control(block_group); | 
|  | if (block_group->cached == BTRFS_CACHE_STARTED) | 
|  | wait_block_group_cache_done(block_group); | 
|  | if (block_group->has_caching_ctl) { | 
|  | down_write(&fs_info->commit_root_sem); | 
|  | if (!caching_ctl) { | 
|  | struct btrfs_caching_control *ctl; | 
|  |  | 
|  | list_for_each_entry(ctl, | 
|  | &fs_info->caching_block_groups, list) | 
|  | if (ctl->block_group == block_group) { | 
|  | caching_ctl = ctl; | 
|  | refcount_inc(&caching_ctl->count); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (caching_ctl) | 
|  | list_del_init(&caching_ctl->list); | 
|  | up_write(&fs_info->commit_root_sem); | 
|  | if (caching_ctl) { | 
|  | /* Once for the caching bgs list and once for us. */ | 
|  | put_caching_control(caching_ctl); | 
|  | put_caching_control(caching_ctl); | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock(&trans->transaction->dirty_bgs_lock); | 
|  | if (!list_empty(&block_group->dirty_list)) { | 
|  | WARN_ON(1); | 
|  | } | 
|  | if (!list_empty(&block_group->io_list)) { | 
|  | WARN_ON(1); | 
|  | } | 
|  | spin_unlock(&trans->transaction->dirty_bgs_lock); | 
|  | btrfs_remove_free_space_cache(block_group); | 
|  |  | 
|  | spin_lock(&block_group->space_info->lock); | 
|  | list_del_init(&block_group->ro_list); | 
|  |  | 
|  | if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { | 
|  | WARN_ON(block_group->space_info->total_bytes | 
|  | < block_group->key.offset); | 
|  | WARN_ON(block_group->space_info->bytes_readonly | 
|  | < block_group->key.offset); | 
|  | WARN_ON(block_group->space_info->disk_total | 
|  | < block_group->key.offset * factor); | 
|  | } | 
|  | block_group->space_info->total_bytes -= block_group->key.offset; | 
|  | block_group->space_info->bytes_readonly -= block_group->key.offset; | 
|  | block_group->space_info->disk_total -= block_group->key.offset * factor; | 
|  |  | 
|  | spin_unlock(&block_group->space_info->lock); | 
|  |  | 
|  | memcpy(&key, &block_group->key, sizeof(key)); | 
|  |  | 
|  | mutex_lock(&fs_info->chunk_mutex); | 
|  | if (!list_empty(&em->list)) { | 
|  | /* We're in the transaction->pending_chunks list. */ | 
|  | free_extent_map(em); | 
|  | } | 
|  | spin_lock(&block_group->lock); | 
|  | block_group->removed = 1; | 
|  | /* | 
|  | * At this point trimming can't start on this block group, because we | 
|  | * removed the block group from the tree fs_info->block_group_cache_tree | 
|  | * so no one can't find it anymore and even if someone already got this | 
|  | * block group before we removed it from the rbtree, they have already | 
|  | * incremented block_group->trimming - if they didn't, they won't find | 
|  | * any free space entries because we already removed them all when we | 
|  | * called btrfs_remove_free_space_cache(). | 
|  | * | 
|  | * And we must not remove the extent map from the fs_info->mapping_tree | 
|  | * to prevent the same logical address range and physical device space | 
|  | * ranges from being reused for a new block group. This is because our | 
|  | * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is | 
|  | * completely transactionless, so while it is trimming a range the | 
|  | * currently running transaction might finish and a new one start, | 
|  | * allowing for new block groups to be created that can reuse the same | 
|  | * physical device locations unless we take this special care. | 
|  | * | 
|  | * There may also be an implicit trim operation if the file system | 
|  | * is mounted with -odiscard. The same protections must remain | 
|  | * in place until the extents have been discarded completely when | 
|  | * the transaction commit has completed. | 
|  | */ | 
|  | remove_em = (atomic_read(&block_group->trimming) == 0); | 
|  | /* | 
|  | * Make sure a trimmer task always sees the em in the pinned_chunks list | 
|  | * if it sees block_group->removed == 1 (needs to lock block_group->lock | 
|  | * before checking block_group->removed). | 
|  | */ | 
|  | if (!remove_em) { | 
|  | /* | 
|  | * Our em might be in trans->transaction->pending_chunks which | 
|  | * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks), | 
|  | * and so is the fs_info->pinned_chunks list. | 
|  | * | 
|  | * So at this point we must be holding the chunk_mutex to avoid | 
|  | * any races with chunk allocation (more specifically at | 
|  | * volumes.c:contains_pending_extent()), to ensure it always | 
|  | * sees the em, either in the pending_chunks list or in the | 
|  | * pinned_chunks list. | 
|  | */ | 
|  | list_move_tail(&em->list, &fs_info->pinned_chunks); | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | ret = remove_block_group_free_space(trans, block_group); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | btrfs_put_block_group(block_group); | 
|  | btrfs_put_block_group(block_group); | 
|  |  | 
|  | ret = btrfs_search_slot(trans, root, &key, path, -1, 1); | 
|  | if (ret > 0) | 
|  | ret = -EIO; | 
|  | if (ret < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = btrfs_del_item(trans, root, path); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (remove_em) { | 
|  | struct extent_map_tree *em_tree; | 
|  |  | 
|  | em_tree = &fs_info->mapping_tree.map_tree; | 
|  | write_lock(&em_tree->lock); | 
|  | /* | 
|  | * The em might be in the pending_chunks list, so make sure the | 
|  | * chunk mutex is locked, since remove_extent_mapping() will | 
|  | * delete us from that list. | 
|  | */ | 
|  | remove_extent_mapping(em_tree, em); | 
|  | write_unlock(&em_tree->lock); | 
|  | /* once for the tree */ | 
|  | free_extent_map(em); | 
|  | } | 
|  | out: | 
|  | btrfs_free_path(path); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | struct btrfs_trans_handle * | 
|  | btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info, | 
|  | const u64 chunk_offset) | 
|  | { | 
|  | struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree; | 
|  | struct extent_map *em; | 
|  | struct map_lookup *map; | 
|  | unsigned int num_items; | 
|  |  | 
|  | read_lock(&em_tree->lock); | 
|  | em = lookup_extent_mapping(em_tree, chunk_offset, 1); | 
|  | read_unlock(&em_tree->lock); | 
|  | ASSERT(em && em->start == chunk_offset); | 
|  |  | 
|  | /* | 
|  | * We need to reserve 3 + N units from the metadata space info in order | 
|  | * to remove a block group (done at btrfs_remove_chunk() and at | 
|  | * btrfs_remove_block_group()), which are used for: | 
|  | * | 
|  | * 1 unit for adding the free space inode's orphan (located in the tree | 
|  | * of tree roots). | 
|  | * 1 unit for deleting the block group item (located in the extent | 
|  | * tree). | 
|  | * 1 unit for deleting the free space item (located in tree of tree | 
|  | * roots). | 
|  | * N units for deleting N device extent items corresponding to each | 
|  | * stripe (located in the device tree). | 
|  | * | 
|  | * In order to remove a block group we also need to reserve units in the | 
|  | * system space info in order to update the chunk tree (update one or | 
|  | * more device items and remove one chunk item), but this is done at | 
|  | * btrfs_remove_chunk() through a call to check_system_chunk(). | 
|  | */ | 
|  | map = em->map_lookup; | 
|  | num_items = 3 + map->num_stripes; | 
|  | free_extent_map(em); | 
|  |  | 
|  | return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root, | 
|  | num_items, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the unused_bgs list and remove any that don't have any allocated | 
|  | * space inside of them. | 
|  | */ | 
|  | void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_block_group_cache *block_group; | 
|  | struct btrfs_space_info *space_info; | 
|  | struct btrfs_trans_handle *trans; | 
|  | int ret = 0; | 
|  |  | 
|  | if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&fs_info->unused_bgs_lock); | 
|  | while (!list_empty(&fs_info->unused_bgs)) { | 
|  | u64 start, end; | 
|  | int trimming; | 
|  |  | 
|  | block_group = list_first_entry(&fs_info->unused_bgs, | 
|  | struct btrfs_block_group_cache, | 
|  | bg_list); | 
|  | list_del_init(&block_group->bg_list); | 
|  |  | 
|  | space_info = block_group->space_info; | 
|  |  | 
|  | if (ret || btrfs_mixed_space_info(space_info)) { | 
|  | btrfs_put_block_group(block_group); | 
|  | continue; | 
|  | } | 
|  | spin_unlock(&fs_info->unused_bgs_lock); | 
|  |  | 
|  | mutex_lock(&fs_info->delete_unused_bgs_mutex); | 
|  |  | 
|  | /* Don't want to race with allocators so take the groups_sem */ | 
|  | down_write(&space_info->groups_sem); | 
|  | spin_lock(&block_group->lock); | 
|  | if (block_group->reserved || block_group->pinned || | 
|  | btrfs_block_group_used(&block_group->item) || | 
|  | block_group->ro || | 
|  | list_is_singular(&block_group->list)) { | 
|  | /* | 
|  | * We want to bail if we made new allocations or have | 
|  | * outstanding allocations in this block group.  We do | 
|  | * the ro check in case balance is currently acting on | 
|  | * this block group. | 
|  | */ | 
|  | trace_btrfs_skip_unused_block_group(block_group); | 
|  | spin_unlock(&block_group->lock); | 
|  | up_write(&space_info->groups_sem); | 
|  | goto next; | 
|  | } | 
|  | spin_unlock(&block_group->lock); | 
|  |  | 
|  | /* We don't want to force the issue, only flip if it's ok. */ | 
|  | ret = inc_block_group_ro(block_group, 0); | 
|  | up_write(&space_info->groups_sem); | 
|  | if (ret < 0) { | 
|  | ret = 0; | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Want to do this before we do anything else so we can recover | 
|  | * properly if we fail to join the transaction. | 
|  | */ | 
|  | trans = btrfs_start_trans_remove_block_group(fs_info, | 
|  | block_group->key.objectid); | 
|  | if (IS_ERR(trans)) { | 
|  | btrfs_dec_block_group_ro(block_group); | 
|  | ret = PTR_ERR(trans); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We could have pending pinned extents for this block group, | 
|  | * just delete them, we don't care about them anymore. | 
|  | */ | 
|  | start = block_group->key.objectid; | 
|  | end = start + block_group->key.offset - 1; | 
|  | /* | 
|  | * Hold the unused_bg_unpin_mutex lock to avoid racing with | 
|  | * btrfs_finish_extent_commit(). If we are at transaction N, | 
|  | * another task might be running finish_extent_commit() for the | 
|  | * previous transaction N - 1, and have seen a range belonging | 
|  | * to the block group in freed_extents[] before we were able to | 
|  | * clear the whole block group range from freed_extents[]. This | 
|  | * means that task can lookup for the block group after we | 
|  | * unpinned it from freed_extents[] and removed it, leading to | 
|  | * a BUG_ON() at btrfs_unpin_extent_range(). | 
|  | */ | 
|  | mutex_lock(&fs_info->unused_bg_unpin_mutex); | 
|  | ret = clear_extent_bits(&fs_info->freed_extents[0], start, end, | 
|  | EXTENT_DIRTY); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | btrfs_dec_block_group_ro(block_group); | 
|  | goto end_trans; | 
|  | } | 
|  | ret = clear_extent_bits(&fs_info->freed_extents[1], start, end, | 
|  | EXTENT_DIRTY); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  | btrfs_dec_block_group_ro(block_group); | 
|  | goto end_trans; | 
|  | } | 
|  | mutex_unlock(&fs_info->unused_bg_unpin_mutex); | 
|  |  | 
|  | /* Reset pinned so btrfs_put_block_group doesn't complain */ | 
|  | spin_lock(&space_info->lock); | 
|  | spin_lock(&block_group->lock); | 
|  |  | 
|  | space_info->bytes_pinned -= block_group->pinned; | 
|  | space_info->bytes_readonly += block_group->pinned; | 
|  | percpu_counter_add_batch(&space_info->total_bytes_pinned, | 
|  | -block_group->pinned, | 
|  | BTRFS_TOTAL_BYTES_PINNED_BATCH); | 
|  | block_group->pinned = 0; | 
|  |  | 
|  | spin_unlock(&block_group->lock); | 
|  | spin_unlock(&space_info->lock); | 
|  |  | 
|  | /* DISCARD can flip during remount */ | 
|  | trimming = btrfs_test_opt(fs_info, DISCARD); | 
|  |  | 
|  | /* Implicit trim during transaction commit. */ | 
|  | if (trimming) | 
|  | btrfs_get_block_group_trimming(block_group); | 
|  |  | 
|  | /* | 
|  | * Btrfs_remove_chunk will abort the transaction if things go | 
|  | * horribly wrong. | 
|  | */ | 
|  | ret = btrfs_remove_chunk(trans, block_group->key.objectid); | 
|  |  | 
|  | if (ret) { | 
|  | if (trimming) | 
|  | btrfs_put_block_group_trimming(block_group); | 
|  | goto end_trans; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're not mounted with -odiscard, we can just forget | 
|  | * about this block group. Otherwise we'll need to wait | 
|  | * until transaction commit to do the actual discard. | 
|  | */ | 
|  | if (trimming) { | 
|  | spin_lock(&fs_info->unused_bgs_lock); | 
|  | /* | 
|  | * A concurrent scrub might have added us to the list | 
|  | * fs_info->unused_bgs, so use a list_move operation | 
|  | * to add the block group to the deleted_bgs list. | 
|  | */ | 
|  | list_move(&block_group->bg_list, | 
|  | &trans->transaction->deleted_bgs); | 
|  | spin_unlock(&fs_info->unused_bgs_lock); | 
|  | btrfs_get_block_group(block_group); | 
|  | } | 
|  | end_trans: | 
|  | btrfs_end_transaction(trans); | 
|  | next: | 
|  | mutex_unlock(&fs_info->delete_unused_bgs_mutex); | 
|  | btrfs_put_block_group(block_group); | 
|  | spin_lock(&fs_info->unused_bgs_lock); | 
|  | } | 
|  | spin_unlock(&fs_info->unused_bgs_lock); | 
|  | } | 
|  |  | 
|  | int btrfs_init_space_info(struct btrfs_fs_info *fs_info) | 
|  | { | 
|  | struct btrfs_super_block *disk_super; | 
|  | u64 features; | 
|  | u64 flags; | 
|  | int mixed = 0; | 
|  | int ret; | 
|  |  | 
|  | disk_super = fs_info->super_copy; | 
|  | if (!btrfs_super_root(disk_super)) | 
|  | return -EINVAL; | 
|  |  | 
|  | features = btrfs_super_incompat_flags(disk_super); | 
|  | if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) | 
|  | mixed = 1; | 
|  |  | 
|  | flags = BTRFS_BLOCK_GROUP_SYSTEM; | 
|  | ret = create_space_info(fs_info, flags); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (mixed) { | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA; | 
|  | ret = create_space_info(fs_info, flags); | 
|  | } else { | 
|  | flags = BTRFS_BLOCK_GROUP_METADATA; | 
|  | ret = create_space_info(fs_info, flags); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | flags = BTRFS_BLOCK_GROUP_DATA; | 
|  | ret = create_space_info(fs_info, flags); | 
|  | } | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, | 
|  | u64 start, u64 end) | 
|  | { | 
|  | return unpin_extent_range(fs_info, start, end, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It used to be that old block groups would be left around forever. | 
|  | * Iterating over them would be enough to trim unused space.  Since we | 
|  | * now automatically remove them, we also need to iterate over unallocated | 
|  | * space. | 
|  | * | 
|  | * We don't want a transaction for this since the discard may take a | 
|  | * substantial amount of time.  We don't require that a transaction be | 
|  | * running, but we do need to take a running transaction into account | 
|  | * to ensure that we're not discarding chunks that were released or | 
|  | * allocated in the current transaction. | 
|  | * | 
|  | * Holding the chunks lock will prevent other threads from allocating | 
|  | * or releasing chunks, but it won't prevent a running transaction | 
|  | * from committing and releasing the memory that the pending chunks | 
|  | * list head uses.  For that, we need to take a reference to the | 
|  | * transaction and hold the commit root sem.  We only need to hold | 
|  | * it while performing the free space search since we have already | 
|  | * held back allocations. | 
|  | */ | 
|  | static int btrfs_trim_free_extents(struct btrfs_device *device, | 
|  | u64 minlen, u64 *trimmed) | 
|  | { | 
|  | u64 start = 0, len = 0; | 
|  | int ret; | 
|  |  | 
|  | *trimmed = 0; | 
|  |  | 
|  | /* Discard not supported = nothing to do. */ | 
|  | if (!blk_queue_discard(bdev_get_queue(device->bdev))) | 
|  | return 0; | 
|  |  | 
|  | /* Not writeable = nothing to do. */ | 
|  | if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) | 
|  | return 0; | 
|  |  | 
|  | /* No free space = nothing to do. */ | 
|  | if (device->total_bytes <= device->bytes_used) | 
|  | return 0; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | while (1) { | 
|  | struct btrfs_fs_info *fs_info = device->fs_info; | 
|  | struct btrfs_transaction *trans; | 
|  | u64 bytes; | 
|  |  | 
|  | ret = mutex_lock_interruptible(&fs_info->chunk_mutex); | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | ret = down_read_killable(&fs_info->commit_root_sem); | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | break; | 
|  | } | 
|  |  | 
|  | spin_lock(&fs_info->trans_lock); | 
|  | trans = fs_info->running_transaction; | 
|  | if (trans) | 
|  | refcount_inc(&trans->use_count); | 
|  | spin_unlock(&fs_info->trans_lock); | 
|  |  | 
|  | if (!trans) | 
|  | up_read(&fs_info->commit_root_sem); | 
|  |  | 
|  | ret = find_free_dev_extent_start(trans, device, minlen, start, | 
|  | &start, &len); | 
|  | if (trans) { | 
|  | up_read(&fs_info->commit_root_sem); | 
|  | btrfs_put_transaction(trans); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  | if (ret == -ENOSPC) | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret = btrfs_issue_discard(device->bdev, start, len, &bytes); | 
|  | mutex_unlock(&fs_info->chunk_mutex); | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | start += len; | 
|  | *trimmed += bytes; | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  |  | 
|  | cond_resched(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trim the whole filesystem by: | 
|  | * 1) trimming the free space in each block group | 
|  | * 2) trimming the unallocated space on each device | 
|  | * | 
|  | * This will also continue trimming even if a block group or device encounters | 
|  | * an error.  The return value will be the last error, or 0 if nothing bad | 
|  | * happens. | 
|  | */ | 
|  | int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range) | 
|  | { | 
|  | struct btrfs_block_group_cache *cache = NULL; | 
|  | struct btrfs_device *device; | 
|  | struct list_head *devices; | 
|  | u64 group_trimmed; | 
|  | u64 start; | 
|  | u64 end; | 
|  | u64 trimmed = 0; | 
|  | u64 bg_failed = 0; | 
|  | u64 dev_failed = 0; | 
|  | int bg_ret = 0; | 
|  | int dev_ret = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | cache = btrfs_lookup_first_block_group(fs_info, range->start); | 
|  | for (; cache; cache = next_block_group(fs_info, cache)) { | 
|  | if (cache->key.objectid >= (range->start + range->len)) { | 
|  | btrfs_put_block_group(cache); | 
|  | break; | 
|  | } | 
|  |  | 
|  | start = max(range->start, cache->key.objectid); | 
|  | end = min(range->start + range->len, | 
|  | cache->key.objectid + cache->key.offset); | 
|  |  | 
|  | if (end - start >= range->minlen) { | 
|  | if (!block_group_cache_done(cache)) { | 
|  | ret = cache_block_group(cache, 0); | 
|  | if (ret) { | 
|  | bg_failed++; | 
|  | bg_ret = ret; | 
|  | continue; | 
|  | } | 
|  | ret = wait_block_group_cache_done(cache); | 
|  | if (ret) { | 
|  | bg_failed++; | 
|  | bg_ret = ret; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | ret = btrfs_trim_block_group(cache, | 
|  | &group_trimmed, | 
|  | start, | 
|  | end, | 
|  | range->minlen); | 
|  |  | 
|  | trimmed += group_trimmed; | 
|  | if (ret) { | 
|  | bg_failed++; | 
|  | bg_ret = ret; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bg_failed) | 
|  | btrfs_warn(fs_info, | 
|  | "failed to trim %llu block group(s), last error %d", | 
|  | bg_failed, bg_ret); | 
|  | mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
|  | devices = &fs_info->fs_devices->devices; | 
|  | list_for_each_entry(device, devices, dev_list) { | 
|  | ret = btrfs_trim_free_extents(device, range->minlen, | 
|  | &group_trimmed); | 
|  | if (ret) { | 
|  | dev_failed++; | 
|  | dev_ret = ret; | 
|  | break; | 
|  | } | 
|  |  | 
|  | trimmed += group_trimmed; | 
|  | } | 
|  | mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
|  |  | 
|  | if (dev_failed) | 
|  | btrfs_warn(fs_info, | 
|  | "failed to trim %llu device(s), last error %d", | 
|  | dev_failed, dev_ret); | 
|  | range->len = trimmed; | 
|  | if (bg_ret) | 
|  | return bg_ret; | 
|  | return dev_ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * btrfs_{start,end}_write_no_snapshotting() are similar to | 
|  | * mnt_{want,drop}_write(), they are used to prevent some tasks from writing | 
|  | * data into the page cache through nocow before the subvolume is snapshoted, | 
|  | * but flush the data into disk after the snapshot creation, or to prevent | 
|  | * operations while snapshotting is ongoing and that cause the snapshot to be | 
|  | * inconsistent (writes followed by expanding truncates for example). | 
|  | */ | 
|  | void btrfs_end_write_no_snapshotting(struct btrfs_root *root) | 
|  | { | 
|  | percpu_counter_dec(&root->subv_writers->counter); | 
|  | cond_wake_up(&root->subv_writers->wait); | 
|  | } | 
|  |  | 
|  | int btrfs_start_write_no_snapshotting(struct btrfs_root *root) | 
|  | { | 
|  | if (atomic_read(&root->will_be_snapshotted)) | 
|  | return 0; | 
|  |  | 
|  | percpu_counter_inc(&root->subv_writers->counter); | 
|  | /* | 
|  | * Make sure counter is updated before we check for snapshot creation. | 
|  | */ | 
|  | smp_mb(); | 
|  | if (atomic_read(&root->will_be_snapshotted)) { | 
|  | btrfs_end_write_no_snapshotting(root); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void btrfs_wait_for_snapshot_creation(struct btrfs_root *root) | 
|  | { | 
|  | while (true) { | 
|  | int ret; | 
|  |  | 
|  | ret = btrfs_start_write_no_snapshotting(root); | 
|  | if (ret) | 
|  | break; | 
|  | wait_var_event(&root->will_be_snapshotted, | 
|  | !atomic_read(&root->will_be_snapshotted)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg) | 
|  | { | 
|  | struct btrfs_fs_info *fs_info = bg->fs_info; | 
|  |  | 
|  | spin_lock(&fs_info->unused_bgs_lock); | 
|  | if (list_empty(&bg->bg_list)) { | 
|  | btrfs_get_block_group(bg); | 
|  | trace_btrfs_add_unused_block_group(bg); | 
|  | list_add_tail(&bg->bg_list, &fs_info->unused_bgs); | 
|  | } | 
|  | spin_unlock(&fs_info->unused_bgs_lock); | 
|  | } |