|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | /* | 
|  | * fs/verity/hash_algs.c: fs-verity hash algorithms | 
|  | * | 
|  | * Copyright 2019 Google LLC | 
|  | */ | 
|  |  | 
|  | #include "fsverity_private.h" | 
|  |  | 
|  | #include <crypto/hash.h> | 
|  | #include <linux/scatterlist.h> | 
|  |  | 
|  | /* The hash algorithms supported by fs-verity */ | 
|  | struct fsverity_hash_alg fsverity_hash_algs[] = { | 
|  | [FS_VERITY_HASH_ALG_SHA256] = { | 
|  | .name = "sha256", | 
|  | .digest_size = SHA256_DIGEST_SIZE, | 
|  | .block_size = SHA256_BLOCK_SIZE, | 
|  | }, | 
|  | [FS_VERITY_HASH_ALG_SHA512] = { | 
|  | .name = "sha512", | 
|  | .digest_size = SHA512_DIGEST_SIZE, | 
|  | .block_size = SHA512_BLOCK_SIZE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * fsverity_get_hash_alg() - validate and prepare a hash algorithm | 
|  | * @inode: optional inode for logging purposes | 
|  | * @num: the hash algorithm number | 
|  | * | 
|  | * Get the struct fsverity_hash_alg for the given hash algorithm number, and | 
|  | * ensure it has a hash transform ready to go.  The hash transforms are | 
|  | * allocated on-demand so that we don't waste resources unnecessarily, and | 
|  | * because the crypto modules may be initialized later than fs/verity/. | 
|  | * | 
|  | * Return: pointer to the hash alg on success, else an ERR_PTR() | 
|  | */ | 
|  | const struct fsverity_hash_alg *fsverity_get_hash_alg(const struct inode *inode, | 
|  | unsigned int num) | 
|  | { | 
|  | struct fsverity_hash_alg *alg; | 
|  | struct crypto_ahash *tfm; | 
|  | int err; | 
|  |  | 
|  | if (num >= ARRAY_SIZE(fsverity_hash_algs) || | 
|  | !fsverity_hash_algs[num].name) { | 
|  | fsverity_warn(inode, "Unknown hash algorithm number: %u", num); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  | alg = &fsverity_hash_algs[num]; | 
|  |  | 
|  | /* pairs with cmpxchg() below */ | 
|  | tfm = READ_ONCE(alg->tfm); | 
|  | if (likely(tfm != NULL)) | 
|  | return alg; | 
|  | /* | 
|  | * Using the shash API would make things a bit simpler, but the ahash | 
|  | * API is preferable as it allows the use of crypto accelerators. | 
|  | */ | 
|  | tfm = crypto_alloc_ahash(alg->name, 0, 0); | 
|  | if (IS_ERR(tfm)) { | 
|  | if (PTR_ERR(tfm) == -ENOENT) { | 
|  | fsverity_warn(inode, | 
|  | "Missing crypto API support for hash algorithm \"%s\"", | 
|  | alg->name); | 
|  | return ERR_PTR(-ENOPKG); | 
|  | } | 
|  | fsverity_err(inode, | 
|  | "Error allocating hash algorithm \"%s\": %ld", | 
|  | alg->name, PTR_ERR(tfm)); | 
|  | return ERR_CAST(tfm); | 
|  | } | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (WARN_ON(alg->digest_size != crypto_ahash_digestsize(tfm))) | 
|  | goto err_free_tfm; | 
|  | if (WARN_ON(alg->block_size != crypto_ahash_blocksize(tfm))) | 
|  | goto err_free_tfm; | 
|  |  | 
|  | pr_info("%s using implementation \"%s\"\n", | 
|  | alg->name, crypto_ahash_driver_name(tfm)); | 
|  |  | 
|  | /* pairs with READ_ONCE() above */ | 
|  | if (cmpxchg(&alg->tfm, NULL, tfm) != NULL) | 
|  | crypto_free_ahash(tfm); | 
|  |  | 
|  | return alg; | 
|  |  | 
|  | err_free_tfm: | 
|  | crypto_free_ahash(tfm); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsverity_prepare_hash_state() - precompute the initial hash state | 
|  | * @alg: hash algorithm | 
|  | * @salt: a salt which is to be prepended to all data to be hashed | 
|  | * @salt_size: salt size in bytes, possibly 0 | 
|  | * | 
|  | * Return: NULL if the salt is empty, otherwise the kmalloc()'ed precomputed | 
|  | *	   initial hash state on success or an ERR_PTR() on failure. | 
|  | */ | 
|  | const u8 *fsverity_prepare_hash_state(const struct fsverity_hash_alg *alg, | 
|  | const u8 *salt, size_t salt_size) | 
|  | { | 
|  | u8 *hashstate = NULL; | 
|  | struct ahash_request *req = NULL; | 
|  | u8 *padded_salt = NULL; | 
|  | size_t padded_salt_size; | 
|  | struct scatterlist sg; | 
|  | DECLARE_CRYPTO_WAIT(wait); | 
|  | int err; | 
|  |  | 
|  | if (salt_size == 0) | 
|  | return NULL; | 
|  |  | 
|  | hashstate = kmalloc(crypto_ahash_statesize(alg->tfm), GFP_KERNEL); | 
|  | if (!hashstate) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | req = ahash_request_alloc(alg->tfm, GFP_KERNEL); | 
|  | if (!req) { | 
|  | err = -ENOMEM; | 
|  | goto err_free; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Zero-pad the salt to the next multiple of the input size of the hash | 
|  | * algorithm's compression function, e.g. 64 bytes for SHA-256 or 128 | 
|  | * bytes for SHA-512.  This ensures that the hash algorithm won't have | 
|  | * any bytes buffered internally after processing the salt, thus making | 
|  | * salted hashing just as fast as unsalted hashing. | 
|  | */ | 
|  | padded_salt_size = round_up(salt_size, alg->block_size); | 
|  | padded_salt = kzalloc(padded_salt_size, GFP_KERNEL); | 
|  | if (!padded_salt) { | 
|  | err = -ENOMEM; | 
|  | goto err_free; | 
|  | } | 
|  | memcpy(padded_salt, salt, salt_size); | 
|  |  | 
|  | sg_init_one(&sg, padded_salt, padded_salt_size); | 
|  | ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | crypto_req_done, &wait); | 
|  | ahash_request_set_crypt(req, &sg, NULL, padded_salt_size); | 
|  |  | 
|  | err = crypto_wait_req(crypto_ahash_init(req), &wait); | 
|  | if (err) | 
|  | goto err_free; | 
|  |  | 
|  | err = crypto_wait_req(crypto_ahash_update(req), &wait); | 
|  | if (err) | 
|  | goto err_free; | 
|  |  | 
|  | err = crypto_ahash_export(req, hashstate); | 
|  | if (err) | 
|  | goto err_free; | 
|  | out: | 
|  | ahash_request_free(req); | 
|  | kfree(padded_salt); | 
|  | return hashstate; | 
|  |  | 
|  | err_free: | 
|  | kfree(hashstate); | 
|  | hashstate = ERR_PTR(err); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsverity_hash_page() - hash a single data or hash page | 
|  | * @params: the Merkle tree's parameters | 
|  | * @inode: inode for which the hashing is being done | 
|  | * @req: preallocated hash request | 
|  | * @page: the page to hash | 
|  | * @out: output digest, size 'params->digest_size' bytes | 
|  | * | 
|  | * Hash a single data or hash block, assuming block_size == PAGE_SIZE. | 
|  | * The hash is salted if a salt is specified in the Merkle tree parameters. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | int fsverity_hash_page(const struct merkle_tree_params *params, | 
|  | const struct inode *inode, | 
|  | struct ahash_request *req, struct page *page, u8 *out) | 
|  | { | 
|  | struct scatterlist sg; | 
|  | DECLARE_CRYPTO_WAIT(wait); | 
|  | int err; | 
|  |  | 
|  | if (WARN_ON(params->block_size != PAGE_SIZE)) | 
|  | return -EINVAL; | 
|  |  | 
|  | sg_init_table(&sg, 1); | 
|  | sg_set_page(&sg, page, PAGE_SIZE, 0); | 
|  | ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | crypto_req_done, &wait); | 
|  | ahash_request_set_crypt(req, &sg, out, PAGE_SIZE); | 
|  |  | 
|  | if (params->hashstate) { | 
|  | err = crypto_ahash_import(req, params->hashstate); | 
|  | if (err) { | 
|  | fsverity_err(inode, | 
|  | "Error %d importing hash state", err); | 
|  | return err; | 
|  | } | 
|  | err = crypto_ahash_finup(req); | 
|  | } else { | 
|  | err = crypto_ahash_digest(req); | 
|  | } | 
|  |  | 
|  | err = crypto_wait_req(err, &wait); | 
|  | if (err) | 
|  | fsverity_err(inode, "Error %d computing page hash", err); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * fsverity_hash_buffer() - hash some data | 
|  | * @alg: the hash algorithm to use | 
|  | * @data: the data to hash | 
|  | * @size: size of data to hash, in bytes | 
|  | * @out: output digest, size 'alg->digest_size' bytes | 
|  | * | 
|  | * Hash some data which is located in physically contiguous memory (i.e. memory | 
|  | * allocated by kmalloc(), not by vmalloc()).  No salt is used. | 
|  | * | 
|  | * Return: 0 on success, -errno on failure | 
|  | */ | 
|  | int fsverity_hash_buffer(const struct fsverity_hash_alg *alg, | 
|  | const void *data, size_t size, u8 *out) | 
|  | { | 
|  | struct ahash_request *req; | 
|  | struct scatterlist sg; | 
|  | DECLARE_CRYPTO_WAIT(wait); | 
|  | int err; | 
|  |  | 
|  | req = ahash_request_alloc(alg->tfm, GFP_KERNEL); | 
|  | if (!req) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sg_init_one(&sg, data, size); | 
|  | ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP | | 
|  | CRYPTO_TFM_REQ_MAY_BACKLOG, | 
|  | crypto_req_done, &wait); | 
|  | ahash_request_set_crypt(req, &sg, out, size); | 
|  |  | 
|  | err = crypto_wait_req(crypto_ahash_digest(req), &wait); | 
|  |  | 
|  | ahash_request_free(req); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void __init fsverity_check_hash_algs(void) | 
|  | { | 
|  | size_t i; | 
|  |  | 
|  | /* | 
|  | * Sanity check the hash algorithms (could be a build-time check, but | 
|  | * they're in an array) | 
|  | */ | 
|  | for (i = 0; i < ARRAY_SIZE(fsverity_hash_algs); i++) { | 
|  | const struct fsverity_hash_alg *alg = &fsverity_hash_algs[i]; | 
|  |  | 
|  | if (!alg->name) | 
|  | continue; | 
|  |  | 
|  | BUG_ON(alg->digest_size > FS_VERITY_MAX_DIGEST_SIZE); | 
|  |  | 
|  | /* | 
|  | * For efficiency, the implementation currently assumes the | 
|  | * digest and block sizes are powers of 2.  This limitation can | 
|  | * be lifted if the code is updated to handle other values. | 
|  | */ | 
|  | BUG_ON(!is_power_of_2(alg->digest_size)); | 
|  | BUG_ON(!is_power_of_2(alg->block_size)); | 
|  | } | 
|  | } |