|  | /* LRW: as defined by Cyril Guyot in | 
|  | *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf | 
|  | * | 
|  | * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org> | 
|  | * | 
|  | * Based on ecb.c | 
|  | * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | */ | 
|  | /* This implementation is checked against the test vectors in the above | 
|  | * document and by a test vector provided by Ken Buchanan at | 
|  | * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html | 
|  | * | 
|  | * The test vectors are included in the testing module tcrypt.[ch] */ | 
|  |  | 
|  | #include <crypto/internal/skcipher.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/slab.h> | 
|  |  | 
|  | #include <crypto/b128ops.h> | 
|  | #include <crypto/gf128mul.h> | 
|  |  | 
|  | #define LRW_BUFFER_SIZE 128u | 
|  |  | 
|  | #define LRW_BLOCK_SIZE 16 | 
|  |  | 
|  | struct priv { | 
|  | struct crypto_skcipher *child; | 
|  |  | 
|  | /* | 
|  | * optimizes multiplying a random (non incrementing, as at the | 
|  | * start of a new sector) value with key2, we could also have | 
|  | * used 4k optimization tables or no optimization at all. In the | 
|  | * latter case we would have to store key2 here | 
|  | */ | 
|  | struct gf128mul_64k *table; | 
|  |  | 
|  | /* | 
|  | * stores: | 
|  | *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 }, | 
|  | *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 } | 
|  | *  key2*{ 0,0,...1,1,1,1,1 }, etc | 
|  | * needed for optimized multiplication of incrementing values | 
|  | * with key2 | 
|  | */ | 
|  | be128 mulinc[128]; | 
|  | }; | 
|  |  | 
|  | struct rctx { | 
|  | be128 buf[LRW_BUFFER_SIZE / sizeof(be128)]; | 
|  |  | 
|  | be128 t; | 
|  |  | 
|  | be128 *ext; | 
|  |  | 
|  | struct scatterlist srcbuf[2]; | 
|  | struct scatterlist dstbuf[2]; | 
|  | struct scatterlist *src; | 
|  | struct scatterlist *dst; | 
|  |  | 
|  | unsigned int left; | 
|  |  | 
|  | struct skcipher_request subreq; | 
|  | }; | 
|  |  | 
|  | static inline void setbit128_bbe(void *b, int bit) | 
|  | { | 
|  | __set_bit(bit ^ (0x80 - | 
|  | #ifdef __BIG_ENDIAN | 
|  | BITS_PER_LONG | 
|  | #else | 
|  | BITS_PER_BYTE | 
|  | #endif | 
|  | ), b); | 
|  | } | 
|  |  | 
|  | static int setkey(struct crypto_skcipher *parent, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct priv *ctx = crypto_skcipher_ctx(parent); | 
|  | struct crypto_skcipher *child = ctx->child; | 
|  | int err, bsize = LRW_BLOCK_SIZE; | 
|  | const u8 *tweak = key + keylen - bsize; | 
|  | be128 tmp = { 0 }; | 
|  | int i; | 
|  |  | 
|  | crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); | 
|  | crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) & | 
|  | CRYPTO_TFM_REQ_MASK); | 
|  | err = crypto_skcipher_setkey(child, key, keylen - bsize); | 
|  | crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) & | 
|  | CRYPTO_TFM_RES_MASK); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (ctx->table) | 
|  | gf128mul_free_64k(ctx->table); | 
|  |  | 
|  | /* initialize multiplication table for Key2 */ | 
|  | ctx->table = gf128mul_init_64k_bbe((be128 *)tweak); | 
|  | if (!ctx->table) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* initialize optimization table */ | 
|  | for (i = 0; i < 128; i++) { | 
|  | setbit128_bbe(&tmp, i); | 
|  | ctx->mulinc[i] = tmp; | 
|  | gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void inc(be128 *iv) | 
|  | { | 
|  | be64_add_cpu(&iv->b, 1); | 
|  | if (!iv->b) | 
|  | be64_add_cpu(&iv->a, 1); | 
|  | } | 
|  |  | 
|  | /* this returns the number of consequative 1 bits starting | 
|  | * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */ | 
|  | static inline int get_index128(be128 *block) | 
|  | { | 
|  | int x; | 
|  | __be32 *p = (__be32 *) block; | 
|  |  | 
|  | for (p += 3, x = 0; x < 128; p--, x += 32) { | 
|  | u32 val = be32_to_cpup(p); | 
|  |  | 
|  | if (!~val) | 
|  | continue; | 
|  |  | 
|  | return x + ffz(val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we get here, then x == 128 and we are incrementing the counter | 
|  | * from all ones to all zeros. This means we must return index 127, i.e. | 
|  | * the one corresponding to key2*{ 1,...,1 }. | 
|  | */ | 
|  | return 127; | 
|  | } | 
|  |  | 
|  | static int post_crypt(struct skcipher_request *req) | 
|  | { | 
|  | struct rctx *rctx = skcipher_request_ctx(req); | 
|  | be128 *buf = rctx->ext ?: rctx->buf; | 
|  | struct skcipher_request *subreq; | 
|  | const int bs = LRW_BLOCK_SIZE; | 
|  | struct skcipher_walk w; | 
|  | struct scatterlist *sg; | 
|  | unsigned offset; | 
|  | int err; | 
|  |  | 
|  | subreq = &rctx->subreq; | 
|  | err = skcipher_walk_virt(&w, subreq, false); | 
|  |  | 
|  | while (w.nbytes) { | 
|  | unsigned int avail = w.nbytes; | 
|  | be128 *wdst; | 
|  |  | 
|  | wdst = w.dst.virt.addr; | 
|  |  | 
|  | do { | 
|  | be128_xor(wdst, buf++, wdst); | 
|  | wdst++; | 
|  | } while ((avail -= bs) >= bs); | 
|  |  | 
|  | err = skcipher_walk_done(&w, avail); | 
|  | } | 
|  |  | 
|  | rctx->left -= subreq->cryptlen; | 
|  |  | 
|  | if (err || !rctx->left) | 
|  | goto out; | 
|  |  | 
|  | rctx->dst = rctx->dstbuf; | 
|  |  | 
|  | scatterwalk_done(&w.out, 0, 1); | 
|  | sg = w.out.sg; | 
|  | offset = w.out.offset; | 
|  |  | 
|  | if (rctx->dst != sg) { | 
|  | rctx->dst[0] = *sg; | 
|  | sg_unmark_end(rctx->dst); | 
|  | scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 2); | 
|  | } | 
|  | rctx->dst[0].length -= offset - sg->offset; | 
|  | rctx->dst[0].offset = offset; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int pre_crypt(struct skcipher_request *req) | 
|  | { | 
|  | struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
|  | struct rctx *rctx = skcipher_request_ctx(req); | 
|  | struct priv *ctx = crypto_skcipher_ctx(tfm); | 
|  | be128 *buf = rctx->ext ?: rctx->buf; | 
|  | struct skcipher_request *subreq; | 
|  | const int bs = LRW_BLOCK_SIZE; | 
|  | struct skcipher_walk w; | 
|  | struct scatterlist *sg; | 
|  | unsigned cryptlen; | 
|  | unsigned offset; | 
|  | be128 *iv; | 
|  | bool more; | 
|  | int err; | 
|  |  | 
|  | subreq = &rctx->subreq; | 
|  | skcipher_request_set_tfm(subreq, tfm); | 
|  |  | 
|  | cryptlen = subreq->cryptlen; | 
|  | more = rctx->left > cryptlen; | 
|  | if (!more) | 
|  | cryptlen = rctx->left; | 
|  |  | 
|  | skcipher_request_set_crypt(subreq, rctx->src, rctx->dst, | 
|  | cryptlen, req->iv); | 
|  |  | 
|  | err = skcipher_walk_virt(&w, subreq, false); | 
|  | iv = w.iv; | 
|  |  | 
|  | while (w.nbytes) { | 
|  | unsigned int avail = w.nbytes; | 
|  | be128 *wsrc; | 
|  | be128 *wdst; | 
|  |  | 
|  | wsrc = w.src.virt.addr; | 
|  | wdst = w.dst.virt.addr; | 
|  |  | 
|  | do { | 
|  | *buf++ = rctx->t; | 
|  | be128_xor(wdst++, &rctx->t, wsrc++); | 
|  |  | 
|  | /* T <- I*Key2, using the optimization | 
|  | * discussed in the specification */ | 
|  | be128_xor(&rctx->t, &rctx->t, | 
|  | &ctx->mulinc[get_index128(iv)]); | 
|  | inc(iv); | 
|  | } while ((avail -= bs) >= bs); | 
|  |  | 
|  | err = skcipher_walk_done(&w, avail); | 
|  | } | 
|  |  | 
|  | skcipher_request_set_tfm(subreq, ctx->child); | 
|  | skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst, | 
|  | cryptlen, NULL); | 
|  |  | 
|  | if (err || !more) | 
|  | goto out; | 
|  |  | 
|  | rctx->src = rctx->srcbuf; | 
|  |  | 
|  | scatterwalk_done(&w.in, 0, 1); | 
|  | sg = w.in.sg; | 
|  | offset = w.in.offset; | 
|  |  | 
|  | if (rctx->src != sg) { | 
|  | rctx->src[0] = *sg; | 
|  | sg_unmark_end(rctx->src); | 
|  | scatterwalk_crypto_chain(rctx->src, sg_next(sg), 2); | 
|  | } | 
|  | rctx->src[0].length -= offset - sg->offset; | 
|  | rctx->src[0].offset = offset; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int init_crypt(struct skcipher_request *req, crypto_completion_t done) | 
|  | { | 
|  | struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)); | 
|  | struct rctx *rctx = skcipher_request_ctx(req); | 
|  | struct skcipher_request *subreq; | 
|  | gfp_t gfp; | 
|  |  | 
|  | subreq = &rctx->subreq; | 
|  | skcipher_request_set_callback(subreq, req->base.flags, done, req); | 
|  |  | 
|  | gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : | 
|  | GFP_ATOMIC; | 
|  | rctx->ext = NULL; | 
|  |  | 
|  | subreq->cryptlen = LRW_BUFFER_SIZE; | 
|  | if (req->cryptlen > LRW_BUFFER_SIZE) { | 
|  | unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE); | 
|  |  | 
|  | rctx->ext = kmalloc(n, gfp); | 
|  | if (rctx->ext) | 
|  | subreq->cryptlen = n; | 
|  | } | 
|  |  | 
|  | rctx->src = req->src; | 
|  | rctx->dst = req->dst; | 
|  | rctx->left = req->cryptlen; | 
|  |  | 
|  | /* calculate first value of T */ | 
|  | memcpy(&rctx->t, req->iv, sizeof(rctx->t)); | 
|  |  | 
|  | /* T <- I*Key2 */ | 
|  | gf128mul_64k_bbe(&rctx->t, ctx->table); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void exit_crypt(struct skcipher_request *req) | 
|  | { | 
|  | struct rctx *rctx = skcipher_request_ctx(req); | 
|  |  | 
|  | rctx->left = 0; | 
|  |  | 
|  | if (rctx->ext) | 
|  | kzfree(rctx->ext); | 
|  | } | 
|  |  | 
|  | static int do_encrypt(struct skcipher_request *req, int err) | 
|  | { | 
|  | struct rctx *rctx = skcipher_request_ctx(req); | 
|  | struct skcipher_request *subreq; | 
|  |  | 
|  | subreq = &rctx->subreq; | 
|  |  | 
|  | while (!err && rctx->left) { | 
|  | err = pre_crypt(req) ?: | 
|  | crypto_skcipher_encrypt(subreq) ?: | 
|  | post_crypt(req); | 
|  |  | 
|  | if (err == -EINPROGRESS || err == -EBUSY) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | exit_crypt(req); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void encrypt_done(struct crypto_async_request *areq, int err) | 
|  | { | 
|  | struct skcipher_request *req = areq->data; | 
|  | struct skcipher_request *subreq; | 
|  | struct rctx *rctx; | 
|  |  | 
|  | rctx = skcipher_request_ctx(req); | 
|  |  | 
|  | if (err == -EINPROGRESS) { | 
|  | if (rctx->left != req->cryptlen) | 
|  | return; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | subreq = &rctx->subreq; | 
|  | subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG; | 
|  |  | 
|  | err = do_encrypt(req, err ?: post_crypt(req)); | 
|  | if (rctx->left) | 
|  | return; | 
|  |  | 
|  | out: | 
|  | skcipher_request_complete(req, err); | 
|  | } | 
|  |  | 
|  | static int encrypt(struct skcipher_request *req) | 
|  | { | 
|  | return do_encrypt(req, init_crypt(req, encrypt_done)); | 
|  | } | 
|  |  | 
|  | static int do_decrypt(struct skcipher_request *req, int err) | 
|  | { | 
|  | struct rctx *rctx = skcipher_request_ctx(req); | 
|  | struct skcipher_request *subreq; | 
|  |  | 
|  | subreq = &rctx->subreq; | 
|  |  | 
|  | while (!err && rctx->left) { | 
|  | err = pre_crypt(req) ?: | 
|  | crypto_skcipher_decrypt(subreq) ?: | 
|  | post_crypt(req); | 
|  |  | 
|  | if (err == -EINPROGRESS || err == -EBUSY) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | exit_crypt(req); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void decrypt_done(struct crypto_async_request *areq, int err) | 
|  | { | 
|  | struct skcipher_request *req = areq->data; | 
|  | struct skcipher_request *subreq; | 
|  | struct rctx *rctx; | 
|  |  | 
|  | rctx = skcipher_request_ctx(req); | 
|  |  | 
|  | if (err == -EINPROGRESS) { | 
|  | if (rctx->left != req->cryptlen) | 
|  | return; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | subreq = &rctx->subreq; | 
|  | subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG; | 
|  |  | 
|  | err = do_decrypt(req, err ?: post_crypt(req)); | 
|  | if (rctx->left) | 
|  | return; | 
|  |  | 
|  | out: | 
|  | skcipher_request_complete(req, err); | 
|  | } | 
|  |  | 
|  | static int decrypt(struct skcipher_request *req) | 
|  | { | 
|  | return do_decrypt(req, init_crypt(req, decrypt_done)); | 
|  | } | 
|  |  | 
|  | static int init_tfm(struct crypto_skcipher *tfm) | 
|  | { | 
|  | struct skcipher_instance *inst = skcipher_alg_instance(tfm); | 
|  | struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst); | 
|  | struct priv *ctx = crypto_skcipher_ctx(tfm); | 
|  | struct crypto_skcipher *cipher; | 
|  |  | 
|  | cipher = crypto_spawn_skcipher(spawn); | 
|  | if (IS_ERR(cipher)) | 
|  | return PTR_ERR(cipher); | 
|  |  | 
|  | ctx->child = cipher; | 
|  |  | 
|  | crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) + | 
|  | sizeof(struct rctx)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void exit_tfm(struct crypto_skcipher *tfm) | 
|  | { | 
|  | struct priv *ctx = crypto_skcipher_ctx(tfm); | 
|  |  | 
|  | if (ctx->table) | 
|  | gf128mul_free_64k(ctx->table); | 
|  | crypto_free_skcipher(ctx->child); | 
|  | } | 
|  |  | 
|  | static void free(struct skcipher_instance *inst) | 
|  | { | 
|  | crypto_drop_skcipher(skcipher_instance_ctx(inst)); | 
|  | kfree(inst); | 
|  | } | 
|  |  | 
|  | static int create(struct crypto_template *tmpl, struct rtattr **tb) | 
|  | { | 
|  | struct crypto_skcipher_spawn *spawn; | 
|  | struct skcipher_instance *inst; | 
|  | struct crypto_attr_type *algt; | 
|  | struct skcipher_alg *alg; | 
|  | const char *cipher_name; | 
|  | char ecb_name[CRYPTO_MAX_ALG_NAME]; | 
|  | int err; | 
|  |  | 
|  | algt = crypto_get_attr_type(tb); | 
|  | if (IS_ERR(algt)) | 
|  | return PTR_ERR(algt); | 
|  |  | 
|  | if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask) | 
|  | return -EINVAL; | 
|  |  | 
|  | cipher_name = crypto_attr_alg_name(tb[1]); | 
|  | if (IS_ERR(cipher_name)) | 
|  | return PTR_ERR(cipher_name); | 
|  |  | 
|  | inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL); | 
|  | if (!inst) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spawn = skcipher_instance_ctx(inst); | 
|  |  | 
|  | crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst)); | 
|  | err = crypto_grab_skcipher(spawn, cipher_name, 0, | 
|  | crypto_requires_sync(algt->type, | 
|  | algt->mask)); | 
|  | if (err == -ENOENT) { | 
|  | err = -ENAMETOOLONG; | 
|  | if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)", | 
|  | cipher_name) >= CRYPTO_MAX_ALG_NAME) | 
|  | goto err_free_inst; | 
|  |  | 
|  | err = crypto_grab_skcipher(spawn, ecb_name, 0, | 
|  | crypto_requires_sync(algt->type, | 
|  | algt->mask)); | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | goto err_free_inst; | 
|  |  | 
|  | alg = crypto_skcipher_spawn_alg(spawn); | 
|  |  | 
|  | err = -EINVAL; | 
|  | if (alg->base.cra_blocksize != LRW_BLOCK_SIZE) | 
|  | goto err_drop_spawn; | 
|  |  | 
|  | if (crypto_skcipher_alg_ivsize(alg)) | 
|  | goto err_drop_spawn; | 
|  |  | 
|  | err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw", | 
|  | &alg->base); | 
|  | if (err) | 
|  | goto err_drop_spawn; | 
|  |  | 
|  | err = -EINVAL; | 
|  | cipher_name = alg->base.cra_name; | 
|  |  | 
|  | /* Alas we screwed up the naming so we have to mangle the | 
|  | * cipher name. | 
|  | */ | 
|  | if (!strncmp(cipher_name, "ecb(", 4)) { | 
|  | unsigned len; | 
|  |  | 
|  | len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name)); | 
|  | if (len < 2 || len >= sizeof(ecb_name)) | 
|  | goto err_drop_spawn; | 
|  |  | 
|  | if (ecb_name[len - 1] != ')') | 
|  | goto err_drop_spawn; | 
|  |  | 
|  | ecb_name[len - 1] = 0; | 
|  |  | 
|  | if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME, | 
|  | "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) { | 
|  | err = -ENAMETOOLONG; | 
|  | goto err_drop_spawn; | 
|  | } | 
|  | } else | 
|  | goto err_drop_spawn; | 
|  |  | 
|  | inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC; | 
|  | inst->alg.base.cra_priority = alg->base.cra_priority; | 
|  | inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE; | 
|  | inst->alg.base.cra_alignmask = alg->base.cra_alignmask | | 
|  | (__alignof__(u64) - 1); | 
|  |  | 
|  | inst->alg.ivsize = LRW_BLOCK_SIZE; | 
|  | inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) + | 
|  | LRW_BLOCK_SIZE; | 
|  | inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) + | 
|  | LRW_BLOCK_SIZE; | 
|  |  | 
|  | inst->alg.base.cra_ctxsize = sizeof(struct priv); | 
|  |  | 
|  | inst->alg.init = init_tfm; | 
|  | inst->alg.exit = exit_tfm; | 
|  |  | 
|  | inst->alg.setkey = setkey; | 
|  | inst->alg.encrypt = encrypt; | 
|  | inst->alg.decrypt = decrypt; | 
|  |  | 
|  | inst->free = free; | 
|  |  | 
|  | err = skcipher_register_instance(tmpl, inst); | 
|  | if (err) | 
|  | goto err_drop_spawn; | 
|  |  | 
|  | out: | 
|  | return err; | 
|  |  | 
|  | err_drop_spawn: | 
|  | crypto_drop_skcipher(spawn); | 
|  | err_free_inst: | 
|  | kfree(inst); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | static struct crypto_template crypto_tmpl = { | 
|  | .name = "lrw", | 
|  | .create = create, | 
|  | .module = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init crypto_module_init(void) | 
|  | { | 
|  | return crypto_register_template(&crypto_tmpl); | 
|  | } | 
|  |  | 
|  | static void __exit crypto_module_exit(void) | 
|  | { | 
|  | crypto_unregister_template(&crypto_tmpl); | 
|  | } | 
|  |  | 
|  | module_init(crypto_module_init); | 
|  | module_exit(crypto_module_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DESCRIPTION("LRW block cipher mode"); | 
|  | MODULE_ALIAS_CRYPTO("lrw"); |