| /* | 
 |  * Microchip / Atmel ECC (I2C) driver. | 
 |  * | 
 |  * Copyright (c) 2017, Microchip Technology Inc. | 
 |  * Author: Tudor Ambarus <tudor.ambarus@microchip.com> | 
 |  * | 
 |  * This software is licensed under the terms of the GNU General Public | 
 |  * License version 2, as published by the Free Software Foundation, and | 
 |  * may be copied, distributed, and modified under those terms. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/bitrev.h> | 
 | #include <linux/crc16.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/device.h> | 
 | #include <linux/err.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/of_device.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/workqueue.h> | 
 | #include <crypto/internal/kpp.h> | 
 | #include <crypto/ecdh.h> | 
 | #include <crypto/kpp.h> | 
 | #include "atmel-ecc.h" | 
 |  | 
 | /* Used for binding tfm objects to i2c clients. */ | 
 | struct atmel_ecc_driver_data { | 
 | 	struct list_head i2c_client_list; | 
 | 	spinlock_t i2c_list_lock; | 
 | } ____cacheline_aligned; | 
 |  | 
 | static struct atmel_ecc_driver_data driver_data; | 
 |  | 
 | /** | 
 |  * atmel_ecc_i2c_client_priv - i2c_client private data | 
 |  * @client              : pointer to i2c client device | 
 |  * @i2c_client_list_node: part of i2c_client_list | 
 |  * @lock                : lock for sending i2c commands | 
 |  * @wake_token          : wake token array of zeros | 
 |  * @wake_token_sz       : size in bytes of the wake_token | 
 |  * @tfm_count           : number of active crypto transformations on i2c client | 
 |  * | 
 |  * Reads and writes from/to the i2c client are sequential. The first byte | 
 |  * transmitted to the device is treated as the byte size. Any attempt to send | 
 |  * more than this number of bytes will cause the device to not ACK those bytes. | 
 |  * After the host writes a single command byte to the input buffer, reads are | 
 |  * prohibited until after the device completes command execution. Use a mutex | 
 |  * when sending i2c commands. | 
 |  */ | 
 | struct atmel_ecc_i2c_client_priv { | 
 | 	struct i2c_client *client; | 
 | 	struct list_head i2c_client_list_node; | 
 | 	struct mutex lock; | 
 | 	u8 wake_token[WAKE_TOKEN_MAX_SIZE]; | 
 | 	size_t wake_token_sz; | 
 | 	atomic_t tfm_count ____cacheline_aligned; | 
 | }; | 
 |  | 
 | /** | 
 |  * atmel_ecdh_ctx - transformation context | 
 |  * @client     : pointer to i2c client device | 
 |  * @fallback   : used for unsupported curves or when user wants to use its own | 
 |  *               private key. | 
 |  * @public_key : generated when calling set_secret(). It's the responsibility | 
 |  *               of the user to not call set_secret() while | 
 |  *               generate_public_key() or compute_shared_secret() are in flight. | 
 |  * @curve_id   : elliptic curve id | 
 |  * @n_sz       : size in bytes of the n prime | 
 |  * @do_fallback: true when the device doesn't support the curve or when the user | 
 |  *               wants to use its own private key. | 
 |  */ | 
 | struct atmel_ecdh_ctx { | 
 | 	struct i2c_client *client; | 
 | 	struct crypto_kpp *fallback; | 
 | 	const u8 *public_key; | 
 | 	unsigned int curve_id; | 
 | 	size_t n_sz; | 
 | 	bool do_fallback; | 
 | }; | 
 |  | 
 | /** | 
 |  * atmel_ecc_work_data - data structure representing the work | 
 |  * @ctx : transformation context. | 
 |  * @cbk : pointer to a callback function to be invoked upon completion of this | 
 |  *        request. This has the form: | 
 |  *        callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status) | 
 |  *        where: | 
 |  *        @work_data: data structure representing the work | 
 |  *        @areq     : optional pointer to an argument passed with the original | 
 |  *                    request. | 
 |  *        @status   : status returned from the i2c client device or i2c error. | 
 |  * @areq: optional pointer to a user argument for use at callback time. | 
 |  * @work: describes the task to be executed. | 
 |  * @cmd : structure used for communicating with the device. | 
 |  */ | 
 | struct atmel_ecc_work_data { | 
 | 	struct atmel_ecdh_ctx *ctx; | 
 | 	void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq, | 
 | 		    int status); | 
 | 	void *areq; | 
 | 	struct work_struct work; | 
 | 	struct atmel_ecc_cmd cmd; | 
 | }; | 
 |  | 
 | static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len) | 
 | { | 
 | 	return cpu_to_le16(bitrev16(crc16(crc, buffer, len))); | 
 | } | 
 |  | 
 | /** | 
 |  * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC. | 
 |  * CRC16 verification of the count, opcode, param1, param2 and data bytes. | 
 |  * The checksum is saved in little-endian format in the least significant | 
 |  * two bytes of the command. CRC polynomial is 0x8005 and the initial register | 
 |  * value should be zero. | 
 |  * | 
 |  * @cmd : structure used for communicating with the device. | 
 |  */ | 
 | static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd) | 
 | { | 
 | 	u8 *data = &cmd->count; | 
 | 	size_t len = cmd->count - CRC_SIZE; | 
 | 	u16 *crc16 = (u16 *)(data + len); | 
 |  | 
 | 	*crc16 = atmel_ecc_crc16(0, data, len); | 
 | } | 
 |  | 
 | static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd) | 
 | { | 
 | 	cmd->word_addr = COMMAND; | 
 | 	cmd->opcode = OPCODE_READ; | 
 | 	/* | 
 | 	 * Read the word from Configuration zone that contains the lock bytes | 
 | 	 * (UserExtra, Selector, LockValue, LockConfig). | 
 | 	 */ | 
 | 	cmd->param1 = CONFIG_ZONE; | 
 | 	cmd->param2 = DEVICE_LOCK_ADDR; | 
 | 	cmd->count = READ_COUNT; | 
 |  | 
 | 	atmel_ecc_checksum(cmd); | 
 |  | 
 | 	cmd->msecs = MAX_EXEC_TIME_READ; | 
 | 	cmd->rxsize = READ_RSP_SIZE; | 
 | } | 
 |  | 
 | static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid) | 
 | { | 
 | 	cmd->word_addr = COMMAND; | 
 | 	cmd->count = GENKEY_COUNT; | 
 | 	cmd->opcode = OPCODE_GENKEY; | 
 | 	cmd->param1 = GENKEY_MODE_PRIVATE; | 
 | 	/* a random private key will be generated and stored in slot keyID */ | 
 | 	cmd->param2 = cpu_to_le16(keyid); | 
 |  | 
 | 	atmel_ecc_checksum(cmd); | 
 |  | 
 | 	cmd->msecs = MAX_EXEC_TIME_GENKEY; | 
 | 	cmd->rxsize = GENKEY_RSP_SIZE; | 
 | } | 
 |  | 
 | static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd, | 
 | 				   struct scatterlist *pubkey) | 
 | { | 
 | 	size_t copied; | 
 |  | 
 | 	cmd->word_addr = COMMAND; | 
 | 	cmd->count = ECDH_COUNT; | 
 | 	cmd->opcode = OPCODE_ECDH; | 
 | 	cmd->param1 = ECDH_PREFIX_MODE; | 
 | 	/* private key slot */ | 
 | 	cmd->param2 = cpu_to_le16(DATA_SLOT_2); | 
 |  | 
 | 	/* | 
 | 	 * The device only supports NIST P256 ECC keys. The public key size will | 
 | 	 * always be the same. Use a macro for the key size to avoid unnecessary | 
 | 	 * computations. | 
 | 	 */ | 
 | 	copied = sg_copy_to_buffer(pubkey, | 
 | 				   sg_nents_for_len(pubkey, | 
 | 						    ATMEL_ECC_PUBKEY_SIZE), | 
 | 				   cmd->data, ATMEL_ECC_PUBKEY_SIZE); | 
 | 	if (copied != ATMEL_ECC_PUBKEY_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	atmel_ecc_checksum(cmd); | 
 |  | 
 | 	cmd->msecs = MAX_EXEC_TIME_ECDH; | 
 | 	cmd->rxsize = ECDH_RSP_SIZE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * After wake and after execution of a command, there will be error, status, or | 
 |  * result bytes in the device's output register that can be retrieved by the | 
 |  * system. When the length of that group is four bytes, the codes returned are | 
 |  * detailed in error_list. | 
 |  */ | 
 | static int atmel_ecc_status(struct device *dev, u8 *status) | 
 | { | 
 | 	size_t err_list_len = ARRAY_SIZE(error_list); | 
 | 	int i; | 
 | 	u8 err_id = status[1]; | 
 |  | 
 | 	if (*status != STATUS_SIZE) | 
 | 		return 0; | 
 |  | 
 | 	if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR) | 
 | 		return 0; | 
 |  | 
 | 	for (i = 0; i < err_list_len; i++) | 
 | 		if (error_list[i].value == err_id) | 
 | 			break; | 
 |  | 
 | 	/* if err_id is not in the error_list then ignore it */ | 
 | 	if (i != err_list_len) { | 
 | 		dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text); | 
 | 		return err_id; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int atmel_ecc_wakeup(struct i2c_client *client) | 
 | { | 
 | 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); | 
 | 	u8 status[STATUS_RSP_SIZE]; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * The device ignores any levels or transitions on the SCL pin when the | 
 | 	 * device is idle, asleep or during waking up. Don't check for error | 
 | 	 * when waking up the device. | 
 | 	 */ | 
 | 	i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz); | 
 |  | 
 | 	/* | 
 | 	 * Wait to wake the device. Typical execution times for ecdh and genkey | 
 | 	 * are around tens of milliseconds. Delta is chosen to 50 microseconds. | 
 | 	 */ | 
 | 	usleep_range(TWHI_MIN, TWHI_MAX); | 
 |  | 
 | 	ret = i2c_master_recv(client, status, STATUS_SIZE); | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	return atmel_ecc_status(&client->dev, status); | 
 | } | 
 |  | 
 | static int atmel_ecc_sleep(struct i2c_client *client) | 
 | { | 
 | 	u8 sleep = SLEEP_TOKEN; | 
 |  | 
 | 	return i2c_master_send(client, &sleep, 1); | 
 | } | 
 |  | 
 | static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq, | 
 | 			    int status) | 
 | { | 
 | 	struct kpp_request *req = areq; | 
 | 	struct atmel_ecdh_ctx *ctx = work_data->ctx; | 
 | 	struct atmel_ecc_cmd *cmd = &work_data->cmd; | 
 | 	size_t copied, n_sz; | 
 |  | 
 | 	if (status) | 
 | 		goto free_work_data; | 
 |  | 
 | 	/* might want less than we've got */ | 
 | 	n_sz = min_t(size_t, ctx->n_sz, req->dst_len); | 
 |  | 
 | 	/* copy the shared secret */ | 
 | 	copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst, n_sz), | 
 | 				     &cmd->data[RSP_DATA_IDX], n_sz); | 
 | 	if (copied != n_sz) | 
 | 		status = -EINVAL; | 
 |  | 
 | 	/* fall through */ | 
 | free_work_data: | 
 | 	kzfree(work_data); | 
 | 	kpp_request_complete(req, status); | 
 | } | 
 |  | 
 | /* | 
 |  * atmel_ecc_send_receive() - send a command to the device and receive its | 
 |  *                            response. | 
 |  * @client: i2c client device | 
 |  * @cmd   : structure used to communicate with the device | 
 |  * | 
 |  * After the device receives a Wake token, a watchdog counter starts within the | 
 |  * device. After the watchdog timer expires, the device enters sleep mode | 
 |  * regardless of whether some I/O transmission or command execution is in | 
 |  * progress. If a command is attempted when insufficient time remains prior to | 
 |  * watchdog timer execution, the device will return the watchdog timeout error | 
 |  * code without attempting to execute the command. There is no way to reset the | 
 |  * counter other than to put the device into sleep or idle mode and then | 
 |  * wake it up again. | 
 |  */ | 
 | static int atmel_ecc_send_receive(struct i2c_client *client, | 
 | 				  struct atmel_ecc_cmd *cmd) | 
 | { | 
 | 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&i2c_priv->lock); | 
 |  | 
 | 	ret = atmel_ecc_wakeup(client); | 
 | 	if (ret) | 
 | 		goto err; | 
 |  | 
 | 	/* send the command */ | 
 | 	ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE); | 
 | 	if (ret < 0) | 
 | 		goto err; | 
 |  | 
 | 	/* delay the appropriate amount of time for command to execute */ | 
 | 	msleep(cmd->msecs); | 
 |  | 
 | 	/* receive the response */ | 
 | 	ret = i2c_master_recv(client, cmd->data, cmd->rxsize); | 
 | 	if (ret < 0) | 
 | 		goto err; | 
 |  | 
 | 	/* put the device into low-power mode */ | 
 | 	ret = atmel_ecc_sleep(client); | 
 | 	if (ret < 0) | 
 | 		goto err; | 
 |  | 
 | 	mutex_unlock(&i2c_priv->lock); | 
 | 	return atmel_ecc_status(&client->dev, cmd->data); | 
 | err: | 
 | 	mutex_unlock(&i2c_priv->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void atmel_ecc_work_handler(struct work_struct *work) | 
 | { | 
 | 	struct atmel_ecc_work_data *work_data = | 
 | 			container_of(work, struct atmel_ecc_work_data, work); | 
 | 	struct atmel_ecc_cmd *cmd = &work_data->cmd; | 
 | 	struct i2c_client *client = work_data->ctx->client; | 
 | 	int status; | 
 |  | 
 | 	status = atmel_ecc_send_receive(client, cmd); | 
 | 	work_data->cbk(work_data, work_data->areq, status); | 
 | } | 
 |  | 
 | static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data, | 
 | 			      void (*cbk)(struct atmel_ecc_work_data *work_data, | 
 | 					  void *areq, int status), | 
 | 			      void *areq) | 
 | { | 
 | 	work_data->cbk = (void *)cbk; | 
 | 	work_data->areq = areq; | 
 |  | 
 | 	INIT_WORK(&work_data->work, atmel_ecc_work_handler); | 
 | 	schedule_work(&work_data->work); | 
 | } | 
 |  | 
 | static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id) | 
 | { | 
 | 	if (curve_id == ECC_CURVE_NIST_P256) | 
 | 		return ATMEL_ECC_NIST_P256_N_SIZE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * A random private key is generated and stored in the device. The device | 
 |  * returns the pair public key. | 
 |  */ | 
 | static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf, | 
 | 				 unsigned int len) | 
 | { | 
 | 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); | 
 | 	struct atmel_ecc_cmd *cmd; | 
 | 	void *public_key; | 
 | 	struct ecdh params; | 
 | 	int ret = -ENOMEM; | 
 |  | 
 | 	/* free the old public key, if any */ | 
 | 	kfree(ctx->public_key); | 
 | 	/* make sure you don't free the old public key twice */ | 
 | 	ctx->public_key = NULL; | 
 |  | 
 | 	if (crypto_ecdh_decode_key(buf, len, ¶ms) < 0) { | 
 | 		dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id); | 
 | 	if (!ctx->n_sz || params.key_size) { | 
 | 		/* fallback to ecdh software implementation */ | 
 | 		ctx->do_fallback = true; | 
 | 		return crypto_kpp_set_secret(ctx->fallback, buf, len); | 
 | 	} | 
 |  | 
 | 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); | 
 | 	if (!cmd) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * The device only supports NIST P256 ECC keys. The public key size will | 
 | 	 * always be the same. Use a macro for the key size to avoid unnecessary | 
 | 	 * computations. | 
 | 	 */ | 
 | 	public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL); | 
 | 	if (!public_key) | 
 | 		goto free_cmd; | 
 |  | 
 | 	ctx->do_fallback = false; | 
 | 	ctx->curve_id = params.curve_id; | 
 |  | 
 | 	atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2); | 
 |  | 
 | 	ret = atmel_ecc_send_receive(ctx->client, cmd); | 
 | 	if (ret) | 
 | 		goto free_public_key; | 
 |  | 
 | 	/* save the public key */ | 
 | 	memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE); | 
 | 	ctx->public_key = public_key; | 
 |  | 
 | 	kfree(cmd); | 
 | 	return 0; | 
 |  | 
 | free_public_key: | 
 | 	kfree(public_key); | 
 | free_cmd: | 
 | 	kfree(cmd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int atmel_ecdh_generate_public_key(struct kpp_request *req) | 
 | { | 
 | 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); | 
 | 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); | 
 | 	size_t copied, nbytes; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (ctx->do_fallback) { | 
 | 		kpp_request_set_tfm(req, ctx->fallback); | 
 | 		return crypto_kpp_generate_public_key(req); | 
 | 	} | 
 |  | 
 | 	/* might want less than we've got */ | 
 | 	nbytes = min_t(size_t, ATMEL_ECC_PUBKEY_SIZE, req->dst_len); | 
 |  | 
 | 	/* public key was saved at private key generation */ | 
 | 	copied = sg_copy_from_buffer(req->dst, | 
 | 				     sg_nents_for_len(req->dst, nbytes), | 
 | 				     ctx->public_key, nbytes); | 
 | 	if (copied != nbytes) | 
 | 		ret = -EINVAL; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int atmel_ecdh_compute_shared_secret(struct kpp_request *req) | 
 | { | 
 | 	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req); | 
 | 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); | 
 | 	struct atmel_ecc_work_data *work_data; | 
 | 	gfp_t gfp; | 
 | 	int ret; | 
 |  | 
 | 	if (ctx->do_fallback) { | 
 | 		kpp_request_set_tfm(req, ctx->fallback); | 
 | 		return crypto_kpp_compute_shared_secret(req); | 
 | 	} | 
 |  | 
 | 	/* must have exactly two points to be on the curve */ | 
 | 	if (req->src_len != ATMEL_ECC_PUBKEY_SIZE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL : | 
 | 							     GFP_ATOMIC; | 
 |  | 
 | 	work_data = kmalloc(sizeof(*work_data), gfp); | 
 | 	if (!work_data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	work_data->ctx = ctx; | 
 |  | 
 | 	ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src); | 
 | 	if (ret) | 
 | 		goto free_work_data; | 
 |  | 
 | 	atmel_ecc_enqueue(work_data, atmel_ecdh_done, req); | 
 |  | 
 | 	return -EINPROGRESS; | 
 |  | 
 | free_work_data: | 
 | 	kfree(work_data); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct i2c_client *atmel_ecc_i2c_client_alloc(void) | 
 | { | 
 | 	struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL; | 
 | 	struct i2c_client *client = ERR_PTR(-ENODEV); | 
 | 	int min_tfm_cnt = INT_MAX; | 
 | 	int tfm_cnt; | 
 |  | 
 | 	spin_lock(&driver_data.i2c_list_lock); | 
 |  | 
 | 	if (list_empty(&driver_data.i2c_client_list)) { | 
 | 		spin_unlock(&driver_data.i2c_list_lock); | 
 | 		return ERR_PTR(-ENODEV); | 
 | 	} | 
 |  | 
 | 	list_for_each_entry(i2c_priv, &driver_data.i2c_client_list, | 
 | 			    i2c_client_list_node) { | 
 | 		tfm_cnt = atomic_read(&i2c_priv->tfm_count); | 
 | 		if (tfm_cnt < min_tfm_cnt) { | 
 | 			min_tfm_cnt = tfm_cnt; | 
 | 			min_i2c_priv = i2c_priv; | 
 | 		} | 
 | 		if (!min_tfm_cnt) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	if (min_i2c_priv) { | 
 | 		atomic_inc(&min_i2c_priv->tfm_count); | 
 | 		client = min_i2c_priv->client; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&driver_data.i2c_list_lock); | 
 |  | 
 | 	return client; | 
 | } | 
 |  | 
 | static void atmel_ecc_i2c_client_free(struct i2c_client *client) | 
 | { | 
 | 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); | 
 |  | 
 | 	atomic_dec(&i2c_priv->tfm_count); | 
 | } | 
 |  | 
 | static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm) | 
 | { | 
 | 	const char *alg = kpp_alg_name(tfm); | 
 | 	struct crypto_kpp *fallback; | 
 | 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); | 
 |  | 
 | 	ctx->client = atmel_ecc_i2c_client_alloc(); | 
 | 	if (IS_ERR(ctx->client)) { | 
 | 		pr_err("tfm - i2c_client binding failed\n"); | 
 | 		return PTR_ERR(ctx->client); | 
 | 	} | 
 |  | 
 | 	fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK); | 
 | 	if (IS_ERR(fallback)) { | 
 | 		dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n", | 
 | 			alg, PTR_ERR(fallback)); | 
 | 		return PTR_ERR(fallback); | 
 | 	} | 
 |  | 
 | 	crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm)); | 
 | 	ctx->fallback = fallback; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm) | 
 | { | 
 | 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); | 
 |  | 
 | 	kfree(ctx->public_key); | 
 | 	crypto_free_kpp(ctx->fallback); | 
 | 	atmel_ecc_i2c_client_free(ctx->client); | 
 | } | 
 |  | 
 | static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm) | 
 | { | 
 | 	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm); | 
 |  | 
 | 	if (ctx->fallback) | 
 | 		return crypto_kpp_maxsize(ctx->fallback); | 
 |  | 
 | 	/* | 
 | 	 * The device only supports NIST P256 ECC keys. The public key size will | 
 | 	 * always be the same. Use a macro for the key size to avoid unnecessary | 
 | 	 * computations. | 
 | 	 */ | 
 | 	return ATMEL_ECC_PUBKEY_SIZE; | 
 | } | 
 |  | 
 | static struct kpp_alg atmel_ecdh = { | 
 | 	.set_secret = atmel_ecdh_set_secret, | 
 | 	.generate_public_key = atmel_ecdh_generate_public_key, | 
 | 	.compute_shared_secret = atmel_ecdh_compute_shared_secret, | 
 | 	.init = atmel_ecdh_init_tfm, | 
 | 	.exit = atmel_ecdh_exit_tfm, | 
 | 	.max_size = atmel_ecdh_max_size, | 
 | 	.base = { | 
 | 		.cra_flags = CRYPTO_ALG_NEED_FALLBACK, | 
 | 		.cra_name = "ecdh", | 
 | 		.cra_driver_name = "atmel-ecdh", | 
 | 		.cra_priority = ATMEL_ECC_PRIORITY, | 
 | 		.cra_module = THIS_MODULE, | 
 | 		.cra_ctxsize = sizeof(struct atmel_ecdh_ctx), | 
 | 	}, | 
 | }; | 
 |  | 
 | static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate) | 
 | { | 
 | 	u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC); | 
 |  | 
 | 	/* return the size of the wake_token in bytes */ | 
 | 	return DIV_ROUND_UP(no_of_bits, 8); | 
 | } | 
 |  | 
 | static int device_sanity_check(struct i2c_client *client) | 
 | { | 
 | 	struct atmel_ecc_cmd *cmd; | 
 | 	int ret; | 
 |  | 
 | 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL); | 
 | 	if (!cmd) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	atmel_ecc_init_read_cmd(cmd); | 
 |  | 
 | 	ret = atmel_ecc_send_receive(client, cmd); | 
 | 	if (ret) | 
 | 		goto free_cmd; | 
 |  | 
 | 	/* | 
 | 	 * It is vital that the Configuration, Data and OTP zones be locked | 
 | 	 * prior to release into the field of the system containing the device. | 
 | 	 * Failure to lock these zones may permit modification of any secret | 
 | 	 * keys and may lead to other security problems. | 
 | 	 */ | 
 | 	if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) { | 
 | 		dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n"); | 
 | 		ret = -ENOTSUPP; | 
 | 	} | 
 |  | 
 | 	/* fall through */ | 
 | free_cmd: | 
 | 	kfree(cmd); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int atmel_ecc_probe(struct i2c_client *client, | 
 | 			   const struct i2c_device_id *id) | 
 | { | 
 | 	struct atmel_ecc_i2c_client_priv *i2c_priv; | 
 | 	struct device *dev = &client->dev; | 
 | 	int ret; | 
 | 	u32 bus_clk_rate; | 
 |  | 
 | 	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) { | 
 | 		dev_err(dev, "I2C_FUNC_I2C not supported\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ret = of_property_read_u32(client->adapter->dev.of_node, | 
 | 				   "clock-frequency", &bus_clk_rate); | 
 | 	if (ret) { | 
 | 		dev_err(dev, "of: failed to read clock-frequency property\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	if (bus_clk_rate > 1000000L) { | 
 | 		dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n", | 
 | 			bus_clk_rate); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL); | 
 | 	if (!i2c_priv) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	i2c_priv->client = client; | 
 | 	mutex_init(&i2c_priv->lock); | 
 |  | 
 | 	/* | 
 | 	 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate - | 
 | 	 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz | 
 | 	 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE. | 
 | 	 */ | 
 | 	i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate); | 
 |  | 
 | 	memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token)); | 
 |  | 
 | 	atomic_set(&i2c_priv->tfm_count, 0); | 
 |  | 
 | 	i2c_set_clientdata(client, i2c_priv); | 
 |  | 
 | 	ret = device_sanity_check(client); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	spin_lock(&driver_data.i2c_list_lock); | 
 | 	list_add_tail(&i2c_priv->i2c_client_list_node, | 
 | 		      &driver_data.i2c_client_list); | 
 | 	spin_unlock(&driver_data.i2c_list_lock); | 
 |  | 
 | 	ret = crypto_register_kpp(&atmel_ecdh); | 
 | 	if (ret) { | 
 | 		spin_lock(&driver_data.i2c_list_lock); | 
 | 		list_del(&i2c_priv->i2c_client_list_node); | 
 | 		spin_unlock(&driver_data.i2c_list_lock); | 
 |  | 
 | 		dev_err(dev, "%s alg registration failed\n", | 
 | 			atmel_ecdh.base.cra_driver_name); | 
 | 	} else { | 
 | 		dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n"); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int atmel_ecc_remove(struct i2c_client *client) | 
 | { | 
 | 	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client); | 
 |  | 
 | 	/* Return EBUSY if i2c client already allocated. */ | 
 | 	if (atomic_read(&i2c_priv->tfm_count)) { | 
 | 		dev_err(&client->dev, "Device is busy\n"); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	crypto_unregister_kpp(&atmel_ecdh); | 
 |  | 
 | 	spin_lock(&driver_data.i2c_list_lock); | 
 | 	list_del(&i2c_priv->i2c_client_list_node); | 
 | 	spin_unlock(&driver_data.i2c_list_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_OF | 
 | static const struct of_device_id atmel_ecc_dt_ids[] = { | 
 | 	{ | 
 | 		.compatible = "atmel,atecc508a", | 
 | 	}, { | 
 | 		/* sentinel */ | 
 | 	} | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids); | 
 | #endif | 
 |  | 
 | static const struct i2c_device_id atmel_ecc_id[] = { | 
 | 	{ "atecc508a", 0 }, | 
 | 	{ } | 
 | }; | 
 | MODULE_DEVICE_TABLE(i2c, atmel_ecc_id); | 
 |  | 
 | static struct i2c_driver atmel_ecc_driver = { | 
 | 	.driver = { | 
 | 		.name	= "atmel-ecc", | 
 | 		.of_match_table = of_match_ptr(atmel_ecc_dt_ids), | 
 | 	}, | 
 | 	.probe		= atmel_ecc_probe, | 
 | 	.remove		= atmel_ecc_remove, | 
 | 	.id_table	= atmel_ecc_id, | 
 | }; | 
 |  | 
 | static int __init atmel_ecc_init(void) | 
 | { | 
 | 	spin_lock_init(&driver_data.i2c_list_lock); | 
 | 	INIT_LIST_HEAD(&driver_data.i2c_client_list); | 
 | 	return i2c_add_driver(&atmel_ecc_driver); | 
 | } | 
 |  | 
 | static void __exit atmel_ecc_exit(void) | 
 | { | 
 | 	flush_scheduled_work(); | 
 | 	i2c_del_driver(&atmel_ecc_driver); | 
 | } | 
 |  | 
 | module_init(atmel_ecc_init); | 
 | module_exit(atmel_ecc_exit); | 
 |  | 
 | MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>"); | 
 | MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver"); | 
 | MODULE_LICENSE("GPL v2"); |