| /* | 
 |  * caam - Freescale FSL CAAM support for Public Key Cryptography | 
 |  * | 
 |  * Copyright 2016 Freescale Semiconductor, Inc. | 
 |  * | 
 |  * There is no Shared Descriptor for PKC so that the Job Descriptor must carry | 
 |  * all the desired key parameters, input and output pointers. | 
 |  */ | 
 | #include "compat.h" | 
 | #include "regs.h" | 
 | #include "intern.h" | 
 | #include "jr.h" | 
 | #include "error.h" | 
 | #include "desc_constr.h" | 
 | #include "sg_sw_sec4.h" | 
 | #include "caampkc.h" | 
 |  | 
 | #define DESC_RSA_PUB_LEN	(2 * CAAM_CMD_SZ + sizeof(struct rsa_pub_pdb)) | 
 | #define DESC_RSA_PRIV_F1_LEN	(2 * CAAM_CMD_SZ + \ | 
 | 				 sizeof(struct rsa_priv_f1_pdb)) | 
 | #define DESC_RSA_PRIV_F2_LEN	(2 * CAAM_CMD_SZ + \ | 
 | 				 sizeof(struct rsa_priv_f2_pdb)) | 
 | #define DESC_RSA_PRIV_F3_LEN	(2 * CAAM_CMD_SZ + \ | 
 | 				 sizeof(struct rsa_priv_f3_pdb)) | 
 |  | 
 | static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 			 struct akcipher_request *req) | 
 | { | 
 | 	dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE); | 
 | 	dma_unmap_sg(dev, req->src, edesc->src_nents, DMA_TO_DEVICE); | 
 |  | 
 | 	if (edesc->sec4_sg_bytes) | 
 | 		dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes, | 
 | 				 DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 			  struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct rsa_pub_pdb *pdb = &edesc->pdb.pub; | 
 |  | 
 | 	dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 			      struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; | 
 |  | 
 | 	dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 			      struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; | 
 | 	size_t p_sz = key->p_sz; | 
 | 	size_t q_sz = key->q_sz; | 
 |  | 
 | 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); | 
 | 	dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); | 
 | } | 
 |  | 
 | static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc, | 
 | 			      struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; | 
 | 	size_t p_sz = key->p_sz; | 
 | 	size_t q_sz = key->q_sz; | 
 |  | 
 | 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); | 
 | 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); | 
 | 	dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL); | 
 | } | 
 |  | 
 | /* RSA Job Completion handler */ | 
 | static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context) | 
 | { | 
 | 	struct akcipher_request *req = context; | 
 | 	struct rsa_edesc *edesc; | 
 |  | 
 | 	if (err) | 
 | 		caam_jr_strstatus(dev, err); | 
 |  | 
 | 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); | 
 |  | 
 | 	rsa_pub_unmap(dev, edesc, req); | 
 | 	rsa_io_unmap(dev, edesc, req); | 
 | 	kfree(edesc); | 
 |  | 
 | 	akcipher_request_complete(req, err); | 
 | } | 
 |  | 
 | static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err, | 
 | 			     void *context) | 
 | { | 
 | 	struct akcipher_request *req = context; | 
 | 	struct rsa_edesc *edesc; | 
 |  | 
 | 	if (err) | 
 | 		caam_jr_strstatus(dev, err); | 
 |  | 
 | 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); | 
 |  | 
 | 	rsa_priv_f1_unmap(dev, edesc, req); | 
 | 	rsa_io_unmap(dev, edesc, req); | 
 | 	kfree(edesc); | 
 |  | 
 | 	akcipher_request_complete(req, err); | 
 | } | 
 |  | 
 | static void rsa_priv_f2_done(struct device *dev, u32 *desc, u32 err, | 
 | 			     void *context) | 
 | { | 
 | 	struct akcipher_request *req = context; | 
 | 	struct rsa_edesc *edesc; | 
 |  | 
 | 	if (err) | 
 | 		caam_jr_strstatus(dev, err); | 
 |  | 
 | 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); | 
 |  | 
 | 	rsa_priv_f2_unmap(dev, edesc, req); | 
 | 	rsa_io_unmap(dev, edesc, req); | 
 | 	kfree(edesc); | 
 |  | 
 | 	akcipher_request_complete(req, err); | 
 | } | 
 |  | 
 | static void rsa_priv_f3_done(struct device *dev, u32 *desc, u32 err, | 
 | 			     void *context) | 
 | { | 
 | 	struct akcipher_request *req = context; | 
 | 	struct rsa_edesc *edesc; | 
 |  | 
 | 	if (err) | 
 | 		caam_jr_strstatus(dev, err); | 
 |  | 
 | 	edesc = container_of(desc, struct rsa_edesc, hw_desc[0]); | 
 |  | 
 | 	rsa_priv_f3_unmap(dev, edesc, req); | 
 | 	rsa_io_unmap(dev, edesc, req); | 
 | 	kfree(edesc); | 
 |  | 
 | 	akcipher_request_complete(req, err); | 
 | } | 
 |  | 
 | static int caam_rsa_count_leading_zeros(struct scatterlist *sgl, | 
 | 					unsigned int nbytes, | 
 | 					unsigned int flags) | 
 | { | 
 | 	struct sg_mapping_iter miter; | 
 | 	int lzeros, ents; | 
 | 	unsigned int len; | 
 | 	unsigned int tbytes = nbytes; | 
 | 	const u8 *buff; | 
 |  | 
 | 	ents = sg_nents_for_len(sgl, nbytes); | 
 | 	if (ents < 0) | 
 | 		return ents; | 
 |  | 
 | 	sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags); | 
 |  | 
 | 	lzeros = 0; | 
 | 	len = 0; | 
 | 	while (nbytes > 0) { | 
 | 		while (len && !*buff) { | 
 | 			lzeros++; | 
 | 			len--; | 
 | 			buff++; | 
 | 		} | 
 |  | 
 | 		if (len && *buff) | 
 | 			break; | 
 |  | 
 | 		sg_miter_next(&miter); | 
 | 		buff = miter.addr; | 
 | 		len = miter.length; | 
 |  | 
 | 		nbytes -= lzeros; | 
 | 		lzeros = 0; | 
 | 	} | 
 |  | 
 | 	miter.consumed = lzeros; | 
 | 	sg_miter_stop(&miter); | 
 | 	nbytes -= lzeros; | 
 |  | 
 | 	return tbytes - nbytes; | 
 | } | 
 |  | 
 | static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req, | 
 | 					 size_t desclen) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct device *dev = ctx->dev; | 
 | 	struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req); | 
 | 	struct rsa_edesc *edesc; | 
 | 	gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? | 
 | 		       GFP_KERNEL : GFP_ATOMIC; | 
 | 	int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0; | 
 | 	int sgc; | 
 | 	int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes; | 
 | 	int src_nents, dst_nents; | 
 | 	int lzeros; | 
 |  | 
 | 	lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len, sg_flags); | 
 | 	if (lzeros < 0) | 
 | 		return ERR_PTR(lzeros); | 
 |  | 
 | 	req->src_len -= lzeros; | 
 | 	req->src = scatterwalk_ffwd(req_ctx->src, req->src, lzeros); | 
 |  | 
 | 	src_nents = sg_nents_for_len(req->src, req->src_len); | 
 | 	dst_nents = sg_nents_for_len(req->dst, req->dst_len); | 
 |  | 
 | 	if (src_nents > 1) | 
 | 		sec4_sg_len = src_nents; | 
 | 	if (dst_nents > 1) | 
 | 		sec4_sg_len += dst_nents; | 
 |  | 
 | 	sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry); | 
 |  | 
 | 	/* allocate space for base edesc, hw desc commands and link tables */ | 
 | 	edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes, | 
 | 			GFP_DMA | flags); | 
 | 	if (!edesc) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	sgc = dma_map_sg(dev, req->src, src_nents, DMA_TO_DEVICE); | 
 | 	if (unlikely(!sgc)) { | 
 | 		dev_err(dev, "unable to map source\n"); | 
 | 		goto src_fail; | 
 | 	} | 
 |  | 
 | 	sgc = dma_map_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); | 
 | 	if (unlikely(!sgc)) { | 
 | 		dev_err(dev, "unable to map destination\n"); | 
 | 		goto dst_fail; | 
 | 	} | 
 |  | 
 | 	edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen; | 
 |  | 
 | 	sec4_sg_index = 0; | 
 | 	if (src_nents > 1) { | 
 | 		sg_to_sec4_sg_last(req->src, src_nents, edesc->sec4_sg, 0); | 
 | 		sec4_sg_index += src_nents; | 
 | 	} | 
 | 	if (dst_nents > 1) | 
 | 		sg_to_sec4_sg_last(req->dst, dst_nents, | 
 | 				   edesc->sec4_sg + sec4_sg_index, 0); | 
 |  | 
 | 	/* Save nents for later use in Job Descriptor */ | 
 | 	edesc->src_nents = src_nents; | 
 | 	edesc->dst_nents = dst_nents; | 
 |  | 
 | 	if (!sec4_sg_bytes) | 
 | 		return edesc; | 
 |  | 
 | 	edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg, | 
 | 					    sec4_sg_bytes, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, edesc->sec4_sg_dma)) { | 
 | 		dev_err(dev, "unable to map S/G table\n"); | 
 | 		goto sec4_sg_fail; | 
 | 	} | 
 |  | 
 | 	edesc->sec4_sg_bytes = sec4_sg_bytes; | 
 |  | 
 | 	return edesc; | 
 |  | 
 | sec4_sg_fail: | 
 | 	dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE); | 
 | dst_fail: | 
 | 	dma_unmap_sg(dev, req->src, src_nents, DMA_TO_DEVICE); | 
 | src_fail: | 
 | 	kfree(edesc); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | static int set_rsa_pub_pdb(struct akcipher_request *req, | 
 | 			   struct rsa_edesc *edesc) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct device *dev = ctx->dev; | 
 | 	struct rsa_pub_pdb *pdb = &edesc->pdb.pub; | 
 | 	int sec4_sg_index = 0; | 
 |  | 
 | 	pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->n_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA modulus memory\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->e_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA public exponent memory\n"); | 
 | 		dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (edesc->src_nents > 1) { | 
 | 		pdb->sgf |= RSA_PDB_SGF_F; | 
 | 		pdb->f_dma = edesc->sec4_sg_dma; | 
 | 		sec4_sg_index += edesc->src_nents; | 
 | 	} else { | 
 | 		pdb->f_dma = sg_dma_address(req->src); | 
 | 	} | 
 |  | 
 | 	if (edesc->dst_nents > 1) { | 
 | 		pdb->sgf |= RSA_PDB_SGF_G; | 
 | 		pdb->g_dma = edesc->sec4_sg_dma + | 
 | 			     sec4_sg_index * sizeof(struct sec4_sg_entry); | 
 | 	} else { | 
 | 		pdb->g_dma = sg_dma_address(req->dst); | 
 | 	} | 
 |  | 
 | 	pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz; | 
 | 	pdb->f_len = req->src_len; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_rsa_priv_f1_pdb(struct akcipher_request *req, | 
 | 			       struct rsa_edesc *edesc) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct device *dev = ctx->dev; | 
 | 	struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1; | 
 | 	int sec4_sg_index = 0; | 
 |  | 
 | 	pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->n_dma)) { | 
 | 		dev_err(dev, "Unable to map modulus memory\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->d_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA private exponent memory\n"); | 
 | 		dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	if (edesc->src_nents > 1) { | 
 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_G; | 
 | 		pdb->g_dma = edesc->sec4_sg_dma; | 
 | 		sec4_sg_index += edesc->src_nents; | 
 | 	} else { | 
 | 		pdb->g_dma = sg_dma_address(req->src); | 
 | 	} | 
 |  | 
 | 	if (edesc->dst_nents > 1) { | 
 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_F; | 
 | 		pdb->f_dma = edesc->sec4_sg_dma + | 
 | 			     sec4_sg_index * sizeof(struct sec4_sg_entry); | 
 | 	} else { | 
 | 		pdb->f_dma = sg_dma_address(req->dst); | 
 | 	} | 
 |  | 
 | 	pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_rsa_priv_f2_pdb(struct akcipher_request *req, | 
 | 			       struct rsa_edesc *edesc) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct device *dev = ctx->dev; | 
 | 	struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2; | 
 | 	int sec4_sg_index = 0; | 
 | 	size_t p_sz = key->p_sz; | 
 | 	size_t q_sz = key->q_sz; | 
 |  | 
 | 	pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->d_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA private exponent memory\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->p_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA prime factor p memory\n"); | 
 | 		goto unmap_d; | 
 | 	} | 
 |  | 
 | 	pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->q_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA prime factor q memory\n"); | 
 | 		goto unmap_p; | 
 | 	} | 
 |  | 
 | 	pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); | 
 | 	if (dma_mapping_error(dev, pdb->tmp1_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA tmp1 memory\n"); | 
 | 		goto unmap_q; | 
 | 	} | 
 |  | 
 | 	pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); | 
 | 	if (dma_mapping_error(dev, pdb->tmp2_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA tmp2 memory\n"); | 
 | 		goto unmap_tmp1; | 
 | 	} | 
 |  | 
 | 	if (edesc->src_nents > 1) { | 
 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_G; | 
 | 		pdb->g_dma = edesc->sec4_sg_dma; | 
 | 		sec4_sg_index += edesc->src_nents; | 
 | 	} else { | 
 | 		pdb->g_dma = sg_dma_address(req->src); | 
 | 	} | 
 |  | 
 | 	if (edesc->dst_nents > 1) { | 
 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_F; | 
 | 		pdb->f_dma = edesc->sec4_sg_dma + | 
 | 			     sec4_sg_index * sizeof(struct sec4_sg_entry); | 
 | 	} else { | 
 | 		pdb->f_dma = sg_dma_address(req->dst); | 
 | 	} | 
 |  | 
 | 	pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz; | 
 | 	pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; | 
 |  | 
 | 	return 0; | 
 |  | 
 | unmap_tmp1: | 
 | 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); | 
 | unmap_q: | 
 | 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); | 
 | unmap_p: | 
 | 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); | 
 | unmap_d: | 
 | 	dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int set_rsa_priv_f3_pdb(struct akcipher_request *req, | 
 | 			       struct rsa_edesc *edesc) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct device *dev = ctx->dev; | 
 | 	struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3; | 
 | 	int sec4_sg_index = 0; | 
 | 	size_t p_sz = key->p_sz; | 
 | 	size_t q_sz = key->q_sz; | 
 |  | 
 | 	pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->p_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA prime factor p memory\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->q_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA prime factor q memory\n"); | 
 | 		goto unmap_p; | 
 | 	} | 
 |  | 
 | 	pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->dp_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA exponent dp memory\n"); | 
 | 		goto unmap_q; | 
 | 	} | 
 |  | 
 | 	pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->dq_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA exponent dq memory\n"); | 
 | 		goto unmap_dp; | 
 | 	} | 
 |  | 
 | 	pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE); | 
 | 	if (dma_mapping_error(dev, pdb->c_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n"); | 
 | 		goto unmap_dq; | 
 | 	} | 
 |  | 
 | 	pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL); | 
 | 	if (dma_mapping_error(dev, pdb->tmp1_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA tmp1 memory\n"); | 
 | 		goto unmap_qinv; | 
 | 	} | 
 |  | 
 | 	pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL); | 
 | 	if (dma_mapping_error(dev, pdb->tmp2_dma)) { | 
 | 		dev_err(dev, "Unable to map RSA tmp2 memory\n"); | 
 | 		goto unmap_tmp1; | 
 | 	} | 
 |  | 
 | 	if (edesc->src_nents > 1) { | 
 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_G; | 
 | 		pdb->g_dma = edesc->sec4_sg_dma; | 
 | 		sec4_sg_index += edesc->src_nents; | 
 | 	} else { | 
 | 		pdb->g_dma = sg_dma_address(req->src); | 
 | 	} | 
 |  | 
 | 	if (edesc->dst_nents > 1) { | 
 | 		pdb->sgf |= RSA_PRIV_PDB_SGF_F; | 
 | 		pdb->f_dma = edesc->sec4_sg_dma + | 
 | 			     sec4_sg_index * sizeof(struct sec4_sg_entry); | 
 | 	} else { | 
 | 		pdb->f_dma = sg_dma_address(req->dst); | 
 | 	} | 
 |  | 
 | 	pdb->sgf |= key->n_sz; | 
 | 	pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz; | 
 |  | 
 | 	return 0; | 
 |  | 
 | unmap_tmp1: | 
 | 	dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL); | 
 | unmap_qinv: | 
 | 	dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE); | 
 | unmap_dq: | 
 | 	dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE); | 
 | unmap_dp: | 
 | 	dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE); | 
 | unmap_q: | 
 | 	dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE); | 
 | unmap_p: | 
 | 	dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE); | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int caam_rsa_enc(struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	struct device *jrdev = ctx->dev; | 
 | 	struct rsa_edesc *edesc; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(!key->n || !key->e)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (req->dst_len < key->n_sz) { | 
 | 		req->dst_len = key->n_sz; | 
 | 		dev_err(jrdev, "Output buffer length less than parameter n\n"); | 
 | 		return -EOVERFLOW; | 
 | 	} | 
 |  | 
 | 	/* Allocate extended descriptor */ | 
 | 	edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN); | 
 | 	if (IS_ERR(edesc)) | 
 | 		return PTR_ERR(edesc); | 
 |  | 
 | 	/* Set RSA Encrypt Protocol Data Block */ | 
 | 	ret = set_rsa_pub_pdb(req, edesc); | 
 | 	if (ret) | 
 | 		goto init_fail; | 
 |  | 
 | 	/* Initialize Job Descriptor */ | 
 | 	init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub); | 
 |  | 
 | 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req); | 
 | 	if (!ret) | 
 | 		return -EINPROGRESS; | 
 |  | 
 | 	rsa_pub_unmap(jrdev, edesc, req); | 
 |  | 
 | init_fail: | 
 | 	rsa_io_unmap(jrdev, edesc, req); | 
 | 	kfree(edesc); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int caam_rsa_dec_priv_f1(struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct device *jrdev = ctx->dev; | 
 | 	struct rsa_edesc *edesc; | 
 | 	int ret; | 
 |  | 
 | 	/* Allocate extended descriptor */ | 
 | 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN); | 
 | 	if (IS_ERR(edesc)) | 
 | 		return PTR_ERR(edesc); | 
 |  | 
 | 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */ | 
 | 	ret = set_rsa_priv_f1_pdb(req, edesc); | 
 | 	if (ret) | 
 | 		goto init_fail; | 
 |  | 
 | 	/* Initialize Job Descriptor */ | 
 | 	init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1); | 
 |  | 
 | 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req); | 
 | 	if (!ret) | 
 | 		return -EINPROGRESS; | 
 |  | 
 | 	rsa_priv_f1_unmap(jrdev, edesc, req); | 
 |  | 
 | init_fail: | 
 | 	rsa_io_unmap(jrdev, edesc, req); | 
 | 	kfree(edesc); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int caam_rsa_dec_priv_f2(struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct device *jrdev = ctx->dev; | 
 | 	struct rsa_edesc *edesc; | 
 | 	int ret; | 
 |  | 
 | 	/* Allocate extended descriptor */ | 
 | 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN); | 
 | 	if (IS_ERR(edesc)) | 
 | 		return PTR_ERR(edesc); | 
 |  | 
 | 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */ | 
 | 	ret = set_rsa_priv_f2_pdb(req, edesc); | 
 | 	if (ret) | 
 | 		goto init_fail; | 
 |  | 
 | 	/* Initialize Job Descriptor */ | 
 | 	init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2); | 
 |  | 
 | 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f2_done, req); | 
 | 	if (!ret) | 
 | 		return -EINPROGRESS; | 
 |  | 
 | 	rsa_priv_f2_unmap(jrdev, edesc, req); | 
 |  | 
 | init_fail: | 
 | 	rsa_io_unmap(jrdev, edesc, req); | 
 | 	kfree(edesc); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int caam_rsa_dec_priv_f3(struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct device *jrdev = ctx->dev; | 
 | 	struct rsa_edesc *edesc; | 
 | 	int ret; | 
 |  | 
 | 	/* Allocate extended descriptor */ | 
 | 	edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN); | 
 | 	if (IS_ERR(edesc)) | 
 | 		return PTR_ERR(edesc); | 
 |  | 
 | 	/* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */ | 
 | 	ret = set_rsa_priv_f3_pdb(req, edesc); | 
 | 	if (ret) | 
 | 		goto init_fail; | 
 |  | 
 | 	/* Initialize Job Descriptor */ | 
 | 	init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3); | 
 |  | 
 | 	ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f3_done, req); | 
 | 	if (!ret) | 
 | 		return -EINPROGRESS; | 
 |  | 
 | 	rsa_priv_f3_unmap(jrdev, edesc, req); | 
 |  | 
 | init_fail: | 
 | 	rsa_io_unmap(jrdev, edesc, req); | 
 | 	kfree(edesc); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int caam_rsa_dec(struct akcipher_request *req) | 
 | { | 
 | 	struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req); | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 | 	int ret; | 
 |  | 
 | 	if (unlikely(!key->n || !key->d)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (req->dst_len < key->n_sz) { | 
 | 		req->dst_len = key->n_sz; | 
 | 		dev_err(ctx->dev, "Output buffer length less than parameter n\n"); | 
 | 		return -EOVERFLOW; | 
 | 	} | 
 |  | 
 | 	if (key->priv_form == FORM3) | 
 | 		ret = caam_rsa_dec_priv_f3(req); | 
 | 	else if (key->priv_form == FORM2) | 
 | 		ret = caam_rsa_dec_priv_f2(req); | 
 | 	else | 
 | 		ret = caam_rsa_dec_priv_f1(req); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void caam_rsa_free_key(struct caam_rsa_key *key) | 
 | { | 
 | 	kzfree(key->d); | 
 | 	kzfree(key->p); | 
 | 	kzfree(key->q); | 
 | 	kzfree(key->dp); | 
 | 	kzfree(key->dq); | 
 | 	kzfree(key->qinv); | 
 | 	kzfree(key->tmp1); | 
 | 	kzfree(key->tmp2); | 
 | 	kfree(key->e); | 
 | 	kfree(key->n); | 
 | 	memset(key, 0, sizeof(*key)); | 
 | } | 
 |  | 
 | static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes) | 
 | { | 
 | 	while (!**ptr && *nbytes) { | 
 | 		(*ptr)++; | 
 | 		(*nbytes)--; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members. | 
 |  * dP, dQ and qInv could decode to less than corresponding p, q length, as the | 
 |  * BER-encoding requires that the minimum number of bytes be used to encode the | 
 |  * integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate | 
 |  * length. | 
 |  * | 
 |  * @ptr   : pointer to {dP, dQ, qInv} CRT member | 
 |  * @nbytes: length in bytes of {dP, dQ, qInv} CRT member | 
 |  * @dstlen: length in bytes of corresponding p or q prime factor | 
 |  */ | 
 | static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen) | 
 | { | 
 | 	u8 *dst; | 
 |  | 
 | 	caam_rsa_drop_leading_zeros(&ptr, &nbytes); | 
 | 	if (!nbytes) | 
 | 		return NULL; | 
 |  | 
 | 	dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL); | 
 | 	if (!dst) | 
 | 		return NULL; | 
 |  | 
 | 	memcpy(dst + (dstlen - nbytes), ptr, nbytes); | 
 |  | 
 | 	return dst; | 
 | } | 
 |  | 
 | /** | 
 |  * caam_read_raw_data - Read a raw byte stream as a positive integer. | 
 |  * The function skips buffer's leading zeros, copies the remained data | 
 |  * to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns | 
 |  * the address of the new buffer. | 
 |  * | 
 |  * @buf   : The data to read | 
 |  * @nbytes: The amount of data to read | 
 |  */ | 
 | static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes) | 
 | { | 
 |  | 
 | 	caam_rsa_drop_leading_zeros(&buf, nbytes); | 
 | 	if (!*nbytes) | 
 | 		return NULL; | 
 |  | 
 | 	return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL); | 
 | } | 
 |  | 
 | static int caam_rsa_check_key_length(unsigned int len) | 
 | { | 
 | 	if (len > 4096) | 
 | 		return -EINVAL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key, | 
 | 				unsigned int keylen) | 
 | { | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct rsa_key raw_key = {NULL}; | 
 | 	struct caam_rsa_key *rsa_key = &ctx->key; | 
 | 	int ret; | 
 |  | 
 | 	/* Free the old RSA key if any */ | 
 | 	caam_rsa_free_key(rsa_key); | 
 |  | 
 | 	ret = rsa_parse_pub_key(&raw_key, key, keylen); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Copy key in DMA zone */ | 
 | 	rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL); | 
 | 	if (!rsa_key->e) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * Skip leading zeros and copy the positive integer to a buffer | 
 | 	 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor | 
 | 	 * expects a positive integer for the RSA modulus and uses its length as | 
 | 	 * decryption output length. | 
 | 	 */ | 
 | 	rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); | 
 | 	if (!rsa_key->n) | 
 | 		goto err; | 
 |  | 
 | 	if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { | 
 | 		caam_rsa_free_key(rsa_key); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	rsa_key->e_sz = raw_key.e_sz; | 
 | 	rsa_key->n_sz = raw_key.n_sz; | 
 |  | 
 | 	memcpy(rsa_key->e, raw_key.e, raw_key.e_sz); | 
 |  | 
 | 	return 0; | 
 | err: | 
 | 	caam_rsa_free_key(rsa_key); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx, | 
 | 				       struct rsa_key *raw_key) | 
 | { | 
 | 	struct caam_rsa_key *rsa_key = &ctx->key; | 
 | 	size_t p_sz = raw_key->p_sz; | 
 | 	size_t q_sz = raw_key->q_sz; | 
 |  | 
 | 	rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz); | 
 | 	if (!rsa_key->p) | 
 | 		return; | 
 | 	rsa_key->p_sz = p_sz; | 
 |  | 
 | 	rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz); | 
 | 	if (!rsa_key->q) | 
 | 		goto free_p; | 
 | 	rsa_key->q_sz = q_sz; | 
 |  | 
 | 	rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL); | 
 | 	if (!rsa_key->tmp1) | 
 | 		goto free_q; | 
 |  | 
 | 	rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL); | 
 | 	if (!rsa_key->tmp2) | 
 | 		goto free_tmp1; | 
 |  | 
 | 	rsa_key->priv_form = FORM2; | 
 |  | 
 | 	rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz); | 
 | 	if (!rsa_key->dp) | 
 | 		goto free_tmp2; | 
 |  | 
 | 	rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz); | 
 | 	if (!rsa_key->dq) | 
 | 		goto free_dp; | 
 |  | 
 | 	rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz, | 
 | 					  q_sz); | 
 | 	if (!rsa_key->qinv) | 
 | 		goto free_dq; | 
 |  | 
 | 	rsa_key->priv_form = FORM3; | 
 |  | 
 | 	return; | 
 |  | 
 | free_dq: | 
 | 	kzfree(rsa_key->dq); | 
 | free_dp: | 
 | 	kzfree(rsa_key->dp); | 
 | free_tmp2: | 
 | 	kzfree(rsa_key->tmp2); | 
 | free_tmp1: | 
 | 	kzfree(rsa_key->tmp1); | 
 | free_q: | 
 | 	kzfree(rsa_key->q); | 
 | free_p: | 
 | 	kzfree(rsa_key->p); | 
 | } | 
 |  | 
 | static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key, | 
 | 				 unsigned int keylen) | 
 | { | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct rsa_key raw_key = {NULL}; | 
 | 	struct caam_rsa_key *rsa_key = &ctx->key; | 
 | 	int ret; | 
 |  | 
 | 	/* Free the old RSA key if any */ | 
 | 	caam_rsa_free_key(rsa_key); | 
 |  | 
 | 	ret = rsa_parse_priv_key(&raw_key, key, keylen); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	/* Copy key in DMA zone */ | 
 | 	rsa_key->d = kzalloc(raw_key.d_sz, GFP_DMA | GFP_KERNEL); | 
 | 	if (!rsa_key->d) | 
 | 		goto err; | 
 |  | 
 | 	rsa_key->e = kzalloc(raw_key.e_sz, GFP_DMA | GFP_KERNEL); | 
 | 	if (!rsa_key->e) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * Skip leading zeros and copy the positive integer to a buffer | 
 | 	 * allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor | 
 | 	 * expects a positive integer for the RSA modulus and uses its length as | 
 | 	 * decryption output length. | 
 | 	 */ | 
 | 	rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz); | 
 | 	if (!rsa_key->n) | 
 | 		goto err; | 
 |  | 
 | 	if (caam_rsa_check_key_length(raw_key.n_sz << 3)) { | 
 | 		caam_rsa_free_key(rsa_key); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	rsa_key->d_sz = raw_key.d_sz; | 
 | 	rsa_key->e_sz = raw_key.e_sz; | 
 | 	rsa_key->n_sz = raw_key.n_sz; | 
 |  | 
 | 	memcpy(rsa_key->d, raw_key.d, raw_key.d_sz); | 
 | 	memcpy(rsa_key->e, raw_key.e, raw_key.e_sz); | 
 |  | 
 | 	caam_rsa_set_priv_key_form(ctx, &raw_key); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	caam_rsa_free_key(rsa_key); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm) | 
 | { | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 |  | 
 | 	return ctx->key.n_sz; | 
 | } | 
 |  | 
 | /* Per session pkc's driver context creation function */ | 
 | static int caam_rsa_init_tfm(struct crypto_akcipher *tfm) | 
 | { | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 |  | 
 | 	ctx->dev = caam_jr_alloc(); | 
 |  | 
 | 	if (IS_ERR(ctx->dev)) { | 
 | 		pr_err("Job Ring Device allocation for transform failed\n"); | 
 | 		return PTR_ERR(ctx->dev); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Per session pkc's driver context cleanup function */ | 
 | static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm) | 
 | { | 
 | 	struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm); | 
 | 	struct caam_rsa_key *key = &ctx->key; | 
 |  | 
 | 	caam_rsa_free_key(key); | 
 | 	caam_jr_free(ctx->dev); | 
 | } | 
 |  | 
 | static struct akcipher_alg caam_rsa = { | 
 | 	.encrypt = caam_rsa_enc, | 
 | 	.decrypt = caam_rsa_dec, | 
 | 	.sign = caam_rsa_dec, | 
 | 	.verify = caam_rsa_enc, | 
 | 	.set_pub_key = caam_rsa_set_pub_key, | 
 | 	.set_priv_key = caam_rsa_set_priv_key, | 
 | 	.max_size = caam_rsa_max_size, | 
 | 	.init = caam_rsa_init_tfm, | 
 | 	.exit = caam_rsa_exit_tfm, | 
 | 	.reqsize = sizeof(struct caam_rsa_req_ctx), | 
 | 	.base = { | 
 | 		.cra_name = "rsa", | 
 | 		.cra_driver_name = "rsa-caam", | 
 | 		.cra_priority = 3000, | 
 | 		.cra_module = THIS_MODULE, | 
 | 		.cra_ctxsize = sizeof(struct caam_rsa_ctx), | 
 | 	}, | 
 | }; | 
 |  | 
 | /* Public Key Cryptography module initialization handler */ | 
 | static int __init caam_pkc_init(void) | 
 | { | 
 | 	struct device_node *dev_node; | 
 | 	struct platform_device *pdev; | 
 | 	struct device *ctrldev; | 
 | 	struct caam_drv_private *priv; | 
 | 	u32 cha_inst, pk_inst; | 
 | 	int err; | 
 |  | 
 | 	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0"); | 
 | 	if (!dev_node) { | 
 | 		dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0"); | 
 | 		if (!dev_node) | 
 | 			return -ENODEV; | 
 | 	} | 
 |  | 
 | 	pdev = of_find_device_by_node(dev_node); | 
 | 	if (!pdev) { | 
 | 		of_node_put(dev_node); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ctrldev = &pdev->dev; | 
 | 	priv = dev_get_drvdata(ctrldev); | 
 | 	of_node_put(dev_node); | 
 |  | 
 | 	/* | 
 | 	 * If priv is NULL, it's probably because the caam driver wasn't | 
 | 	 * properly initialized (e.g. RNG4 init failed). Thus, bail out here. | 
 | 	 */ | 
 | 	if (!priv) | 
 | 		return -ENODEV; | 
 |  | 
 | 	/* Determine public key hardware accelerator presence. */ | 
 | 	cha_inst = rd_reg32(&priv->ctrl->perfmon.cha_num_ls); | 
 | 	pk_inst = (cha_inst & CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT; | 
 |  | 
 | 	/* Do not register algorithms if PKHA is not present. */ | 
 | 	if (!pk_inst) | 
 | 		return -ENODEV; | 
 |  | 
 | 	err = crypto_register_akcipher(&caam_rsa); | 
 | 	if (err) | 
 | 		dev_warn(ctrldev, "%s alg registration failed\n", | 
 | 			 caam_rsa.base.cra_driver_name); | 
 | 	else | 
 | 		dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n"); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __exit caam_pkc_exit(void) | 
 | { | 
 | 	crypto_unregister_akcipher(&caam_rsa); | 
 | } | 
 |  | 
 | module_init(caam_pkc_init); | 
 | module_exit(caam_pkc_exit); | 
 |  | 
 | MODULE_LICENSE("Dual BSD/GPL"); | 
 | MODULE_DESCRIPTION("FSL CAAM support for PKC functions of crypto API"); | 
 | MODULE_AUTHOR("Freescale Semiconductor"); |