| /* | 
 |  * Cryptographic API. | 
 |  * | 
 |  * Driver for EIP97 AES acceleration. | 
 |  * | 
 |  * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * Some ideas are from atmel-aes.c drivers. | 
 |  */ | 
 |  | 
 | #include <crypto/aes.h> | 
 | #include <crypto/gcm.h> | 
 | #include "mtk-platform.h" | 
 |  | 
 | #define AES_QUEUE_SIZE		512 | 
 | #define AES_BUF_ORDER		2 | 
 | #define AES_BUF_SIZE		((PAGE_SIZE << AES_BUF_ORDER) \ | 
 | 				& ~(AES_BLOCK_SIZE - 1)) | 
 | #define AES_MAX_STATE_BUF_SIZE	SIZE_IN_WORDS(AES_KEYSIZE_256 + \ | 
 | 				AES_BLOCK_SIZE * 2) | 
 | #define AES_MAX_CT_SIZE		6 | 
 |  | 
 | #define AES_CT_CTRL_HDR		cpu_to_le32(0x00220000) | 
 |  | 
 | /* AES-CBC/ECB/CTR command token */ | 
 | #define AES_CMD0		cpu_to_le32(0x05000000) | 
 | #define AES_CMD1		cpu_to_le32(0x2d060000) | 
 | #define AES_CMD2		cpu_to_le32(0xe4a63806) | 
 | /* AES-GCM command token */ | 
 | #define AES_GCM_CMD0		cpu_to_le32(0x0b000000) | 
 | #define AES_GCM_CMD1		cpu_to_le32(0xa0800000) | 
 | #define AES_GCM_CMD2		cpu_to_le32(0x25000010) | 
 | #define AES_GCM_CMD3		cpu_to_le32(0x0f020000) | 
 | #define AES_GCM_CMD4		cpu_to_le32(0x21e60000) | 
 | #define AES_GCM_CMD5		cpu_to_le32(0x40e60000) | 
 | #define AES_GCM_CMD6		cpu_to_le32(0xd0070000) | 
 |  | 
 | /* AES transform information word 0 fields */ | 
 | #define AES_TFM_BASIC_OUT	cpu_to_le32(0x4 << 0) | 
 | #define AES_TFM_BASIC_IN	cpu_to_le32(0x5 << 0) | 
 | #define AES_TFM_GCM_OUT		cpu_to_le32(0x6 << 0) | 
 | #define AES_TFM_GCM_IN		cpu_to_le32(0xf << 0) | 
 | #define AES_TFM_SIZE(x)		cpu_to_le32((x) << 8) | 
 | #define AES_TFM_128BITS		cpu_to_le32(0xb << 16) | 
 | #define AES_TFM_192BITS		cpu_to_le32(0xd << 16) | 
 | #define AES_TFM_256BITS		cpu_to_le32(0xf << 16) | 
 | #define AES_TFM_GHASH_DIGEST	cpu_to_le32(0x2 << 21) | 
 | #define AES_TFM_GHASH		cpu_to_le32(0x4 << 23) | 
 | /* AES transform information word 1 fields */ | 
 | #define AES_TFM_ECB		cpu_to_le32(0x0 << 0) | 
 | #define AES_TFM_CBC		cpu_to_le32(0x1 << 0) | 
 | #define AES_TFM_CTR_INIT	cpu_to_le32(0x2 << 0)	/* init counter to 1 */ | 
 | #define AES_TFM_CTR_LOAD	cpu_to_le32(0x6 << 0)	/* load/reuse counter */ | 
 | #define AES_TFM_3IV		cpu_to_le32(0x7 << 5)	/* using IV 0-2 */ | 
 | #define AES_TFM_FULL_IV		cpu_to_le32(0xf << 5)	/* using IV 0-3 */ | 
 | #define AES_TFM_IV_CTR_MODE	cpu_to_le32(0x1 << 10) | 
 | #define AES_TFM_ENC_HASH	cpu_to_le32(0x1 << 17) | 
 |  | 
 | /* AES flags */ | 
 | #define AES_FLAGS_CIPHER_MSK	GENMASK(2, 0) | 
 | #define AES_FLAGS_ECB		BIT(0) | 
 | #define AES_FLAGS_CBC		BIT(1) | 
 | #define AES_FLAGS_CTR		BIT(2) | 
 | #define AES_FLAGS_GCM		BIT(3) | 
 | #define AES_FLAGS_ENCRYPT	BIT(4) | 
 | #define AES_FLAGS_BUSY		BIT(5) | 
 |  | 
 | #define AES_AUTH_TAG_ERR	cpu_to_le32(BIT(26)) | 
 |  | 
 | /** | 
 |  * mtk_aes_info - hardware information of AES | 
 |  * @cmd:	command token, hardware instruction | 
 |  * @tfm:	transform state of cipher algorithm. | 
 |  * @state:	contains keys and initial vectors. | 
 |  * | 
 |  * Memory layout of GCM buffer: | 
 |  * /-----------\ | 
 |  * |  AES KEY  | 128/196/256 bits | 
 |  * |-----------| | 
 |  * |  HASH KEY | a string 128 zero bits encrypted using the block cipher | 
 |  * |-----------| | 
 |  * |    IVs    | 4 * 4 bytes | 
 |  * \-----------/ | 
 |  * | 
 |  * The engine requires all these info to do: | 
 |  * - Commands decoding and control of the engine's data path. | 
 |  * - Coordinating hardware data fetch and store operations. | 
 |  * - Result token construction and output. | 
 |  */ | 
 | struct mtk_aes_info { | 
 | 	__le32 cmd[AES_MAX_CT_SIZE]; | 
 | 	__le32 tfm[2]; | 
 | 	__le32 state[AES_MAX_STATE_BUF_SIZE]; | 
 | }; | 
 |  | 
 | struct mtk_aes_reqctx { | 
 | 	u64 mode; | 
 | }; | 
 |  | 
 | struct mtk_aes_base_ctx { | 
 | 	struct mtk_cryp *cryp; | 
 | 	u32 keylen; | 
 | 	__le32 keymode; | 
 |  | 
 | 	mtk_aes_fn start; | 
 |  | 
 | 	struct mtk_aes_info info; | 
 | 	dma_addr_t ct_dma; | 
 | 	dma_addr_t tfm_dma; | 
 |  | 
 | 	__le32 ct_hdr; | 
 | 	u32 ct_size; | 
 | }; | 
 |  | 
 | struct mtk_aes_ctx { | 
 | 	struct mtk_aes_base_ctx	base; | 
 | }; | 
 |  | 
 | struct mtk_aes_ctr_ctx { | 
 | 	struct mtk_aes_base_ctx base; | 
 |  | 
 | 	u32	iv[AES_BLOCK_SIZE / sizeof(u32)]; | 
 | 	size_t offset; | 
 | 	struct scatterlist src[2]; | 
 | 	struct scatterlist dst[2]; | 
 | }; | 
 |  | 
 | struct mtk_aes_gcm_ctx { | 
 | 	struct mtk_aes_base_ctx base; | 
 |  | 
 | 	u32 authsize; | 
 | 	size_t textlen; | 
 |  | 
 | 	struct crypto_skcipher *ctr; | 
 | }; | 
 |  | 
 | struct mtk_aes_drv { | 
 | 	struct list_head dev_list; | 
 | 	/* Device list lock */ | 
 | 	spinlock_t lock; | 
 | }; | 
 |  | 
 | static struct mtk_aes_drv mtk_aes = { | 
 | 	.dev_list = LIST_HEAD_INIT(mtk_aes.dev_list), | 
 | 	.lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock), | 
 | }; | 
 |  | 
 | static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset) | 
 | { | 
 | 	return readl_relaxed(cryp->base + offset); | 
 | } | 
 |  | 
 | static inline void mtk_aes_write(struct mtk_cryp *cryp, | 
 | 				 u32 offset, u32 value) | 
 | { | 
 | 	writel_relaxed(value, cryp->base + offset); | 
 | } | 
 |  | 
 | static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx) | 
 | { | 
 | 	struct mtk_cryp *cryp = NULL; | 
 | 	struct mtk_cryp *tmp; | 
 |  | 
 | 	spin_lock_bh(&mtk_aes.lock); | 
 | 	if (!ctx->cryp) { | 
 | 		list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) { | 
 | 			cryp = tmp; | 
 | 			break; | 
 | 		} | 
 | 		ctx->cryp = cryp; | 
 | 	} else { | 
 | 		cryp = ctx->cryp; | 
 | 	} | 
 | 	spin_unlock_bh(&mtk_aes.lock); | 
 |  | 
 | 	return cryp; | 
 | } | 
 |  | 
 | static inline size_t mtk_aes_padlen(size_t len) | 
 | { | 
 | 	len &= AES_BLOCK_SIZE - 1; | 
 | 	return len ? AES_BLOCK_SIZE - len : 0; | 
 | } | 
 |  | 
 | static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len, | 
 | 				  struct mtk_aes_dma *dma) | 
 | { | 
 | 	int nents; | 
 |  | 
 | 	if (!IS_ALIGNED(len, AES_BLOCK_SIZE)) | 
 | 		return false; | 
 |  | 
 | 	for (nents = 0; sg; sg = sg_next(sg), ++nents) { | 
 | 		if (!IS_ALIGNED(sg->offset, sizeof(u32))) | 
 | 			return false; | 
 |  | 
 | 		if (len <= sg->length) { | 
 | 			if (!IS_ALIGNED(len, AES_BLOCK_SIZE)) | 
 | 				return false; | 
 |  | 
 | 			dma->nents = nents + 1; | 
 | 			dma->remainder = sg->length - len; | 
 | 			sg->length = len; | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE)) | 
 | 			return false; | 
 |  | 
 | 		len -= sg->length; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static inline void mtk_aes_set_mode(struct mtk_aes_rec *aes, | 
 | 				    const struct mtk_aes_reqctx *rctx) | 
 | { | 
 | 	/* Clear all but persistent flags and set request flags. */ | 
 | 	aes->flags = (aes->flags & AES_FLAGS_BUSY) | rctx->mode; | 
 | } | 
 |  | 
 | static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma) | 
 | { | 
 | 	struct scatterlist *sg = dma->sg; | 
 | 	int nents = dma->nents; | 
 |  | 
 | 	if (!dma->remainder) | 
 | 		return; | 
 |  | 
 | 	while (--nents > 0 && sg) | 
 | 		sg = sg_next(sg); | 
 |  | 
 | 	if (!sg) | 
 | 		return; | 
 |  | 
 | 	sg->length += dma->remainder; | 
 | } | 
 |  | 
 | static inline void mtk_aes_write_state_le(__le32 *dst, const u32 *src, u32 size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < SIZE_IN_WORDS(size); i++) | 
 | 		dst[i] = cpu_to_le32(src[i]); | 
 | } | 
 |  | 
 | static inline void mtk_aes_write_state_be(__be32 *dst, const u32 *src, u32 size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < SIZE_IN_WORDS(size); i++) | 
 | 		dst[i] = cpu_to_be32(src[i]); | 
 | } | 
 |  | 
 | static inline int mtk_aes_complete(struct mtk_cryp *cryp, | 
 | 				   struct mtk_aes_rec *aes, | 
 | 				   int err) | 
 | { | 
 | 	aes->flags &= ~AES_FLAGS_BUSY; | 
 | 	aes->areq->complete(aes->areq, err); | 
 | 	/* Handle new request */ | 
 | 	tasklet_schedule(&aes->queue_task); | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * Write descriptors for processing. This will configure the engine, load | 
 |  * the transform information and then start the packet processing. | 
 |  */ | 
 | static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) | 
 | { | 
 | 	struct mtk_ring *ring = cryp->ring[aes->id]; | 
 | 	struct mtk_desc *cmd = NULL, *res = NULL; | 
 | 	struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg; | 
 | 	u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len; | 
 | 	int nents; | 
 |  | 
 | 	/* Write command descriptors */ | 
 | 	for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) { | 
 | 		cmd = ring->cmd_next; | 
 | 		cmd->hdr = MTK_DESC_BUF_LEN(ssg->length); | 
 | 		cmd->buf = cpu_to_le32(sg_dma_address(ssg)); | 
 |  | 
 | 		if (nents == 0) { | 
 | 			cmd->hdr |= MTK_DESC_FIRST | | 
 | 				    MTK_DESC_CT_LEN(aes->ctx->ct_size); | 
 | 			cmd->ct = cpu_to_le32(aes->ctx->ct_dma); | 
 | 			cmd->ct_hdr = aes->ctx->ct_hdr; | 
 | 			cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma); | 
 | 		} | 
 |  | 
 | 		/* Shift ring buffer and check boundary */ | 
 | 		if (++ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) | 
 | 			ring->cmd_next = ring->cmd_base; | 
 | 	} | 
 | 	cmd->hdr |= MTK_DESC_LAST; | 
 |  | 
 | 	/* Prepare result descriptors */ | 
 | 	for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) { | 
 | 		res = ring->res_next; | 
 | 		res->hdr = MTK_DESC_BUF_LEN(dsg->length); | 
 | 		res->buf = cpu_to_le32(sg_dma_address(dsg)); | 
 |  | 
 | 		if (nents == 0) | 
 | 			res->hdr |= MTK_DESC_FIRST; | 
 |  | 
 | 		/* Shift ring buffer and check boundary */ | 
 | 		if (++ring->res_next == ring->res_base + MTK_DESC_NUM) | 
 | 			ring->res_next = ring->res_base; | 
 | 	} | 
 | 	res->hdr |= MTK_DESC_LAST; | 
 |  | 
 | 	/* Pointer to current result descriptor */ | 
 | 	ring->res_prev = res; | 
 |  | 
 | 	/* Prepare enough space for authenticated tag */ | 
 | 	if (aes->flags & AES_FLAGS_GCM) | 
 | 		res->hdr += AES_BLOCK_SIZE; | 
 |  | 
 | 	/* | 
 | 	 * Make sure that all changes to the DMA ring are done before we | 
 | 	 * start engine. | 
 | 	 */ | 
 | 	wmb(); | 
 | 	/* Start DMA transfer */ | 
 | 	mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen)); | 
 | 	mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen)); | 
 |  | 
 | 	return -EINPROGRESS; | 
 | } | 
 |  | 
 | static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) | 
 | { | 
 | 	struct mtk_aes_base_ctx *ctx = aes->ctx; | 
 |  | 
 | 	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info), | 
 | 			 DMA_TO_DEVICE); | 
 |  | 
 | 	if (aes->src.sg == aes->dst.sg) { | 
 | 		dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, | 
 | 			     DMA_BIDIRECTIONAL); | 
 |  | 
 | 		if (aes->src.sg != &aes->aligned_sg) | 
 | 			mtk_aes_restore_sg(&aes->src); | 
 | 	} else { | 
 | 		dma_unmap_sg(cryp->dev, aes->dst.sg, aes->dst.nents, | 
 | 			     DMA_FROM_DEVICE); | 
 |  | 
 | 		if (aes->dst.sg != &aes->aligned_sg) | 
 | 			mtk_aes_restore_sg(&aes->dst); | 
 |  | 
 | 		dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, | 
 | 			     DMA_TO_DEVICE); | 
 |  | 
 | 		if (aes->src.sg != &aes->aligned_sg) | 
 | 			mtk_aes_restore_sg(&aes->src); | 
 | 	} | 
 |  | 
 | 	if (aes->dst.sg == &aes->aligned_sg) | 
 | 		sg_copy_from_buffer(aes->real_dst, sg_nents(aes->real_dst), | 
 | 				    aes->buf, aes->total); | 
 | } | 
 |  | 
 | static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) | 
 | { | 
 | 	struct mtk_aes_base_ctx *ctx = aes->ctx; | 
 | 	struct mtk_aes_info *info = &ctx->info; | 
 |  | 
 | 	ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info), | 
 | 				     DMA_TO_DEVICE); | 
 | 	if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) | 
 | 		goto exit; | 
 |  | 
 | 	ctx->tfm_dma = ctx->ct_dma + sizeof(info->cmd); | 
 |  | 
 | 	if (aes->src.sg == aes->dst.sg) { | 
 | 		aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg, | 
 | 					     aes->src.nents, | 
 | 					     DMA_BIDIRECTIONAL); | 
 | 		aes->dst.sg_len = aes->src.sg_len; | 
 | 		if (unlikely(!aes->src.sg_len)) | 
 | 			goto sg_map_err; | 
 | 	} else { | 
 | 		aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg, | 
 | 					     aes->src.nents, DMA_TO_DEVICE); | 
 | 		if (unlikely(!aes->src.sg_len)) | 
 | 			goto sg_map_err; | 
 |  | 
 | 		aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg, | 
 | 					     aes->dst.nents, DMA_FROM_DEVICE); | 
 | 		if (unlikely(!aes->dst.sg_len)) { | 
 | 			dma_unmap_sg(cryp->dev, aes->src.sg, aes->src.nents, | 
 | 				     DMA_TO_DEVICE); | 
 | 			goto sg_map_err; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return mtk_aes_xmit(cryp, aes); | 
 |  | 
 | sg_map_err: | 
 | 	dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(*info), DMA_TO_DEVICE); | 
 | exit: | 
 | 	return mtk_aes_complete(cryp, aes, -EINVAL); | 
 | } | 
 |  | 
 | /* Initialize transform information of CBC/ECB/CTR mode */ | 
 | static void mtk_aes_info_init(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, | 
 | 			      size_t len) | 
 | { | 
 | 	struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); | 
 | 	struct mtk_aes_base_ctx *ctx = aes->ctx; | 
 | 	struct mtk_aes_info *info = &ctx->info; | 
 | 	u32 cnt = 0; | 
 |  | 
 | 	ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len); | 
 | 	info->cmd[cnt++] = AES_CMD0 | cpu_to_le32(len); | 
 | 	info->cmd[cnt++] = AES_CMD1; | 
 |  | 
 | 	info->tfm[0] = AES_TFM_SIZE(ctx->keylen) | ctx->keymode; | 
 | 	if (aes->flags & AES_FLAGS_ENCRYPT) | 
 | 		info->tfm[0] |= AES_TFM_BASIC_OUT; | 
 | 	else | 
 | 		info->tfm[0] |= AES_TFM_BASIC_IN; | 
 |  | 
 | 	switch (aes->flags & AES_FLAGS_CIPHER_MSK) { | 
 | 	case AES_FLAGS_CBC: | 
 | 		info->tfm[1] = AES_TFM_CBC; | 
 | 		break; | 
 | 	case AES_FLAGS_ECB: | 
 | 		info->tfm[1] = AES_TFM_ECB; | 
 | 		goto ecb; | 
 | 	case AES_FLAGS_CTR: | 
 | 		info->tfm[1] = AES_TFM_CTR_LOAD; | 
 | 		goto ctr; | 
 |  | 
 | 	default: | 
 | 		/* Should not happen... */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	mtk_aes_write_state_le(info->state + ctx->keylen, req->info, | 
 | 			       AES_BLOCK_SIZE); | 
 | ctr: | 
 | 	info->tfm[0] += AES_TFM_SIZE(SIZE_IN_WORDS(AES_BLOCK_SIZE)); | 
 | 	info->tfm[1] |= AES_TFM_FULL_IV; | 
 | 	info->cmd[cnt++] = AES_CMD2; | 
 | ecb: | 
 | 	ctx->ct_size = cnt; | 
 | } | 
 |  | 
 | static int mtk_aes_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, | 
 | 		       struct scatterlist *src, struct scatterlist *dst, | 
 | 		       size_t len) | 
 | { | 
 | 	size_t padlen = 0; | 
 | 	bool src_aligned, dst_aligned; | 
 |  | 
 | 	aes->total = len; | 
 | 	aes->src.sg = src; | 
 | 	aes->dst.sg = dst; | 
 | 	aes->real_dst = dst; | 
 |  | 
 | 	src_aligned = mtk_aes_check_aligned(src, len, &aes->src); | 
 | 	if (src == dst) | 
 | 		dst_aligned = src_aligned; | 
 | 	else | 
 | 		dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst); | 
 |  | 
 | 	if (!src_aligned || !dst_aligned) { | 
 | 		padlen = mtk_aes_padlen(len); | 
 |  | 
 | 		if (len + padlen > AES_BUF_SIZE) | 
 | 			return mtk_aes_complete(cryp, aes, -ENOMEM); | 
 |  | 
 | 		if (!src_aligned) { | 
 | 			sg_copy_to_buffer(src, sg_nents(src), aes->buf, len); | 
 | 			aes->src.sg = &aes->aligned_sg; | 
 | 			aes->src.nents = 1; | 
 | 			aes->src.remainder = 0; | 
 | 		} | 
 |  | 
 | 		if (!dst_aligned) { | 
 | 			aes->dst.sg = &aes->aligned_sg; | 
 | 			aes->dst.nents = 1; | 
 | 			aes->dst.remainder = 0; | 
 | 		} | 
 |  | 
 | 		sg_init_table(&aes->aligned_sg, 1); | 
 | 		sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen); | 
 | 	} | 
 |  | 
 | 	mtk_aes_info_init(cryp, aes, len + padlen); | 
 |  | 
 | 	return mtk_aes_map(cryp, aes); | 
 | } | 
 |  | 
 | static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id, | 
 | 				struct crypto_async_request *new_areq) | 
 | { | 
 | 	struct mtk_aes_rec *aes = cryp->aes[id]; | 
 | 	struct crypto_async_request *areq, *backlog; | 
 | 	struct mtk_aes_base_ctx *ctx; | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(&aes->lock, flags); | 
 | 	if (new_areq) | 
 | 		ret = crypto_enqueue_request(&aes->queue, new_areq); | 
 | 	if (aes->flags & AES_FLAGS_BUSY) { | 
 | 		spin_unlock_irqrestore(&aes->lock, flags); | 
 | 		return ret; | 
 | 	} | 
 | 	backlog = crypto_get_backlog(&aes->queue); | 
 | 	areq = crypto_dequeue_request(&aes->queue); | 
 | 	if (areq) | 
 | 		aes->flags |= AES_FLAGS_BUSY; | 
 | 	spin_unlock_irqrestore(&aes->lock, flags); | 
 |  | 
 | 	if (!areq) | 
 | 		return ret; | 
 |  | 
 | 	if (backlog) | 
 | 		backlog->complete(backlog, -EINPROGRESS); | 
 |  | 
 | 	ctx = crypto_tfm_ctx(areq->tfm); | 
 |  | 
 | 	aes->areq = areq; | 
 | 	aes->ctx = ctx; | 
 |  | 
 | 	return ctx->start(cryp, aes); | 
 | } | 
 |  | 
 | static int mtk_aes_transfer_complete(struct mtk_cryp *cryp, | 
 | 				     struct mtk_aes_rec *aes) | 
 | { | 
 | 	return mtk_aes_complete(cryp, aes, 0); | 
 | } | 
 |  | 
 | static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) | 
 | { | 
 | 	struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); | 
 | 	struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req); | 
 |  | 
 | 	mtk_aes_set_mode(aes, rctx); | 
 | 	aes->resume = mtk_aes_transfer_complete; | 
 |  | 
 | 	return mtk_aes_dma(cryp, aes, req->src, req->dst, req->nbytes); | 
 | } | 
 |  | 
 | static inline struct mtk_aes_ctr_ctx * | 
 | mtk_aes_ctr_ctx_cast(struct mtk_aes_base_ctx *ctx) | 
 | { | 
 | 	return container_of(ctx, struct mtk_aes_ctr_ctx, base); | 
 | } | 
 |  | 
 | static int mtk_aes_ctr_transfer(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) | 
 | { | 
 | 	struct mtk_aes_base_ctx *ctx = aes->ctx; | 
 | 	struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(ctx); | 
 | 	struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); | 
 | 	struct scatterlist *src, *dst; | 
 | 	u32 start, end, ctr, blocks; | 
 | 	size_t datalen; | 
 | 	bool fragmented = false; | 
 |  | 
 | 	/* Check for transfer completion. */ | 
 | 	cctx->offset += aes->total; | 
 | 	if (cctx->offset >= req->nbytes) | 
 | 		return mtk_aes_transfer_complete(cryp, aes); | 
 |  | 
 | 	/* Compute data length. */ | 
 | 	datalen = req->nbytes - cctx->offset; | 
 | 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE); | 
 | 	ctr = be32_to_cpu(cctx->iv[3]); | 
 |  | 
 | 	/* Check 32bit counter overflow. */ | 
 | 	start = ctr; | 
 | 	end = start + blocks - 1; | 
 | 	if (end < start) { | 
 | 		ctr |= 0xffffffff; | 
 | 		datalen = AES_BLOCK_SIZE * -start; | 
 | 		fragmented = true; | 
 | 	} | 
 |  | 
 | 	/* Jump to offset. */ | 
 | 	src = scatterwalk_ffwd(cctx->src, req->src, cctx->offset); | 
 | 	dst = ((req->src == req->dst) ? src : | 
 | 	       scatterwalk_ffwd(cctx->dst, req->dst, cctx->offset)); | 
 |  | 
 | 	/* Write IVs into transform state buffer. */ | 
 | 	mtk_aes_write_state_le(ctx->info.state + ctx->keylen, cctx->iv, | 
 | 			       AES_BLOCK_SIZE); | 
 |  | 
 | 	if (unlikely(fragmented)) { | 
 | 	/* | 
 | 	 * Increment the counter manually to cope with the hardware | 
 | 	 * counter overflow. | 
 | 	 */ | 
 | 		cctx->iv[3] = cpu_to_be32(ctr); | 
 | 		crypto_inc((u8 *)cctx->iv, AES_BLOCK_SIZE); | 
 | 	} | 
 |  | 
 | 	return mtk_aes_dma(cryp, aes, src, dst, datalen); | 
 | } | 
 |  | 
 | static int mtk_aes_ctr_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) | 
 | { | 
 | 	struct mtk_aes_ctr_ctx *cctx = mtk_aes_ctr_ctx_cast(aes->ctx); | 
 | 	struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq); | 
 | 	struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req); | 
 |  | 
 | 	mtk_aes_set_mode(aes, rctx); | 
 |  | 
 | 	memcpy(cctx->iv, req->info, AES_BLOCK_SIZE); | 
 | 	cctx->offset = 0; | 
 | 	aes->total = 0; | 
 | 	aes->resume = mtk_aes_ctr_transfer; | 
 |  | 
 | 	return mtk_aes_ctr_transfer(cryp, aes); | 
 | } | 
 |  | 
 | /* Check and set the AES key to transform state buffer */ | 
 | static int mtk_aes_setkey(struct crypto_ablkcipher *tfm, | 
 | 			  const u8 *key, u32 keylen) | 
 | { | 
 | 	struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm); | 
 |  | 
 | 	switch (keylen) { | 
 | 	case AES_KEYSIZE_128: | 
 | 		ctx->keymode = AES_TFM_128BITS; | 
 | 		break; | 
 | 	case AES_KEYSIZE_192: | 
 | 		ctx->keymode = AES_TFM_192BITS; | 
 | 		break; | 
 | 	case AES_KEYSIZE_256: | 
 | 		ctx->keymode = AES_TFM_256BITS; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ctx->keylen = SIZE_IN_WORDS(keylen); | 
 | 	mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mtk_aes_crypt(struct ablkcipher_request *req, u64 mode) | 
 | { | 
 | 	struct mtk_aes_base_ctx *ctx; | 
 | 	struct mtk_aes_reqctx *rctx; | 
 |  | 
 | 	ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)); | 
 | 	rctx = ablkcipher_request_ctx(req); | 
 | 	rctx->mode = mode; | 
 |  | 
 | 	return mtk_aes_handle_queue(ctx->cryp, !(mode & AES_FLAGS_ENCRYPT), | 
 | 				    &req->base); | 
 | } | 
 |  | 
 | static int mtk_aes_ecb_encrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB); | 
 | } | 
 |  | 
 | static int mtk_aes_ecb_decrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return mtk_aes_crypt(req, AES_FLAGS_ECB); | 
 | } | 
 |  | 
 | static int mtk_aes_cbc_encrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC); | 
 | } | 
 |  | 
 | static int mtk_aes_cbc_decrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return mtk_aes_crypt(req, AES_FLAGS_CBC); | 
 | } | 
 |  | 
 | static int mtk_aes_ctr_encrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CTR); | 
 | } | 
 |  | 
 | static int mtk_aes_ctr_decrypt(struct ablkcipher_request *req) | 
 | { | 
 | 	return mtk_aes_crypt(req, AES_FLAGS_CTR); | 
 | } | 
 |  | 
 | static int mtk_aes_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct mtk_cryp *cryp = NULL; | 
 |  | 
 | 	cryp = mtk_aes_find_dev(&ctx->base); | 
 | 	if (!cryp) { | 
 | 		pr_err("can't find crypto device\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx); | 
 | 	ctx->base.start = mtk_aes_start; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mtk_aes_ctr_cra_init(struct crypto_tfm *tfm) | 
 | { | 
 | 	struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm); | 
 | 	struct mtk_cryp *cryp = NULL; | 
 |  | 
 | 	cryp = mtk_aes_find_dev(&ctx->base); | 
 | 	if (!cryp) { | 
 | 		pr_err("can't find crypto device\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx); | 
 | 	ctx->base.start = mtk_aes_ctr_start; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct crypto_alg aes_algs[] = { | 
 | { | 
 | 	.cra_name		= "cbc(aes)", | 
 | 	.cra_driver_name	= "cbc-aes-mtk", | 
 | 	.cra_priority		= 400, | 
 | 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | | 
 | 				  CRYPTO_ALG_ASYNC, | 
 | 	.cra_init		= mtk_aes_cra_init, | 
 | 	.cra_blocksize		= AES_BLOCK_SIZE, | 
 | 	.cra_ctxsize		= sizeof(struct mtk_aes_ctx), | 
 | 	.cra_alignmask		= 0xf, | 
 | 	.cra_type		= &crypto_ablkcipher_type, | 
 | 	.cra_module		= THIS_MODULE, | 
 | 	.cra_u.ablkcipher = { | 
 | 		.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 		.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 		.setkey		= mtk_aes_setkey, | 
 | 		.encrypt	= mtk_aes_cbc_encrypt, | 
 | 		.decrypt	= mtk_aes_cbc_decrypt, | 
 | 		.ivsize		= AES_BLOCK_SIZE, | 
 | 	} | 
 | }, | 
 | { | 
 | 	.cra_name		= "ecb(aes)", | 
 | 	.cra_driver_name	= "ecb-aes-mtk", | 
 | 	.cra_priority		= 400, | 
 | 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | | 
 | 				  CRYPTO_ALG_ASYNC, | 
 | 	.cra_init		= mtk_aes_cra_init, | 
 | 	.cra_blocksize		= AES_BLOCK_SIZE, | 
 | 	.cra_ctxsize		= sizeof(struct mtk_aes_ctx), | 
 | 	.cra_alignmask		= 0xf, | 
 | 	.cra_type		= &crypto_ablkcipher_type, | 
 | 	.cra_module		= THIS_MODULE, | 
 | 	.cra_u.ablkcipher = { | 
 | 		.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 		.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 		.setkey		= mtk_aes_setkey, | 
 | 		.encrypt	= mtk_aes_ecb_encrypt, | 
 | 		.decrypt	= mtk_aes_ecb_decrypt, | 
 | 	} | 
 | }, | 
 | { | 
 | 	.cra_name		= "ctr(aes)", | 
 | 	.cra_driver_name	= "ctr-aes-mtk", | 
 | 	.cra_priority		= 400, | 
 | 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | | 
 | 				  CRYPTO_ALG_ASYNC, | 
 | 	.cra_init		= mtk_aes_ctr_cra_init, | 
 | 	.cra_blocksize		= 1, | 
 | 	.cra_ctxsize		= sizeof(struct mtk_aes_ctr_ctx), | 
 | 	.cra_alignmask		= 0xf, | 
 | 	.cra_type		= &crypto_ablkcipher_type, | 
 | 	.cra_module		= THIS_MODULE, | 
 | 	.cra_u.ablkcipher = { | 
 | 		.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 		.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 		.ivsize		= AES_BLOCK_SIZE, | 
 | 		.setkey		= mtk_aes_setkey, | 
 | 		.encrypt	= mtk_aes_ctr_encrypt, | 
 | 		.decrypt	= mtk_aes_ctr_decrypt, | 
 | 	} | 
 | }, | 
 | }; | 
 |  | 
 | static inline struct mtk_aes_gcm_ctx * | 
 | mtk_aes_gcm_ctx_cast(struct mtk_aes_base_ctx *ctx) | 
 | { | 
 | 	return container_of(ctx, struct mtk_aes_gcm_ctx, base); | 
 | } | 
 |  | 
 | /* | 
 |  * Engine will verify and compare tag automatically, so we just need | 
 |  * to check returned status which stored in the result descriptor. | 
 |  */ | 
 | static int mtk_aes_gcm_tag_verify(struct mtk_cryp *cryp, | 
 | 				  struct mtk_aes_rec *aes) | 
 | { | 
 | 	u32 status = cryp->ring[aes->id]->res_prev->ct; | 
 |  | 
 | 	return mtk_aes_complete(cryp, aes, (status & AES_AUTH_TAG_ERR) ? | 
 | 				-EBADMSG : 0); | 
 | } | 
 |  | 
 | /* Initialize transform information of GCM mode */ | 
 | static void mtk_aes_gcm_info_init(struct mtk_cryp *cryp, | 
 | 				  struct mtk_aes_rec *aes, | 
 | 				  size_t len) | 
 | { | 
 | 	struct aead_request *req = aead_request_cast(aes->areq); | 
 | 	struct mtk_aes_base_ctx *ctx = aes->ctx; | 
 | 	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx); | 
 | 	struct mtk_aes_info *info = &ctx->info; | 
 | 	u32 ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); | 
 | 	u32 cnt = 0; | 
 |  | 
 | 	ctx->ct_hdr = AES_CT_CTRL_HDR | len; | 
 |  | 
 | 	info->cmd[cnt++] = AES_GCM_CMD0 | cpu_to_le32(req->assoclen); | 
 | 	info->cmd[cnt++] = AES_GCM_CMD1 | cpu_to_le32(req->assoclen); | 
 | 	info->cmd[cnt++] = AES_GCM_CMD2; | 
 | 	info->cmd[cnt++] = AES_GCM_CMD3 | cpu_to_le32(gctx->textlen); | 
 |  | 
 | 	if (aes->flags & AES_FLAGS_ENCRYPT) { | 
 | 		info->cmd[cnt++] = AES_GCM_CMD4 | cpu_to_le32(gctx->authsize); | 
 | 		info->tfm[0] = AES_TFM_GCM_OUT; | 
 | 	} else { | 
 | 		info->cmd[cnt++] = AES_GCM_CMD5 | cpu_to_le32(gctx->authsize); | 
 | 		info->cmd[cnt++] = AES_GCM_CMD6 | cpu_to_le32(gctx->authsize); | 
 | 		info->tfm[0] = AES_TFM_GCM_IN; | 
 | 	} | 
 | 	ctx->ct_size = cnt; | 
 |  | 
 | 	info->tfm[0] |= AES_TFM_GHASH_DIGEST | AES_TFM_GHASH | AES_TFM_SIZE( | 
 | 			ctx->keylen + SIZE_IN_WORDS(AES_BLOCK_SIZE + ivsize)) | | 
 | 			ctx->keymode; | 
 | 	info->tfm[1] = AES_TFM_CTR_INIT | AES_TFM_IV_CTR_MODE | AES_TFM_3IV | | 
 | 		       AES_TFM_ENC_HASH; | 
 |  | 
 | 	mtk_aes_write_state_le(info->state + ctx->keylen + SIZE_IN_WORDS( | 
 | 			       AES_BLOCK_SIZE), (const u32 *)req->iv, ivsize); | 
 | } | 
 |  | 
 | static int mtk_aes_gcm_dma(struct mtk_cryp *cryp, struct mtk_aes_rec *aes, | 
 | 			   struct scatterlist *src, struct scatterlist *dst, | 
 | 			   size_t len) | 
 | { | 
 | 	bool src_aligned, dst_aligned; | 
 |  | 
 | 	aes->src.sg = src; | 
 | 	aes->dst.sg = dst; | 
 | 	aes->real_dst = dst; | 
 |  | 
 | 	src_aligned = mtk_aes_check_aligned(src, len, &aes->src); | 
 | 	if (src == dst) | 
 | 		dst_aligned = src_aligned; | 
 | 	else | 
 | 		dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst); | 
 |  | 
 | 	if (!src_aligned || !dst_aligned) { | 
 | 		if (aes->total > AES_BUF_SIZE) | 
 | 			return mtk_aes_complete(cryp, aes, -ENOMEM); | 
 |  | 
 | 		if (!src_aligned) { | 
 | 			sg_copy_to_buffer(src, sg_nents(src), aes->buf, len); | 
 | 			aes->src.sg = &aes->aligned_sg; | 
 | 			aes->src.nents = 1; | 
 | 			aes->src.remainder = 0; | 
 | 		} | 
 |  | 
 | 		if (!dst_aligned) { | 
 | 			aes->dst.sg = &aes->aligned_sg; | 
 | 			aes->dst.nents = 1; | 
 | 			aes->dst.remainder = 0; | 
 | 		} | 
 |  | 
 | 		sg_init_table(&aes->aligned_sg, 1); | 
 | 		sg_set_buf(&aes->aligned_sg, aes->buf, aes->total); | 
 | 	} | 
 |  | 
 | 	mtk_aes_gcm_info_init(cryp, aes, len); | 
 |  | 
 | 	return mtk_aes_map(cryp, aes); | 
 | } | 
 |  | 
 | /* Todo: GMAC */ | 
 | static int mtk_aes_gcm_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes) | 
 | { | 
 | 	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(aes->ctx); | 
 | 	struct aead_request *req = aead_request_cast(aes->areq); | 
 | 	struct mtk_aes_reqctx *rctx = aead_request_ctx(req); | 
 | 	u32 len = req->assoclen + req->cryptlen; | 
 |  | 
 | 	mtk_aes_set_mode(aes, rctx); | 
 |  | 
 | 	if (aes->flags & AES_FLAGS_ENCRYPT) { | 
 | 		u32 tag[4]; | 
 |  | 
 | 		aes->resume = mtk_aes_transfer_complete; | 
 | 		/* Compute total process length. */ | 
 | 		aes->total = len + gctx->authsize; | 
 | 		/* Compute text length. */ | 
 | 		gctx->textlen = req->cryptlen; | 
 | 		/* Hardware will append authenticated tag to output buffer */ | 
 | 		scatterwalk_map_and_copy(tag, req->dst, len, gctx->authsize, 1); | 
 | 	} else { | 
 | 		aes->resume = mtk_aes_gcm_tag_verify; | 
 | 		aes->total = len; | 
 | 		gctx->textlen = req->cryptlen - gctx->authsize; | 
 | 	} | 
 |  | 
 | 	return mtk_aes_gcm_dma(cryp, aes, req->src, req->dst, len); | 
 | } | 
 |  | 
 | static int mtk_aes_gcm_crypt(struct aead_request *req, u64 mode) | 
 | { | 
 | 	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req)); | 
 | 	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx); | 
 | 	struct mtk_aes_reqctx *rctx = aead_request_ctx(req); | 
 |  | 
 | 	/* Empty messages are not supported yet */ | 
 | 	if (!gctx->textlen && !req->assoclen) | 
 | 		return -EINVAL; | 
 |  | 
 | 	rctx->mode = AES_FLAGS_GCM | mode; | 
 |  | 
 | 	return mtk_aes_handle_queue(ctx->cryp, !!(mode & AES_FLAGS_ENCRYPT), | 
 | 				    &req->base); | 
 | } | 
 |  | 
 | /* | 
 |  * Because of the hardware limitation, we need to pre-calculate key(H) | 
 |  * for the GHASH operation. The result of the encryption operation | 
 |  * need to be stored in the transform state buffer. | 
 |  */ | 
 | static int mtk_aes_gcm_setkey(struct crypto_aead *aead, const u8 *key, | 
 | 			      u32 keylen) | 
 | { | 
 | 	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead); | 
 | 	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx); | 
 | 	struct crypto_skcipher *ctr = gctx->ctr; | 
 | 	struct { | 
 | 		u32 hash[4]; | 
 | 		u8 iv[8]; | 
 |  | 
 | 		struct crypto_wait wait; | 
 |  | 
 | 		struct scatterlist sg[1]; | 
 | 		struct skcipher_request req; | 
 | 	} *data; | 
 | 	int err; | 
 |  | 
 | 	switch (keylen) { | 
 | 	case AES_KEYSIZE_128: | 
 | 		ctx->keymode = AES_TFM_128BITS; | 
 | 		break; | 
 | 	case AES_KEYSIZE_192: | 
 | 		ctx->keymode = AES_TFM_192BITS; | 
 | 		break; | 
 | 	case AES_KEYSIZE_256: | 
 | 		ctx->keymode = AES_TFM_256BITS; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		crypto_aead_set_flags(aead, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ctx->keylen = SIZE_IN_WORDS(keylen); | 
 |  | 
 | 	/* Same as crypto_gcm_setkey() from crypto/gcm.c */ | 
 | 	crypto_skcipher_clear_flags(ctr, CRYPTO_TFM_REQ_MASK); | 
 | 	crypto_skcipher_set_flags(ctr, crypto_aead_get_flags(aead) & | 
 | 				  CRYPTO_TFM_REQ_MASK); | 
 | 	err = crypto_skcipher_setkey(ctr, key, keylen); | 
 | 	crypto_aead_set_flags(aead, crypto_skcipher_get_flags(ctr) & | 
 | 			      CRYPTO_TFM_RES_MASK); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	data = kzalloc(sizeof(*data) + crypto_skcipher_reqsize(ctr), | 
 | 		       GFP_KERNEL); | 
 | 	if (!data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	crypto_init_wait(&data->wait); | 
 | 	sg_init_one(data->sg, &data->hash, AES_BLOCK_SIZE); | 
 | 	skcipher_request_set_tfm(&data->req, ctr); | 
 | 	skcipher_request_set_callback(&data->req, CRYPTO_TFM_REQ_MAY_SLEEP | | 
 | 				      CRYPTO_TFM_REQ_MAY_BACKLOG, | 
 | 				      crypto_req_done, &data->wait); | 
 | 	skcipher_request_set_crypt(&data->req, data->sg, data->sg, | 
 | 				   AES_BLOCK_SIZE, data->iv); | 
 |  | 
 | 	err = crypto_wait_req(crypto_skcipher_encrypt(&data->req), | 
 | 			      &data->wait); | 
 | 	if (err) | 
 | 		goto out; | 
 |  | 
 | 	/* Write key into state buffer */ | 
 | 	mtk_aes_write_state_le(ctx->info.state, (const u32 *)key, keylen); | 
 | 	/* Write key(H) into state buffer */ | 
 | 	mtk_aes_write_state_be(ctx->info.state + ctx->keylen, data->hash, | 
 | 			       AES_BLOCK_SIZE); | 
 | out: | 
 | 	kzfree(data); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int mtk_aes_gcm_setauthsize(struct crypto_aead *aead, | 
 | 				   u32 authsize) | 
 | { | 
 | 	struct mtk_aes_base_ctx *ctx = crypto_aead_ctx(aead); | 
 | 	struct mtk_aes_gcm_ctx *gctx = mtk_aes_gcm_ctx_cast(ctx); | 
 |  | 
 | 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */ | 
 | 	switch (authsize) { | 
 | 	case 8: | 
 | 	case 12: | 
 | 	case 16: | 
 | 		break; | 
 | 	default: | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	gctx->authsize = authsize; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int mtk_aes_gcm_encrypt(struct aead_request *req) | 
 | { | 
 | 	return mtk_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT); | 
 | } | 
 |  | 
 | static int mtk_aes_gcm_decrypt(struct aead_request *req) | 
 | { | 
 | 	return mtk_aes_gcm_crypt(req, 0); | 
 | } | 
 |  | 
 | static int mtk_aes_gcm_init(struct crypto_aead *aead) | 
 | { | 
 | 	struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead); | 
 | 	struct mtk_cryp *cryp = NULL; | 
 |  | 
 | 	cryp = mtk_aes_find_dev(&ctx->base); | 
 | 	if (!cryp) { | 
 | 		pr_err("can't find crypto device\n"); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	ctx->ctr = crypto_alloc_skcipher("ctr(aes)", 0, | 
 | 					 CRYPTO_ALG_ASYNC); | 
 | 	if (IS_ERR(ctx->ctr)) { | 
 | 		pr_err("Error allocating ctr(aes)\n"); | 
 | 		return PTR_ERR(ctx->ctr); | 
 | 	} | 
 |  | 
 | 	crypto_aead_set_reqsize(aead, sizeof(struct mtk_aes_reqctx)); | 
 | 	ctx->base.start = mtk_aes_gcm_start; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mtk_aes_gcm_exit(struct crypto_aead *aead) | 
 | { | 
 | 	struct mtk_aes_gcm_ctx *ctx = crypto_aead_ctx(aead); | 
 |  | 
 | 	crypto_free_skcipher(ctx->ctr); | 
 | } | 
 |  | 
 | static struct aead_alg aes_gcm_alg = { | 
 | 	.setkey		= mtk_aes_gcm_setkey, | 
 | 	.setauthsize	= mtk_aes_gcm_setauthsize, | 
 | 	.encrypt	= mtk_aes_gcm_encrypt, | 
 | 	.decrypt	= mtk_aes_gcm_decrypt, | 
 | 	.init		= mtk_aes_gcm_init, | 
 | 	.exit		= mtk_aes_gcm_exit, | 
 | 	.ivsize		= GCM_AES_IV_SIZE, | 
 | 	.maxauthsize	= AES_BLOCK_SIZE, | 
 |  | 
 | 	.base = { | 
 | 		.cra_name		= "gcm(aes)", | 
 | 		.cra_driver_name	= "gcm-aes-mtk", | 
 | 		.cra_priority		= 400, | 
 | 		.cra_flags		= CRYPTO_ALG_ASYNC, | 
 | 		.cra_blocksize		= 1, | 
 | 		.cra_ctxsize		= sizeof(struct mtk_aes_gcm_ctx), | 
 | 		.cra_alignmask		= 0xf, | 
 | 		.cra_module		= THIS_MODULE, | 
 | 	}, | 
 | }; | 
 |  | 
 | static void mtk_aes_queue_task(unsigned long data) | 
 | { | 
 | 	struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data; | 
 |  | 
 | 	mtk_aes_handle_queue(aes->cryp, aes->id, NULL); | 
 | } | 
 |  | 
 | static void mtk_aes_done_task(unsigned long data) | 
 | { | 
 | 	struct mtk_aes_rec *aes = (struct mtk_aes_rec *)data; | 
 | 	struct mtk_cryp *cryp = aes->cryp; | 
 |  | 
 | 	mtk_aes_unmap(cryp, aes); | 
 | 	aes->resume(cryp, aes); | 
 | } | 
 |  | 
 | static irqreturn_t mtk_aes_irq(int irq, void *dev_id) | 
 | { | 
 | 	struct mtk_aes_rec *aes  = (struct mtk_aes_rec *)dev_id; | 
 | 	struct mtk_cryp *cryp = aes->cryp; | 
 | 	u32 val = mtk_aes_read(cryp, RDR_STAT(aes->id)); | 
 |  | 
 | 	mtk_aes_write(cryp, RDR_STAT(aes->id), val); | 
 |  | 
 | 	if (likely(AES_FLAGS_BUSY & aes->flags)) { | 
 | 		mtk_aes_write(cryp, RDR_PROC_COUNT(aes->id), MTK_CNT_RST); | 
 | 		mtk_aes_write(cryp, RDR_THRESH(aes->id), | 
 | 			      MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE); | 
 |  | 
 | 		tasklet_schedule(&aes->done_task); | 
 | 	} else { | 
 | 		dev_warn(cryp->dev, "AES interrupt when no active requests.\n"); | 
 | 	} | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * The purpose of creating encryption and decryption records is | 
 |  * to process outbound/inbound data in parallel, it can improve | 
 |  * performance in most use cases, such as IPSec VPN, especially | 
 |  * under heavy network traffic. | 
 |  */ | 
 | static int mtk_aes_record_init(struct mtk_cryp *cryp) | 
 | { | 
 | 	struct mtk_aes_rec **aes = cryp->aes; | 
 | 	int i, err = -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < MTK_REC_NUM; i++) { | 
 | 		aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL); | 
 | 		if (!aes[i]) | 
 | 			goto err_cleanup; | 
 |  | 
 | 		aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL, | 
 | 						AES_BUF_ORDER); | 
 | 		if (!aes[i]->buf) | 
 | 			goto err_cleanup; | 
 |  | 
 | 		aes[i]->cryp = cryp; | 
 |  | 
 | 		spin_lock_init(&aes[i]->lock); | 
 | 		crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE); | 
 |  | 
 | 		tasklet_init(&aes[i]->queue_task, mtk_aes_queue_task, | 
 | 			     (unsigned long)aes[i]); | 
 | 		tasklet_init(&aes[i]->done_task, mtk_aes_done_task, | 
 | 			     (unsigned long)aes[i]); | 
 | 	} | 
 |  | 
 | 	/* Link to ring0 and ring1 respectively */ | 
 | 	aes[0]->id = MTK_RING0; | 
 | 	aes[1]->id = MTK_RING1; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_cleanup: | 
 | 	for (; i--; ) { | 
 | 		free_page((unsigned long)aes[i]->buf); | 
 | 		kfree(aes[i]); | 
 | 	} | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void mtk_aes_record_free(struct mtk_cryp *cryp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MTK_REC_NUM; i++) { | 
 | 		tasklet_kill(&cryp->aes[i]->done_task); | 
 | 		tasklet_kill(&cryp->aes[i]->queue_task); | 
 |  | 
 | 		free_page((unsigned long)cryp->aes[i]->buf); | 
 | 		kfree(cryp->aes[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static void mtk_aes_unregister_algs(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	crypto_unregister_aead(&aes_gcm_alg); | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) | 
 | 		crypto_unregister_alg(&aes_algs[i]); | 
 | } | 
 |  | 
 | static int mtk_aes_register_algs(void) | 
 | { | 
 | 	int err, i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { | 
 | 		err = crypto_register_alg(&aes_algs[i]); | 
 | 		if (err) | 
 | 			goto err_aes_algs; | 
 | 	} | 
 |  | 
 | 	err = crypto_register_aead(&aes_gcm_alg); | 
 | 	if (err) | 
 | 		goto err_aes_algs; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_aes_algs: | 
 | 	for (; i--; ) | 
 | 		crypto_unregister_alg(&aes_algs[i]); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | int mtk_cipher_alg_register(struct mtk_cryp *cryp) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	INIT_LIST_HEAD(&cryp->aes_list); | 
 |  | 
 | 	/* Initialize two cipher records */ | 
 | 	ret = mtk_aes_record_init(cryp); | 
 | 	if (ret) | 
 | 		goto err_record; | 
 |  | 
 | 	ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING0], mtk_aes_irq, | 
 | 			       0, "mtk-aes", cryp->aes[0]); | 
 | 	if (ret) { | 
 | 		dev_err(cryp->dev, "unable to request AES irq.\n"); | 
 | 		goto err_res; | 
 | 	} | 
 |  | 
 | 	ret = devm_request_irq(cryp->dev, cryp->irq[MTK_RING1], mtk_aes_irq, | 
 | 			       0, "mtk-aes", cryp->aes[1]); | 
 | 	if (ret) { | 
 | 		dev_err(cryp->dev, "unable to request AES irq.\n"); | 
 | 		goto err_res; | 
 | 	} | 
 |  | 
 | 	/* Enable ring0 and ring1 interrupt */ | 
 | 	mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING0), MTK_IRQ_RDR0); | 
 | 	mtk_aes_write(cryp, AIC_ENABLE_SET(MTK_RING1), MTK_IRQ_RDR1); | 
 |  | 
 | 	spin_lock(&mtk_aes.lock); | 
 | 	list_add_tail(&cryp->aes_list, &mtk_aes.dev_list); | 
 | 	spin_unlock(&mtk_aes.lock); | 
 |  | 
 | 	ret = mtk_aes_register_algs(); | 
 | 	if (ret) | 
 | 		goto err_algs; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_algs: | 
 | 	spin_lock(&mtk_aes.lock); | 
 | 	list_del(&cryp->aes_list); | 
 | 	spin_unlock(&mtk_aes.lock); | 
 | err_res: | 
 | 	mtk_aes_record_free(cryp); | 
 | err_record: | 
 |  | 
 | 	dev_err(cryp->dev, "mtk-aes initialization failed.\n"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | void mtk_cipher_alg_release(struct mtk_cryp *cryp) | 
 | { | 
 | 	spin_lock(&mtk_aes.lock); | 
 | 	list_del(&cryp->aes_list); | 
 | 	spin_unlock(&mtk_aes.lock); | 
 |  | 
 | 	mtk_aes_unregister_algs(); | 
 | 	mtk_aes_record_free(cryp); | 
 | } |