|  | /* | 
|  | * clk-dfll.c - Tegra DFLL clock source common code | 
|  | * | 
|  | * Copyright (C) 2012-2014 NVIDIA Corporation. All rights reserved. | 
|  | * | 
|  | * Aleksandr Frid <afrid@nvidia.com> | 
|  | * Paul Walmsley <pwalmsley@nvidia.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * This library is for the DVCO and DFLL IP blocks on the Tegra124 | 
|  | * SoC. These IP blocks together are also known at NVIDIA as | 
|  | * "CL-DVFS". To try to avoid confusion, this code refers to them | 
|  | * collectively as the "DFLL." | 
|  | * | 
|  | * The DFLL is a root clocksource which tolerates some amount of | 
|  | * supply voltage noise. Tegra124 uses it to clock the fast CPU | 
|  | * complex when the target CPU speed is above a particular rate. The | 
|  | * DFLL can be operated in either open-loop mode or closed-loop mode. | 
|  | * In open-loop mode, the DFLL generates an output clock appropriate | 
|  | * to the supply voltage. In closed-loop mode, when configured with a | 
|  | * target frequency, the DFLL minimizes supply voltage while | 
|  | * delivering an average frequency equal to the target. | 
|  | * | 
|  | * Devices clocked by the DFLL must be able to tolerate frequency | 
|  | * variation. In the case of the CPU, it's important to note that the | 
|  | * CPU cycle time will vary. This has implications for | 
|  | * performance-measurement code and any code that relies on the CPU | 
|  | * cycle time to delay for a certain length of time. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/clk.h> | 
|  | #include <linux/clk-provider.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/io.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/pm_opp.h> | 
|  | #include <linux/pm_runtime.h> | 
|  | #include <linux/regmap.h> | 
|  | #include <linux/regulator/consumer.h> | 
|  | #include <linux/reset.h> | 
|  | #include <linux/seq_file.h> | 
|  |  | 
|  | #include "clk-dfll.h" | 
|  | #include "cvb.h" | 
|  |  | 
|  | /* | 
|  | * DFLL control registers - access via dfll_{readl,writel} | 
|  | */ | 
|  |  | 
|  | /* DFLL_CTRL: DFLL control register */ | 
|  | #define DFLL_CTRL			0x00 | 
|  | #define DFLL_CTRL_MODE_MASK		0x03 | 
|  |  | 
|  | /* DFLL_CONFIG: DFLL sample rate control */ | 
|  | #define DFLL_CONFIG			0x04 | 
|  | #define DFLL_CONFIG_DIV_MASK		0xff | 
|  | #define DFLL_CONFIG_DIV_PRESCALE	32 | 
|  |  | 
|  | /* DFLL_PARAMS: tuning coefficients for closed loop integrator */ | 
|  | #define DFLL_PARAMS			0x08 | 
|  | #define DFLL_PARAMS_CG_SCALE		(0x1 << 24) | 
|  | #define DFLL_PARAMS_FORCE_MODE_SHIFT	22 | 
|  | #define DFLL_PARAMS_FORCE_MODE_MASK	(0x3 << DFLL_PARAMS_FORCE_MODE_SHIFT) | 
|  | #define DFLL_PARAMS_CF_PARAM_SHIFT	16 | 
|  | #define DFLL_PARAMS_CF_PARAM_MASK	(0x3f << DFLL_PARAMS_CF_PARAM_SHIFT) | 
|  | #define DFLL_PARAMS_CI_PARAM_SHIFT	8 | 
|  | #define DFLL_PARAMS_CI_PARAM_MASK	(0x7 << DFLL_PARAMS_CI_PARAM_SHIFT) | 
|  | #define DFLL_PARAMS_CG_PARAM_SHIFT	0 | 
|  | #define DFLL_PARAMS_CG_PARAM_MASK	(0xff << DFLL_PARAMS_CG_PARAM_SHIFT) | 
|  |  | 
|  | /* DFLL_TUNE0: delay line configuration register 0 */ | 
|  | #define DFLL_TUNE0			0x0c | 
|  |  | 
|  | /* DFLL_TUNE1: delay line configuration register 1 */ | 
|  | #define DFLL_TUNE1			0x10 | 
|  |  | 
|  | /* DFLL_FREQ_REQ: target DFLL frequency control */ | 
|  | #define DFLL_FREQ_REQ			0x14 | 
|  | #define DFLL_FREQ_REQ_FORCE_ENABLE	(0x1 << 28) | 
|  | #define DFLL_FREQ_REQ_FORCE_SHIFT	16 | 
|  | #define DFLL_FREQ_REQ_FORCE_MASK	(0xfff << DFLL_FREQ_REQ_FORCE_SHIFT) | 
|  | #define FORCE_MAX			2047 | 
|  | #define FORCE_MIN			-2048 | 
|  | #define DFLL_FREQ_REQ_SCALE_SHIFT	8 | 
|  | #define DFLL_FREQ_REQ_SCALE_MASK	(0xff << DFLL_FREQ_REQ_SCALE_SHIFT) | 
|  | #define DFLL_FREQ_REQ_SCALE_MAX		256 | 
|  | #define DFLL_FREQ_REQ_FREQ_VALID	(0x1 << 7) | 
|  | #define DFLL_FREQ_REQ_MULT_SHIFT	0 | 
|  | #define DFLL_FREQ_REG_MULT_MASK		(0x7f << DFLL_FREQ_REQ_MULT_SHIFT) | 
|  | #define FREQ_MAX			127 | 
|  |  | 
|  | /* DFLL_DROOP_CTRL: droop prevention control */ | 
|  | #define DFLL_DROOP_CTRL			0x1c | 
|  |  | 
|  | /* DFLL_OUTPUT_CFG: closed loop mode control registers */ | 
|  | /* NOTE: access via dfll_i2c_{readl,writel} */ | 
|  | #define DFLL_OUTPUT_CFG			0x20 | 
|  | #define DFLL_OUTPUT_CFG_I2C_ENABLE	(0x1 << 30) | 
|  | #define OUT_MASK			0x3f | 
|  | #define DFLL_OUTPUT_CFG_SAFE_SHIFT	24 | 
|  | #define DFLL_OUTPUT_CFG_SAFE_MASK	\ | 
|  | (OUT_MASK << DFLL_OUTPUT_CFG_SAFE_SHIFT) | 
|  | #define DFLL_OUTPUT_CFG_MAX_SHIFT	16 | 
|  | #define DFLL_OUTPUT_CFG_MAX_MASK	\ | 
|  | (OUT_MASK << DFLL_OUTPUT_CFG_MAX_SHIFT) | 
|  | #define DFLL_OUTPUT_CFG_MIN_SHIFT	8 | 
|  | #define DFLL_OUTPUT_CFG_MIN_MASK	\ | 
|  | (OUT_MASK << DFLL_OUTPUT_CFG_MIN_SHIFT) | 
|  | #define DFLL_OUTPUT_CFG_PWM_DELTA	(0x1 << 7) | 
|  | #define DFLL_OUTPUT_CFG_PWM_ENABLE	(0x1 << 6) | 
|  | #define DFLL_OUTPUT_CFG_PWM_DIV_SHIFT	0 | 
|  | #define DFLL_OUTPUT_CFG_PWM_DIV_MASK	\ | 
|  | (OUT_MASK << DFLL_OUTPUT_CFG_PWM_DIV_SHIFT) | 
|  |  | 
|  | /* DFLL_OUTPUT_FORCE: closed loop mode voltage forcing control */ | 
|  | #define DFLL_OUTPUT_FORCE		0x24 | 
|  | #define DFLL_OUTPUT_FORCE_ENABLE	(0x1 << 6) | 
|  | #define DFLL_OUTPUT_FORCE_VALUE_SHIFT	0 | 
|  | #define DFLL_OUTPUT_FORCE_VALUE_MASK	\ | 
|  | (OUT_MASK << DFLL_OUTPUT_FORCE_VALUE_SHIFT) | 
|  |  | 
|  | /* DFLL_MONITOR_CTRL: internal monitor data source control */ | 
|  | #define DFLL_MONITOR_CTRL		0x28 | 
|  | #define DFLL_MONITOR_CTRL_FREQ		6 | 
|  |  | 
|  | /* DFLL_MONITOR_DATA: internal monitor data output */ | 
|  | #define DFLL_MONITOR_DATA		0x2c | 
|  | #define DFLL_MONITOR_DATA_NEW_MASK	(0x1 << 16) | 
|  | #define DFLL_MONITOR_DATA_VAL_SHIFT	0 | 
|  | #define DFLL_MONITOR_DATA_VAL_MASK	(0xFFFF << DFLL_MONITOR_DATA_VAL_SHIFT) | 
|  |  | 
|  | /* | 
|  | * I2C output control registers - access via dfll_i2c_{readl,writel} | 
|  | */ | 
|  |  | 
|  | /* DFLL_I2C_CFG: I2C controller configuration register */ | 
|  | #define DFLL_I2C_CFG			0x40 | 
|  | #define DFLL_I2C_CFG_ARB_ENABLE		(0x1 << 20) | 
|  | #define DFLL_I2C_CFG_HS_CODE_SHIFT	16 | 
|  | #define DFLL_I2C_CFG_HS_CODE_MASK	(0x7 << DFLL_I2C_CFG_HS_CODE_SHIFT) | 
|  | #define DFLL_I2C_CFG_PACKET_ENABLE	(0x1 << 15) | 
|  | #define DFLL_I2C_CFG_SIZE_SHIFT		12 | 
|  | #define DFLL_I2C_CFG_SIZE_MASK		(0x7 << DFLL_I2C_CFG_SIZE_SHIFT) | 
|  | #define DFLL_I2C_CFG_SLAVE_ADDR_10	(0x1 << 10) | 
|  | #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT	1 | 
|  | #define DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT	0 | 
|  |  | 
|  | /* DFLL_I2C_VDD_REG_ADDR: PMIC I2C address for closed loop mode */ | 
|  | #define DFLL_I2C_VDD_REG_ADDR		0x44 | 
|  |  | 
|  | /* DFLL_I2C_STS: I2C controller status */ | 
|  | #define DFLL_I2C_STS			0x48 | 
|  | #define DFLL_I2C_STS_I2C_LAST_SHIFT	1 | 
|  | #define DFLL_I2C_STS_I2C_REQ_PENDING	0x1 | 
|  |  | 
|  | /* DFLL_INTR_STS: DFLL interrupt status register */ | 
|  | #define DFLL_INTR_STS			0x5c | 
|  |  | 
|  | /* DFLL_INTR_EN: DFLL interrupt enable register */ | 
|  | #define DFLL_INTR_EN			0x60 | 
|  | #define DFLL_INTR_MIN_MASK		0x1 | 
|  | #define DFLL_INTR_MAX_MASK		0x2 | 
|  |  | 
|  | /* | 
|  | * Integrated I2C controller registers - relative to td->i2c_controller_base | 
|  | */ | 
|  |  | 
|  | /* DFLL_I2C_CLK_DIVISOR: I2C controller clock divisor */ | 
|  | #define DFLL_I2C_CLK_DIVISOR		0x6c | 
|  | #define DFLL_I2C_CLK_DIVISOR_MASK	0xffff | 
|  | #define DFLL_I2C_CLK_DIVISOR_FS_SHIFT	16 | 
|  | #define DFLL_I2C_CLK_DIVISOR_HS_SHIFT	0 | 
|  | #define DFLL_I2C_CLK_DIVISOR_PREDIV	8 | 
|  | #define DFLL_I2C_CLK_DIVISOR_HSMODE_PREDIV	12 | 
|  |  | 
|  | /* | 
|  | * Other constants | 
|  | */ | 
|  |  | 
|  | /* MAX_DFLL_VOLTAGES: number of LUT entries in the DFLL IP block */ | 
|  | #define MAX_DFLL_VOLTAGES		33 | 
|  |  | 
|  | /* | 
|  | * REF_CLK_CYC_PER_DVCO_SAMPLE: the number of ref_clk cycles that the hardware | 
|  | *    integrates the DVCO counter over - used for debug rate monitoring and | 
|  | *    droop control | 
|  | */ | 
|  | #define REF_CLK_CYC_PER_DVCO_SAMPLE	4 | 
|  |  | 
|  | /* | 
|  | * REF_CLOCK_RATE: the DFLL reference clock rate currently supported by this | 
|  | * driver, in Hz | 
|  | */ | 
|  | #define REF_CLOCK_RATE			51000000UL | 
|  |  | 
|  | #define DVCO_RATE_TO_MULT(rate, ref_rate)	((rate) / ((ref_rate) / 2)) | 
|  | #define MULT_TO_DVCO_RATE(mult, ref_rate)	((mult) * ((ref_rate) / 2)) | 
|  |  | 
|  | /** | 
|  | * enum dfll_ctrl_mode - DFLL hardware operating mode | 
|  | * @DFLL_UNINITIALIZED: (uninitialized state - not in hardware bitfield) | 
|  | * @DFLL_DISABLED: DFLL not generating an output clock | 
|  | * @DFLL_OPEN_LOOP: DVCO running, but DFLL not adjusting voltage | 
|  | * @DFLL_CLOSED_LOOP: DVCO running, and DFLL adjusting voltage to match | 
|  | *		      the requested rate | 
|  | * | 
|  | * The integer corresponding to the last two states, minus one, is | 
|  | * written to the DFLL hardware to change operating modes. | 
|  | */ | 
|  | enum dfll_ctrl_mode { | 
|  | DFLL_UNINITIALIZED = 0, | 
|  | DFLL_DISABLED = 1, | 
|  | DFLL_OPEN_LOOP = 2, | 
|  | DFLL_CLOSED_LOOP = 3, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * enum dfll_tune_range - voltage range that the driver believes it's in | 
|  | * @DFLL_TUNE_UNINITIALIZED: DFLL tuning not yet programmed | 
|  | * @DFLL_TUNE_LOW: DFLL in the low-voltage range (or open-loop mode) | 
|  | * | 
|  | * Some DFLL tuning parameters may need to change depending on the | 
|  | * DVCO's voltage; these states represent the ranges that the driver | 
|  | * supports. These are software states; these values are never | 
|  | * written into registers. | 
|  | */ | 
|  | enum dfll_tune_range { | 
|  | DFLL_TUNE_UNINITIALIZED = 0, | 
|  | DFLL_TUNE_LOW = 1, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct dfll_rate_req - target DFLL rate request data | 
|  | * @rate: target frequency, after the postscaling | 
|  | * @dvco_target_rate: target frequency, after the postscaling | 
|  | * @lut_index: LUT index at which voltage the dvco_target_rate will be reached | 
|  | * @mult_bits: value to program to the MULT bits of the DFLL_FREQ_REQ register | 
|  | * @scale_bits: value to program to the SCALE bits of the DFLL_FREQ_REQ register | 
|  | */ | 
|  | struct dfll_rate_req { | 
|  | unsigned long rate; | 
|  | unsigned long dvco_target_rate; | 
|  | int lut_index; | 
|  | u8 mult_bits; | 
|  | u8 scale_bits; | 
|  | }; | 
|  |  | 
|  | struct tegra_dfll { | 
|  | struct device			*dev; | 
|  | struct tegra_dfll_soc_data	*soc; | 
|  |  | 
|  | void __iomem			*base; | 
|  | void __iomem			*i2c_base; | 
|  | void __iomem			*i2c_controller_base; | 
|  | void __iomem			*lut_base; | 
|  |  | 
|  | struct regulator		*vdd_reg; | 
|  | struct clk			*soc_clk; | 
|  | struct clk			*ref_clk; | 
|  | struct clk			*i2c_clk; | 
|  | struct clk			*dfll_clk; | 
|  | struct reset_control		*dvco_rst; | 
|  | unsigned long			ref_rate; | 
|  | unsigned long			i2c_clk_rate; | 
|  | unsigned long			dvco_rate_min; | 
|  |  | 
|  | enum dfll_ctrl_mode		mode; | 
|  | enum dfll_tune_range		tune_range; | 
|  | struct dentry			*debugfs_dir; | 
|  | struct clk_hw			dfll_clk_hw; | 
|  | const char			*output_clock_name; | 
|  | struct dfll_rate_req		last_req; | 
|  | unsigned long			last_unrounded_rate; | 
|  |  | 
|  | /* Parameters from DT */ | 
|  | u32				droop_ctrl; | 
|  | u32				sample_rate; | 
|  | u32				force_mode; | 
|  | u32				cf; | 
|  | u32				ci; | 
|  | u32				cg; | 
|  | bool				cg_scale; | 
|  |  | 
|  | /* I2C interface parameters */ | 
|  | u32				i2c_fs_rate; | 
|  | u32				i2c_reg; | 
|  | u32				i2c_slave_addr; | 
|  |  | 
|  | /* i2c_lut array entries are regulator framework selectors */ | 
|  | unsigned			i2c_lut[MAX_DFLL_VOLTAGES]; | 
|  | int				i2c_lut_size; | 
|  | u8				lut_min, lut_max, lut_safe; | 
|  | }; | 
|  |  | 
|  | #define clk_hw_to_dfll(_hw) container_of(_hw, struct tegra_dfll, dfll_clk_hw) | 
|  |  | 
|  | /* mode_name: map numeric DFLL modes to names for friendly console messages */ | 
|  | static const char * const mode_name[] = { | 
|  | [DFLL_UNINITIALIZED] = "uninitialized", | 
|  | [DFLL_DISABLED] = "disabled", | 
|  | [DFLL_OPEN_LOOP] = "open_loop", | 
|  | [DFLL_CLOSED_LOOP] = "closed_loop", | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Register accessors | 
|  | */ | 
|  |  | 
|  | static inline u32 dfll_readl(struct tegra_dfll *td, u32 offs) | 
|  | { | 
|  | return __raw_readl(td->base + offs); | 
|  | } | 
|  |  | 
|  | static inline void dfll_writel(struct tegra_dfll *td, u32 val, u32 offs) | 
|  | { | 
|  | WARN_ON(offs >= DFLL_I2C_CFG); | 
|  | __raw_writel(val, td->base + offs); | 
|  | } | 
|  |  | 
|  | static inline void dfll_wmb(struct tegra_dfll *td) | 
|  | { | 
|  | dfll_readl(td, DFLL_CTRL); | 
|  | } | 
|  |  | 
|  | /* I2C output control registers - for addresses above DFLL_I2C_CFG */ | 
|  |  | 
|  | static inline u32 dfll_i2c_readl(struct tegra_dfll *td, u32 offs) | 
|  | { | 
|  | return __raw_readl(td->i2c_base + offs); | 
|  | } | 
|  |  | 
|  | static inline void dfll_i2c_writel(struct tegra_dfll *td, u32 val, u32 offs) | 
|  | { | 
|  | __raw_writel(val, td->i2c_base + offs); | 
|  | } | 
|  |  | 
|  | static inline void dfll_i2c_wmb(struct tegra_dfll *td) | 
|  | { | 
|  | dfll_i2c_readl(td, DFLL_I2C_CFG); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_is_running - is the DFLL currently generating a clock? | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * If the DFLL is currently generating an output clock signal, return | 
|  | * true; otherwise return false. | 
|  | */ | 
|  | static bool dfll_is_running(struct tegra_dfll *td) | 
|  | { | 
|  | return td->mode >= DFLL_OPEN_LOOP; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Runtime PM suspend/resume callbacks | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * tegra_dfll_runtime_resume - enable all clocks needed by the DFLL | 
|  | * @dev: DFLL device * | 
|  | * | 
|  | * Enable all clocks needed by the DFLL. Assumes that clk_prepare() | 
|  | * has already been called on all the clocks. | 
|  | * | 
|  | * XXX Should also handle context restore when returning from off. | 
|  | */ | 
|  | int tegra_dfll_runtime_resume(struct device *dev) | 
|  | { | 
|  | struct tegra_dfll *td = dev_get_drvdata(dev); | 
|  | int ret; | 
|  |  | 
|  | ret = clk_enable(td->ref_clk); | 
|  | if (ret) { | 
|  | dev_err(dev, "could not enable ref clock: %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = clk_enable(td->soc_clk); | 
|  | if (ret) { | 
|  | dev_err(dev, "could not enable register clock: %d\n", ret); | 
|  | clk_disable(td->ref_clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = clk_enable(td->i2c_clk); | 
|  | if (ret) { | 
|  | dev_err(dev, "could not enable i2c clock: %d\n", ret); | 
|  | clk_disable(td->soc_clk); | 
|  | clk_disable(td->ref_clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(tegra_dfll_runtime_resume); | 
|  |  | 
|  | /** | 
|  | * tegra_dfll_runtime_suspend - disable all clocks needed by the DFLL | 
|  | * @dev: DFLL device * | 
|  | * | 
|  | * Disable all clocks needed by the DFLL. Assumes that other code | 
|  | * will later call clk_unprepare(). | 
|  | */ | 
|  | int tegra_dfll_runtime_suspend(struct device *dev) | 
|  | { | 
|  | struct tegra_dfll *td = dev_get_drvdata(dev); | 
|  |  | 
|  | clk_disable(td->ref_clk); | 
|  | clk_disable(td->soc_clk); | 
|  | clk_disable(td->i2c_clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(tegra_dfll_runtime_suspend); | 
|  |  | 
|  | /* | 
|  | * DFLL tuning operations (per-voltage-range tuning settings) | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * dfll_tune_low - tune to DFLL and CPU settings valid for any voltage | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Tune the DFLL oscillator parameters and the CPU clock shaper for | 
|  | * the low-voltage range. These settings are valid for any voltage, | 
|  | * but may not be optimal. | 
|  | */ | 
|  | static void dfll_tune_low(struct tegra_dfll *td) | 
|  | { | 
|  | td->tune_range = DFLL_TUNE_LOW; | 
|  |  | 
|  | dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune0_low, DFLL_TUNE0); | 
|  | dfll_writel(td, td->soc->cvb->cpu_dfll_data.tune1, DFLL_TUNE1); | 
|  | dfll_wmb(td); | 
|  |  | 
|  | if (td->soc->set_clock_trimmers_low) | 
|  | td->soc->set_clock_trimmers_low(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Output clock scaler helpers | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * dfll_scale_dvco_rate - calculate scaled rate from the DVCO rate | 
|  | * @scale_bits: clock scaler value (bits in the DFLL_FREQ_REQ_SCALE field) | 
|  | * @dvco_rate: the DVCO rate | 
|  | * | 
|  | * Apply the same scaling formula that the DFLL hardware uses to scale | 
|  | * the DVCO rate. | 
|  | */ | 
|  | static unsigned long dfll_scale_dvco_rate(int scale_bits, | 
|  | unsigned long dvco_rate) | 
|  | { | 
|  | return (u64)dvco_rate * (scale_bits + 1) / DFLL_FREQ_REQ_SCALE_MAX; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DFLL mode switching | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * dfll_set_mode - change the DFLL control mode | 
|  | * @td: DFLL instance | 
|  | * @mode: DFLL control mode (see enum dfll_ctrl_mode) | 
|  | * | 
|  | * Change the DFLL's operating mode between disabled, open-loop mode, | 
|  | * and closed-loop mode, or vice versa. | 
|  | */ | 
|  | static void dfll_set_mode(struct tegra_dfll *td, | 
|  | enum dfll_ctrl_mode mode) | 
|  | { | 
|  | td->mode = mode; | 
|  | dfll_writel(td, mode - 1, DFLL_CTRL); | 
|  | dfll_wmb(td); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DFLL-to-I2C controller interface | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * dfll_i2c_set_output_enabled - enable/disable I2C PMIC voltage requests | 
|  | * @td: DFLL instance | 
|  | * @enable: whether to enable or disable the I2C voltage requests | 
|  | * | 
|  | * Set the master enable control for I2C control value updates. If disabled, | 
|  | * then I2C control messages are inhibited, regardless of the DFLL mode. | 
|  | */ | 
|  | static int dfll_i2c_set_output_enabled(struct tegra_dfll *td, bool enable) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = dfll_i2c_readl(td, DFLL_OUTPUT_CFG); | 
|  |  | 
|  | if (enable) | 
|  | val |= DFLL_OUTPUT_CFG_I2C_ENABLE; | 
|  | else | 
|  | val &= ~DFLL_OUTPUT_CFG_I2C_ENABLE; | 
|  |  | 
|  | dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); | 
|  | dfll_i2c_wmb(td); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_load_lut - load the voltage lookup table | 
|  | * @td: struct tegra_dfll * | 
|  | * | 
|  | * Load the voltage-to-PMIC register value lookup table into the DFLL | 
|  | * IP block memory. Look-up tables can be loaded at any time. | 
|  | */ | 
|  | static void dfll_load_i2c_lut(struct tegra_dfll *td) | 
|  | { | 
|  | int i, lut_index; | 
|  | u32 val; | 
|  |  | 
|  | for (i = 0; i < MAX_DFLL_VOLTAGES; i++) { | 
|  | if (i < td->lut_min) | 
|  | lut_index = td->lut_min; | 
|  | else if (i > td->lut_max) | 
|  | lut_index = td->lut_max; | 
|  | else | 
|  | lut_index = i; | 
|  |  | 
|  | val = regulator_list_hardware_vsel(td->vdd_reg, | 
|  | td->i2c_lut[lut_index]); | 
|  | __raw_writel(val, td->lut_base + i * 4); | 
|  | } | 
|  |  | 
|  | dfll_i2c_wmb(td); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_init_i2c_if - set up the DFLL's DFLL-I2C interface | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * During DFLL driver initialization, program the DFLL-I2C interface | 
|  | * with the PMU slave address, vdd register offset, and transfer mode. | 
|  | * This data is used by the DFLL to automatically construct I2C | 
|  | * voltage-set commands, which are then passed to the DFLL's internal | 
|  | * I2C controller. | 
|  | */ | 
|  | static void dfll_init_i2c_if(struct tegra_dfll *td) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | if (td->i2c_slave_addr > 0x7f) { | 
|  | val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_10BIT; | 
|  | val |= DFLL_I2C_CFG_SLAVE_ADDR_10; | 
|  | } else { | 
|  | val = td->i2c_slave_addr << DFLL_I2C_CFG_SLAVE_ADDR_SHIFT_7BIT; | 
|  | } | 
|  | val |= DFLL_I2C_CFG_SIZE_MASK; | 
|  | val |= DFLL_I2C_CFG_ARB_ENABLE; | 
|  | dfll_i2c_writel(td, val, DFLL_I2C_CFG); | 
|  |  | 
|  | dfll_i2c_writel(td, td->i2c_reg, DFLL_I2C_VDD_REG_ADDR); | 
|  |  | 
|  | val = DIV_ROUND_UP(td->i2c_clk_rate, td->i2c_fs_rate * 8); | 
|  | BUG_ON(!val || (val > DFLL_I2C_CLK_DIVISOR_MASK)); | 
|  | val = (val - 1) << DFLL_I2C_CLK_DIVISOR_FS_SHIFT; | 
|  |  | 
|  | /* default hs divisor just in case */ | 
|  | val |= 1 << DFLL_I2C_CLK_DIVISOR_HS_SHIFT; | 
|  | __raw_writel(val, td->i2c_controller_base + DFLL_I2C_CLK_DIVISOR); | 
|  | dfll_i2c_wmb(td); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_init_out_if - prepare DFLL-to-PMIC interface | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * During DFLL driver initialization or resume from context loss, | 
|  | * disable the I2C command output to the PMIC, set safe voltage and | 
|  | * output limits, and disable and clear limit interrupts. | 
|  | */ | 
|  | static void dfll_init_out_if(struct tegra_dfll *td) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | td->lut_min = 0; | 
|  | td->lut_max = td->i2c_lut_size - 1; | 
|  | td->lut_safe = td->lut_min + 1; | 
|  |  | 
|  | dfll_i2c_writel(td, 0, DFLL_OUTPUT_CFG); | 
|  | val = (td->lut_safe << DFLL_OUTPUT_CFG_SAFE_SHIFT) | | 
|  | (td->lut_max << DFLL_OUTPUT_CFG_MAX_SHIFT) | | 
|  | (td->lut_min << DFLL_OUTPUT_CFG_MIN_SHIFT); | 
|  | dfll_i2c_writel(td, val, DFLL_OUTPUT_CFG); | 
|  | dfll_i2c_wmb(td); | 
|  |  | 
|  | dfll_writel(td, 0, DFLL_OUTPUT_FORCE); | 
|  | dfll_i2c_writel(td, 0, DFLL_INTR_EN); | 
|  | dfll_i2c_writel(td, DFLL_INTR_MAX_MASK | DFLL_INTR_MIN_MASK, | 
|  | DFLL_INTR_STS); | 
|  |  | 
|  | dfll_load_i2c_lut(td); | 
|  | dfll_init_i2c_if(td); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set/get the DFLL's targeted output clock rate | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * find_lut_index_for_rate - determine I2C LUT index for given DFLL rate | 
|  | * @td: DFLL instance | 
|  | * @rate: clock rate | 
|  | * | 
|  | * Determines the index of a I2C LUT entry for a voltage that approximately | 
|  | * produces the given DFLL clock rate. This is used when forcing a value | 
|  | * to the integrator during rate changes. Returns -ENOENT if a suitable | 
|  | * LUT index is not found. | 
|  | */ | 
|  | static int find_lut_index_for_rate(struct tegra_dfll *td, unsigned long rate) | 
|  | { | 
|  | struct dev_pm_opp *opp; | 
|  | int i, uv; | 
|  |  | 
|  | opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); | 
|  | if (IS_ERR(opp)) | 
|  | return PTR_ERR(opp); | 
|  |  | 
|  | uv = dev_pm_opp_get_voltage(opp); | 
|  | dev_pm_opp_put(opp); | 
|  |  | 
|  | for (i = 0; i < td->i2c_lut_size; i++) { | 
|  | if (regulator_list_voltage(td->vdd_reg, td->i2c_lut[i]) == uv) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | return -ENOENT; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_calculate_rate_request - calculate DFLL parameters for a given rate | 
|  | * @td: DFLL instance | 
|  | * @req: DFLL-rate-request structure | 
|  | * @rate: the desired DFLL rate | 
|  | * | 
|  | * Populate the DFLL-rate-request record @req fields with the scale_bits | 
|  | * and mult_bits fields, based on the target input rate. Returns 0 upon | 
|  | * success, or -EINVAL if the requested rate in req->rate is too high | 
|  | * or low for the DFLL to generate. | 
|  | */ | 
|  | static int dfll_calculate_rate_request(struct tegra_dfll *td, | 
|  | struct dfll_rate_req *req, | 
|  | unsigned long rate) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* | 
|  | * If requested rate is below the minimum DVCO rate, active the scaler. | 
|  | * In the future the DVCO minimum voltage should be selected based on | 
|  | * chip temperature and the actual minimum rate should be calibrated | 
|  | * at runtime. | 
|  | */ | 
|  | req->scale_bits = DFLL_FREQ_REQ_SCALE_MAX - 1; | 
|  | if (rate < td->dvco_rate_min) { | 
|  | int scale; | 
|  |  | 
|  | scale = DIV_ROUND_CLOSEST(rate / 1000 * DFLL_FREQ_REQ_SCALE_MAX, | 
|  | td->dvco_rate_min / 1000); | 
|  | if (!scale) { | 
|  | dev_err(td->dev, "%s: Rate %lu is too low\n", | 
|  | __func__, rate); | 
|  | return -EINVAL; | 
|  | } | 
|  | req->scale_bits = scale - 1; | 
|  | rate = td->dvco_rate_min; | 
|  | } | 
|  |  | 
|  | /* Convert requested rate into frequency request and scale settings */ | 
|  | val = DVCO_RATE_TO_MULT(rate, td->ref_rate); | 
|  | if (val > FREQ_MAX) { | 
|  | dev_err(td->dev, "%s: Rate %lu is above dfll range\n", | 
|  | __func__, rate); | 
|  | return -EINVAL; | 
|  | } | 
|  | req->mult_bits = val; | 
|  | req->dvco_target_rate = MULT_TO_DVCO_RATE(req->mult_bits, td->ref_rate); | 
|  | req->rate = dfll_scale_dvco_rate(req->scale_bits, | 
|  | req->dvco_target_rate); | 
|  | req->lut_index = find_lut_index_for_rate(td, req->dvco_target_rate); | 
|  | if (req->lut_index < 0) | 
|  | return req->lut_index; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_set_frequency_request - start the frequency change operation | 
|  | * @td: DFLL instance | 
|  | * @req: rate request structure | 
|  | * | 
|  | * Tell the DFLL to try to change its output frequency to the | 
|  | * frequency represented by @req. DFLL must be in closed-loop mode. | 
|  | */ | 
|  | static void dfll_set_frequency_request(struct tegra_dfll *td, | 
|  | struct dfll_rate_req *req) | 
|  | { | 
|  | u32 val = 0; | 
|  | int force_val; | 
|  | int coef = 128; /* FIXME: td->cg_scale? */; | 
|  |  | 
|  | force_val = (req->lut_index - td->lut_safe) * coef / td->cg; | 
|  | force_val = clamp(force_val, FORCE_MIN, FORCE_MAX); | 
|  |  | 
|  | val |= req->mult_bits << DFLL_FREQ_REQ_MULT_SHIFT; | 
|  | val |= req->scale_bits << DFLL_FREQ_REQ_SCALE_SHIFT; | 
|  | val |= ((u32)force_val << DFLL_FREQ_REQ_FORCE_SHIFT) & | 
|  | DFLL_FREQ_REQ_FORCE_MASK; | 
|  | val |= DFLL_FREQ_REQ_FREQ_VALID | DFLL_FREQ_REQ_FORCE_ENABLE; | 
|  |  | 
|  | dfll_writel(td, val, DFLL_FREQ_REQ); | 
|  | dfll_wmb(td); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tegra_dfll_request_rate - set the next rate for the DFLL to tune to | 
|  | * @td: DFLL instance | 
|  | * @rate: clock rate to target | 
|  | * | 
|  | * Convert the requested clock rate @rate into the DFLL control logic | 
|  | * settings. In closed-loop mode, update new settings immediately to | 
|  | * adjust DFLL output rate accordingly. Otherwise, just save them | 
|  | * until the next switch to closed loop. Returns 0 upon success, | 
|  | * -EPERM if the DFLL driver has not yet been initialized, or -EINVAL | 
|  | * if @rate is outside the DFLL's tunable range. | 
|  | */ | 
|  | static int dfll_request_rate(struct tegra_dfll *td, unsigned long rate) | 
|  | { | 
|  | int ret; | 
|  | struct dfll_rate_req req; | 
|  |  | 
|  | if (td->mode == DFLL_UNINITIALIZED) { | 
|  | dev_err(td->dev, "%s: Cannot set DFLL rate in %s mode\n", | 
|  | __func__, mode_name[td->mode]); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | ret = dfll_calculate_rate_request(td, &req, rate); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | td->last_unrounded_rate = rate; | 
|  | td->last_req = req; | 
|  |  | 
|  | if (td->mode == DFLL_CLOSED_LOOP) | 
|  | dfll_set_frequency_request(td, &td->last_req); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DFLL enable/disable & open-loop <-> closed-loop transitions | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * dfll_disable - switch from open-loop mode to disabled mode | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Switch from OPEN_LOOP state to DISABLED state. Returns 0 upon success | 
|  | * or -EPERM if the DFLL is not currently in open-loop mode. | 
|  | */ | 
|  | static int dfll_disable(struct tegra_dfll *td) | 
|  | { | 
|  | if (td->mode != DFLL_OPEN_LOOP) { | 
|  | dev_err(td->dev, "cannot disable DFLL in %s mode\n", | 
|  | mode_name[td->mode]); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dfll_set_mode(td, DFLL_DISABLED); | 
|  | pm_runtime_put_sync(td->dev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_enable - switch a disabled DFLL to open-loop mode | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Switch from DISABLED state to OPEN_LOOP state. Returns 0 upon success | 
|  | * or -EPERM if the DFLL is not currently disabled. | 
|  | */ | 
|  | static int dfll_enable(struct tegra_dfll *td) | 
|  | { | 
|  | if (td->mode != DFLL_DISABLED) { | 
|  | dev_err(td->dev, "cannot enable DFLL in %s mode\n", | 
|  | mode_name[td->mode]); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | pm_runtime_get_sync(td->dev); | 
|  | dfll_set_mode(td, DFLL_OPEN_LOOP); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_set_open_loop_config - prepare to switch to open-loop mode | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Prepare to switch the DFLL to open-loop mode. This switches the | 
|  | * DFLL to the low-voltage tuning range, ensures that I2C output | 
|  | * forcing is disabled, and disables the output clock rate scaler. | 
|  | * The DFLL's low-voltage tuning range parameters must be | 
|  | * characterized to keep the downstream device stable at any DVCO | 
|  | * input voltage. No return value. | 
|  | */ | 
|  | static void dfll_set_open_loop_config(struct tegra_dfll *td) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | /* always tune low (safe) in open loop */ | 
|  | if (td->tune_range != DFLL_TUNE_LOW) | 
|  | dfll_tune_low(td); | 
|  |  | 
|  | val = dfll_readl(td, DFLL_FREQ_REQ); | 
|  | val |= DFLL_FREQ_REQ_SCALE_MASK; | 
|  | val &= ~DFLL_FREQ_REQ_FORCE_ENABLE; | 
|  | dfll_writel(td, val, DFLL_FREQ_REQ); | 
|  | dfll_wmb(td); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tegra_dfll_lock - switch from open-loop to closed-loop mode | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Switch from OPEN_LOOP state to CLOSED_LOOP state. Returns 0 upon success, | 
|  | * -EINVAL if the DFLL's target rate hasn't been set yet, or -EPERM if the | 
|  | * DFLL is not currently in open-loop mode. | 
|  | */ | 
|  | static int dfll_lock(struct tegra_dfll *td) | 
|  | { | 
|  | struct dfll_rate_req *req = &td->last_req; | 
|  |  | 
|  | switch (td->mode) { | 
|  | case DFLL_CLOSED_LOOP: | 
|  | return 0; | 
|  |  | 
|  | case DFLL_OPEN_LOOP: | 
|  | if (req->rate == 0) { | 
|  | dev_err(td->dev, "%s: Cannot lock DFLL at rate 0\n", | 
|  | __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dfll_i2c_set_output_enabled(td, true); | 
|  | dfll_set_mode(td, DFLL_CLOSED_LOOP); | 
|  | dfll_set_frequency_request(td, req); | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | BUG_ON(td->mode > DFLL_CLOSED_LOOP); | 
|  | dev_err(td->dev, "%s: Cannot lock DFLL in %s mode\n", | 
|  | __func__, mode_name[td->mode]); | 
|  | return -EPERM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tegra_dfll_unlock - switch from closed-loop to open-loop mode | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Switch from CLOSED_LOOP state to OPEN_LOOP state. Returns 0 upon success, | 
|  | * or -EPERM if the DFLL is not currently in open-loop mode. | 
|  | */ | 
|  | static int dfll_unlock(struct tegra_dfll *td) | 
|  | { | 
|  | switch (td->mode) { | 
|  | case DFLL_CLOSED_LOOP: | 
|  | dfll_set_open_loop_config(td); | 
|  | dfll_set_mode(td, DFLL_OPEN_LOOP); | 
|  | dfll_i2c_set_output_enabled(td, false); | 
|  | return 0; | 
|  |  | 
|  | case DFLL_OPEN_LOOP: | 
|  | return 0; | 
|  |  | 
|  | default: | 
|  | BUG_ON(td->mode > DFLL_CLOSED_LOOP); | 
|  | dev_err(td->dev, "%s: Cannot unlock DFLL in %s mode\n", | 
|  | __func__, mode_name[td->mode]); | 
|  | return -EPERM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clock framework integration | 
|  | * | 
|  | * When the DFLL is being controlled by the CCF, always enter closed loop | 
|  | * mode when the clk is enabled. This requires that a DFLL rate request | 
|  | * has been set beforehand, which implies that a clk_set_rate() call is | 
|  | * always required before a clk_enable(). | 
|  | */ | 
|  |  | 
|  | static int dfll_clk_is_enabled(struct clk_hw *hw) | 
|  | { | 
|  | struct tegra_dfll *td = clk_hw_to_dfll(hw); | 
|  |  | 
|  | return dfll_is_running(td); | 
|  | } | 
|  |  | 
|  | static int dfll_clk_enable(struct clk_hw *hw) | 
|  | { | 
|  | struct tegra_dfll *td = clk_hw_to_dfll(hw); | 
|  | int ret; | 
|  |  | 
|  | ret = dfll_enable(td); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = dfll_lock(td); | 
|  | if (ret) | 
|  | dfll_disable(td); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void dfll_clk_disable(struct clk_hw *hw) | 
|  | { | 
|  | struct tegra_dfll *td = clk_hw_to_dfll(hw); | 
|  | int ret; | 
|  |  | 
|  | ret = dfll_unlock(td); | 
|  | if (!ret) | 
|  | dfll_disable(td); | 
|  | } | 
|  |  | 
|  | static unsigned long dfll_clk_recalc_rate(struct clk_hw *hw, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | struct tegra_dfll *td = clk_hw_to_dfll(hw); | 
|  |  | 
|  | return td->last_unrounded_rate; | 
|  | } | 
|  |  | 
|  | /* Must use determine_rate since it allows for rates exceeding 2^31-1 */ | 
|  | static int dfll_clk_determine_rate(struct clk_hw *hw, | 
|  | struct clk_rate_request *clk_req) | 
|  | { | 
|  | struct tegra_dfll *td = clk_hw_to_dfll(hw); | 
|  | struct dfll_rate_req req; | 
|  | int ret; | 
|  |  | 
|  | ret = dfll_calculate_rate_request(td, &req, clk_req->rate); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* | 
|  | * Don't set the rounded rate, since it doesn't really matter as | 
|  | * the output rate will be voltage controlled anyway, and cpufreq | 
|  | * freaks out if any rounding happens. | 
|  | */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int dfll_clk_set_rate(struct clk_hw *hw, unsigned long rate, | 
|  | unsigned long parent_rate) | 
|  | { | 
|  | struct tegra_dfll *td = clk_hw_to_dfll(hw); | 
|  |  | 
|  | return dfll_request_rate(td, rate); | 
|  | } | 
|  |  | 
|  | static const struct clk_ops dfll_clk_ops = { | 
|  | .is_enabled	= dfll_clk_is_enabled, | 
|  | .enable		= dfll_clk_enable, | 
|  | .disable	= dfll_clk_disable, | 
|  | .recalc_rate	= dfll_clk_recalc_rate, | 
|  | .determine_rate	= dfll_clk_determine_rate, | 
|  | .set_rate	= dfll_clk_set_rate, | 
|  | }; | 
|  |  | 
|  | static struct clk_init_data dfll_clk_init_data = { | 
|  | .ops		= &dfll_clk_ops, | 
|  | .num_parents	= 0, | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * dfll_register_clk - register the DFLL output clock with the clock framework | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Register the DFLL's output clock with the Linux clock framework and register | 
|  | * the DFLL driver as an OF clock provider. Returns 0 upon success or -EINVAL | 
|  | * or -ENOMEM upon failure. | 
|  | */ | 
|  | static int dfll_register_clk(struct tegra_dfll *td) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | dfll_clk_init_data.name = td->output_clock_name; | 
|  | td->dfll_clk_hw.init = &dfll_clk_init_data; | 
|  |  | 
|  | td->dfll_clk = clk_register(td->dev, &td->dfll_clk_hw); | 
|  | if (IS_ERR(td->dfll_clk)) { | 
|  | dev_err(td->dev, "DFLL clock registration error\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = of_clk_add_provider(td->dev->of_node, of_clk_src_simple_get, | 
|  | td->dfll_clk); | 
|  | if (ret) { | 
|  | dev_err(td->dev, "of_clk_add_provider() failed\n"); | 
|  |  | 
|  | clk_unregister(td->dfll_clk); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_unregister_clk - unregister the DFLL output clock | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Unregister the DFLL's output clock from the Linux clock framework | 
|  | * and from clkdev. No return value. | 
|  | */ | 
|  | static void dfll_unregister_clk(struct tegra_dfll *td) | 
|  | { | 
|  | of_clk_del_provider(td->dev->of_node); | 
|  | clk_unregister(td->dfll_clk); | 
|  | td->dfll_clk = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Debugfs interface | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_FS | 
|  | /* | 
|  | * Monitor control | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * dfll_calc_monitored_rate - convert DFLL_MONITOR_DATA_VAL rate into real freq | 
|  | * @monitor_data: value read from the DFLL_MONITOR_DATA_VAL bitfield | 
|  | * @ref_rate: DFLL reference clock rate | 
|  | * | 
|  | * Convert @monitor_data from DFLL_MONITOR_DATA_VAL units into cycles | 
|  | * per second. Returns the converted value. | 
|  | */ | 
|  | static u64 dfll_calc_monitored_rate(u32 monitor_data, | 
|  | unsigned long ref_rate) | 
|  | { | 
|  | return monitor_data * (ref_rate / REF_CLK_CYC_PER_DVCO_SAMPLE); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_read_monitor_rate - return the DFLL's output rate from internal monitor | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * If the DFLL is enabled, return the last rate reported by the DFLL's | 
|  | * internal monitoring hardware. This works in both open-loop and | 
|  | * closed-loop mode, and takes the output scaler setting into account. | 
|  | * Assumes that the monitor was programmed to monitor frequency before | 
|  | * the sample period started. If the driver believes that the DFLL is | 
|  | * currently uninitialized or disabled, it will return 0, since | 
|  | * otherwise the DFLL monitor data register will return the last | 
|  | * measured rate from when the DFLL was active. | 
|  | */ | 
|  | static u64 dfll_read_monitor_rate(struct tegra_dfll *td) | 
|  | { | 
|  | u32 v, s; | 
|  | u64 pre_scaler_rate, post_scaler_rate; | 
|  |  | 
|  | if (!dfll_is_running(td)) | 
|  | return 0; | 
|  |  | 
|  | v = dfll_readl(td, DFLL_MONITOR_DATA); | 
|  | v = (v & DFLL_MONITOR_DATA_VAL_MASK) >> DFLL_MONITOR_DATA_VAL_SHIFT; | 
|  | pre_scaler_rate = dfll_calc_monitored_rate(v, td->ref_rate); | 
|  |  | 
|  | s = dfll_readl(td, DFLL_FREQ_REQ); | 
|  | s = (s & DFLL_FREQ_REQ_SCALE_MASK) >> DFLL_FREQ_REQ_SCALE_SHIFT; | 
|  | post_scaler_rate = dfll_scale_dvco_rate(s, pre_scaler_rate); | 
|  |  | 
|  | return post_scaler_rate; | 
|  | } | 
|  |  | 
|  | static int attr_enable_get(void *data, u64 *val) | 
|  | { | 
|  | struct tegra_dfll *td = data; | 
|  |  | 
|  | *val = dfll_is_running(td); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | static int attr_enable_set(void *data, u64 val) | 
|  | { | 
|  | struct tegra_dfll *td = data; | 
|  |  | 
|  | return val ? dfll_enable(td) : dfll_disable(td); | 
|  | } | 
|  | DEFINE_SIMPLE_ATTRIBUTE(enable_fops, attr_enable_get, attr_enable_set, | 
|  | "%llu\n"); | 
|  |  | 
|  | static int attr_lock_get(void *data, u64 *val) | 
|  | { | 
|  | struct tegra_dfll *td = data; | 
|  |  | 
|  | *val = (td->mode == DFLL_CLOSED_LOOP); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | static int attr_lock_set(void *data, u64 val) | 
|  | { | 
|  | struct tegra_dfll *td = data; | 
|  |  | 
|  | return val ? dfll_lock(td) :  dfll_unlock(td); | 
|  | } | 
|  | DEFINE_SIMPLE_ATTRIBUTE(lock_fops, attr_lock_get, attr_lock_set, | 
|  | "%llu\n"); | 
|  |  | 
|  | static int attr_rate_get(void *data, u64 *val) | 
|  | { | 
|  | struct tegra_dfll *td = data; | 
|  |  | 
|  | *val = dfll_read_monitor_rate(td); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int attr_rate_set(void *data, u64 val) | 
|  | { | 
|  | struct tegra_dfll *td = data; | 
|  |  | 
|  | return dfll_request_rate(td, val); | 
|  | } | 
|  | DEFINE_SIMPLE_ATTRIBUTE(rate_fops, attr_rate_get, attr_rate_set, "%llu\n"); | 
|  |  | 
|  | static int attr_registers_show(struct seq_file *s, void *data) | 
|  | { | 
|  | u32 val, offs; | 
|  | struct tegra_dfll *td = s->private; | 
|  |  | 
|  | seq_puts(s, "CONTROL REGISTERS:\n"); | 
|  | for (offs = 0; offs <= DFLL_MONITOR_DATA; offs += 4) { | 
|  | if (offs == DFLL_OUTPUT_CFG) | 
|  | val = dfll_i2c_readl(td, offs); | 
|  | else | 
|  | val = dfll_readl(td, offs); | 
|  | seq_printf(s, "[0x%02x] = 0x%08x\n", offs, val); | 
|  | } | 
|  |  | 
|  | seq_puts(s, "\nI2C and INTR REGISTERS:\n"); | 
|  | for (offs = DFLL_I2C_CFG; offs <= DFLL_I2C_STS; offs += 4) | 
|  | seq_printf(s, "[0x%02x] = 0x%08x\n", offs, | 
|  | dfll_i2c_readl(td, offs)); | 
|  | for (offs = DFLL_INTR_STS; offs <= DFLL_INTR_EN; offs += 4) | 
|  | seq_printf(s, "[0x%02x] = 0x%08x\n", offs, | 
|  | dfll_i2c_readl(td, offs)); | 
|  |  | 
|  | seq_puts(s, "\nINTEGRATED I2C CONTROLLER REGISTERS:\n"); | 
|  | offs = DFLL_I2C_CLK_DIVISOR; | 
|  | seq_printf(s, "[0x%02x] = 0x%08x\n", offs, | 
|  | __raw_readl(td->i2c_controller_base + offs)); | 
|  |  | 
|  | seq_puts(s, "\nLUT:\n"); | 
|  | for (offs = 0; offs <  4 * MAX_DFLL_VOLTAGES; offs += 4) | 
|  | seq_printf(s, "[0x%02x] = 0x%08x\n", offs, | 
|  | __raw_readl(td->lut_base + offs)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int attr_registers_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, attr_registers_show, inode->i_private); | 
|  | } | 
|  |  | 
|  | static const struct file_operations attr_registers_fops = { | 
|  | .open		= attr_registers_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= single_release, | 
|  | }; | 
|  |  | 
|  | static void dfll_debug_init(struct tegra_dfll *td) | 
|  | { | 
|  | struct dentry *root; | 
|  |  | 
|  | if (!td || (td->mode == DFLL_UNINITIALIZED)) | 
|  | return; | 
|  |  | 
|  | root = debugfs_create_dir("tegra_dfll_fcpu", NULL); | 
|  | td->debugfs_dir = root; | 
|  |  | 
|  | debugfs_create_file("enable", S_IRUGO | S_IWUSR, root, td, &enable_fops); | 
|  | debugfs_create_file("lock", S_IRUGO, root, td, &lock_fops); | 
|  | debugfs_create_file("rate", S_IRUGO, root, td, &rate_fops); | 
|  | debugfs_create_file("registers", S_IRUGO, root, td, &attr_registers_fops); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static void inline dfll_debug_init(struct tegra_dfll *td) { } | 
|  | #endif /* CONFIG_DEBUG_FS */ | 
|  |  | 
|  | /* | 
|  | * DFLL initialization | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * dfll_set_default_params - program non-output related DFLL parameters | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * During DFLL driver initialization or resume from context loss, | 
|  | * program parameters for the closed loop integrator, DVCO tuning, | 
|  | * voltage droop control and monitor control. | 
|  | */ | 
|  | static void dfll_set_default_params(struct tegra_dfll *td) | 
|  | { | 
|  | u32 val; | 
|  |  | 
|  | val = DIV_ROUND_UP(td->ref_rate, td->sample_rate * 32); | 
|  | BUG_ON(val > DFLL_CONFIG_DIV_MASK); | 
|  | dfll_writel(td, val, DFLL_CONFIG); | 
|  |  | 
|  | val = (td->force_mode << DFLL_PARAMS_FORCE_MODE_SHIFT) | | 
|  | (td->cf << DFLL_PARAMS_CF_PARAM_SHIFT) | | 
|  | (td->ci << DFLL_PARAMS_CI_PARAM_SHIFT) | | 
|  | (td->cg << DFLL_PARAMS_CG_PARAM_SHIFT) | | 
|  | (td->cg_scale ? DFLL_PARAMS_CG_SCALE : 0); | 
|  | dfll_writel(td, val, DFLL_PARAMS); | 
|  |  | 
|  | dfll_tune_low(td); | 
|  | dfll_writel(td, td->droop_ctrl, DFLL_DROOP_CTRL); | 
|  | dfll_writel(td, DFLL_MONITOR_CTRL_FREQ, DFLL_MONITOR_CTRL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_init_clks - clk_get() the DFLL source clocks | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Call clk_get() on the DFLL source clocks and save the pointers for later | 
|  | * use. Returns 0 upon success or error (see devm_clk_get) if one or more | 
|  | * of the clocks couldn't be looked up. | 
|  | */ | 
|  | static int dfll_init_clks(struct tegra_dfll *td) | 
|  | { | 
|  | td->ref_clk = devm_clk_get(td->dev, "ref"); | 
|  | if (IS_ERR(td->ref_clk)) { | 
|  | dev_err(td->dev, "missing ref clock\n"); | 
|  | return PTR_ERR(td->ref_clk); | 
|  | } | 
|  |  | 
|  | td->soc_clk = devm_clk_get(td->dev, "soc"); | 
|  | if (IS_ERR(td->soc_clk)) { | 
|  | dev_err(td->dev, "missing soc clock\n"); | 
|  | return PTR_ERR(td->soc_clk); | 
|  | } | 
|  |  | 
|  | td->i2c_clk = devm_clk_get(td->dev, "i2c"); | 
|  | if (IS_ERR(td->i2c_clk)) { | 
|  | dev_err(td->dev, "missing i2c clock\n"); | 
|  | return PTR_ERR(td->i2c_clk); | 
|  | } | 
|  | td->i2c_clk_rate = clk_get_rate(td->i2c_clk); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_init - Prepare the DFLL IP block for use | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Do everything necessary to prepare the DFLL IP block for use. The | 
|  | * DFLL will be left in DISABLED state. Called by dfll_probe(). | 
|  | * Returns 0 upon success, or passes along the error from whatever | 
|  | * function returned it. | 
|  | */ | 
|  | static int dfll_init(struct tegra_dfll *td) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | td->ref_rate = clk_get_rate(td->ref_clk); | 
|  | if (td->ref_rate != REF_CLOCK_RATE) { | 
|  | dev_err(td->dev, "unexpected ref clk rate %lu, expecting %lu", | 
|  | td->ref_rate, REF_CLOCK_RATE); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | reset_control_deassert(td->dvco_rst); | 
|  |  | 
|  | ret = clk_prepare(td->ref_clk); | 
|  | if (ret) { | 
|  | dev_err(td->dev, "failed to prepare ref_clk\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = clk_prepare(td->soc_clk); | 
|  | if (ret) { | 
|  | dev_err(td->dev, "failed to prepare soc_clk\n"); | 
|  | goto di_err1; | 
|  | } | 
|  |  | 
|  | ret = clk_prepare(td->i2c_clk); | 
|  | if (ret) { | 
|  | dev_err(td->dev, "failed to prepare i2c_clk\n"); | 
|  | goto di_err2; | 
|  | } | 
|  |  | 
|  | td->last_unrounded_rate = 0; | 
|  |  | 
|  | pm_runtime_enable(td->dev); | 
|  | pm_runtime_get_sync(td->dev); | 
|  |  | 
|  | dfll_set_mode(td, DFLL_DISABLED); | 
|  | dfll_set_default_params(td); | 
|  |  | 
|  | if (td->soc->init_clock_trimmers) | 
|  | td->soc->init_clock_trimmers(); | 
|  |  | 
|  | dfll_set_open_loop_config(td); | 
|  |  | 
|  | dfll_init_out_if(td); | 
|  |  | 
|  | pm_runtime_put_sync(td->dev); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | di_err2: | 
|  | clk_unprepare(td->soc_clk); | 
|  | di_err1: | 
|  | clk_unprepare(td->ref_clk); | 
|  |  | 
|  | reset_control_assert(td->dvco_rst); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DT data fetch | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Find a PMIC voltage register-to-voltage mapping for the given voltage. | 
|  | * An exact voltage match is required. | 
|  | */ | 
|  | static int find_vdd_map_entry_exact(struct tegra_dfll *td, int uV) | 
|  | { | 
|  | int i, n_voltages, reg_uV; | 
|  |  | 
|  | n_voltages = regulator_count_voltages(td->vdd_reg); | 
|  | for (i = 0; i < n_voltages; i++) { | 
|  | reg_uV = regulator_list_voltage(td->vdd_reg, i); | 
|  | if (reg_uV < 0) | 
|  | break; | 
|  |  | 
|  | if (uV == reg_uV) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | dev_err(td->dev, "no voltage map entry for %d uV\n", uV); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find a PMIC voltage register-to-voltage mapping for the given voltage, | 
|  | * rounding up to the closest supported voltage. | 
|  | * */ | 
|  | static int find_vdd_map_entry_min(struct tegra_dfll *td, int uV) | 
|  | { | 
|  | int i, n_voltages, reg_uV; | 
|  |  | 
|  | n_voltages = regulator_count_voltages(td->vdd_reg); | 
|  | for (i = 0; i < n_voltages; i++) { | 
|  | reg_uV = regulator_list_voltage(td->vdd_reg, i); | 
|  | if (reg_uV < 0) | 
|  | break; | 
|  |  | 
|  | if (uV <= reg_uV) | 
|  | return i; | 
|  | } | 
|  |  | 
|  | dev_err(td->dev, "no voltage map entry rounding to %d uV\n", uV); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_build_i2c_lut - build the I2C voltage register lookup table | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * The DFLL hardware has 33 bytes of look-up table RAM that must be filled with | 
|  | * PMIC voltage register values that span the entire DFLL operating range. | 
|  | * This function builds the look-up table based on the OPP table provided by | 
|  | * the soc-specific platform driver (td->soc->opp_dev) and the PMIC | 
|  | * register-to-voltage mapping queried from the regulator framework. | 
|  | * | 
|  | * On success, fills in td->i2c_lut and returns 0, or -err on failure. | 
|  | */ | 
|  | static int dfll_build_i2c_lut(struct tegra_dfll *td) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  | int j, v, v_max, v_opp; | 
|  | int selector; | 
|  | unsigned long rate; | 
|  | struct dev_pm_opp *opp; | 
|  | int lut; | 
|  |  | 
|  | rate = ULONG_MAX; | 
|  | opp = dev_pm_opp_find_freq_floor(td->soc->dev, &rate); | 
|  | if (IS_ERR(opp)) { | 
|  | dev_err(td->dev, "couldn't get vmax opp, empty opp table?\n"); | 
|  | goto out; | 
|  | } | 
|  | v_max = dev_pm_opp_get_voltage(opp); | 
|  | dev_pm_opp_put(opp); | 
|  |  | 
|  | v = td->soc->cvb->min_millivolts * 1000; | 
|  | lut = find_vdd_map_entry_exact(td, v); | 
|  | if (lut < 0) | 
|  | goto out; | 
|  | td->i2c_lut[0] = lut; | 
|  |  | 
|  | for (j = 1, rate = 0; ; rate++) { | 
|  | opp = dev_pm_opp_find_freq_ceil(td->soc->dev, &rate); | 
|  | if (IS_ERR(opp)) | 
|  | break; | 
|  | v_opp = dev_pm_opp_get_voltage(opp); | 
|  |  | 
|  | if (v_opp <= td->soc->cvb->min_millivolts * 1000) | 
|  | td->dvco_rate_min = dev_pm_opp_get_freq(opp); | 
|  |  | 
|  | dev_pm_opp_put(opp); | 
|  |  | 
|  | for (;;) { | 
|  | v += max(1, (v_max - v) / (MAX_DFLL_VOLTAGES - j)); | 
|  | if (v >= v_opp) | 
|  | break; | 
|  |  | 
|  | selector = find_vdd_map_entry_min(td, v); | 
|  | if (selector < 0) | 
|  | goto out; | 
|  | if (selector != td->i2c_lut[j - 1]) | 
|  | td->i2c_lut[j++] = selector; | 
|  | } | 
|  |  | 
|  | v = (j == MAX_DFLL_VOLTAGES - 1) ? v_max : v_opp; | 
|  | selector = find_vdd_map_entry_exact(td, v); | 
|  | if (selector < 0) | 
|  | goto out; | 
|  | if (selector != td->i2c_lut[j - 1]) | 
|  | td->i2c_lut[j++] = selector; | 
|  |  | 
|  | if (v >= v_max) | 
|  | break; | 
|  | } | 
|  | td->i2c_lut_size = j; | 
|  |  | 
|  | if (!td->dvco_rate_min) | 
|  | dev_err(td->dev, "no opp above DFLL minimum voltage %d mV\n", | 
|  | td->soc->cvb->min_millivolts); | 
|  | else | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * read_dt_param - helper function for reading required parameters from the DT | 
|  | * @td: DFLL instance | 
|  | * @param: DT property name | 
|  | * @dest: output pointer for the value read | 
|  | * | 
|  | * Read a required numeric parameter from the DFLL device node, or complain | 
|  | * if the property doesn't exist. Returns a boolean indicating success for | 
|  | * easy chaining of multiple calls to this function. | 
|  | */ | 
|  | static bool read_dt_param(struct tegra_dfll *td, const char *param, u32 *dest) | 
|  | { | 
|  | int err = of_property_read_u32(td->dev->of_node, param, dest); | 
|  |  | 
|  | if (err < 0) { | 
|  | dev_err(td->dev, "failed to read DT parameter %s: %d\n", | 
|  | param, err); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_fetch_i2c_params - query PMIC I2C params from DT & regulator subsystem | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Read all the parameters required for operation in I2C mode. The parameters | 
|  | * can originate from the device tree or the regulator subsystem. | 
|  | * Returns 0 on success or -err on failure. | 
|  | */ | 
|  | static int dfll_fetch_i2c_params(struct tegra_dfll *td) | 
|  | { | 
|  | struct regmap *regmap; | 
|  | struct device *i2c_dev; | 
|  | struct i2c_client *i2c_client; | 
|  | int vsel_reg, vsel_mask; | 
|  | int ret; | 
|  |  | 
|  | if (!read_dt_param(td, "nvidia,i2c-fs-rate", &td->i2c_fs_rate)) | 
|  | return -EINVAL; | 
|  |  | 
|  | regmap = regulator_get_regmap(td->vdd_reg); | 
|  | i2c_dev = regmap_get_device(regmap); | 
|  | i2c_client = to_i2c_client(i2c_dev); | 
|  |  | 
|  | td->i2c_slave_addr = i2c_client->addr; | 
|  |  | 
|  | ret = regulator_get_hardware_vsel_register(td->vdd_reg, | 
|  | &vsel_reg, | 
|  | &vsel_mask); | 
|  | if (ret < 0) { | 
|  | dev_err(td->dev, | 
|  | "regulator unsuitable for DFLL I2C operation\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | td->i2c_reg = vsel_reg; | 
|  |  | 
|  | ret = dfll_build_i2c_lut(td); | 
|  | if (ret) { | 
|  | dev_err(td->dev, "couldn't build I2C LUT\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * dfll_fetch_common_params - read DFLL parameters from the device tree | 
|  | * @td: DFLL instance | 
|  | * | 
|  | * Read all the DT parameters that are common to both I2C and PWM operation. | 
|  | * Returns 0 on success or -EINVAL on any failure. | 
|  | */ | 
|  | static int dfll_fetch_common_params(struct tegra_dfll *td) | 
|  | { | 
|  | bool ok = true; | 
|  |  | 
|  | ok &= read_dt_param(td, "nvidia,droop-ctrl", &td->droop_ctrl); | 
|  | ok &= read_dt_param(td, "nvidia,sample-rate", &td->sample_rate); | 
|  | ok &= read_dt_param(td, "nvidia,force-mode", &td->force_mode); | 
|  | ok &= read_dt_param(td, "nvidia,cf", &td->cf); | 
|  | ok &= read_dt_param(td, "nvidia,ci", &td->ci); | 
|  | ok &= read_dt_param(td, "nvidia,cg", &td->cg); | 
|  | td->cg_scale = of_property_read_bool(td->dev->of_node, | 
|  | "nvidia,cg-scale"); | 
|  |  | 
|  | if (of_property_read_string(td->dev->of_node, "clock-output-names", | 
|  | &td->output_clock_name)) { | 
|  | dev_err(td->dev, "missing clock-output-names property\n"); | 
|  | ok = false; | 
|  | } | 
|  |  | 
|  | return ok ? 0 : -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * API exported to per-SoC platform drivers | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * tegra_dfll_register - probe a Tegra DFLL device | 
|  | * @pdev: DFLL platform_device * | 
|  | * @soc: Per-SoC integration and characterization data for this DFLL instance | 
|  | * | 
|  | * Probe and initialize a DFLL device instance. Intended to be called | 
|  | * by a SoC-specific shim driver that passes in per-SoC integration | 
|  | * and configuration data via @soc. Returns 0 on success or -err on failure. | 
|  | */ | 
|  | int tegra_dfll_register(struct platform_device *pdev, | 
|  | struct tegra_dfll_soc_data *soc) | 
|  | { | 
|  | struct resource *mem; | 
|  | struct tegra_dfll *td; | 
|  | int ret; | 
|  |  | 
|  | if (!soc) { | 
|  | dev_err(&pdev->dev, "no tegra_dfll_soc_data provided\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | td = devm_kzalloc(&pdev->dev, sizeof(*td), GFP_KERNEL); | 
|  | if (!td) | 
|  | return -ENOMEM; | 
|  | td->dev = &pdev->dev; | 
|  | platform_set_drvdata(pdev, td); | 
|  |  | 
|  | td->soc = soc; | 
|  |  | 
|  | td->vdd_reg = devm_regulator_get(td->dev, "vdd-cpu"); | 
|  | if (IS_ERR(td->vdd_reg)) { | 
|  | dev_err(td->dev, "couldn't get vdd_cpu regulator\n"); | 
|  | return PTR_ERR(td->vdd_reg); | 
|  | } | 
|  |  | 
|  | td->dvco_rst = devm_reset_control_get(td->dev, "dvco"); | 
|  | if (IS_ERR(td->dvco_rst)) { | 
|  | dev_err(td->dev, "couldn't get dvco reset\n"); | 
|  | return PTR_ERR(td->dvco_rst); | 
|  | } | 
|  |  | 
|  | ret = dfll_fetch_common_params(td); | 
|  | if (ret) { | 
|  | dev_err(td->dev, "couldn't parse device tree parameters\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = dfll_fetch_i2c_params(td); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (!mem) { | 
|  | dev_err(td->dev, "no control register resource\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | td->base = devm_ioremap(td->dev, mem->start, resource_size(mem)); | 
|  | if (!td->base) { | 
|  | dev_err(td->dev, "couldn't ioremap DFLL control registers\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | mem = platform_get_resource(pdev, IORESOURCE_MEM, 1); | 
|  | if (!mem) { | 
|  | dev_err(td->dev, "no i2c_base resource\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | td->i2c_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); | 
|  | if (!td->i2c_base) { | 
|  | dev_err(td->dev, "couldn't ioremap i2c_base resource\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | mem = platform_get_resource(pdev, IORESOURCE_MEM, 2); | 
|  | if (!mem) { | 
|  | dev_err(td->dev, "no i2c_controller_base resource\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | td->i2c_controller_base = devm_ioremap(td->dev, mem->start, | 
|  | resource_size(mem)); | 
|  | if (!td->i2c_controller_base) { | 
|  | dev_err(td->dev, | 
|  | "couldn't ioremap i2c_controller_base resource\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | mem = platform_get_resource(pdev, IORESOURCE_MEM, 3); | 
|  | if (!mem) { | 
|  | dev_err(td->dev, "no lut_base resource\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | td->lut_base = devm_ioremap(td->dev, mem->start, resource_size(mem)); | 
|  | if (!td->lut_base) { | 
|  | dev_err(td->dev, | 
|  | "couldn't ioremap lut_base resource\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | ret = dfll_init_clks(td); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "DFLL clock init error\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Enable the clocks and set the device up */ | 
|  | ret = dfll_init(td); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | ret = dfll_register_clk(td); | 
|  | if (ret) { | 
|  | dev_err(&pdev->dev, "DFLL clk registration failed\n"); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dfll_debug_init(td); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(tegra_dfll_register); | 
|  |  | 
|  | /** | 
|  | * tegra_dfll_unregister - release all of the DFLL driver resources for a device | 
|  | * @pdev: DFLL platform_device * | 
|  | * | 
|  | * Unbind this driver from the DFLL hardware device represented by | 
|  | * @pdev. The DFLL must be disabled for this to succeed. Returns a | 
|  | * soc pointer upon success or -EBUSY if the DFLL is still active. | 
|  | */ | 
|  | struct tegra_dfll_soc_data *tegra_dfll_unregister(struct platform_device *pdev) | 
|  | { | 
|  | struct tegra_dfll *td = platform_get_drvdata(pdev); | 
|  |  | 
|  | /* Try to prevent removal while the DFLL is active */ | 
|  | if (td->mode != DFLL_DISABLED) { | 
|  | dev_err(&pdev->dev, | 
|  | "must disable DFLL before removing driver\n"); | 
|  | return ERR_PTR(-EBUSY); | 
|  | } | 
|  |  | 
|  | debugfs_remove_recursive(td->debugfs_dir); | 
|  |  | 
|  | dfll_unregister_clk(td); | 
|  | pm_runtime_disable(&pdev->dev); | 
|  |  | 
|  | clk_unprepare(td->ref_clk); | 
|  | clk_unprepare(td->soc_clk); | 
|  | clk_unprepare(td->i2c_clk); | 
|  |  | 
|  | reset_control_assert(td->dvco_rst); | 
|  |  | 
|  | return td->soc; | 
|  | } | 
|  | EXPORT_SYMBOL(tegra_dfll_unregister); |