|  | /* | 
|  | * intel_pstate.c: Native P state management for Intel processors | 
|  | * | 
|  | * (C) Copyright 2012 Intel Corporation | 
|  | * Author: Dirk Brandewie <dirk.j.brandewie@intel.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; version 2 | 
|  | * of the License. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/ktime.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/sched/cpufreq.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <trace/events/power.h> | 
|  |  | 
|  | #include <asm/div64.h> | 
|  | #include <asm/msr.h> | 
|  | #include <asm/cpu_device_id.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/intel-family.h> | 
|  |  | 
|  | #define INTEL_PSTATE_SAMPLING_INTERVAL	(10 * NSEC_PER_MSEC) | 
|  |  | 
|  | #define INTEL_CPUFREQ_TRANSITION_LATENCY	20000 | 
|  | #define INTEL_CPUFREQ_TRANSITION_DELAY		500 | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | #include <acpi/processor.h> | 
|  | #include <acpi/cppc_acpi.h> | 
|  | #endif | 
|  |  | 
|  | #define FRAC_BITS 8 | 
|  | #define int_tofp(X) ((int64_t)(X) << FRAC_BITS) | 
|  | #define fp_toint(X) ((X) >> FRAC_BITS) | 
|  |  | 
|  | #define EXT_BITS 6 | 
|  | #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS) | 
|  | #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS) | 
|  | #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS) | 
|  |  | 
|  | static inline int32_t mul_fp(int32_t x, int32_t y) | 
|  | { | 
|  | return ((int64_t)x * (int64_t)y) >> FRAC_BITS; | 
|  | } | 
|  |  | 
|  | static inline int32_t div_fp(s64 x, s64 y) | 
|  | { | 
|  | return div64_s64((int64_t)x << FRAC_BITS, y); | 
|  | } | 
|  |  | 
|  | static inline int ceiling_fp(int32_t x) | 
|  | { | 
|  | int mask, ret; | 
|  |  | 
|  | ret = fp_toint(x); | 
|  | mask = (1 << FRAC_BITS) - 1; | 
|  | if (x & mask) | 
|  | ret += 1; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int32_t percent_fp(int percent) | 
|  | { | 
|  | return div_fp(percent, 100); | 
|  | } | 
|  |  | 
|  | static inline u64 mul_ext_fp(u64 x, u64 y) | 
|  | { | 
|  | return (x * y) >> EXT_FRAC_BITS; | 
|  | } | 
|  |  | 
|  | static inline u64 div_ext_fp(u64 x, u64 y) | 
|  | { | 
|  | return div64_u64(x << EXT_FRAC_BITS, y); | 
|  | } | 
|  |  | 
|  | static inline int32_t percent_ext_fp(int percent) | 
|  | { | 
|  | return div_ext_fp(percent, 100); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * struct sample -	Store performance sample | 
|  | * @core_avg_perf:	Ratio of APERF/MPERF which is the actual average | 
|  | *			performance during last sample period | 
|  | * @busy_scaled:	Scaled busy value which is used to calculate next | 
|  | *			P state. This can be different than core_avg_perf | 
|  | *			to account for cpu idle period | 
|  | * @aperf:		Difference of actual performance frequency clock count | 
|  | *			read from APERF MSR between last and current sample | 
|  | * @mperf:		Difference of maximum performance frequency clock count | 
|  | *			read from MPERF MSR between last and current sample | 
|  | * @tsc:		Difference of time stamp counter between last and | 
|  | *			current sample | 
|  | * @time:		Current time from scheduler | 
|  | * | 
|  | * This structure is used in the cpudata structure to store performance sample | 
|  | * data for choosing next P State. | 
|  | */ | 
|  | struct sample { | 
|  | int32_t core_avg_perf; | 
|  | int32_t busy_scaled; | 
|  | u64 aperf; | 
|  | u64 mperf; | 
|  | u64 tsc; | 
|  | u64 time; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct pstate_data - Store P state data | 
|  | * @current_pstate:	Current requested P state | 
|  | * @min_pstate:		Min P state possible for this platform | 
|  | * @max_pstate:		Max P state possible for this platform | 
|  | * @max_pstate_physical:This is physical Max P state for a processor | 
|  | *			This can be higher than the max_pstate which can | 
|  | *			be limited by platform thermal design power limits | 
|  | * @scaling:		Scaling factor to  convert frequency to cpufreq | 
|  | *			frequency units | 
|  | * @turbo_pstate:	Max Turbo P state possible for this platform | 
|  | * @max_freq:		@max_pstate frequency in cpufreq units | 
|  | * @turbo_freq:		@turbo_pstate frequency in cpufreq units | 
|  | * | 
|  | * Stores the per cpu model P state limits and current P state. | 
|  | */ | 
|  | struct pstate_data { | 
|  | int	current_pstate; | 
|  | int	min_pstate; | 
|  | int	max_pstate; | 
|  | int	max_pstate_physical; | 
|  | int	scaling; | 
|  | int	turbo_pstate; | 
|  | unsigned int max_freq; | 
|  | unsigned int turbo_freq; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct vid_data -	Stores voltage information data | 
|  | * @min:		VID data for this platform corresponding to | 
|  | *			the lowest P state | 
|  | * @max:		VID data corresponding to the highest P State. | 
|  | * @turbo:		VID data for turbo P state | 
|  | * @ratio:		Ratio of (vid max - vid min) / | 
|  | *			(max P state - Min P State) | 
|  | * | 
|  | * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling) | 
|  | * This data is used in Atom platforms, where in addition to target P state, | 
|  | * the voltage data needs to be specified to select next P State. | 
|  | */ | 
|  | struct vid_data { | 
|  | int min; | 
|  | int max; | 
|  | int turbo; | 
|  | int32_t ratio; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct global_params - Global parameters, mostly tunable via sysfs. | 
|  | * @no_turbo:		Whether or not to use turbo P-states. | 
|  | * @turbo_disabled:	Whethet or not turbo P-states are available at all, | 
|  | *			based on the MSR_IA32_MISC_ENABLE value and whether or | 
|  | *			not the maximum reported turbo P-state is different from | 
|  | *			the maximum reported non-turbo one. | 
|  | * @min_perf_pct:	Minimum capacity limit in percent of the maximum turbo | 
|  | *			P-state capacity. | 
|  | * @max_perf_pct:	Maximum capacity limit in percent of the maximum turbo | 
|  | *			P-state capacity. | 
|  | */ | 
|  | struct global_params { | 
|  | bool no_turbo; | 
|  | bool turbo_disabled; | 
|  | int max_perf_pct; | 
|  | int min_perf_pct; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct cpudata -	Per CPU instance data storage | 
|  | * @cpu:		CPU number for this instance data | 
|  | * @policy:		CPUFreq policy value | 
|  | * @update_util:	CPUFreq utility callback information | 
|  | * @update_util_set:	CPUFreq utility callback is set | 
|  | * @iowait_boost:	iowait-related boost fraction | 
|  | * @last_update:	Time of the last update. | 
|  | * @pstate:		Stores P state limits for this CPU | 
|  | * @vid:		Stores VID limits for this CPU | 
|  | * @last_sample_time:	Last Sample time | 
|  | * @aperf_mperf_shift:	Number of clock cycles after aperf, merf is incremented | 
|  | *			This shift is a multiplier to mperf delta to | 
|  | *			calculate CPU busy. | 
|  | * @prev_aperf:		Last APERF value read from APERF MSR | 
|  | * @prev_mperf:		Last MPERF value read from MPERF MSR | 
|  | * @prev_tsc:		Last timestamp counter (TSC) value | 
|  | * @prev_cummulative_iowait: IO Wait time difference from last and | 
|  | *			current sample | 
|  | * @sample:		Storage for storing last Sample data | 
|  | * @min_perf_ratio:	Minimum capacity in terms of PERF or HWP ratios | 
|  | * @max_perf_ratio:	Maximum capacity in terms of PERF or HWP ratios | 
|  | * @acpi_perf_data:	Stores ACPI perf information read from _PSS | 
|  | * @valid_pss_table:	Set to true for valid ACPI _PSS entries found | 
|  | * @epp_powersave:	Last saved HWP energy performance preference | 
|  | *			(EPP) or energy performance bias (EPB), | 
|  | *			when policy switched to performance | 
|  | * @epp_policy:		Last saved policy used to set EPP/EPB | 
|  | * @epp_default:	Power on default HWP energy performance | 
|  | *			preference/bias | 
|  | * @epp_saved:		Saved EPP/EPB during system suspend or CPU offline | 
|  | *			operation | 
|  | * @hwp_req_cached:	Cached value of the last HWP Request MSR | 
|  | * @hwp_cap_cached:	Cached value of the last HWP Capabilities MSR | 
|  | * @last_io_update:	Last time when IO wake flag was set | 
|  | * @sched_flags:	Store scheduler flags for possible cross CPU update | 
|  | * @hwp_boost_min:	Last HWP boosted min performance | 
|  | * | 
|  | * This structure stores per CPU instance data for all CPUs. | 
|  | */ | 
|  | struct cpudata { | 
|  | int cpu; | 
|  |  | 
|  | unsigned int policy; | 
|  | struct update_util_data update_util; | 
|  | bool   update_util_set; | 
|  |  | 
|  | struct pstate_data pstate; | 
|  | struct vid_data vid; | 
|  |  | 
|  | u64	last_update; | 
|  | u64	last_sample_time; | 
|  | u64	aperf_mperf_shift; | 
|  | u64	prev_aperf; | 
|  | u64	prev_mperf; | 
|  | u64	prev_tsc; | 
|  | u64	prev_cummulative_iowait; | 
|  | struct sample sample; | 
|  | int32_t	min_perf_ratio; | 
|  | int32_t	max_perf_ratio; | 
|  | #ifdef CONFIG_ACPI | 
|  | struct acpi_processor_performance acpi_perf_data; | 
|  | bool valid_pss_table; | 
|  | #endif | 
|  | unsigned int iowait_boost; | 
|  | s16 epp_powersave; | 
|  | s16 epp_policy; | 
|  | s16 epp_default; | 
|  | s16 epp_saved; | 
|  | u64 hwp_req_cached; | 
|  | u64 hwp_cap_cached; | 
|  | u64 last_io_update; | 
|  | unsigned int sched_flags; | 
|  | u32 hwp_boost_min; | 
|  | }; | 
|  |  | 
|  | static struct cpudata **all_cpu_data; | 
|  |  | 
|  | /** | 
|  | * struct pstate_funcs - Per CPU model specific callbacks | 
|  | * @get_max:		Callback to get maximum non turbo effective P state | 
|  | * @get_max_physical:	Callback to get maximum non turbo physical P state | 
|  | * @get_min:		Callback to get minimum P state | 
|  | * @get_turbo:		Callback to get turbo P state | 
|  | * @get_scaling:	Callback to get frequency scaling factor | 
|  | * @get_val:		Callback to convert P state to actual MSR write value | 
|  | * @get_vid:		Callback to get VID data for Atom platforms | 
|  | * | 
|  | * Core and Atom CPU models have different way to get P State limits. This | 
|  | * structure is used to store those callbacks. | 
|  | */ | 
|  | struct pstate_funcs { | 
|  | int (*get_max)(void); | 
|  | int (*get_max_physical)(void); | 
|  | int (*get_min)(void); | 
|  | int (*get_turbo)(void); | 
|  | int (*get_scaling)(void); | 
|  | int (*get_aperf_mperf_shift)(void); | 
|  | u64 (*get_val)(struct cpudata*, int pstate); | 
|  | void (*get_vid)(struct cpudata *); | 
|  | }; | 
|  |  | 
|  | static struct pstate_funcs pstate_funcs __read_mostly; | 
|  |  | 
|  | static int hwp_active __read_mostly; | 
|  | static int hwp_mode_bdw __read_mostly; | 
|  | static bool per_cpu_limits __read_mostly; | 
|  | static bool hwp_boost __read_mostly; | 
|  |  | 
|  | static struct cpufreq_driver *intel_pstate_driver __read_mostly; | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | static bool acpi_ppc; | 
|  | #endif | 
|  |  | 
|  | static struct global_params global; | 
|  |  | 
|  | static DEFINE_MUTEX(intel_pstate_driver_lock); | 
|  | static DEFINE_MUTEX(intel_pstate_limits_lock); | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  |  | 
|  | static bool intel_pstate_acpi_pm_profile_server(void) | 
|  | { | 
|  | if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER || | 
|  | acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool intel_pstate_get_ppc_enable_status(void) | 
|  | { | 
|  | if (intel_pstate_acpi_pm_profile_server()) | 
|  | return true; | 
|  |  | 
|  | return acpi_ppc; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ACPI_CPPC_LIB | 
|  |  | 
|  | /* The work item is needed to avoid CPU hotplug locking issues */ | 
|  | static void intel_pstste_sched_itmt_work_fn(struct work_struct *work) | 
|  | { | 
|  | sched_set_itmt_support(); | 
|  | } | 
|  |  | 
|  | static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn); | 
|  |  | 
|  | static void intel_pstate_set_itmt_prio(int cpu) | 
|  | { | 
|  | struct cppc_perf_caps cppc_perf; | 
|  | static u32 max_highest_perf = 0, min_highest_perf = U32_MAX; | 
|  | int ret; | 
|  |  | 
|  | ret = cppc_get_perf_caps(cpu, &cppc_perf); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * The priorities can be set regardless of whether or not | 
|  | * sched_set_itmt_support(true) has been called and it is valid to | 
|  | * update them at any time after it has been called. | 
|  | */ | 
|  | sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu); | 
|  |  | 
|  | if (max_highest_perf <= min_highest_perf) { | 
|  | if (cppc_perf.highest_perf > max_highest_perf) | 
|  | max_highest_perf = cppc_perf.highest_perf; | 
|  |  | 
|  | if (cppc_perf.highest_perf < min_highest_perf) | 
|  | min_highest_perf = cppc_perf.highest_perf; | 
|  |  | 
|  | if (max_highest_perf > min_highest_perf) { | 
|  | /* | 
|  | * This code can be run during CPU online under the | 
|  | * CPU hotplug locks, so sched_set_itmt_support() | 
|  | * cannot be called from here.  Queue up a work item | 
|  | * to invoke it. | 
|  | */ | 
|  | schedule_work(&sched_itmt_work); | 
|  | } | 
|  | } | 
|  | } | 
|  | #else | 
|  | static void intel_pstate_set_itmt_prio(int cpu) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int ret; | 
|  | int i; | 
|  |  | 
|  | if (hwp_active) { | 
|  | intel_pstate_set_itmt_prio(policy->cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!intel_pstate_get_ppc_enable_status()) | 
|  | return; | 
|  |  | 
|  | cpu = all_cpu_data[policy->cpu]; | 
|  |  | 
|  | ret = acpi_processor_register_performance(&cpu->acpi_perf_data, | 
|  | policy->cpu); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Check if the control value in _PSS is for PERF_CTL MSR, which should | 
|  | * guarantee that the states returned by it map to the states in our | 
|  | * list directly. | 
|  | */ | 
|  | if (cpu->acpi_perf_data.control_register.space_id != | 
|  | ACPI_ADR_SPACE_FIXED_HARDWARE) | 
|  | goto err; | 
|  |  | 
|  | /* | 
|  | * If there is only one entry _PSS, simply ignore _PSS and continue as | 
|  | * usual without taking _PSS into account | 
|  | */ | 
|  | if (cpu->acpi_perf_data.state_count < 2) | 
|  | goto err; | 
|  |  | 
|  | pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu); | 
|  | for (i = 0; i < cpu->acpi_perf_data.state_count; i++) { | 
|  | pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n", | 
|  | (i == cpu->acpi_perf_data.state ? '*' : ' '), i, | 
|  | (u32) cpu->acpi_perf_data.states[i].core_frequency, | 
|  | (u32) cpu->acpi_perf_data.states[i].power, | 
|  | (u32) cpu->acpi_perf_data.states[i].control); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The _PSS table doesn't contain whole turbo frequency range. | 
|  | * This just contains +1 MHZ above the max non turbo frequency, | 
|  | * with control value corresponding to max turbo ratio. But | 
|  | * when cpufreq set policy is called, it will call with this | 
|  | * max frequency, which will cause a reduced performance as | 
|  | * this driver uses real max turbo frequency as the max | 
|  | * frequency. So correct this frequency in _PSS table to | 
|  | * correct max turbo frequency based on the turbo state. | 
|  | * Also need to convert to MHz as _PSS freq is in MHz. | 
|  | */ | 
|  | if (!global.turbo_disabled) | 
|  | cpu->acpi_perf_data.states[0].core_frequency = | 
|  | policy->cpuinfo.max_freq / 1000; | 
|  | cpu->valid_pss_table = true; | 
|  | pr_debug("_PPC limits will be enforced\n"); | 
|  |  | 
|  | return; | 
|  |  | 
|  | err: | 
|  | cpu->valid_pss_table = false; | 
|  | acpi_processor_unregister_performance(policy->cpu); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | cpu = all_cpu_data[policy->cpu]; | 
|  | if (!cpu->valid_pss_table) | 
|  | return; | 
|  |  | 
|  | acpi_processor_unregister_performance(policy->cpu); | 
|  | } | 
|  | #else | 
|  | static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline bool intel_pstate_acpi_pm_profile_server(void) | 
|  | { | 
|  | return false; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void update_turbo_state(void) | 
|  | { | 
|  | u64 misc_en; | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  | rdmsrl(MSR_IA32_MISC_ENABLE, misc_en); | 
|  | global.turbo_disabled = | 
|  | (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE || | 
|  | cpu->pstate.max_pstate == cpu->pstate.turbo_pstate); | 
|  | } | 
|  |  | 
|  | static int min_perf_pct_min(void) | 
|  | { | 
|  | struct cpudata *cpu = all_cpu_data[0]; | 
|  | int turbo_pstate = cpu->pstate.turbo_pstate; | 
|  |  | 
|  | return turbo_pstate ? | 
|  | (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0; | 
|  | } | 
|  |  | 
|  | static s16 intel_pstate_get_epb(struct cpudata *cpu_data) | 
|  | { | 
|  | u64 epb; | 
|  | int ret; | 
|  |  | 
|  | if (!static_cpu_has(X86_FEATURE_EPB)) | 
|  | return -ENXIO; | 
|  |  | 
|  | ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); | 
|  | if (ret) | 
|  | return (s16)ret; | 
|  |  | 
|  | return (s16)(epb & 0x0f); | 
|  | } | 
|  |  | 
|  | static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data) | 
|  | { | 
|  | s16 epp; | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_HWP_EPP)) { | 
|  | /* | 
|  | * When hwp_req_data is 0, means that caller didn't read | 
|  | * MSR_HWP_REQUEST, so need to read and get EPP. | 
|  | */ | 
|  | if (!hwp_req_data) { | 
|  | epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, | 
|  | &hwp_req_data); | 
|  | if (epp) | 
|  | return epp; | 
|  | } | 
|  | epp = (hwp_req_data >> 24) & 0xff; | 
|  | } else { | 
|  | /* When there is no EPP present, HWP uses EPB settings */ | 
|  | epp = intel_pstate_get_epb(cpu_data); | 
|  | } | 
|  |  | 
|  | return epp; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_set_epb(int cpu, s16 pref) | 
|  | { | 
|  | u64 epb; | 
|  | int ret; | 
|  |  | 
|  | if (!static_cpu_has(X86_FEATURE_EPB)) | 
|  | return -ENXIO; | 
|  |  | 
|  | ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | epb = (epb & ~0x0f) | pref; | 
|  | wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * EPP/EPB display strings corresponding to EPP index in the | 
|  | * energy_perf_strings[] | 
|  | *	index		String | 
|  | *------------------------------------- | 
|  | *	0		default | 
|  | *	1		performance | 
|  | *	2		balance_performance | 
|  | *	3		balance_power | 
|  | *	4		power | 
|  | */ | 
|  | static const char * const energy_perf_strings[] = { | 
|  | "default", | 
|  | "performance", | 
|  | "balance_performance", | 
|  | "balance_power", | 
|  | "power", | 
|  | NULL | 
|  | }; | 
|  | static const unsigned int epp_values[] = { | 
|  | HWP_EPP_PERFORMANCE, | 
|  | HWP_EPP_BALANCE_PERFORMANCE, | 
|  | HWP_EPP_BALANCE_POWERSAVE, | 
|  | HWP_EPP_POWERSAVE | 
|  | }; | 
|  |  | 
|  | static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data) | 
|  | { | 
|  | s16 epp; | 
|  | int index = -EINVAL; | 
|  |  | 
|  | epp = intel_pstate_get_epp(cpu_data, 0); | 
|  | if (epp < 0) | 
|  | return epp; | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_HWP_EPP)) { | 
|  | if (epp == HWP_EPP_PERFORMANCE) | 
|  | return 1; | 
|  | if (epp <= HWP_EPP_BALANCE_PERFORMANCE) | 
|  | return 2; | 
|  | if (epp <= HWP_EPP_BALANCE_POWERSAVE) | 
|  | return 3; | 
|  | else | 
|  | return 4; | 
|  | } else if (static_cpu_has(X86_FEATURE_EPB)) { | 
|  | /* | 
|  | * Range: | 
|  | *	0x00-0x03	:	Performance | 
|  | *	0x04-0x07	:	Balance performance | 
|  | *	0x08-0x0B	:	Balance power | 
|  | *	0x0C-0x0F	:	Power | 
|  | * The EPB is a 4 bit value, but our ranges restrict the | 
|  | * value which can be set. Here only using top two bits | 
|  | * effectively. | 
|  | */ | 
|  | index = (epp >> 2) + 1; | 
|  | } | 
|  |  | 
|  | return index; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data, | 
|  | int pref_index) | 
|  | { | 
|  | int epp = -EINVAL; | 
|  | int ret; | 
|  |  | 
|  | if (!pref_index) | 
|  | epp = cpu_data->epp_default; | 
|  |  | 
|  | mutex_lock(&intel_pstate_limits_lock); | 
|  |  | 
|  | if (static_cpu_has(X86_FEATURE_HWP_EPP)) { | 
|  | u64 value; | 
|  |  | 
|  | ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value); | 
|  | if (ret) | 
|  | goto return_pref; | 
|  |  | 
|  | value &= ~GENMASK_ULL(31, 24); | 
|  |  | 
|  | if (epp == -EINVAL) | 
|  | epp = epp_values[pref_index - 1]; | 
|  |  | 
|  | value |= (u64)epp << 24; | 
|  | ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value); | 
|  | } else { | 
|  | if (epp == -EINVAL) | 
|  | epp = (pref_index - 1) << 2; | 
|  | ret = intel_pstate_set_epb(cpu_data->cpu, epp); | 
|  | } | 
|  | return_pref: | 
|  | mutex_unlock(&intel_pstate_limits_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t show_energy_performance_available_preferences( | 
|  | struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | int i = 0; | 
|  | int ret = 0; | 
|  |  | 
|  | while (energy_perf_strings[i] != NULL) | 
|  | ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]); | 
|  |  | 
|  | ret += sprintf(&buf[ret], "\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | cpufreq_freq_attr_ro(energy_performance_available_preferences); | 
|  |  | 
|  | static ssize_t store_energy_performance_preference( | 
|  | struct cpufreq_policy *policy, const char *buf, size_t count) | 
|  | { | 
|  | struct cpudata *cpu_data = all_cpu_data[policy->cpu]; | 
|  | char str_preference[21]; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%20s", str_preference); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = match_string(energy_perf_strings, -1, str_preference); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | intel_pstate_set_energy_pref_index(cpu_data, ret); | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_energy_performance_preference( | 
|  | struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | struct cpudata *cpu_data = all_cpu_data[policy->cpu]; | 
|  | int preference; | 
|  |  | 
|  | preference = intel_pstate_get_energy_pref_index(cpu_data); | 
|  | if (preference < 0) | 
|  | return preference; | 
|  |  | 
|  | return  sprintf(buf, "%s\n", energy_perf_strings[preference]); | 
|  | } | 
|  |  | 
|  | cpufreq_freq_attr_rw(energy_performance_preference); | 
|  |  | 
|  | static struct freq_attr *hwp_cpufreq_attrs[] = { | 
|  | &energy_performance_preference, | 
|  | &energy_performance_available_preferences, | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max, | 
|  | int *current_max) | 
|  | { | 
|  | u64 cap; | 
|  |  | 
|  | rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap); | 
|  | WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap); | 
|  | if (global.no_turbo) | 
|  | *current_max = HWP_GUARANTEED_PERF(cap); | 
|  | else | 
|  | *current_max = HWP_HIGHEST_PERF(cap); | 
|  |  | 
|  | *phy_max = HWP_HIGHEST_PERF(cap); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_hwp_set(unsigned int cpu) | 
|  | { | 
|  | struct cpudata *cpu_data = all_cpu_data[cpu]; | 
|  | int max, min; | 
|  | u64 value; | 
|  | s16 epp; | 
|  |  | 
|  | max = cpu_data->max_perf_ratio; | 
|  | min = cpu_data->min_perf_ratio; | 
|  |  | 
|  | if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) | 
|  | min = max; | 
|  |  | 
|  | rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value); | 
|  |  | 
|  | value &= ~HWP_MIN_PERF(~0L); | 
|  | value |= HWP_MIN_PERF(min); | 
|  |  | 
|  | value &= ~HWP_MAX_PERF(~0L); | 
|  | value |= HWP_MAX_PERF(max); | 
|  |  | 
|  | if (cpu_data->epp_policy == cpu_data->policy) | 
|  | goto skip_epp; | 
|  |  | 
|  | cpu_data->epp_policy = cpu_data->policy; | 
|  |  | 
|  | if (cpu_data->epp_saved >= 0) { | 
|  | epp = cpu_data->epp_saved; | 
|  | cpu_data->epp_saved = -EINVAL; | 
|  | goto update_epp; | 
|  | } | 
|  |  | 
|  | if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) { | 
|  | epp = intel_pstate_get_epp(cpu_data, value); | 
|  | cpu_data->epp_powersave = epp; | 
|  | /* If EPP read was failed, then don't try to write */ | 
|  | if (epp < 0) | 
|  | goto skip_epp; | 
|  |  | 
|  | epp = 0; | 
|  | } else { | 
|  | /* skip setting EPP, when saved value is invalid */ | 
|  | if (cpu_data->epp_powersave < 0) | 
|  | goto skip_epp; | 
|  |  | 
|  | /* | 
|  | * No need to restore EPP when it is not zero. This | 
|  | * means: | 
|  | *  - Policy is not changed | 
|  | *  - user has manually changed | 
|  | *  - Error reading EPB | 
|  | */ | 
|  | epp = intel_pstate_get_epp(cpu_data, value); | 
|  | if (epp) | 
|  | goto skip_epp; | 
|  |  | 
|  | epp = cpu_data->epp_powersave; | 
|  | } | 
|  | update_epp: | 
|  | if (static_cpu_has(X86_FEATURE_HWP_EPP)) { | 
|  | value &= ~GENMASK_ULL(31, 24); | 
|  | value |= (u64)epp << 24; | 
|  | } else { | 
|  | intel_pstate_set_epb(cpu, epp); | 
|  | } | 
|  | skip_epp: | 
|  | WRITE_ONCE(cpu_data->hwp_req_cached, value); | 
|  | wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value); | 
|  | } | 
|  |  | 
|  | static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu_data = all_cpu_data[policy->cpu]; | 
|  |  | 
|  | if (!hwp_active) | 
|  | return 0; | 
|  |  | 
|  | cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_hwp_enable(struct cpudata *cpudata); | 
|  |  | 
|  | static int intel_pstate_resume(struct cpufreq_policy *policy) | 
|  | { | 
|  | if (!hwp_active) | 
|  | return 0; | 
|  |  | 
|  | mutex_lock(&intel_pstate_limits_lock); | 
|  |  | 
|  | if (policy->cpu == 0) | 
|  | intel_pstate_hwp_enable(all_cpu_data[policy->cpu]); | 
|  |  | 
|  | all_cpu_data[policy->cpu]->epp_policy = 0; | 
|  | intel_pstate_hwp_set(policy->cpu); | 
|  |  | 
|  | mutex_unlock(&intel_pstate_limits_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_update_policies(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | cpufreq_update_policy(cpu); | 
|  | } | 
|  |  | 
|  | /************************** sysfs begin ************************/ | 
|  | #define show_one(file_name, object)					\ | 
|  | static ssize_t show_##file_name					\ | 
|  | (struct kobject *kobj, struct kobj_attribute *attr, char *buf)	\ | 
|  | {								\ | 
|  | return sprintf(buf, "%u\n", global.object);		\ | 
|  | } | 
|  |  | 
|  | static ssize_t intel_pstate_show_status(char *buf); | 
|  | static int intel_pstate_update_status(const char *buf, size_t size); | 
|  |  | 
|  | static ssize_t show_status(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  | ret = intel_pstate_show_status(buf); | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t store_status(struct kobject *a, struct kobj_attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | char *p = memchr(buf, '\n', count); | 
|  | int ret; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  | ret = intel_pstate_update_status(buf, p ? p - buf : count); | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return ret < 0 ? ret : count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_turbo_pct(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int total, no_turbo, turbo_pct; | 
|  | uint32_t turbo_fp; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  |  | 
|  | if (!intel_pstate_driver) { | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  |  | 
|  | total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; | 
|  | no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1; | 
|  | turbo_fp = div_fp(no_turbo, total); | 
|  | turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100))); | 
|  |  | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return sprintf(buf, "%u\n", turbo_pct); | 
|  | } | 
|  |  | 
|  | static ssize_t show_num_pstates(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int total; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  |  | 
|  | if (!intel_pstate_driver) { | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | cpu = all_cpu_data[0]; | 
|  | total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1; | 
|  |  | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return sprintf(buf, "%u\n", total); | 
|  | } | 
|  |  | 
|  | static ssize_t show_no_turbo(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | ssize_t ret; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  |  | 
|  | if (!intel_pstate_driver) { | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | update_turbo_state(); | 
|  | if (global.turbo_disabled) | 
|  | ret = sprintf(buf, "%u\n", global.turbo_disabled); | 
|  | else | 
|  | ret = sprintf(buf, "%u\n", global.no_turbo); | 
|  |  | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  |  | 
|  | if (!intel_pstate_driver) { | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | mutex_lock(&intel_pstate_limits_lock); | 
|  |  | 
|  | update_turbo_state(); | 
|  | if (global.turbo_disabled) { | 
|  | pr_warn("Turbo disabled by BIOS or unavailable on processor\n"); | 
|  | mutex_unlock(&intel_pstate_limits_lock); | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | global.no_turbo = clamp_t(int, input, 0, 1); | 
|  |  | 
|  | if (global.no_turbo) { | 
|  | struct cpudata *cpu = all_cpu_data[0]; | 
|  | int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate; | 
|  |  | 
|  | /* Squash the global minimum into the permitted range. */ | 
|  | if (global.min_perf_pct > pct) | 
|  | global.min_perf_pct = pct; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&intel_pstate_limits_lock); | 
|  |  | 
|  | intel_pstate_update_policies(); | 
|  |  | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  |  | 
|  | if (!intel_pstate_driver) { | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | mutex_lock(&intel_pstate_limits_lock); | 
|  |  | 
|  | global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100); | 
|  |  | 
|  | mutex_unlock(&intel_pstate_limits_lock); | 
|  |  | 
|  | intel_pstate_update_policies(); | 
|  |  | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf(buf, "%u", &input); | 
|  | if (ret != 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  |  | 
|  | if (!intel_pstate_driver) { | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | mutex_lock(&intel_pstate_limits_lock); | 
|  |  | 
|  | global.min_perf_pct = clamp_t(int, input, | 
|  | min_perf_pct_min(), global.max_perf_pct); | 
|  |  | 
|  | mutex_unlock(&intel_pstate_limits_lock); | 
|  |  | 
|  | intel_pstate_update_policies(); | 
|  |  | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t show_hwp_dynamic_boost(struct kobject *kobj, | 
|  | struct kobj_attribute *attr, char *buf) | 
|  | { | 
|  | return sprintf(buf, "%u\n", hwp_boost); | 
|  | } | 
|  |  | 
|  | static ssize_t store_hwp_dynamic_boost(struct kobject *a, | 
|  | struct kobj_attribute *b, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = kstrtouint(buf, 10, &input); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  | hwp_boost = !!input; | 
|  | intel_pstate_update_policies(); | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | show_one(max_perf_pct, max_perf_pct); | 
|  | show_one(min_perf_pct, min_perf_pct); | 
|  |  | 
|  | define_one_global_rw(status); | 
|  | define_one_global_rw(no_turbo); | 
|  | define_one_global_rw(max_perf_pct); | 
|  | define_one_global_rw(min_perf_pct); | 
|  | define_one_global_ro(turbo_pct); | 
|  | define_one_global_ro(num_pstates); | 
|  | define_one_global_rw(hwp_dynamic_boost); | 
|  |  | 
|  | static struct attribute *intel_pstate_attributes[] = { | 
|  | &status.attr, | 
|  | &no_turbo.attr, | 
|  | &turbo_pct.attr, | 
|  | &num_pstates.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static const struct attribute_group intel_pstate_attr_group = { | 
|  | .attrs = intel_pstate_attributes, | 
|  | }; | 
|  |  | 
|  | static void __init intel_pstate_sysfs_expose_params(void) | 
|  | { | 
|  | struct kobject *intel_pstate_kobject; | 
|  | int rc; | 
|  |  | 
|  | intel_pstate_kobject = kobject_create_and_add("intel_pstate", | 
|  | &cpu_subsys.dev_root->kobj); | 
|  | if (WARN_ON(!intel_pstate_kobject)) | 
|  | return; | 
|  |  | 
|  | rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group); | 
|  | if (WARN_ON(rc)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If per cpu limits are enforced there are no global limits, so | 
|  | * return without creating max/min_perf_pct attributes | 
|  | */ | 
|  | if (per_cpu_limits) | 
|  | return; | 
|  |  | 
|  | rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr); | 
|  | WARN_ON(rc); | 
|  |  | 
|  | rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr); | 
|  | WARN_ON(rc); | 
|  |  | 
|  | if (hwp_active) { | 
|  | rc = sysfs_create_file(intel_pstate_kobject, | 
|  | &hwp_dynamic_boost.attr); | 
|  | WARN_ON(rc); | 
|  | } | 
|  | } | 
|  | /************************** sysfs end ************************/ | 
|  |  | 
|  | static void intel_pstate_hwp_enable(struct cpudata *cpudata) | 
|  | { | 
|  | /* First disable HWP notification interrupt as we don't process them */ | 
|  | if (static_cpu_has(X86_FEATURE_HWP_NOTIFY)) | 
|  | wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00); | 
|  |  | 
|  | wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1); | 
|  | cpudata->epp_policy = 0; | 
|  | if (cpudata->epp_default == -EINVAL) | 
|  | cpudata->epp_default = intel_pstate_get_epp(cpudata, 0); | 
|  | } | 
|  |  | 
|  | #define MSR_IA32_POWER_CTL_BIT_EE	19 | 
|  |  | 
|  | /* Disable energy efficiency optimization */ | 
|  | static void intel_pstate_disable_ee(int cpu) | 
|  | { | 
|  | u64 power_ctl; | 
|  | int ret; | 
|  |  | 
|  | ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl); | 
|  | if (ret) | 
|  | return; | 
|  |  | 
|  | if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) { | 
|  | pr_info("Disabling energy efficiency optimization\n"); | 
|  | power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE); | 
|  | wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int atom_get_min_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_ATOM_CORE_RATIOS, value); | 
|  | return (value >> 8) & 0x7F; | 
|  | } | 
|  |  | 
|  | static int atom_get_max_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_ATOM_CORE_RATIOS, value); | 
|  | return (value >> 16) & 0x7F; | 
|  | } | 
|  |  | 
|  | static int atom_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value); | 
|  | return value & 0x7F; | 
|  | } | 
|  |  | 
|  | static u64 atom_get_val(struct cpudata *cpudata, int pstate) | 
|  | { | 
|  | u64 val; | 
|  | int32_t vid_fp; | 
|  | u32 vid; | 
|  |  | 
|  | val = (u64)pstate << 8; | 
|  | if (global.no_turbo && !global.turbo_disabled) | 
|  | val |= (u64)1 << 32; | 
|  |  | 
|  | vid_fp = cpudata->vid.min + mul_fp( | 
|  | int_tofp(pstate - cpudata->pstate.min_pstate), | 
|  | cpudata->vid.ratio); | 
|  |  | 
|  | vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max); | 
|  | vid = ceiling_fp(vid_fp); | 
|  |  | 
|  | if (pstate > cpudata->pstate.max_pstate) | 
|  | vid = cpudata->vid.turbo; | 
|  |  | 
|  | return val | vid; | 
|  | } | 
|  |  | 
|  | static int silvermont_get_scaling(void) | 
|  | { | 
|  | u64 value; | 
|  | int i; | 
|  | /* Defined in Table 35-6 from SDM (Sept 2015) */ | 
|  | static int silvermont_freq_table[] = { | 
|  | 83300, 100000, 133300, 116700, 80000}; | 
|  |  | 
|  | rdmsrl(MSR_FSB_FREQ, value); | 
|  | i = value & 0x7; | 
|  | WARN_ON(i > 4); | 
|  |  | 
|  | return silvermont_freq_table[i]; | 
|  | } | 
|  |  | 
|  | static int airmont_get_scaling(void) | 
|  | { | 
|  | u64 value; | 
|  | int i; | 
|  | /* Defined in Table 35-10 from SDM (Sept 2015) */ | 
|  | static int airmont_freq_table[] = { | 
|  | 83300, 100000, 133300, 116700, 80000, | 
|  | 93300, 90000, 88900, 87500}; | 
|  |  | 
|  | rdmsrl(MSR_FSB_FREQ, value); | 
|  | i = value & 0xF; | 
|  | WARN_ON(i > 8); | 
|  |  | 
|  | return airmont_freq_table[i]; | 
|  | } | 
|  |  | 
|  | static void atom_get_vid(struct cpudata *cpudata) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_ATOM_CORE_VIDS, value); | 
|  | cpudata->vid.min = int_tofp((value >> 8) & 0x7f); | 
|  | cpudata->vid.max = int_tofp((value >> 16) & 0x7f); | 
|  | cpudata->vid.ratio = div_fp( | 
|  | cpudata->vid.max - cpudata->vid.min, | 
|  | int_tofp(cpudata->pstate.max_pstate - | 
|  | cpudata->pstate.min_pstate)); | 
|  |  | 
|  | rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value); | 
|  | cpudata->vid.turbo = value & 0x7f; | 
|  | } | 
|  |  | 
|  | static int core_get_min_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_PLATFORM_INFO, value); | 
|  | return (value >> 40) & 0xFF; | 
|  | } | 
|  |  | 
|  | static int core_get_max_pstate_physical(void) | 
|  | { | 
|  | u64 value; | 
|  |  | 
|  | rdmsrl(MSR_PLATFORM_INFO, value); | 
|  | return (value >> 8) & 0xFF; | 
|  | } | 
|  |  | 
|  | static int core_get_tdp_ratio(u64 plat_info) | 
|  | { | 
|  | /* Check how many TDP levels present */ | 
|  | if (plat_info & 0x600000000) { | 
|  | u64 tdp_ctrl; | 
|  | u64 tdp_ratio; | 
|  | int tdp_msr; | 
|  | int err; | 
|  |  | 
|  | /* Get the TDP level (0, 1, 2) to get ratios */ | 
|  | err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* TDP MSR are continuous starting at 0x648 */ | 
|  | tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03); | 
|  | err = rdmsrl_safe(tdp_msr, &tdp_ratio); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | /* For level 1 and 2, bits[23:16] contain the ratio */ | 
|  | if (tdp_ctrl & 0x03) | 
|  | tdp_ratio >>= 16; | 
|  |  | 
|  | tdp_ratio &= 0xff; /* ratios are only 8 bits long */ | 
|  | pr_debug("tdp_ratio %x\n", (int)tdp_ratio); | 
|  |  | 
|  | return (int)tdp_ratio; | 
|  | } | 
|  |  | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | static int core_get_max_pstate(void) | 
|  | { | 
|  | u64 tar; | 
|  | u64 plat_info; | 
|  | int max_pstate; | 
|  | int tdp_ratio; | 
|  | int err; | 
|  |  | 
|  | rdmsrl(MSR_PLATFORM_INFO, plat_info); | 
|  | max_pstate = (plat_info >> 8) & 0xFF; | 
|  |  | 
|  | tdp_ratio = core_get_tdp_ratio(plat_info); | 
|  | if (tdp_ratio <= 0) | 
|  | return max_pstate; | 
|  |  | 
|  | if (hwp_active) { | 
|  | /* Turbo activation ratio is not used on HWP platforms */ | 
|  | return tdp_ratio; | 
|  | } | 
|  |  | 
|  | err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar); | 
|  | if (!err) { | 
|  | int tar_levels; | 
|  |  | 
|  | /* Do some sanity checking for safety */ | 
|  | tar_levels = tar & 0xff; | 
|  | if (tdp_ratio - 1 == tar_levels) { | 
|  | max_pstate = tar_levels; | 
|  | pr_debug("max_pstate=TAC %x\n", max_pstate); | 
|  | } | 
|  | } | 
|  |  | 
|  | return max_pstate; | 
|  | } | 
|  |  | 
|  | static int core_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  | int nont, ret; | 
|  |  | 
|  | rdmsrl(MSR_TURBO_RATIO_LIMIT, value); | 
|  | nont = core_get_max_pstate(); | 
|  | ret = (value) & 255; | 
|  | if (ret <= nont) | 
|  | ret = nont; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int core_get_scaling(void) | 
|  | { | 
|  | return 100000; | 
|  | } | 
|  |  | 
|  | static u64 core_get_val(struct cpudata *cpudata, int pstate) | 
|  | { | 
|  | u64 val; | 
|  |  | 
|  | val = (u64)pstate << 8; | 
|  | if (global.no_turbo && !global.turbo_disabled) | 
|  | val |= (u64)1 << 32; | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static int knl_get_aperf_mperf_shift(void) | 
|  | { | 
|  | return 10; | 
|  | } | 
|  |  | 
|  | static int knl_get_turbo_pstate(void) | 
|  | { | 
|  | u64 value; | 
|  | int nont, ret; | 
|  |  | 
|  | rdmsrl(MSR_TURBO_RATIO_LIMIT, value); | 
|  | nont = core_get_max_pstate(); | 
|  | ret = (((value) >> 8) & 0xFF); | 
|  | if (ret <= nont) | 
|  | ret = nont; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_get_base_pstate(struct cpudata *cpu) | 
|  | { | 
|  | return global.no_turbo || global.turbo_disabled ? | 
|  | cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate) | 
|  | { | 
|  | trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu); | 
|  | cpu->pstate.current_pstate = pstate; | 
|  | /* | 
|  | * Generally, there is no guarantee that this code will always run on | 
|  | * the CPU being updated, so force the register update to run on the | 
|  | * right CPU. | 
|  | */ | 
|  | wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL, | 
|  | pstate_funcs.get_val(cpu, pstate)); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_set_min_pstate(struct cpudata *cpu) | 
|  | { | 
|  | intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_max_within_limits(struct cpudata *cpu) | 
|  | { | 
|  | int pstate; | 
|  |  | 
|  | update_turbo_state(); | 
|  | pstate = intel_pstate_get_base_pstate(cpu); | 
|  | pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio); | 
|  | intel_pstate_set_pstate(cpu, pstate); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_get_cpu_pstates(struct cpudata *cpu) | 
|  | { | 
|  | cpu->pstate.min_pstate = pstate_funcs.get_min(); | 
|  | cpu->pstate.max_pstate = pstate_funcs.get_max(); | 
|  | cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical(); | 
|  | cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(); | 
|  | cpu->pstate.scaling = pstate_funcs.get_scaling(); | 
|  | cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling; | 
|  |  | 
|  | if (hwp_active && !hwp_mode_bdw) { | 
|  | unsigned int phy_max, current_max; | 
|  |  | 
|  | intel_pstate_get_hwp_max(cpu->cpu, &phy_max, ¤t_max); | 
|  | cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling; | 
|  | } else { | 
|  | cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling; | 
|  | } | 
|  |  | 
|  | if (pstate_funcs.get_aperf_mperf_shift) | 
|  | cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift(); | 
|  |  | 
|  | if (pstate_funcs.get_vid) | 
|  | pstate_funcs.get_vid(cpu); | 
|  |  | 
|  | intel_pstate_set_min_pstate(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Long hold time will keep high perf limits for long time, | 
|  | * which negatively impacts perf/watt for some workloads, | 
|  | * like specpower. 3ms is based on experiements on some | 
|  | * workoads. | 
|  | */ | 
|  | static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC; | 
|  |  | 
|  | static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu) | 
|  | { | 
|  | u64 hwp_req = READ_ONCE(cpu->hwp_req_cached); | 
|  | u32 max_limit = (hwp_req & 0xff00) >> 8; | 
|  | u32 min_limit = (hwp_req & 0xff); | 
|  | u32 boost_level1; | 
|  |  | 
|  | /* | 
|  | * Cases to consider (User changes via sysfs or boot time): | 
|  | * If, P0 (Turbo max) = P1 (Guaranteed max) = min: | 
|  | *	No boost, return. | 
|  | * If, P0 (Turbo max) > P1 (Guaranteed max) = min: | 
|  | *     Should result in one level boost only for P0. | 
|  | * If, P0 (Turbo max) = P1 (Guaranteed max) > min: | 
|  | *     Should result in two level boost: | 
|  | *         (min + p1)/2 and P1. | 
|  | * If, P0 (Turbo max) > P1 (Guaranteed max) > min: | 
|  | *     Should result in three level boost: | 
|  | *        (min + p1)/2, P1 and P0. | 
|  | */ | 
|  |  | 
|  | /* If max and min are equal or already at max, nothing to boost */ | 
|  | if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit) | 
|  | return; | 
|  |  | 
|  | if (!cpu->hwp_boost_min) | 
|  | cpu->hwp_boost_min = min_limit; | 
|  |  | 
|  | /* level at half way mark between min and guranteed */ | 
|  | boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1; | 
|  |  | 
|  | if (cpu->hwp_boost_min < boost_level1) | 
|  | cpu->hwp_boost_min = boost_level1; | 
|  | else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached)) | 
|  | cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached); | 
|  | else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) && | 
|  | max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached)) | 
|  | cpu->hwp_boost_min = max_limit; | 
|  | else | 
|  | return; | 
|  |  | 
|  | hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min; | 
|  | wrmsrl(MSR_HWP_REQUEST, hwp_req); | 
|  | cpu->last_update = cpu->sample.time; | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu) | 
|  | { | 
|  | if (cpu->hwp_boost_min) { | 
|  | bool expired; | 
|  |  | 
|  | /* Check if we are idle for hold time to boost down */ | 
|  | expired = time_after64(cpu->sample.time, cpu->last_update + | 
|  | hwp_boost_hold_time_ns); | 
|  | if (expired) { | 
|  | wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached); | 
|  | cpu->hwp_boost_min = 0; | 
|  | } | 
|  | } | 
|  | cpu->last_update = cpu->sample.time; | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu, | 
|  | u64 time) | 
|  | { | 
|  | cpu->sample.time = time; | 
|  |  | 
|  | if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) { | 
|  | bool do_io = false; | 
|  |  | 
|  | cpu->sched_flags = 0; | 
|  | /* | 
|  | * Set iowait_boost flag and update time. Since IO WAIT flag | 
|  | * is set all the time, we can't just conclude that there is | 
|  | * some IO bound activity is scheduled on this CPU with just | 
|  | * one occurrence. If we receive at least two in two | 
|  | * consecutive ticks, then we treat as boost candidate. | 
|  | */ | 
|  | if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC)) | 
|  | do_io = true; | 
|  |  | 
|  | cpu->last_io_update = time; | 
|  |  | 
|  | if (do_io) | 
|  | intel_pstate_hwp_boost_up(cpu); | 
|  |  | 
|  | } else { | 
|  | intel_pstate_hwp_boost_down(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_update_util_hwp(struct update_util_data *data, | 
|  | u64 time, unsigned int flags) | 
|  | { | 
|  | struct cpudata *cpu = container_of(data, struct cpudata, update_util); | 
|  |  | 
|  | cpu->sched_flags |= flags; | 
|  |  | 
|  | if (smp_processor_id() == cpu->cpu) | 
|  | intel_pstate_update_util_hwp_local(cpu, time); | 
|  | } | 
|  |  | 
|  | static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu) | 
|  | { | 
|  | struct sample *sample = &cpu->sample; | 
|  |  | 
|  | sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf); | 
|  | } | 
|  |  | 
|  | static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time) | 
|  | { | 
|  | u64 aperf, mperf; | 
|  | unsigned long flags; | 
|  | u64 tsc; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | rdmsrl(MSR_IA32_APERF, aperf); | 
|  | rdmsrl(MSR_IA32_MPERF, mperf); | 
|  | tsc = rdtsc(); | 
|  | if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) { | 
|  | local_irq_restore(flags); | 
|  | return false; | 
|  | } | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | cpu->last_sample_time = cpu->sample.time; | 
|  | cpu->sample.time = time; | 
|  | cpu->sample.aperf = aperf; | 
|  | cpu->sample.mperf = mperf; | 
|  | cpu->sample.tsc =  tsc; | 
|  | cpu->sample.aperf -= cpu->prev_aperf; | 
|  | cpu->sample.mperf -= cpu->prev_mperf; | 
|  | cpu->sample.tsc -= cpu->prev_tsc; | 
|  |  | 
|  | cpu->prev_aperf = aperf; | 
|  | cpu->prev_mperf = mperf; | 
|  | cpu->prev_tsc = tsc; | 
|  | /* | 
|  | * First time this function is invoked in a given cycle, all of the | 
|  | * previous sample data fields are equal to zero or stale and they must | 
|  | * be populated with meaningful numbers for things to work, so assume | 
|  | * that sample.time will always be reset before setting the utilization | 
|  | * update hook and make the caller skip the sample then. | 
|  | */ | 
|  | if (cpu->last_sample_time) { | 
|  | intel_pstate_calc_avg_perf(cpu); | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static inline int32_t get_avg_frequency(struct cpudata *cpu) | 
|  | { | 
|  | return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz); | 
|  | } | 
|  |  | 
|  | static inline int32_t get_avg_pstate(struct cpudata *cpu) | 
|  | { | 
|  | return mul_ext_fp(cpu->pstate.max_pstate_physical, | 
|  | cpu->sample.core_avg_perf); | 
|  | } | 
|  |  | 
|  | static inline int32_t get_target_pstate(struct cpudata *cpu) | 
|  | { | 
|  | struct sample *sample = &cpu->sample; | 
|  | int32_t busy_frac, boost; | 
|  | int target, avg_pstate; | 
|  |  | 
|  | busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift, | 
|  | sample->tsc); | 
|  |  | 
|  | boost = cpu->iowait_boost; | 
|  | cpu->iowait_boost >>= 1; | 
|  |  | 
|  | if (busy_frac < boost) | 
|  | busy_frac = boost; | 
|  |  | 
|  | sample->busy_scaled = busy_frac * 100; | 
|  |  | 
|  | target = global.no_turbo || global.turbo_disabled ? | 
|  | cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; | 
|  | target += target >> 2; | 
|  | target = mul_fp(target, busy_frac); | 
|  | if (target < cpu->pstate.min_pstate) | 
|  | target = cpu->pstate.min_pstate; | 
|  |  | 
|  | /* | 
|  | * If the average P-state during the previous cycle was higher than the | 
|  | * current target, add 50% of the difference to the target to reduce | 
|  | * possible performance oscillations and offset possible performance | 
|  | * loss related to moving the workload from one CPU to another within | 
|  | * a package/module. | 
|  | */ | 
|  | avg_pstate = get_avg_pstate(cpu); | 
|  | if (avg_pstate > target) | 
|  | target += (avg_pstate - target) >> 1; | 
|  |  | 
|  | return target; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate) | 
|  | { | 
|  | int max_pstate = intel_pstate_get_base_pstate(cpu); | 
|  | int min_pstate; | 
|  |  | 
|  | min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio); | 
|  | max_pstate = max(min_pstate, cpu->max_perf_ratio); | 
|  | return clamp_t(int, pstate, min_pstate, max_pstate); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate) | 
|  | { | 
|  | if (pstate == cpu->pstate.current_pstate) | 
|  | return; | 
|  |  | 
|  | cpu->pstate.current_pstate = pstate; | 
|  | wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate)); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_adjust_pstate(struct cpudata *cpu) | 
|  | { | 
|  | int from = cpu->pstate.current_pstate; | 
|  | struct sample *sample; | 
|  | int target_pstate; | 
|  |  | 
|  | update_turbo_state(); | 
|  |  | 
|  | target_pstate = get_target_pstate(cpu); | 
|  | target_pstate = intel_pstate_prepare_request(cpu, target_pstate); | 
|  | trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu); | 
|  | intel_pstate_update_pstate(cpu, target_pstate); | 
|  |  | 
|  | sample = &cpu->sample; | 
|  | trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf), | 
|  | fp_toint(sample->busy_scaled), | 
|  | from, | 
|  | cpu->pstate.current_pstate, | 
|  | sample->mperf, | 
|  | sample->aperf, | 
|  | sample->tsc, | 
|  | get_avg_frequency(cpu), | 
|  | fp_toint(cpu->iowait_boost * 100)); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_update_util(struct update_util_data *data, u64 time, | 
|  | unsigned int flags) | 
|  | { | 
|  | struct cpudata *cpu = container_of(data, struct cpudata, update_util); | 
|  | u64 delta_ns; | 
|  |  | 
|  | /* Don't allow remote callbacks */ | 
|  | if (smp_processor_id() != cpu->cpu) | 
|  | return; | 
|  |  | 
|  | if (flags & SCHED_CPUFREQ_IOWAIT) { | 
|  | cpu->iowait_boost = int_tofp(1); | 
|  | cpu->last_update = time; | 
|  | /* | 
|  | * The last time the busy was 100% so P-state was max anyway | 
|  | * so avoid overhead of computation. | 
|  | */ | 
|  | if (fp_toint(cpu->sample.busy_scaled) == 100) | 
|  | return; | 
|  |  | 
|  | goto set_pstate; | 
|  | } else if (cpu->iowait_boost) { | 
|  | /* Clear iowait_boost if the CPU may have been idle. */ | 
|  | delta_ns = time - cpu->last_update; | 
|  | if (delta_ns > TICK_NSEC) | 
|  | cpu->iowait_boost = 0; | 
|  | } | 
|  | cpu->last_update = time; | 
|  | delta_ns = time - cpu->sample.time; | 
|  | if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL) | 
|  | return; | 
|  |  | 
|  | set_pstate: | 
|  | if (intel_pstate_sample(cpu, time)) | 
|  | intel_pstate_adjust_pstate(cpu); | 
|  | } | 
|  |  | 
|  | static struct pstate_funcs core_funcs = { | 
|  | .get_max = core_get_max_pstate, | 
|  | .get_max_physical = core_get_max_pstate_physical, | 
|  | .get_min = core_get_min_pstate, | 
|  | .get_turbo = core_get_turbo_pstate, | 
|  | .get_scaling = core_get_scaling, | 
|  | .get_val = core_get_val, | 
|  | }; | 
|  |  | 
|  | static const struct pstate_funcs silvermont_funcs = { | 
|  | .get_max = atom_get_max_pstate, | 
|  | .get_max_physical = atom_get_max_pstate, | 
|  | .get_min = atom_get_min_pstate, | 
|  | .get_turbo = atom_get_turbo_pstate, | 
|  | .get_val = atom_get_val, | 
|  | .get_scaling = silvermont_get_scaling, | 
|  | .get_vid = atom_get_vid, | 
|  | }; | 
|  |  | 
|  | static const struct pstate_funcs airmont_funcs = { | 
|  | .get_max = atom_get_max_pstate, | 
|  | .get_max_physical = atom_get_max_pstate, | 
|  | .get_min = atom_get_min_pstate, | 
|  | .get_turbo = atom_get_turbo_pstate, | 
|  | .get_val = atom_get_val, | 
|  | .get_scaling = airmont_get_scaling, | 
|  | .get_vid = atom_get_vid, | 
|  | }; | 
|  |  | 
|  | static const struct pstate_funcs knl_funcs = { | 
|  | .get_max = core_get_max_pstate, | 
|  | .get_max_physical = core_get_max_pstate_physical, | 
|  | .get_min = core_get_min_pstate, | 
|  | .get_turbo = knl_get_turbo_pstate, | 
|  | .get_aperf_mperf_shift = knl_get_aperf_mperf_shift, | 
|  | .get_scaling = core_get_scaling, | 
|  | .get_val = core_get_val, | 
|  | }; | 
|  |  | 
|  | #define ICPU(model, policy) \ | 
|  | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\ | 
|  | (unsigned long)&policy } | 
|  |  | 
|  | static const struct x86_cpu_id intel_pstate_cpu_ids[] = { | 
|  | ICPU(INTEL_FAM6_SANDYBRIDGE, 		core_funcs), | 
|  | ICPU(INTEL_FAM6_SANDYBRIDGE_X,		core_funcs), | 
|  | ICPU(INTEL_FAM6_ATOM_SILVERMONT,	silvermont_funcs), | 
|  | ICPU(INTEL_FAM6_IVYBRIDGE,		core_funcs), | 
|  | ICPU(INTEL_FAM6_HASWELL_CORE,		core_funcs), | 
|  | ICPU(INTEL_FAM6_BROADWELL_CORE,		core_funcs), | 
|  | ICPU(INTEL_FAM6_IVYBRIDGE_X,		core_funcs), | 
|  | ICPU(INTEL_FAM6_HASWELL_X,		core_funcs), | 
|  | ICPU(INTEL_FAM6_HASWELL_ULT,		core_funcs), | 
|  | ICPU(INTEL_FAM6_HASWELL_GT3E,		core_funcs), | 
|  | ICPU(INTEL_FAM6_BROADWELL_GT3E,		core_funcs), | 
|  | ICPU(INTEL_FAM6_ATOM_AIRMONT,		airmont_funcs), | 
|  | ICPU(INTEL_FAM6_SKYLAKE_MOBILE,		core_funcs), | 
|  | ICPU(INTEL_FAM6_BROADWELL_X,		core_funcs), | 
|  | ICPU(INTEL_FAM6_SKYLAKE_DESKTOP,	core_funcs), | 
|  | ICPU(INTEL_FAM6_BROADWELL_XEON_D,	core_funcs), | 
|  | ICPU(INTEL_FAM6_XEON_PHI_KNL,		knl_funcs), | 
|  | ICPU(INTEL_FAM6_XEON_PHI_KNM,		knl_funcs), | 
|  | ICPU(INTEL_FAM6_ATOM_GOLDMONT,		core_funcs), | 
|  | ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs), | 
|  | ICPU(INTEL_FAM6_SKYLAKE_X,		core_funcs), | 
|  | {} | 
|  | }; | 
|  | MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids); | 
|  |  | 
|  | static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = { | 
|  | ICPU(INTEL_FAM6_BROADWELL_XEON_D, core_funcs), | 
|  | ICPU(INTEL_FAM6_BROADWELL_X, core_funcs), | 
|  | ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = { | 
|  | ICPU(INTEL_FAM6_KABYLAKE_DESKTOP, core_funcs), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = { | 
|  | ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs), | 
|  | ICPU(INTEL_FAM6_SKYLAKE_DESKTOP, core_funcs), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static int intel_pstate_init_cpu(unsigned int cpunum) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | cpu = all_cpu_data[cpunum]; | 
|  |  | 
|  | if (!cpu) { | 
|  | cpu = kzalloc(sizeof(*cpu), GFP_KERNEL); | 
|  | if (!cpu) | 
|  | return -ENOMEM; | 
|  |  | 
|  | all_cpu_data[cpunum] = cpu; | 
|  |  | 
|  | cpu->epp_default = -EINVAL; | 
|  | cpu->epp_powersave = -EINVAL; | 
|  | cpu->epp_saved = -EINVAL; | 
|  | } | 
|  |  | 
|  | cpu = all_cpu_data[cpunum]; | 
|  |  | 
|  | cpu->cpu = cpunum; | 
|  |  | 
|  | if (hwp_active) { | 
|  | const struct x86_cpu_id *id; | 
|  |  | 
|  | id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids); | 
|  | if (id) | 
|  | intel_pstate_disable_ee(cpunum); | 
|  |  | 
|  | intel_pstate_hwp_enable(cpu); | 
|  |  | 
|  | id = x86_match_cpu(intel_pstate_hwp_boost_ids); | 
|  | if (id && intel_pstate_acpi_pm_profile_server()) | 
|  | hwp_boost = true; | 
|  | } | 
|  |  | 
|  | intel_pstate_get_cpu_pstates(cpu); | 
|  |  | 
|  | pr_debug("controlling: cpu %d\n", cpunum); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_set_update_util_hook(unsigned int cpu_num) | 
|  | { | 
|  | struct cpudata *cpu = all_cpu_data[cpu_num]; | 
|  |  | 
|  | if (hwp_active && !hwp_boost) | 
|  | return; | 
|  |  | 
|  | if (cpu->update_util_set) | 
|  | return; | 
|  |  | 
|  | /* Prevent intel_pstate_update_util() from using stale data. */ | 
|  | cpu->sample.time = 0; | 
|  | cpufreq_add_update_util_hook(cpu_num, &cpu->update_util, | 
|  | (hwp_active ? | 
|  | intel_pstate_update_util_hwp : | 
|  | intel_pstate_update_util)); | 
|  | cpu->update_util_set = true; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_clear_update_util_hook(unsigned int cpu) | 
|  | { | 
|  | struct cpudata *cpu_data = all_cpu_data[cpu]; | 
|  |  | 
|  | if (!cpu_data->update_util_set) | 
|  | return; | 
|  |  | 
|  | cpufreq_remove_update_util_hook(cpu); | 
|  | cpu_data->update_util_set = false; | 
|  | synchronize_sched(); | 
|  | } | 
|  |  | 
|  | static int intel_pstate_get_max_freq(struct cpudata *cpu) | 
|  | { | 
|  | return global.turbo_disabled || global.no_turbo ? | 
|  | cpu->pstate.max_freq : cpu->pstate.turbo_freq; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_update_perf_limits(struct cpufreq_policy *policy, | 
|  | struct cpudata *cpu) | 
|  | { | 
|  | int max_freq = intel_pstate_get_max_freq(cpu); | 
|  | int32_t max_policy_perf, min_policy_perf; | 
|  | int max_state, turbo_max; | 
|  |  | 
|  | /* | 
|  | * HWP needs some special consideration, because on BDX the | 
|  | * HWP_REQUEST uses abstract value to represent performance | 
|  | * rather than pure ratios. | 
|  | */ | 
|  | if (hwp_active) { | 
|  | intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state); | 
|  | } else { | 
|  | max_state = intel_pstate_get_base_pstate(cpu); | 
|  | turbo_max = cpu->pstate.turbo_pstate; | 
|  | } | 
|  |  | 
|  | max_policy_perf = max_state * policy->max / max_freq; | 
|  | if (policy->max == policy->min) { | 
|  | min_policy_perf = max_policy_perf; | 
|  | } else { | 
|  | min_policy_perf = max_state * policy->min / max_freq; | 
|  | min_policy_perf = clamp_t(int32_t, min_policy_perf, | 
|  | 0, max_policy_perf); | 
|  | } | 
|  |  | 
|  | pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n", | 
|  | policy->cpu, max_state, | 
|  | min_policy_perf, max_policy_perf); | 
|  |  | 
|  | /* Normalize user input to [min_perf, max_perf] */ | 
|  | if (per_cpu_limits) { | 
|  | cpu->min_perf_ratio = min_policy_perf; | 
|  | cpu->max_perf_ratio = max_policy_perf; | 
|  | } else { | 
|  | int32_t global_min, global_max; | 
|  |  | 
|  | /* Global limits are in percent of the maximum turbo P-state. */ | 
|  | global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100); | 
|  | global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100); | 
|  | global_min = clamp_t(int32_t, global_min, 0, global_max); | 
|  |  | 
|  | pr_debug("cpu:%d global_min:%d global_max:%d\n", policy->cpu, | 
|  | global_min, global_max); | 
|  |  | 
|  | cpu->min_perf_ratio = max(min_policy_perf, global_min); | 
|  | cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf); | 
|  | cpu->max_perf_ratio = min(max_policy_perf, global_max); | 
|  | cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio); | 
|  |  | 
|  | /* Make sure min_perf <= max_perf */ | 
|  | cpu->min_perf_ratio = min(cpu->min_perf_ratio, | 
|  | cpu->max_perf_ratio); | 
|  |  | 
|  | } | 
|  | pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", policy->cpu, | 
|  | cpu->max_perf_ratio, | 
|  | cpu->min_perf_ratio); | 
|  | } | 
|  |  | 
|  | static int intel_pstate_set_policy(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  |  | 
|  | if (!policy->cpuinfo.max_freq) | 
|  | return -ENODEV; | 
|  |  | 
|  | pr_debug("set_policy cpuinfo.max %u policy->max %u\n", | 
|  | policy->cpuinfo.max_freq, policy->max); | 
|  |  | 
|  | cpu = all_cpu_data[policy->cpu]; | 
|  | cpu->policy = policy->policy; | 
|  |  | 
|  | mutex_lock(&intel_pstate_limits_lock); | 
|  |  | 
|  | intel_pstate_update_perf_limits(policy, cpu); | 
|  |  | 
|  | if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) { | 
|  | /* | 
|  | * NOHZ_FULL CPUs need this as the governor callback may not | 
|  | * be invoked on them. | 
|  | */ | 
|  | intel_pstate_clear_update_util_hook(policy->cpu); | 
|  | intel_pstate_max_within_limits(cpu); | 
|  | } else { | 
|  | intel_pstate_set_update_util_hook(policy->cpu); | 
|  | } | 
|  |  | 
|  | if (hwp_active) { | 
|  | /* | 
|  | * When hwp_boost was active before and dynamically it | 
|  | * was turned off, in that case we need to clear the | 
|  | * update util hook. | 
|  | */ | 
|  | if (!hwp_boost) | 
|  | intel_pstate_clear_update_util_hook(policy->cpu); | 
|  | intel_pstate_hwp_set(policy->cpu); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&intel_pstate_limits_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_adjust_policy_max(struct cpufreq_policy *policy, | 
|  | struct cpudata *cpu) | 
|  | { | 
|  | if (!hwp_active && | 
|  | cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate && | 
|  | policy->max < policy->cpuinfo.max_freq && | 
|  | policy->max > cpu->pstate.max_freq) { | 
|  | pr_debug("policy->max > max non turbo frequency\n"); | 
|  | policy->max = policy->cpuinfo.max_freq; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int intel_pstate_verify_policy(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu = all_cpu_data[policy->cpu]; | 
|  |  | 
|  | update_turbo_state(); | 
|  | cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, | 
|  | intel_pstate_get_max_freq(cpu)); | 
|  |  | 
|  | if (policy->policy != CPUFREQ_POLICY_POWERSAVE && | 
|  | policy->policy != CPUFREQ_POLICY_PERFORMANCE) | 
|  | return -EINVAL; | 
|  |  | 
|  | intel_pstate_adjust_policy_max(policy, cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy) | 
|  | { | 
|  | intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]); | 
|  | } | 
|  |  | 
|  | static void intel_pstate_stop_cpu(struct cpufreq_policy *policy) | 
|  | { | 
|  | pr_debug("CPU %d exiting\n", policy->cpu); | 
|  |  | 
|  | intel_pstate_clear_update_util_hook(policy->cpu); | 
|  | if (hwp_active) | 
|  | intel_pstate_hwp_save_state(policy); | 
|  | else | 
|  | intel_cpufreq_stop_cpu(policy); | 
|  | } | 
|  |  | 
|  | static int intel_pstate_cpu_exit(struct cpufreq_policy *policy) | 
|  | { | 
|  | intel_pstate_exit_perf_limits(policy); | 
|  |  | 
|  | policy->fast_switch_possible = false; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __intel_pstate_cpu_init(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu; | 
|  | int rc; | 
|  |  | 
|  | rc = intel_pstate_init_cpu(policy->cpu); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | cpu = all_cpu_data[policy->cpu]; | 
|  |  | 
|  | cpu->max_perf_ratio = 0xFF; | 
|  | cpu->min_perf_ratio = 0; | 
|  |  | 
|  | policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling; | 
|  | policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling; | 
|  |  | 
|  | /* cpuinfo and default policy values */ | 
|  | policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling; | 
|  | update_turbo_state(); | 
|  | policy->cpuinfo.max_freq = global.turbo_disabled ? | 
|  | cpu->pstate.max_pstate : cpu->pstate.turbo_pstate; | 
|  | policy->cpuinfo.max_freq *= cpu->pstate.scaling; | 
|  |  | 
|  | if (hwp_active) { | 
|  | unsigned int max_freq; | 
|  |  | 
|  | max_freq = global.turbo_disabled ? | 
|  | cpu->pstate.max_freq : cpu->pstate.turbo_freq; | 
|  | if (max_freq < policy->cpuinfo.max_freq) | 
|  | policy->cpuinfo.max_freq = max_freq; | 
|  | } | 
|  |  | 
|  | intel_pstate_init_acpi_perf_limits(policy); | 
|  |  | 
|  | policy->fast_switch_possible = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_cpu_init(struct cpufreq_policy *policy) | 
|  | { | 
|  | int ret = __intel_pstate_cpu_init(policy); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE)) | 
|  | policy->policy = CPUFREQ_POLICY_PERFORMANCE; | 
|  | else | 
|  | policy->policy = CPUFREQ_POLICY_POWERSAVE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cpufreq_driver intel_pstate = { | 
|  | .flags		= CPUFREQ_CONST_LOOPS, | 
|  | .verify		= intel_pstate_verify_policy, | 
|  | .setpolicy	= intel_pstate_set_policy, | 
|  | .suspend	= intel_pstate_hwp_save_state, | 
|  | .resume		= intel_pstate_resume, | 
|  | .init		= intel_pstate_cpu_init, | 
|  | .exit		= intel_pstate_cpu_exit, | 
|  | .stop_cpu	= intel_pstate_stop_cpu, | 
|  | .name		= "intel_pstate", | 
|  | }; | 
|  |  | 
|  | static int intel_cpufreq_verify_policy(struct cpufreq_policy *policy) | 
|  | { | 
|  | struct cpudata *cpu = all_cpu_data[policy->cpu]; | 
|  |  | 
|  | update_turbo_state(); | 
|  | cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, | 
|  | intel_pstate_get_max_freq(cpu)); | 
|  |  | 
|  | intel_pstate_adjust_policy_max(policy, cpu); | 
|  |  | 
|  | intel_pstate_update_perf_limits(policy, cpu); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Use of trace in passive mode: | 
|  | * | 
|  | * In passive mode the trace core_busy field (also known as the | 
|  | * performance field, and lablelled as such on the graphs; also known as | 
|  | * core_avg_perf) is not needed and so is re-assigned to indicate if the | 
|  | * driver call was via the normal or fast switch path. Various graphs | 
|  | * output from the intel_pstate_tracer.py utility that include core_busy | 
|  | * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%, | 
|  | * so we use 10 to indicate the the normal path through the driver, and | 
|  | * 90 to indicate the fast switch path through the driver. | 
|  | * The scaled_busy field is not used, and is set to 0. | 
|  | */ | 
|  |  | 
|  | #define	INTEL_PSTATE_TRACE_TARGET 10 | 
|  | #define	INTEL_PSTATE_TRACE_FAST_SWITCH 90 | 
|  |  | 
|  | static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate) | 
|  | { | 
|  | struct sample *sample; | 
|  |  | 
|  | if (!trace_pstate_sample_enabled()) | 
|  | return; | 
|  |  | 
|  | if (!intel_pstate_sample(cpu, ktime_get())) | 
|  | return; | 
|  |  | 
|  | sample = &cpu->sample; | 
|  | trace_pstate_sample(trace_type, | 
|  | 0, | 
|  | old_pstate, | 
|  | cpu->pstate.current_pstate, | 
|  | sample->mperf, | 
|  | sample->aperf, | 
|  | sample->tsc, | 
|  | get_avg_frequency(cpu), | 
|  | fp_toint(cpu->iowait_boost * 100)); | 
|  | } | 
|  |  | 
|  | static int intel_cpufreq_target(struct cpufreq_policy *policy, | 
|  | unsigned int target_freq, | 
|  | unsigned int relation) | 
|  | { | 
|  | struct cpudata *cpu = all_cpu_data[policy->cpu]; | 
|  | struct cpufreq_freqs freqs; | 
|  | int target_pstate, old_pstate; | 
|  |  | 
|  | update_turbo_state(); | 
|  |  | 
|  | freqs.old = policy->cur; | 
|  | freqs.new = target_freq; | 
|  |  | 
|  | cpufreq_freq_transition_begin(policy, &freqs); | 
|  | switch (relation) { | 
|  | case CPUFREQ_RELATION_L: | 
|  | target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling); | 
|  | break; | 
|  | case CPUFREQ_RELATION_H: | 
|  | target_pstate = freqs.new / cpu->pstate.scaling; | 
|  | break; | 
|  | default: | 
|  | target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling); | 
|  | break; | 
|  | } | 
|  | target_pstate = intel_pstate_prepare_request(cpu, target_pstate); | 
|  | old_pstate = cpu->pstate.current_pstate; | 
|  | if (target_pstate != cpu->pstate.current_pstate) { | 
|  | cpu->pstate.current_pstate = target_pstate; | 
|  | wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL, | 
|  | pstate_funcs.get_val(cpu, target_pstate)); | 
|  | } | 
|  | freqs.new = target_pstate * cpu->pstate.scaling; | 
|  | intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate); | 
|  | cpufreq_freq_transition_end(policy, &freqs, false); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy, | 
|  | unsigned int target_freq) | 
|  | { | 
|  | struct cpudata *cpu = all_cpu_data[policy->cpu]; | 
|  | int target_pstate, old_pstate; | 
|  |  | 
|  | update_turbo_state(); | 
|  |  | 
|  | target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling); | 
|  | target_pstate = intel_pstate_prepare_request(cpu, target_pstate); | 
|  | old_pstate = cpu->pstate.current_pstate; | 
|  | intel_pstate_update_pstate(cpu, target_pstate); | 
|  | intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate); | 
|  | return target_pstate * cpu->pstate.scaling; | 
|  | } | 
|  |  | 
|  | static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy) | 
|  | { | 
|  | int ret = __intel_pstate_cpu_init(policy); | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY; | 
|  | policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY; | 
|  | /* This reflects the intel_pstate_get_cpu_pstates() setting. */ | 
|  | policy->cur = policy->cpuinfo.min_freq; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cpufreq_driver intel_cpufreq = { | 
|  | .flags		= CPUFREQ_CONST_LOOPS, | 
|  | .verify		= intel_cpufreq_verify_policy, | 
|  | .target		= intel_cpufreq_target, | 
|  | .fast_switch	= intel_cpufreq_fast_switch, | 
|  | .init		= intel_cpufreq_cpu_init, | 
|  | .exit		= intel_pstate_cpu_exit, | 
|  | .stop_cpu	= intel_cpufreq_stop_cpu, | 
|  | .name		= "intel_cpufreq", | 
|  | }; | 
|  |  | 
|  | static struct cpufreq_driver *default_driver = &intel_pstate; | 
|  |  | 
|  | static void intel_pstate_driver_cleanup(void) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | get_online_cpus(); | 
|  | for_each_online_cpu(cpu) { | 
|  | if (all_cpu_data[cpu]) { | 
|  | if (intel_pstate_driver == &intel_pstate) | 
|  | intel_pstate_clear_update_util_hook(cpu); | 
|  |  | 
|  | kfree(all_cpu_data[cpu]); | 
|  | all_cpu_data[cpu] = NULL; | 
|  | } | 
|  | } | 
|  | put_online_cpus(); | 
|  | intel_pstate_driver = NULL; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_register_driver(struct cpufreq_driver *driver) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | memset(&global, 0, sizeof(global)); | 
|  | global.max_perf_pct = 100; | 
|  |  | 
|  | intel_pstate_driver = driver; | 
|  | ret = cpufreq_register_driver(intel_pstate_driver); | 
|  | if (ret) { | 
|  | intel_pstate_driver_cleanup(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | global.min_perf_pct = min_perf_pct_min(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int intel_pstate_unregister_driver(void) | 
|  | { | 
|  | if (hwp_active) | 
|  | return -EBUSY; | 
|  |  | 
|  | cpufreq_unregister_driver(intel_pstate_driver); | 
|  | intel_pstate_driver_cleanup(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t intel_pstate_show_status(char *buf) | 
|  | { | 
|  | if (!intel_pstate_driver) | 
|  | return sprintf(buf, "off\n"); | 
|  |  | 
|  | return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ? | 
|  | "active" : "passive"); | 
|  | } | 
|  |  | 
|  | static int intel_pstate_update_status(const char *buf, size_t size) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (size == 3 && !strncmp(buf, "off", size)) | 
|  | return intel_pstate_driver ? | 
|  | intel_pstate_unregister_driver() : -EINVAL; | 
|  |  | 
|  | if (size == 6 && !strncmp(buf, "active", size)) { | 
|  | if (intel_pstate_driver) { | 
|  | if (intel_pstate_driver == &intel_pstate) | 
|  | return 0; | 
|  |  | 
|  | ret = intel_pstate_unregister_driver(); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return intel_pstate_register_driver(&intel_pstate); | 
|  | } | 
|  |  | 
|  | if (size == 7 && !strncmp(buf, "passive", size)) { | 
|  | if (intel_pstate_driver) { | 
|  | if (intel_pstate_driver == &intel_cpufreq) | 
|  | return 0; | 
|  |  | 
|  | ret = intel_pstate_unregister_driver(); | 
|  | if (ret) | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return intel_pstate_register_driver(&intel_cpufreq); | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int no_load __initdata; | 
|  | static int no_hwp __initdata; | 
|  | static int hwp_only __initdata; | 
|  | static unsigned int force_load __initdata; | 
|  |  | 
|  | static int __init intel_pstate_msrs_not_valid(void) | 
|  | { | 
|  | if (!pstate_funcs.get_max() || | 
|  | !pstate_funcs.get_min() || | 
|  | !pstate_funcs.get_turbo()) | 
|  | return -ENODEV; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init copy_cpu_funcs(struct pstate_funcs *funcs) | 
|  | { | 
|  | pstate_funcs.get_max   = funcs->get_max; | 
|  | pstate_funcs.get_max_physical = funcs->get_max_physical; | 
|  | pstate_funcs.get_min   = funcs->get_min; | 
|  | pstate_funcs.get_turbo = funcs->get_turbo; | 
|  | pstate_funcs.get_scaling = funcs->get_scaling; | 
|  | pstate_funcs.get_val   = funcs->get_val; | 
|  | pstate_funcs.get_vid   = funcs->get_vid; | 
|  | pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  |  | 
|  | static bool __init intel_pstate_no_acpi_pss(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | acpi_status status; | 
|  | union acpi_object *pss; | 
|  | struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL }; | 
|  | struct acpi_processor *pr = per_cpu(processors, i); | 
|  |  | 
|  | if (!pr) | 
|  | continue; | 
|  |  | 
|  | status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer); | 
|  | if (ACPI_FAILURE(status)) | 
|  | continue; | 
|  |  | 
|  | pss = buffer.pointer; | 
|  | if (pss && pss->type == ACPI_TYPE_PACKAGE) { | 
|  | kfree(pss); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | kfree(pss); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool __init intel_pstate_no_acpi_pcch(void) | 
|  | { | 
|  | acpi_status status; | 
|  | acpi_handle handle; | 
|  |  | 
|  | status = acpi_get_handle(NULL, "\\_SB", &handle); | 
|  | if (ACPI_FAILURE(status)) | 
|  | return true; | 
|  |  | 
|  | return !acpi_has_method(handle, "PCCH"); | 
|  | } | 
|  |  | 
|  | static bool __init intel_pstate_has_acpi_ppc(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct acpi_processor *pr = per_cpu(processors, i); | 
|  |  | 
|  | if (!pr) | 
|  | continue; | 
|  | if (acpi_has_method(pr->handle, "_PPC")) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | enum { | 
|  | PSS, | 
|  | PPC, | 
|  | }; | 
|  |  | 
|  | /* Hardware vendor-specific info that has its own power management modes */ | 
|  | static struct acpi_platform_list plat_info[] __initdata = { | 
|  | {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, 0, PSS}, | 
|  | {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, 0, PPC}, | 
|  | { } /* End */ | 
|  | }; | 
|  |  | 
|  | static bool __init intel_pstate_platform_pwr_mgmt_exists(void) | 
|  | { | 
|  | const struct x86_cpu_id *id; | 
|  | u64 misc_pwr; | 
|  | int idx; | 
|  |  | 
|  | id = x86_match_cpu(intel_pstate_cpu_oob_ids); | 
|  | if (id) { | 
|  | rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr); | 
|  | if ( misc_pwr & (1 << 8)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | idx = acpi_match_platform_list(plat_info); | 
|  | if (idx < 0) | 
|  | return false; | 
|  |  | 
|  | switch (plat_info[idx].data) { | 
|  | case PSS: | 
|  | if (!intel_pstate_no_acpi_pss()) | 
|  | return false; | 
|  |  | 
|  | return intel_pstate_no_acpi_pcch(); | 
|  | case PPC: | 
|  | return intel_pstate_has_acpi_ppc() && !force_load; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void intel_pstate_request_control_from_smm(void) | 
|  | { | 
|  | /* | 
|  | * It may be unsafe to request P-states control from SMM if _PPC support | 
|  | * has not been enabled. | 
|  | */ | 
|  | if (acpi_ppc) | 
|  | acpi_processor_pstate_control(); | 
|  | } | 
|  | #else /* CONFIG_ACPI not enabled */ | 
|  | static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; } | 
|  | static inline bool intel_pstate_has_acpi_ppc(void) { return false; } | 
|  | static inline void intel_pstate_request_control_from_smm(void) {} | 
|  | #endif /* CONFIG_ACPI */ | 
|  |  | 
|  | #define INTEL_PSTATE_HWP_BROADWELL	0x01 | 
|  |  | 
|  | #define ICPU_HWP(model, hwp_mode) \ | 
|  | { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode } | 
|  |  | 
|  | static const struct x86_cpu_id hwp_support_ids[] __initconst = { | 
|  | ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL), | 
|  | ICPU_HWP(INTEL_FAM6_BROADWELL_XEON_D, INTEL_PSTATE_HWP_BROADWELL), | 
|  | ICPU_HWP(X86_MODEL_ANY, 0), | 
|  | {} | 
|  | }; | 
|  |  | 
|  | static int __init intel_pstate_init(void) | 
|  | { | 
|  | const struct x86_cpu_id *id; | 
|  | int rc; | 
|  |  | 
|  | if (no_load) | 
|  | return -ENODEV; | 
|  |  | 
|  | id = x86_match_cpu(hwp_support_ids); | 
|  | if (id) { | 
|  | copy_cpu_funcs(&core_funcs); | 
|  | if (!no_hwp) { | 
|  | hwp_active++; | 
|  | hwp_mode_bdw = id->driver_data; | 
|  | intel_pstate.attr = hwp_cpufreq_attrs; | 
|  | goto hwp_cpu_matched; | 
|  | } | 
|  | } else { | 
|  | id = x86_match_cpu(intel_pstate_cpu_ids); | 
|  | if (!id) | 
|  | return -ENODEV; | 
|  |  | 
|  | copy_cpu_funcs((struct pstate_funcs *)id->driver_data); | 
|  | } | 
|  |  | 
|  | if (intel_pstate_msrs_not_valid()) | 
|  | return -ENODEV; | 
|  |  | 
|  | hwp_cpu_matched: | 
|  | /* | 
|  | * The Intel pstate driver will be ignored if the platform | 
|  | * firmware has its own power management modes. | 
|  | */ | 
|  | if (intel_pstate_platform_pwr_mgmt_exists()) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!hwp_active && hwp_only) | 
|  | return -ENOTSUPP; | 
|  |  | 
|  | pr_info("Intel P-state driver initializing\n"); | 
|  |  | 
|  | all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus())); | 
|  | if (!all_cpu_data) | 
|  | return -ENOMEM; | 
|  |  | 
|  | intel_pstate_request_control_from_smm(); | 
|  |  | 
|  | intel_pstate_sysfs_expose_params(); | 
|  |  | 
|  | mutex_lock(&intel_pstate_driver_lock); | 
|  | rc = intel_pstate_register_driver(default_driver); | 
|  | mutex_unlock(&intel_pstate_driver_lock); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | if (hwp_active) | 
|  | pr_info("HWP enabled\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | device_initcall(intel_pstate_init); | 
|  |  | 
|  | static int __init intel_pstate_setup(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!strcmp(str, "disable")) { | 
|  | no_load = 1; | 
|  | } else if (!strcmp(str, "passive")) { | 
|  | pr_info("Passive mode enabled\n"); | 
|  | default_driver = &intel_cpufreq; | 
|  | no_hwp = 1; | 
|  | } | 
|  | if (!strcmp(str, "no_hwp")) { | 
|  | pr_info("HWP disabled\n"); | 
|  | no_hwp = 1; | 
|  | } | 
|  | if (!strcmp(str, "force")) | 
|  | force_load = 1; | 
|  | if (!strcmp(str, "hwp_only")) | 
|  | hwp_only = 1; | 
|  | if (!strcmp(str, "per_cpu_perf_limits")) | 
|  | per_cpu_limits = true; | 
|  |  | 
|  | #ifdef CONFIG_ACPI | 
|  | if (!strcmp(str, "support_acpi_ppc")) | 
|  | acpi_ppc = true; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("intel_pstate", intel_pstate_setup); | 
|  |  | 
|  | MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>"); | 
|  | MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors"); | 
|  | MODULE_LICENSE("GPL"); |