| /* | 
 |  * NVMe over Fabrics RDMA host code. | 
 |  * Copyright (c) 2015-2016 HGST, a Western Digital Company. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  */ | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | #include <linux/module.h> | 
 | #include <linux/init.h> | 
 | #include <linux/slab.h> | 
 | #include <rdma/mr_pool.h> | 
 | #include <linux/err.h> | 
 | #include <linux/string.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/blk-mq.h> | 
 | #include <linux/blk-mq-rdma.h> | 
 | #include <linux/types.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/scatterlist.h> | 
 | #include <linux/nvme.h> | 
 | #include <asm/unaligned.h> | 
 |  | 
 | #include <rdma/ib_verbs.h> | 
 | #include <rdma/rdma_cm.h> | 
 | #include <linux/nvme-rdma.h> | 
 |  | 
 | #include "nvme.h" | 
 | #include "fabrics.h" | 
 |  | 
 |  | 
 | #define NVME_RDMA_CONNECT_TIMEOUT_MS	3000		/* 3 second */ | 
 |  | 
 | #define NVME_RDMA_MAX_SEGMENTS		256 | 
 |  | 
 | #define NVME_RDMA_MAX_INLINE_SEGMENTS	4 | 
 |  | 
 | struct nvme_rdma_device { | 
 | 	struct ib_device	*dev; | 
 | 	struct ib_pd		*pd; | 
 | 	struct kref		ref; | 
 | 	struct list_head	entry; | 
 | 	unsigned int		num_inline_segments; | 
 | }; | 
 |  | 
 | struct nvme_rdma_qe { | 
 | 	struct ib_cqe		cqe; | 
 | 	void			*data; | 
 | 	u64			dma; | 
 | }; | 
 |  | 
 | struct nvme_rdma_queue; | 
 | struct nvme_rdma_request { | 
 | 	struct nvme_request	req; | 
 | 	struct ib_mr		*mr; | 
 | 	struct nvme_rdma_qe	sqe; | 
 | 	union nvme_result	result; | 
 | 	__le16			status; | 
 | 	refcount_t		ref; | 
 | 	struct ib_sge		sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS]; | 
 | 	u32			num_sge; | 
 | 	int			nents; | 
 | 	struct ib_reg_wr	reg_wr; | 
 | 	struct ib_cqe		reg_cqe; | 
 | 	struct nvme_rdma_queue  *queue; | 
 | 	struct sg_table		sg_table; | 
 | 	struct scatterlist	first_sgl[]; | 
 | }; | 
 |  | 
 | enum nvme_rdma_queue_flags { | 
 | 	NVME_RDMA_Q_ALLOCATED		= 0, | 
 | 	NVME_RDMA_Q_LIVE		= 1, | 
 | 	NVME_RDMA_Q_TR_READY		= 2, | 
 | }; | 
 |  | 
 | struct nvme_rdma_queue { | 
 | 	struct nvme_rdma_qe	*rsp_ring; | 
 | 	int			queue_size; | 
 | 	size_t			cmnd_capsule_len; | 
 | 	struct nvme_rdma_ctrl	*ctrl; | 
 | 	struct nvme_rdma_device	*device; | 
 | 	struct ib_cq		*ib_cq; | 
 | 	struct ib_qp		*qp; | 
 |  | 
 | 	unsigned long		flags; | 
 | 	struct rdma_cm_id	*cm_id; | 
 | 	int			cm_error; | 
 | 	struct completion	cm_done; | 
 | }; | 
 |  | 
 | struct nvme_rdma_ctrl { | 
 | 	/* read only in the hot path */ | 
 | 	struct nvme_rdma_queue	*queues; | 
 |  | 
 | 	/* other member variables */ | 
 | 	struct blk_mq_tag_set	tag_set; | 
 | 	struct work_struct	err_work; | 
 |  | 
 | 	struct nvme_rdma_qe	async_event_sqe; | 
 |  | 
 | 	struct delayed_work	reconnect_work; | 
 |  | 
 | 	struct list_head	list; | 
 |  | 
 | 	struct blk_mq_tag_set	admin_tag_set; | 
 | 	struct nvme_rdma_device	*device; | 
 |  | 
 | 	u32			max_fr_pages; | 
 |  | 
 | 	struct sockaddr_storage addr; | 
 | 	struct sockaddr_storage src_addr; | 
 |  | 
 | 	struct nvme_ctrl	ctrl; | 
 | 	bool			use_inline_data; | 
 | }; | 
 |  | 
 | static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	return container_of(ctrl, struct nvme_rdma_ctrl, ctrl); | 
 | } | 
 |  | 
 | static LIST_HEAD(device_list); | 
 | static DEFINE_MUTEX(device_list_mutex); | 
 |  | 
 | static LIST_HEAD(nvme_rdma_ctrl_list); | 
 | static DEFINE_MUTEX(nvme_rdma_ctrl_mutex); | 
 |  | 
 | /* | 
 |  * Disabling this option makes small I/O goes faster, but is fundamentally | 
 |  * unsafe.  With it turned off we will have to register a global rkey that | 
 |  * allows read and write access to all physical memory. | 
 |  */ | 
 | static bool register_always = true; | 
 | module_param(register_always, bool, 0444); | 
 | MODULE_PARM_DESC(register_always, | 
 | 	 "Use memory registration even for contiguous memory regions"); | 
 |  | 
 | static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, | 
 | 		struct rdma_cm_event *event); | 
 | static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc); | 
 |  | 
 | static const struct blk_mq_ops nvme_rdma_mq_ops; | 
 | static const struct blk_mq_ops nvme_rdma_admin_mq_ops; | 
 |  | 
 | /* XXX: really should move to a generic header sooner or later.. */ | 
 | static inline void put_unaligned_le24(u32 val, u8 *p) | 
 | { | 
 | 	*p++ = val; | 
 | 	*p++ = val >> 8; | 
 | 	*p++ = val >> 16; | 
 | } | 
 |  | 
 | static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	return queue - queue->ctrl->queues; | 
 | } | 
 |  | 
 | static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	return queue->cmnd_capsule_len - sizeof(struct nvme_command); | 
 | } | 
 |  | 
 | static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, | 
 | 		size_t capsule_size, enum dma_data_direction dir) | 
 | { | 
 | 	ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir); | 
 | 	kfree(qe->data); | 
 | } | 
 |  | 
 | static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe, | 
 | 		size_t capsule_size, enum dma_data_direction dir) | 
 | { | 
 | 	qe->data = kzalloc(capsule_size, GFP_KERNEL); | 
 | 	if (!qe->data) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir); | 
 | 	if (ib_dma_mapping_error(ibdev, qe->dma)) { | 
 | 		kfree(qe->data); | 
 | 		qe->data = NULL; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_rdma_free_ring(struct ib_device *ibdev, | 
 | 		struct nvme_rdma_qe *ring, size_t ib_queue_size, | 
 | 		size_t capsule_size, enum dma_data_direction dir) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ib_queue_size; i++) | 
 | 		nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir); | 
 | 	kfree(ring); | 
 | } | 
 |  | 
 | static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev, | 
 | 		size_t ib_queue_size, size_t capsule_size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	struct nvme_rdma_qe *ring; | 
 | 	int i; | 
 |  | 
 | 	ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL); | 
 | 	if (!ring) | 
 | 		return NULL; | 
 |  | 
 | 	for (i = 0; i < ib_queue_size; i++) { | 
 | 		if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir)) | 
 | 			goto out_free_ring; | 
 | 	} | 
 |  | 
 | 	return ring; | 
 |  | 
 | out_free_ring: | 
 | 	nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void nvme_rdma_qp_event(struct ib_event *event, void *context) | 
 | { | 
 | 	pr_debug("QP event %s (%d)\n", | 
 | 		 ib_event_msg(event->event), event->event); | 
 |  | 
 | } | 
 |  | 
 | static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	wait_for_completion_interruptible_timeout(&queue->cm_done, | 
 | 			msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1); | 
 | 	return queue->cm_error; | 
 | } | 
 |  | 
 | static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor) | 
 | { | 
 | 	struct nvme_rdma_device *dev = queue->device; | 
 | 	struct ib_qp_init_attr init_attr; | 
 | 	int ret; | 
 |  | 
 | 	memset(&init_attr, 0, sizeof(init_attr)); | 
 | 	init_attr.event_handler = nvme_rdma_qp_event; | 
 | 	/* +1 for drain */ | 
 | 	init_attr.cap.max_send_wr = factor * queue->queue_size + 1; | 
 | 	/* +1 for drain */ | 
 | 	init_attr.cap.max_recv_wr = queue->queue_size + 1; | 
 | 	init_attr.cap.max_recv_sge = 1; | 
 | 	init_attr.cap.max_send_sge = 1 + dev->num_inline_segments; | 
 | 	init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; | 
 | 	init_attr.qp_type = IB_QPT_RC; | 
 | 	init_attr.send_cq = queue->ib_cq; | 
 | 	init_attr.recv_cq = queue->ib_cq; | 
 |  | 
 | 	ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr); | 
 |  | 
 | 	queue->qp = queue->cm_id->qp; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_rdma_exit_request(struct blk_mq_tag_set *set, | 
 | 		struct request *rq, unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = set->driver_data; | 
 | 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); | 
 | 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; | 
 | 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; | 
 | 	struct nvme_rdma_device *dev = queue->device; | 
 |  | 
 | 	nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command), | 
 | 			DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | static int nvme_rdma_init_request(struct blk_mq_tag_set *set, | 
 | 		struct request *rq, unsigned int hctx_idx, | 
 | 		unsigned int numa_node) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = set->driver_data; | 
 | 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); | 
 | 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0; | 
 | 	struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx]; | 
 | 	struct nvme_rdma_device *dev = queue->device; | 
 | 	struct ib_device *ibdev = dev->dev; | 
 | 	int ret; | 
 |  | 
 | 	nvme_req(rq)->ctrl = &ctrl->ctrl; | 
 | 	ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command), | 
 | 			DMA_TO_DEVICE); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	req->queue = queue; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
 | 		unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = data; | 
 | 	struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1]; | 
 |  | 
 | 	BUG_ON(hctx_idx >= ctrl->ctrl.queue_count); | 
 |  | 
 | 	hctx->driver_data = queue; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
 | 		unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = data; | 
 | 	struct nvme_rdma_queue *queue = &ctrl->queues[0]; | 
 |  | 
 | 	BUG_ON(hctx_idx != 0); | 
 |  | 
 | 	hctx->driver_data = queue; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_rdma_free_dev(struct kref *ref) | 
 | { | 
 | 	struct nvme_rdma_device *ndev = | 
 | 		container_of(ref, struct nvme_rdma_device, ref); | 
 |  | 
 | 	mutex_lock(&device_list_mutex); | 
 | 	list_del(&ndev->entry); | 
 | 	mutex_unlock(&device_list_mutex); | 
 |  | 
 | 	ib_dealloc_pd(ndev->pd); | 
 | 	kfree(ndev); | 
 | } | 
 |  | 
 | static void nvme_rdma_dev_put(struct nvme_rdma_device *dev) | 
 | { | 
 | 	kref_put(&dev->ref, nvme_rdma_free_dev); | 
 | } | 
 |  | 
 | static int nvme_rdma_dev_get(struct nvme_rdma_device *dev) | 
 | { | 
 | 	return kref_get_unless_zero(&dev->ref); | 
 | } | 
 |  | 
 | static struct nvme_rdma_device * | 
 | nvme_rdma_find_get_device(struct rdma_cm_id *cm_id) | 
 | { | 
 | 	struct nvme_rdma_device *ndev; | 
 |  | 
 | 	mutex_lock(&device_list_mutex); | 
 | 	list_for_each_entry(ndev, &device_list, entry) { | 
 | 		if (ndev->dev->node_guid == cm_id->device->node_guid && | 
 | 		    nvme_rdma_dev_get(ndev)) | 
 | 			goto out_unlock; | 
 | 	} | 
 |  | 
 | 	ndev = kzalloc(sizeof(*ndev), GFP_KERNEL); | 
 | 	if (!ndev) | 
 | 		goto out_err; | 
 |  | 
 | 	ndev->dev = cm_id->device; | 
 | 	kref_init(&ndev->ref); | 
 |  | 
 | 	ndev->pd = ib_alloc_pd(ndev->dev, | 
 | 		register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); | 
 | 	if (IS_ERR(ndev->pd)) | 
 | 		goto out_free_dev; | 
 |  | 
 | 	if (!(ndev->dev->attrs.device_cap_flags & | 
 | 	      IB_DEVICE_MEM_MGT_EXTENSIONS)) { | 
 | 		dev_err(&ndev->dev->dev, | 
 | 			"Memory registrations not supported.\n"); | 
 | 		goto out_free_pd; | 
 | 	} | 
 |  | 
 | 	ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS, | 
 | 					ndev->dev->attrs.max_send_sge - 1); | 
 | 	list_add(&ndev->entry, &device_list); | 
 | out_unlock: | 
 | 	mutex_unlock(&device_list_mutex); | 
 | 	return ndev; | 
 |  | 
 | out_free_pd: | 
 | 	ib_dealloc_pd(ndev->pd); | 
 | out_free_dev: | 
 | 	kfree(ndev); | 
 | out_err: | 
 | 	mutex_unlock(&device_list_mutex); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	struct nvme_rdma_device *dev; | 
 | 	struct ib_device *ibdev; | 
 |  | 
 | 	if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags)) | 
 | 		return; | 
 |  | 
 | 	dev = queue->device; | 
 | 	ibdev = dev->dev; | 
 |  | 
 | 	ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs); | 
 |  | 
 | 	/* | 
 | 	 * The cm_id object might have been destroyed during RDMA connection | 
 | 	 * establishment error flow to avoid getting other cma events, thus | 
 | 	 * the destruction of the QP shouldn't use rdma_cm API. | 
 | 	 */ | 
 | 	ib_destroy_qp(queue->qp); | 
 | 	ib_free_cq(queue->ib_cq); | 
 |  | 
 | 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, | 
 | 			sizeof(struct nvme_completion), DMA_FROM_DEVICE); | 
 |  | 
 | 	nvme_rdma_dev_put(dev); | 
 | } | 
 |  | 
 | static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev) | 
 | { | 
 | 	return min_t(u32, NVME_RDMA_MAX_SEGMENTS, | 
 | 		     ibdev->attrs.max_fast_reg_page_list_len); | 
 | } | 
 |  | 
 | static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	struct ib_device *ibdev; | 
 | 	const int send_wr_factor = 3;			/* MR, SEND, INV */ | 
 | 	const int cq_factor = send_wr_factor + 1;	/* + RECV */ | 
 | 	int comp_vector, idx = nvme_rdma_queue_idx(queue); | 
 | 	int ret; | 
 |  | 
 | 	queue->device = nvme_rdma_find_get_device(queue->cm_id); | 
 | 	if (!queue->device) { | 
 | 		dev_err(queue->cm_id->device->dev.parent, | 
 | 			"no client data found!\n"); | 
 | 		return -ECONNREFUSED; | 
 | 	} | 
 | 	ibdev = queue->device->dev; | 
 |  | 
 | 	/* | 
 | 	 * Spread I/O queues completion vectors according their queue index. | 
 | 	 * Admin queues can always go on completion vector 0. | 
 | 	 */ | 
 | 	comp_vector = idx == 0 ? idx : idx - 1; | 
 |  | 
 | 	/* +1 for ib_stop_cq */ | 
 | 	queue->ib_cq = ib_alloc_cq(ibdev, queue, | 
 | 				cq_factor * queue->queue_size + 1, | 
 | 				comp_vector, IB_POLL_SOFTIRQ); | 
 | 	if (IS_ERR(queue->ib_cq)) { | 
 | 		ret = PTR_ERR(queue->ib_cq); | 
 | 		goto out_put_dev; | 
 | 	} | 
 |  | 
 | 	ret = nvme_rdma_create_qp(queue, send_wr_factor); | 
 | 	if (ret) | 
 | 		goto out_destroy_ib_cq; | 
 |  | 
 | 	queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size, | 
 | 			sizeof(struct nvme_completion), DMA_FROM_DEVICE); | 
 | 	if (!queue->rsp_ring) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_destroy_qp; | 
 | 	} | 
 |  | 
 | 	ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs, | 
 | 			      queue->queue_size, | 
 | 			      IB_MR_TYPE_MEM_REG, | 
 | 			      nvme_rdma_get_max_fr_pages(ibdev)); | 
 | 	if (ret) { | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 			"failed to initialize MR pool sized %d for QID %d\n", | 
 | 			queue->queue_size, idx); | 
 | 		goto out_destroy_ring; | 
 | 	} | 
 |  | 
 | 	set_bit(NVME_RDMA_Q_TR_READY, &queue->flags); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_destroy_ring: | 
 | 	nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size, | 
 | 			    sizeof(struct nvme_completion), DMA_FROM_DEVICE); | 
 | out_destroy_qp: | 
 | 	rdma_destroy_qp(queue->cm_id); | 
 | out_destroy_ib_cq: | 
 | 	ib_free_cq(queue->ib_cq); | 
 | out_put_dev: | 
 | 	nvme_rdma_dev_put(queue->device); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl, | 
 | 		int idx, size_t queue_size) | 
 | { | 
 | 	struct nvme_rdma_queue *queue; | 
 | 	struct sockaddr *src_addr = NULL; | 
 | 	int ret; | 
 |  | 
 | 	queue = &ctrl->queues[idx]; | 
 | 	queue->ctrl = ctrl; | 
 | 	init_completion(&queue->cm_done); | 
 |  | 
 | 	if (idx > 0) | 
 | 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16; | 
 | 	else | 
 | 		queue->cmnd_capsule_len = sizeof(struct nvme_command); | 
 |  | 
 | 	queue->queue_size = queue_size; | 
 |  | 
 | 	queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue, | 
 | 			RDMA_PS_TCP, IB_QPT_RC); | 
 | 	if (IS_ERR(queue->cm_id)) { | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id)); | 
 | 		return PTR_ERR(queue->cm_id); | 
 | 	} | 
 |  | 
 | 	if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) | 
 | 		src_addr = (struct sockaddr *)&ctrl->src_addr; | 
 |  | 
 | 	queue->cm_error = -ETIMEDOUT; | 
 | 	ret = rdma_resolve_addr(queue->cm_id, src_addr, | 
 | 			(struct sockaddr *)&ctrl->addr, | 
 | 			NVME_RDMA_CONNECT_TIMEOUT_MS); | 
 | 	if (ret) { | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"rdma_resolve_addr failed (%d).\n", ret); | 
 | 		goto out_destroy_cm_id; | 
 | 	} | 
 |  | 
 | 	ret = nvme_rdma_wait_for_cm(queue); | 
 | 	if (ret) { | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"rdma connection establishment failed (%d)\n", ret); | 
 | 		goto out_destroy_cm_id; | 
 | 	} | 
 |  | 
 | 	set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_destroy_cm_id: | 
 | 	rdma_destroy_id(queue->cm_id); | 
 | 	nvme_rdma_destroy_queue_ib(queue); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags)) | 
 | 		return; | 
 |  | 
 | 	rdma_disconnect(queue->cm_id); | 
 | 	ib_drain_qp(queue->qp); | 
 | } | 
 |  | 
 | static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags)) | 
 | 		return; | 
 |  | 
 | 	nvme_rdma_destroy_queue_ib(queue); | 
 | 	rdma_destroy_id(queue->cm_id); | 
 | } | 
 |  | 
 | static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i < ctrl->ctrl.queue_count; i++) | 
 | 		nvme_rdma_free_queue(&ctrl->queues[i]); | 
 | } | 
 |  | 
 | static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 1; i < ctrl->ctrl.queue_count; i++) | 
 | 		nvme_rdma_stop_queue(&ctrl->queues[i]); | 
 | } | 
 |  | 
 | static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (idx) | 
 | 		ret = nvmf_connect_io_queue(&ctrl->ctrl, idx); | 
 | 	else | 
 | 		ret = nvmf_connect_admin_queue(&ctrl->ctrl); | 
 |  | 
 | 	if (!ret) | 
 | 		set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[idx].flags); | 
 | 	else | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			"failed to connect queue: %d ret=%d\n", idx, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl) | 
 | { | 
 | 	int i, ret = 0; | 
 |  | 
 | 	for (i = 1; i < ctrl->ctrl.queue_count; i++) { | 
 | 		ret = nvme_rdma_start_queue(ctrl, i); | 
 | 		if (ret) | 
 | 			goto out_stop_queues; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_stop_queues: | 
 | 	for (i--; i >= 1; i--) | 
 | 		nvme_rdma_stop_queue(&ctrl->queues[i]); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl) | 
 | { | 
 | 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts; | 
 | 	struct ib_device *ibdev = ctrl->device->dev; | 
 | 	unsigned int nr_io_queues; | 
 | 	int i, ret; | 
 |  | 
 | 	nr_io_queues = min(opts->nr_io_queues, num_online_cpus()); | 
 |  | 
 | 	/* | 
 | 	 * we map queues according to the device irq vectors for | 
 | 	 * optimal locality so we don't need more queues than | 
 | 	 * completion vectors. | 
 | 	 */ | 
 | 	nr_io_queues = min_t(unsigned int, nr_io_queues, | 
 | 				ibdev->num_comp_vectors); | 
 |  | 
 | 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ctrl->ctrl.queue_count = nr_io_queues + 1; | 
 | 	if (ctrl->ctrl.queue_count < 2) | 
 | 		return 0; | 
 |  | 
 | 	dev_info(ctrl->ctrl.device, | 
 | 		"creating %d I/O queues.\n", nr_io_queues); | 
 |  | 
 | 	for (i = 1; i < ctrl->ctrl.queue_count; i++) { | 
 | 		ret = nvme_rdma_alloc_queue(ctrl, i, | 
 | 				ctrl->ctrl.sqsize + 1); | 
 | 		if (ret) | 
 | 			goto out_free_queues; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_queues: | 
 | 	for (i--; i >= 1; i--) | 
 | 		nvme_rdma_free_queue(&ctrl->queues[i]); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_rdma_free_tagset(struct nvme_ctrl *nctrl, | 
 | 		struct blk_mq_tag_set *set) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); | 
 |  | 
 | 	blk_mq_free_tag_set(set); | 
 | 	nvme_rdma_dev_put(ctrl->device); | 
 | } | 
 |  | 
 | static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl, | 
 | 		bool admin) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); | 
 | 	struct blk_mq_tag_set *set; | 
 | 	int ret; | 
 |  | 
 | 	if (admin) { | 
 | 		set = &ctrl->admin_tag_set; | 
 | 		memset(set, 0, sizeof(*set)); | 
 | 		set->ops = &nvme_rdma_admin_mq_ops; | 
 | 		set->queue_depth = NVME_AQ_MQ_TAG_DEPTH; | 
 | 		set->reserved_tags = 2; /* connect + keep-alive */ | 
 | 		set->numa_node = NUMA_NO_NODE; | 
 | 		set->cmd_size = sizeof(struct nvme_rdma_request) + | 
 | 			SG_CHUNK_SIZE * sizeof(struct scatterlist); | 
 | 		set->driver_data = ctrl; | 
 | 		set->nr_hw_queues = 1; | 
 | 		set->timeout = ADMIN_TIMEOUT; | 
 | 		set->flags = BLK_MQ_F_NO_SCHED; | 
 | 	} else { | 
 | 		set = &ctrl->tag_set; | 
 | 		memset(set, 0, sizeof(*set)); | 
 | 		set->ops = &nvme_rdma_mq_ops; | 
 | 		set->queue_depth = nctrl->sqsize + 1; | 
 | 		set->reserved_tags = 1; /* fabric connect */ | 
 | 		set->numa_node = NUMA_NO_NODE; | 
 | 		set->flags = BLK_MQ_F_SHOULD_MERGE; | 
 | 		set->cmd_size = sizeof(struct nvme_rdma_request) + | 
 | 			SG_CHUNK_SIZE * sizeof(struct scatterlist); | 
 | 		set->driver_data = ctrl; | 
 | 		set->nr_hw_queues = nctrl->queue_count - 1; | 
 | 		set->timeout = NVME_IO_TIMEOUT; | 
 | 	} | 
 |  | 
 | 	ret = blk_mq_alloc_tag_set(set); | 
 | 	if (ret) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * We need a reference on the device as long as the tag_set is alive, | 
 | 	 * as the MRs in the request structures need a valid ib_device. | 
 | 	 */ | 
 | 	ret = nvme_rdma_dev_get(ctrl->device); | 
 | 	if (!ret) { | 
 | 		ret = -EINVAL; | 
 | 		goto out_free_tagset; | 
 | 	} | 
 |  | 
 | 	return set; | 
 |  | 
 | out_free_tagset: | 
 | 	blk_mq_free_tag_set(set); | 
 | out: | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl, | 
 | 		bool remove) | 
 | { | 
 | 	if (remove) { | 
 | 		blk_cleanup_queue(ctrl->ctrl.admin_q); | 
 | 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); | 
 | 	} | 
 | 	if (ctrl->async_event_sqe.data) { | 
 | 		nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, | 
 | 				sizeof(struct nvme_command), DMA_TO_DEVICE); | 
 | 		ctrl->async_event_sqe.data = NULL; | 
 | 	} | 
 | 	nvme_rdma_free_queue(&ctrl->queues[0]); | 
 | } | 
 |  | 
 | static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl, | 
 | 		bool new) | 
 | { | 
 | 	int error; | 
 |  | 
 | 	error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH); | 
 | 	if (error) | 
 | 		return error; | 
 |  | 
 | 	ctrl->device = ctrl->queues[0].device; | 
 |  | 
 | 	ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev); | 
 |  | 
 | 	error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe, | 
 | 			sizeof(struct nvme_command), DMA_TO_DEVICE); | 
 | 	if (error) | 
 | 		goto out_free_queue; | 
 |  | 
 | 	if (new) { | 
 | 		ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true); | 
 | 		if (IS_ERR(ctrl->ctrl.admin_tagset)) { | 
 | 			error = PTR_ERR(ctrl->ctrl.admin_tagset); | 
 | 			goto out_free_async_qe; | 
 | 		} | 
 |  | 
 | 		ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set); | 
 | 		if (IS_ERR(ctrl->ctrl.admin_q)) { | 
 | 			error = PTR_ERR(ctrl->ctrl.admin_q); | 
 | 			goto out_free_tagset; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	error = nvme_rdma_start_queue(ctrl, 0); | 
 | 	if (error) | 
 | 		goto out_cleanup_queue; | 
 |  | 
 | 	error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP, | 
 | 			&ctrl->ctrl.cap); | 
 | 	if (error) { | 
 | 		dev_err(ctrl->ctrl.device, | 
 | 			"prop_get NVME_REG_CAP failed\n"); | 
 | 		goto out_stop_queue; | 
 | 	} | 
 |  | 
 | 	ctrl->ctrl.sqsize = | 
 | 		min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize); | 
 |  | 
 | 	error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); | 
 | 	if (error) | 
 | 		goto out_stop_queue; | 
 |  | 
 | 	ctrl->ctrl.max_hw_sectors = | 
 | 		(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9); | 
 |  | 
 | 	error = nvme_init_identify(&ctrl->ctrl); | 
 | 	if (error) | 
 | 		goto out_stop_queue; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_stop_queue: | 
 | 	nvme_rdma_stop_queue(&ctrl->queues[0]); | 
 | out_cleanup_queue: | 
 | 	if (new) | 
 | 		blk_cleanup_queue(ctrl->ctrl.admin_q); | 
 | out_free_tagset: | 
 | 	if (new) | 
 | 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.admin_tagset); | 
 | out_free_async_qe: | 
 | 	nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe, | 
 | 		sizeof(struct nvme_command), DMA_TO_DEVICE); | 
 | 	ctrl->async_event_sqe.data = NULL; | 
 | out_free_queue: | 
 | 	nvme_rdma_free_queue(&ctrl->queues[0]); | 
 | 	return error; | 
 | } | 
 |  | 
 | static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl, | 
 | 		bool remove) | 
 | { | 
 | 	if (remove) { | 
 | 		blk_cleanup_queue(ctrl->ctrl.connect_q); | 
 | 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); | 
 | 	} | 
 | 	nvme_rdma_free_io_queues(ctrl); | 
 | } | 
 |  | 
 | static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = nvme_rdma_alloc_io_queues(ctrl); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (new) { | 
 | 		ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false); | 
 | 		if (IS_ERR(ctrl->ctrl.tagset)) { | 
 | 			ret = PTR_ERR(ctrl->ctrl.tagset); | 
 | 			goto out_free_io_queues; | 
 | 		} | 
 |  | 
 | 		ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set); | 
 | 		if (IS_ERR(ctrl->ctrl.connect_q)) { | 
 | 			ret = PTR_ERR(ctrl->ctrl.connect_q); | 
 | 			goto out_free_tag_set; | 
 | 		} | 
 | 	} else { | 
 | 		blk_mq_update_nr_hw_queues(&ctrl->tag_set, | 
 | 			ctrl->ctrl.queue_count - 1); | 
 | 	} | 
 |  | 
 | 	ret = nvme_rdma_start_io_queues(ctrl); | 
 | 	if (ret) | 
 | 		goto out_cleanup_connect_q; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_cleanup_connect_q: | 
 | 	if (new) | 
 | 		blk_cleanup_queue(ctrl->ctrl.connect_q); | 
 | out_free_tag_set: | 
 | 	if (new) | 
 | 		nvme_rdma_free_tagset(&ctrl->ctrl, ctrl->ctrl.tagset); | 
 | out_free_io_queues: | 
 | 	nvme_rdma_free_io_queues(ctrl); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl, | 
 | 		bool remove) | 
 | { | 
 | 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q); | 
 | 	nvme_rdma_stop_queue(&ctrl->queues[0]); | 
 | 	if (ctrl->ctrl.admin_tagset) | 
 | 		blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset, | 
 | 			nvme_cancel_request, &ctrl->ctrl); | 
 | 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q); | 
 | 	nvme_rdma_destroy_admin_queue(ctrl, remove); | 
 | } | 
 |  | 
 | static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl, | 
 | 		bool remove) | 
 | { | 
 | 	if (ctrl->ctrl.queue_count > 1) { | 
 | 		nvme_stop_queues(&ctrl->ctrl); | 
 | 		nvme_rdma_stop_io_queues(ctrl); | 
 | 		if (ctrl->ctrl.tagset) | 
 | 			blk_mq_tagset_busy_iter(ctrl->ctrl.tagset, | 
 | 				nvme_cancel_request, &ctrl->ctrl); | 
 | 		if (remove) | 
 | 			nvme_start_queues(&ctrl->ctrl); | 
 | 		nvme_rdma_destroy_io_queues(ctrl, remove); | 
 | 	} | 
 | } | 
 |  | 
 | static void nvme_rdma_stop_ctrl(struct nvme_ctrl *nctrl) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); | 
 |  | 
 | 	cancel_work_sync(&ctrl->err_work); | 
 | 	cancel_delayed_work_sync(&ctrl->reconnect_work); | 
 | } | 
 |  | 
 | static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl); | 
 |  | 
 | 	if (list_empty(&ctrl->list)) | 
 | 		goto free_ctrl; | 
 |  | 
 | 	mutex_lock(&nvme_rdma_ctrl_mutex); | 
 | 	list_del(&ctrl->list); | 
 | 	mutex_unlock(&nvme_rdma_ctrl_mutex); | 
 |  | 
 | 	nvmf_free_options(nctrl->opts); | 
 | free_ctrl: | 
 | 	kfree(ctrl->queues); | 
 | 	kfree(ctrl); | 
 | } | 
 |  | 
 | static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl) | 
 | { | 
 | 	/* If we are resetting/deleting then do nothing */ | 
 | 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) { | 
 | 		WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW || | 
 | 			ctrl->ctrl.state == NVME_CTRL_LIVE); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (nvmf_should_reconnect(&ctrl->ctrl)) { | 
 | 		dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n", | 
 | 			ctrl->ctrl.opts->reconnect_delay); | 
 | 		queue_delayed_work(nvme_wq, &ctrl->reconnect_work, | 
 | 				ctrl->ctrl.opts->reconnect_delay * HZ); | 
 | 	} else { | 
 | 		nvme_delete_ctrl(&ctrl->ctrl); | 
 | 	} | 
 | } | 
 |  | 
 | static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new) | 
 | { | 
 | 	int ret = -EINVAL; | 
 | 	bool changed; | 
 |  | 
 | 	ret = nvme_rdma_configure_admin_queue(ctrl, new); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	if (ctrl->ctrl.icdoff) { | 
 | 		dev_err(ctrl->ctrl.device, "icdoff is not supported!\n"); | 
 | 		goto destroy_admin; | 
 | 	} | 
 |  | 
 | 	if (!(ctrl->ctrl.sgls & (1 << 2))) { | 
 | 		dev_err(ctrl->ctrl.device, | 
 | 			"Mandatory keyed sgls are not supported!\n"); | 
 | 		goto destroy_admin; | 
 | 	} | 
 |  | 
 | 	if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) { | 
 | 		dev_warn(ctrl->ctrl.device, | 
 | 			"queue_size %zu > ctrl sqsize %u, clamping down\n", | 
 | 			ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1); | 
 | 	} | 
 |  | 
 | 	if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) { | 
 | 		dev_warn(ctrl->ctrl.device, | 
 | 			"sqsize %u > ctrl maxcmd %u, clamping down\n", | 
 | 			ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd); | 
 | 		ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1; | 
 | 	} | 
 |  | 
 | 	if (ctrl->ctrl.sgls & (1 << 20)) | 
 | 		ctrl->use_inline_data = true; | 
 |  | 
 | 	if (ctrl->ctrl.queue_count > 1) { | 
 | 		ret = nvme_rdma_configure_io_queues(ctrl, new); | 
 | 		if (ret) | 
 | 			goto destroy_admin; | 
 | 	} | 
 |  | 
 | 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE); | 
 | 	if (!changed) { | 
 | 		/* state change failure is ok if we're in DELETING state */ | 
 | 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); | 
 | 		ret = -EINVAL; | 
 | 		goto destroy_io; | 
 | 	} | 
 |  | 
 | 	nvme_start_ctrl(&ctrl->ctrl); | 
 | 	return 0; | 
 |  | 
 | destroy_io: | 
 | 	if (ctrl->ctrl.queue_count > 1) | 
 | 		nvme_rdma_destroy_io_queues(ctrl, new); | 
 | destroy_admin: | 
 | 	nvme_rdma_stop_queue(&ctrl->queues[0]); | 
 | 	nvme_rdma_destroy_admin_queue(ctrl, new); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work), | 
 | 			struct nvme_rdma_ctrl, reconnect_work); | 
 |  | 
 | 	++ctrl->ctrl.nr_reconnects; | 
 |  | 
 | 	if (nvme_rdma_setup_ctrl(ctrl, false)) | 
 | 		goto requeue; | 
 |  | 
 | 	dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n", | 
 | 			ctrl->ctrl.nr_reconnects); | 
 |  | 
 | 	ctrl->ctrl.nr_reconnects = 0; | 
 |  | 
 | 	return; | 
 |  | 
 | requeue: | 
 | 	dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n", | 
 | 			ctrl->ctrl.nr_reconnects); | 
 | 	nvme_rdma_reconnect_or_remove(ctrl); | 
 | } | 
 |  | 
 | static void nvme_rdma_error_recovery_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = container_of(work, | 
 | 			struct nvme_rdma_ctrl, err_work); | 
 |  | 
 | 	nvme_stop_keep_alive(&ctrl->ctrl); | 
 | 	nvme_rdma_teardown_io_queues(ctrl, false); | 
 | 	nvme_start_queues(&ctrl->ctrl); | 
 | 	nvme_rdma_teardown_admin_queue(ctrl, false); | 
 |  | 
 | 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { | 
 | 		/* state change failure is ok if we're in DELETING state */ | 
 | 		WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	nvme_rdma_reconnect_or_remove(ctrl); | 
 | } | 
 |  | 
 | static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl) | 
 | { | 
 | 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING)) | 
 | 		return; | 
 |  | 
 | 	queue_work(nvme_wq, &ctrl->err_work); | 
 | } | 
 |  | 
 | static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc, | 
 | 		const char *op) | 
 | { | 
 | 	struct nvme_rdma_queue *queue = cq->cq_context; | 
 | 	struct nvme_rdma_ctrl *ctrl = queue->ctrl; | 
 |  | 
 | 	if (ctrl->ctrl.state == NVME_CTRL_LIVE) | 
 | 		dev_info(ctrl->ctrl.device, | 
 | 			     "%s for CQE 0x%p failed with status %s (%d)\n", | 
 | 			     op, wc->wr_cqe, | 
 | 			     ib_wc_status_msg(wc->status), wc->status); | 
 | 	nvme_rdma_error_recovery(ctrl); | 
 | } | 
 |  | 
 | static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc) | 
 | { | 
 | 	if (unlikely(wc->status != IB_WC_SUCCESS)) | 
 | 		nvme_rdma_wr_error(cq, wc, "MEMREG"); | 
 | } | 
 |  | 
 | static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc) | 
 | { | 
 | 	struct nvme_rdma_request *req = | 
 | 		container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe); | 
 | 	struct request *rq = blk_mq_rq_from_pdu(req); | 
 |  | 
 | 	if (unlikely(wc->status != IB_WC_SUCCESS)) { | 
 | 		nvme_rdma_wr_error(cq, wc, "LOCAL_INV"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (refcount_dec_and_test(&req->ref)) | 
 | 		nvme_end_request(rq, req->status, req->result); | 
 |  | 
 | } | 
 |  | 
 | static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue, | 
 | 		struct nvme_rdma_request *req) | 
 | { | 
 | 	struct ib_send_wr wr = { | 
 | 		.opcode		    = IB_WR_LOCAL_INV, | 
 | 		.next		    = NULL, | 
 | 		.num_sge	    = 0, | 
 | 		.send_flags	    = IB_SEND_SIGNALED, | 
 | 		.ex.invalidate_rkey = req->mr->rkey, | 
 | 	}; | 
 |  | 
 | 	req->reg_cqe.done = nvme_rdma_inv_rkey_done; | 
 | 	wr.wr_cqe = &req->reg_cqe; | 
 |  | 
 | 	return ib_post_send(queue->qp, &wr, NULL); | 
 | } | 
 |  | 
 | static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue, | 
 | 		struct request *rq) | 
 | { | 
 | 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_rdma_device *dev = queue->device; | 
 | 	struct ib_device *ibdev = dev->dev; | 
 |  | 
 | 	if (!blk_rq_payload_bytes(rq)) | 
 | 		return; | 
 |  | 
 | 	if (req->mr) { | 
 | 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); | 
 | 		req->mr = NULL; | 
 | 	} | 
 |  | 
 | 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl, | 
 | 			req->nents, rq_data_dir(rq) == | 
 | 				    WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
 |  | 
 | 	nvme_cleanup_cmd(rq); | 
 | 	sg_free_table_chained(&req->sg_table, true); | 
 | } | 
 |  | 
 | static int nvme_rdma_set_sg_null(struct nvme_command *c) | 
 | { | 
 | 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; | 
 |  | 
 | 	sg->addr = 0; | 
 | 	put_unaligned_le24(0, sg->length); | 
 | 	put_unaligned_le32(0, sg->key); | 
 | 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue, | 
 | 		struct nvme_rdma_request *req, struct nvme_command *c, | 
 | 		int count) | 
 | { | 
 | 	struct nvme_sgl_desc *sg = &c->common.dptr.sgl; | 
 | 	struct scatterlist *sgl = req->sg_table.sgl; | 
 | 	struct ib_sge *sge = &req->sge[1]; | 
 | 	u32 len = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < count; i++, sgl++, sge++) { | 
 | 		sge->addr = sg_dma_address(sgl); | 
 | 		sge->length = sg_dma_len(sgl); | 
 | 		sge->lkey = queue->device->pd->local_dma_lkey; | 
 | 		len += sge->length; | 
 | 	} | 
 |  | 
 | 	sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff); | 
 | 	sg->length = cpu_to_le32(len); | 
 | 	sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET; | 
 |  | 
 | 	req->num_sge += count; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue, | 
 | 		struct nvme_rdma_request *req, struct nvme_command *c) | 
 | { | 
 | 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; | 
 |  | 
 | 	sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl)); | 
 | 	put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length); | 
 | 	put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key); | 
 | 	sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue, | 
 | 		struct nvme_rdma_request *req, struct nvme_command *c, | 
 | 		int count) | 
 | { | 
 | 	struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl; | 
 | 	int nr; | 
 |  | 
 | 	req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs); | 
 | 	if (WARN_ON_ONCE(!req->mr)) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	/* | 
 | 	 * Align the MR to a 4K page size to match the ctrl page size and | 
 | 	 * the block virtual boundary. | 
 | 	 */ | 
 | 	nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K); | 
 | 	if (unlikely(nr < count)) { | 
 | 		ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr); | 
 | 		req->mr = NULL; | 
 | 		if (nr < 0) | 
 | 			return nr; | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey)); | 
 |  | 
 | 	req->reg_cqe.done = nvme_rdma_memreg_done; | 
 | 	memset(&req->reg_wr, 0, sizeof(req->reg_wr)); | 
 | 	req->reg_wr.wr.opcode = IB_WR_REG_MR; | 
 | 	req->reg_wr.wr.wr_cqe = &req->reg_cqe; | 
 | 	req->reg_wr.wr.num_sge = 0; | 
 | 	req->reg_wr.mr = req->mr; | 
 | 	req->reg_wr.key = req->mr->rkey; | 
 | 	req->reg_wr.access = IB_ACCESS_LOCAL_WRITE | | 
 | 			     IB_ACCESS_REMOTE_READ | | 
 | 			     IB_ACCESS_REMOTE_WRITE; | 
 |  | 
 | 	sg->addr = cpu_to_le64(req->mr->iova); | 
 | 	put_unaligned_le24(req->mr->length, sg->length); | 
 | 	put_unaligned_le32(req->mr->rkey, sg->key); | 
 | 	sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) | | 
 | 			NVME_SGL_FMT_INVALIDATE; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_rdma_map_data(struct nvme_rdma_queue *queue, | 
 | 		struct request *rq, struct nvme_command *c) | 
 | { | 
 | 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_rdma_device *dev = queue->device; | 
 | 	struct ib_device *ibdev = dev->dev; | 
 | 	int count, ret; | 
 |  | 
 | 	req->num_sge = 1; | 
 | 	refcount_set(&req->ref, 2); /* send and recv completions */ | 
 |  | 
 | 	c->common.flags |= NVME_CMD_SGL_METABUF; | 
 |  | 
 | 	if (!blk_rq_payload_bytes(rq)) | 
 | 		return nvme_rdma_set_sg_null(c); | 
 |  | 
 | 	req->sg_table.sgl = req->first_sgl; | 
 | 	ret = sg_alloc_table_chained(&req->sg_table, | 
 | 			blk_rq_nr_phys_segments(rq), req->sg_table.sgl); | 
 | 	if (ret) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl); | 
 |  | 
 | 	count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents, | 
 | 		    rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
 | 	if (unlikely(count <= 0)) { | 
 | 		ret = -EIO; | 
 | 		goto out_free_table; | 
 | 	} | 
 |  | 
 | 	if (count <= dev->num_inline_segments) { | 
 | 		if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) && | 
 | 		    queue->ctrl->use_inline_data && | 
 | 		    blk_rq_payload_bytes(rq) <= | 
 | 				nvme_rdma_inline_data_size(queue)) { | 
 | 			ret = nvme_rdma_map_sg_inline(queue, req, c, count); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) { | 
 | 			ret = nvme_rdma_map_sg_single(queue, req, c); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = nvme_rdma_map_sg_fr(queue, req, c, count); | 
 | out: | 
 | 	if (unlikely(ret)) | 
 | 		goto out_unmap_sg; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_unmap_sg: | 
 | 	ib_dma_unmap_sg(ibdev, req->sg_table.sgl, | 
 | 			req->nents, rq_data_dir(rq) == | 
 | 			WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
 | out_free_table: | 
 | 	sg_free_table_chained(&req->sg_table, true); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc) | 
 | { | 
 | 	struct nvme_rdma_qe *qe = | 
 | 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); | 
 | 	struct nvme_rdma_request *req = | 
 | 		container_of(qe, struct nvme_rdma_request, sqe); | 
 | 	struct request *rq = blk_mq_rq_from_pdu(req); | 
 |  | 
 | 	if (unlikely(wc->status != IB_WC_SUCCESS)) { | 
 | 		nvme_rdma_wr_error(cq, wc, "SEND"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (refcount_dec_and_test(&req->ref)) | 
 | 		nvme_end_request(rq, req->status, req->result); | 
 | } | 
 |  | 
 | static int nvme_rdma_post_send(struct nvme_rdma_queue *queue, | 
 | 		struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge, | 
 | 		struct ib_send_wr *first) | 
 | { | 
 | 	struct ib_send_wr wr; | 
 | 	int ret; | 
 |  | 
 | 	sge->addr   = qe->dma; | 
 | 	sge->length = sizeof(struct nvme_command), | 
 | 	sge->lkey   = queue->device->pd->local_dma_lkey; | 
 |  | 
 | 	wr.next       = NULL; | 
 | 	wr.wr_cqe     = &qe->cqe; | 
 | 	wr.sg_list    = sge; | 
 | 	wr.num_sge    = num_sge; | 
 | 	wr.opcode     = IB_WR_SEND; | 
 | 	wr.send_flags = IB_SEND_SIGNALED; | 
 |  | 
 | 	if (first) | 
 | 		first->next = ≀ | 
 | 	else | 
 | 		first = ≀ | 
 |  | 
 | 	ret = ib_post_send(queue->qp, first, NULL); | 
 | 	if (unlikely(ret)) { | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 			     "%s failed with error code %d\n", __func__, ret); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue, | 
 | 		struct nvme_rdma_qe *qe) | 
 | { | 
 | 	struct ib_recv_wr wr; | 
 | 	struct ib_sge list; | 
 | 	int ret; | 
 |  | 
 | 	list.addr   = qe->dma; | 
 | 	list.length = sizeof(struct nvme_completion); | 
 | 	list.lkey   = queue->device->pd->local_dma_lkey; | 
 |  | 
 | 	qe->cqe.done = nvme_rdma_recv_done; | 
 |  | 
 | 	wr.next     = NULL; | 
 | 	wr.wr_cqe   = &qe->cqe; | 
 | 	wr.sg_list  = &list; | 
 | 	wr.num_sge  = 1; | 
 |  | 
 | 	ret = ib_post_recv(queue->qp, &wr, NULL); | 
 | 	if (unlikely(ret)) { | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 			"%s failed with error code %d\n", __func__, ret); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	u32 queue_idx = nvme_rdma_queue_idx(queue); | 
 |  | 
 | 	if (queue_idx == 0) | 
 | 		return queue->ctrl->admin_tag_set.tags[queue_idx]; | 
 | 	return queue->ctrl->tag_set.tags[queue_idx - 1]; | 
 | } | 
 |  | 
 | static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc) | 
 | { | 
 | 	if (unlikely(wc->status != IB_WC_SUCCESS)) | 
 | 		nvme_rdma_wr_error(cq, wc, "ASYNC"); | 
 | } | 
 |  | 
 | static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg); | 
 | 	struct nvme_rdma_queue *queue = &ctrl->queues[0]; | 
 | 	struct ib_device *dev = queue->device->dev; | 
 | 	struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe; | 
 | 	struct nvme_command *cmd = sqe->data; | 
 | 	struct ib_sge sge; | 
 | 	int ret; | 
 |  | 
 | 	ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE); | 
 |  | 
 | 	memset(cmd, 0, sizeof(*cmd)); | 
 | 	cmd->common.opcode = nvme_admin_async_event; | 
 | 	cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH; | 
 | 	cmd->common.flags |= NVME_CMD_SGL_METABUF; | 
 | 	nvme_rdma_set_sg_null(cmd); | 
 |  | 
 | 	sqe->cqe.done = nvme_rdma_async_done; | 
 |  | 
 | 	ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd), | 
 | 			DMA_TO_DEVICE); | 
 |  | 
 | 	ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL); | 
 | 	WARN_ON_ONCE(ret); | 
 | } | 
 |  | 
 | static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue, | 
 | 		struct nvme_completion *cqe, struct ib_wc *wc, int tag) | 
 | { | 
 | 	struct request *rq; | 
 | 	struct nvme_rdma_request *req; | 
 | 	int ret = 0; | 
 |  | 
 | 	rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id); | 
 | 	if (!rq) { | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 			"tag 0x%x on QP %#x not found\n", | 
 | 			cqe->command_id, queue->qp->qp_num); | 
 | 		nvme_rdma_error_recovery(queue->ctrl); | 
 | 		return ret; | 
 | 	} | 
 | 	req = blk_mq_rq_to_pdu(rq); | 
 |  | 
 | 	req->status = cqe->status; | 
 | 	req->result = cqe->result; | 
 |  | 
 | 	if (wc->wc_flags & IB_WC_WITH_INVALIDATE) { | 
 | 		if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) { | 
 | 			dev_err(queue->ctrl->ctrl.device, | 
 | 				"Bogus remote invalidation for rkey %#x\n", | 
 | 				req->mr->rkey); | 
 | 			nvme_rdma_error_recovery(queue->ctrl); | 
 | 		} | 
 | 	} else if (req->mr) { | 
 | 		ret = nvme_rdma_inv_rkey(queue, req); | 
 | 		if (unlikely(ret < 0)) { | 
 | 			dev_err(queue->ctrl->ctrl.device, | 
 | 				"Queueing INV WR for rkey %#x failed (%d)\n", | 
 | 				req->mr->rkey, ret); | 
 | 			nvme_rdma_error_recovery(queue->ctrl); | 
 | 		} | 
 | 		/* the local invalidation completion will end the request */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (refcount_dec_and_test(&req->ref)) { | 
 | 		if (rq->tag == tag) | 
 | 			ret = 1; | 
 | 		nvme_end_request(rq, req->status, req->result); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag) | 
 | { | 
 | 	struct nvme_rdma_qe *qe = | 
 | 		container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe); | 
 | 	struct nvme_rdma_queue *queue = cq->cq_context; | 
 | 	struct ib_device *ibdev = queue->device->dev; | 
 | 	struct nvme_completion *cqe = qe->data; | 
 | 	const size_t len = sizeof(struct nvme_completion); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (unlikely(wc->status != IB_WC_SUCCESS)) { | 
 | 		nvme_rdma_wr_error(cq, wc, "RECV"); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE); | 
 | 	/* | 
 | 	 * AEN requests are special as they don't time out and can | 
 | 	 * survive any kind of queue freeze and often don't respond to | 
 | 	 * aborts.  We don't even bother to allocate a struct request | 
 | 	 * for them but rather special case them here. | 
 | 	 */ | 
 | 	if (unlikely(nvme_rdma_queue_idx(queue) == 0 && | 
 | 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) | 
 | 		nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status, | 
 | 				&cqe->result); | 
 | 	else | 
 | 		ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag); | 
 | 	ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE); | 
 |  | 
 | 	nvme_rdma_post_recv(queue, qe); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc) | 
 | { | 
 | 	__nvme_rdma_recv_done(cq, wc, -1); | 
 | } | 
 |  | 
 | static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	int ret, i; | 
 |  | 
 | 	for (i = 0; i < queue->queue_size; i++) { | 
 | 		ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]); | 
 | 		if (ret) | 
 | 			goto out_destroy_queue_ib; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_destroy_queue_ib: | 
 | 	nvme_rdma_destroy_queue_ib(queue); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue, | 
 | 		struct rdma_cm_event *ev) | 
 | { | 
 | 	struct rdma_cm_id *cm_id = queue->cm_id; | 
 | 	int status = ev->status; | 
 | 	const char *rej_msg; | 
 | 	const struct nvme_rdma_cm_rej *rej_data; | 
 | 	u8 rej_data_len; | 
 |  | 
 | 	rej_msg = rdma_reject_msg(cm_id, status); | 
 | 	rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len); | 
 |  | 
 | 	if (rej_data && rej_data_len >= sizeof(u16)) { | 
 | 		u16 sts = le16_to_cpu(rej_data->sts); | 
 |  | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 		      "Connect rejected: status %d (%s) nvme status %d (%s).\n", | 
 | 		      status, rej_msg, sts, nvme_rdma_cm_msg(sts)); | 
 | 	} else { | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 			"Connect rejected: status %d (%s).\n", status, rej_msg); | 
 | 	} | 
 |  | 
 | 	return -ECONNRESET; | 
 | } | 
 |  | 
 | static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = nvme_rdma_create_queue_ib(queue); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS); | 
 | 	if (ret) { | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 			"rdma_resolve_route failed (%d).\n", | 
 | 			queue->cm_error); | 
 | 		goto out_destroy_queue; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_destroy_queue: | 
 | 	nvme_rdma_destroy_queue_ib(queue); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = queue->ctrl; | 
 | 	struct rdma_conn_param param = { }; | 
 | 	struct nvme_rdma_cm_req priv = { }; | 
 | 	int ret; | 
 |  | 
 | 	param.qp_num = queue->qp->qp_num; | 
 | 	param.flow_control = 1; | 
 |  | 
 | 	param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom; | 
 | 	/* maximum retry count */ | 
 | 	param.retry_count = 7; | 
 | 	param.rnr_retry_count = 7; | 
 | 	param.private_data = &priv; | 
 | 	param.private_data_len = sizeof(priv); | 
 |  | 
 | 	priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0); | 
 | 	priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue)); | 
 | 	/* | 
 | 	 * set the admin queue depth to the minimum size | 
 | 	 * specified by the Fabrics standard. | 
 | 	 */ | 
 | 	if (priv.qid == 0) { | 
 | 		priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH); | 
 | 		priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1); | 
 | 	} else { | 
 | 		/* | 
 | 		 * current interpretation of the fabrics spec | 
 | 		 * is at minimum you make hrqsize sqsize+1, or a | 
 | 		 * 1's based representation of sqsize. | 
 | 		 */ | 
 | 		priv.hrqsize = cpu_to_le16(queue->queue_size); | 
 | 		priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize); | 
 | 	} | 
 |  | 
 | 	ret = rdma_connect(queue->cm_id, ¶m); | 
 | 	if (ret) { | 
 | 		dev_err(ctrl->ctrl.device, | 
 | 			"rdma_connect failed (%d).\n", ret); | 
 | 		goto out_destroy_queue_ib; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_destroy_queue_ib: | 
 | 	nvme_rdma_destroy_queue_ib(queue); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id, | 
 | 		struct rdma_cm_event *ev) | 
 | { | 
 | 	struct nvme_rdma_queue *queue = cm_id->context; | 
 | 	int cm_error = 0; | 
 |  | 
 | 	dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n", | 
 | 		rdma_event_msg(ev->event), ev->event, | 
 | 		ev->status, cm_id); | 
 |  | 
 | 	switch (ev->event) { | 
 | 	case RDMA_CM_EVENT_ADDR_RESOLVED: | 
 | 		cm_error = nvme_rdma_addr_resolved(queue); | 
 | 		break; | 
 | 	case RDMA_CM_EVENT_ROUTE_RESOLVED: | 
 | 		cm_error = nvme_rdma_route_resolved(queue); | 
 | 		break; | 
 | 	case RDMA_CM_EVENT_ESTABLISHED: | 
 | 		queue->cm_error = nvme_rdma_conn_established(queue); | 
 | 		/* complete cm_done regardless of success/failure */ | 
 | 		complete(&queue->cm_done); | 
 | 		return 0; | 
 | 	case RDMA_CM_EVENT_REJECTED: | 
 | 		nvme_rdma_destroy_queue_ib(queue); | 
 | 		cm_error = nvme_rdma_conn_rejected(queue, ev); | 
 | 		break; | 
 | 	case RDMA_CM_EVENT_ROUTE_ERROR: | 
 | 	case RDMA_CM_EVENT_CONNECT_ERROR: | 
 | 	case RDMA_CM_EVENT_UNREACHABLE: | 
 | 		nvme_rdma_destroy_queue_ib(queue); | 
 | 		/* fall through */ | 
 | 	case RDMA_CM_EVENT_ADDR_ERROR: | 
 | 		dev_dbg(queue->ctrl->ctrl.device, | 
 | 			"CM error event %d\n", ev->event); | 
 | 		cm_error = -ECONNRESET; | 
 | 		break; | 
 | 	case RDMA_CM_EVENT_DISCONNECTED: | 
 | 	case RDMA_CM_EVENT_ADDR_CHANGE: | 
 | 	case RDMA_CM_EVENT_TIMEWAIT_EXIT: | 
 | 		dev_dbg(queue->ctrl->ctrl.device, | 
 | 			"disconnect received - connection closed\n"); | 
 | 		nvme_rdma_error_recovery(queue->ctrl); | 
 | 		break; | 
 | 	case RDMA_CM_EVENT_DEVICE_REMOVAL: | 
 | 		/* device removal is handled via the ib_client API */ | 
 | 		break; | 
 | 	default: | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 			"Unexpected RDMA CM event (%d)\n", ev->event); | 
 | 		nvme_rdma_error_recovery(queue->ctrl); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (cm_error) { | 
 | 		queue->cm_error = cm_error; | 
 | 		complete(&queue->cm_done); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static enum blk_eh_timer_return | 
 | nvme_rdma_timeout(struct request *rq, bool reserved) | 
 | { | 
 | 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_rdma_queue *queue = req->queue; | 
 | 	struct nvme_rdma_ctrl *ctrl = queue->ctrl; | 
 |  | 
 | 	dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n", | 
 | 		 rq->tag, nvme_rdma_queue_idx(queue)); | 
 |  | 
 | 	if (ctrl->ctrl.state != NVME_CTRL_LIVE) { | 
 | 		/* | 
 | 		 * Teardown immediately if controller times out while starting | 
 | 		 * or we are already started error recovery. all outstanding | 
 | 		 * requests are completed on shutdown, so we return BLK_EH_DONE. | 
 | 		 */ | 
 | 		flush_work(&ctrl->err_work); | 
 | 		nvme_rdma_teardown_io_queues(ctrl, false); | 
 | 		nvme_rdma_teardown_admin_queue(ctrl, false); | 
 | 		return BLK_EH_DONE; | 
 | 	} | 
 |  | 
 | 	dev_warn(ctrl->ctrl.device, "starting error recovery\n"); | 
 | 	nvme_rdma_error_recovery(ctrl); | 
 |  | 
 | 	return BLK_EH_RESET_TIMER; | 
 | } | 
 |  | 
 | static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx, | 
 | 		const struct blk_mq_queue_data *bd) | 
 | { | 
 | 	struct nvme_ns *ns = hctx->queue->queuedata; | 
 | 	struct nvme_rdma_queue *queue = hctx->driver_data; | 
 | 	struct request *rq = bd->rq; | 
 | 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); | 
 | 	struct nvme_rdma_qe *sqe = &req->sqe; | 
 | 	struct nvme_command *c = sqe->data; | 
 | 	struct ib_device *dev; | 
 | 	bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags); | 
 | 	blk_status_t ret; | 
 | 	int err; | 
 |  | 
 | 	WARN_ON_ONCE(rq->tag < 0); | 
 |  | 
 | 	if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready)) | 
 | 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq); | 
 |  | 
 | 	dev = queue->device->dev; | 
 | 	ib_dma_sync_single_for_cpu(dev, sqe->dma, | 
 | 			sizeof(struct nvme_command), DMA_TO_DEVICE); | 
 |  | 
 | 	ret = nvme_setup_cmd(ns, rq, c); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	blk_mq_start_request(rq); | 
 |  | 
 | 	err = nvme_rdma_map_data(queue, rq, c); | 
 | 	if (unlikely(err < 0)) { | 
 | 		dev_err(queue->ctrl->ctrl.device, | 
 | 			     "Failed to map data (%d)\n", err); | 
 | 		nvme_cleanup_cmd(rq); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	sqe->cqe.done = nvme_rdma_send_done; | 
 |  | 
 | 	ib_dma_sync_single_for_device(dev, sqe->dma, | 
 | 			sizeof(struct nvme_command), DMA_TO_DEVICE); | 
 |  | 
 | 	err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge, | 
 | 			req->mr ? &req->reg_wr.wr : NULL); | 
 | 	if (unlikely(err)) { | 
 | 		nvme_rdma_unmap_data(queue, rq); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	return BLK_STS_OK; | 
 | err: | 
 | 	if (err == -ENOMEM || err == -EAGAIN) | 
 | 		return BLK_STS_RESOURCE; | 
 | 	return BLK_STS_IOERR; | 
 | } | 
 |  | 
 | static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) | 
 | { | 
 | 	struct nvme_rdma_queue *queue = hctx->driver_data; | 
 | 	struct ib_cq *cq = queue->ib_cq; | 
 | 	struct ib_wc wc; | 
 | 	int found = 0; | 
 |  | 
 | 	while (ib_poll_cq(cq, 1, &wc) > 0) { | 
 | 		struct ib_cqe *cqe = wc.wr_cqe; | 
 |  | 
 | 		if (cqe) { | 
 | 			if (cqe->done == nvme_rdma_recv_done) | 
 | 				found |= __nvme_rdma_recv_done(cq, &wc, tag); | 
 | 			else | 
 | 				cqe->done(cq, &wc); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return found; | 
 | } | 
 |  | 
 | static void nvme_rdma_complete_rq(struct request *rq) | 
 | { | 
 | 	struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq); | 
 |  | 
 | 	nvme_rdma_unmap_data(req->queue, rq); | 
 | 	nvme_complete_rq(rq); | 
 | } | 
 |  | 
 | static int nvme_rdma_map_queues(struct blk_mq_tag_set *set) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = set->driver_data; | 
 |  | 
 | 	return blk_mq_rdma_map_queues(set, ctrl->device->dev, 0); | 
 | } | 
 |  | 
 | static const struct blk_mq_ops nvme_rdma_mq_ops = { | 
 | 	.queue_rq	= nvme_rdma_queue_rq, | 
 | 	.complete	= nvme_rdma_complete_rq, | 
 | 	.init_request	= nvme_rdma_init_request, | 
 | 	.exit_request	= nvme_rdma_exit_request, | 
 | 	.init_hctx	= nvme_rdma_init_hctx, | 
 | 	.poll		= nvme_rdma_poll, | 
 | 	.timeout	= nvme_rdma_timeout, | 
 | 	.map_queues	= nvme_rdma_map_queues, | 
 | }; | 
 |  | 
 | static const struct blk_mq_ops nvme_rdma_admin_mq_ops = { | 
 | 	.queue_rq	= nvme_rdma_queue_rq, | 
 | 	.complete	= nvme_rdma_complete_rq, | 
 | 	.init_request	= nvme_rdma_init_request, | 
 | 	.exit_request	= nvme_rdma_exit_request, | 
 | 	.init_hctx	= nvme_rdma_init_admin_hctx, | 
 | 	.timeout	= nvme_rdma_timeout, | 
 | }; | 
 |  | 
 | static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown) | 
 | { | 
 | 	nvme_rdma_teardown_io_queues(ctrl, shutdown); | 
 | 	if (shutdown) | 
 | 		nvme_shutdown_ctrl(&ctrl->ctrl); | 
 | 	else | 
 | 		nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap); | 
 | 	nvme_rdma_teardown_admin_queue(ctrl, shutdown); | 
 | } | 
 |  | 
 | static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true); | 
 | } | 
 |  | 
 | static void nvme_rdma_reset_ctrl_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl = | 
 | 		container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work); | 
 |  | 
 | 	nvme_stop_ctrl(&ctrl->ctrl); | 
 | 	nvme_rdma_shutdown_ctrl(ctrl, false); | 
 |  | 
 | 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) { | 
 | 		/* state change failure should never happen */ | 
 | 		WARN_ON_ONCE(1); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (nvme_rdma_setup_ctrl(ctrl, false)) | 
 | 		goto out_fail; | 
 |  | 
 | 	return; | 
 |  | 
 | out_fail: | 
 | 	++ctrl->ctrl.nr_reconnects; | 
 | 	nvme_rdma_reconnect_or_remove(ctrl); | 
 | } | 
 |  | 
 | static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = { | 
 | 	.name			= "rdma", | 
 | 	.module			= THIS_MODULE, | 
 | 	.flags			= NVME_F_FABRICS, | 
 | 	.reg_read32		= nvmf_reg_read32, | 
 | 	.reg_read64		= nvmf_reg_read64, | 
 | 	.reg_write32		= nvmf_reg_write32, | 
 | 	.free_ctrl		= nvme_rdma_free_ctrl, | 
 | 	.submit_async_event	= nvme_rdma_submit_async_event, | 
 | 	.delete_ctrl		= nvme_rdma_delete_ctrl, | 
 | 	.get_address		= nvmf_get_address, | 
 | 	.stop_ctrl		= nvme_rdma_stop_ctrl, | 
 | }; | 
 |  | 
 | static inline bool | 
 | __nvme_rdma_options_match(struct nvme_rdma_ctrl *ctrl, | 
 | 	struct nvmf_ctrl_options *opts) | 
 | { | 
 | 	char *stdport = __stringify(NVME_RDMA_IP_PORT); | 
 |  | 
 |  | 
 | 	if (!nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts) || | 
 | 	    strcmp(opts->traddr, ctrl->ctrl.opts->traddr)) | 
 | 		return false; | 
 |  | 
 | 	if (opts->mask & NVMF_OPT_TRSVCID && | 
 | 	    ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { | 
 | 		if (strcmp(opts->trsvcid, ctrl->ctrl.opts->trsvcid)) | 
 | 			return false; | 
 | 	} else if (opts->mask & NVMF_OPT_TRSVCID) { | 
 | 		if (strcmp(opts->trsvcid, stdport)) | 
 | 			return false; | 
 | 	} else if (ctrl->ctrl.opts->mask & NVMF_OPT_TRSVCID) { | 
 | 		if (strcmp(stdport, ctrl->ctrl.opts->trsvcid)) | 
 | 			return false; | 
 | 	} | 
 | 	/* else, it's a match as both have stdport. Fall to next checks */ | 
 |  | 
 | 	/* | 
 | 	 * checking the local address is rough. In most cases, one | 
 | 	 * is not specified and the host port is selected by the stack. | 
 | 	 * | 
 | 	 * Assume no match if: | 
 | 	 *  local address is specified and address is not the same | 
 | 	 *  local address is not specified but remote is, or vice versa | 
 | 	 *    (admin using specific host_traddr when it matters). | 
 | 	 */ | 
 | 	if (opts->mask & NVMF_OPT_HOST_TRADDR && | 
 | 	    ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) { | 
 | 		if (strcmp(opts->host_traddr, ctrl->ctrl.opts->host_traddr)) | 
 | 			return false; | 
 | 	} else if (opts->mask & NVMF_OPT_HOST_TRADDR || | 
 | 		   ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR) | 
 | 		return false; | 
 | 	/* | 
 | 	 * if neither controller had an host port specified, assume it's | 
 | 	 * a match as everything else matched. | 
 | 	 */ | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Fails a connection request if it matches an existing controller | 
 |  * (association) with the same tuple: | 
 |  * <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN> | 
 |  * | 
 |  * if local address is not specified in the request, it will match an | 
 |  * existing controller with all the other parameters the same and no | 
 |  * local port address specified as well. | 
 |  * | 
 |  * The ports don't need to be compared as they are intrinsically | 
 |  * already matched by the port pointers supplied. | 
 |  */ | 
 | static bool | 
 | nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl; | 
 | 	bool found = false; | 
 |  | 
 | 	mutex_lock(&nvme_rdma_ctrl_mutex); | 
 | 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { | 
 | 		found = __nvme_rdma_options_match(ctrl, opts); | 
 | 		if (found) | 
 | 			break; | 
 | 	} | 
 | 	mutex_unlock(&nvme_rdma_ctrl_mutex); | 
 |  | 
 | 	return found; | 
 | } | 
 |  | 
 | static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev, | 
 | 		struct nvmf_ctrl_options *opts) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl; | 
 | 	int ret; | 
 | 	bool changed; | 
 | 	char *port; | 
 |  | 
 | 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL); | 
 | 	if (!ctrl) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	ctrl->ctrl.opts = opts; | 
 | 	INIT_LIST_HEAD(&ctrl->list); | 
 |  | 
 | 	if (opts->mask & NVMF_OPT_TRSVCID) | 
 | 		port = opts->trsvcid; | 
 | 	else | 
 | 		port = __stringify(NVME_RDMA_IP_PORT); | 
 |  | 
 | 	ret = inet_pton_with_scope(&init_net, AF_UNSPEC, | 
 | 			opts->traddr, port, &ctrl->addr); | 
 | 	if (ret) { | 
 | 		pr_err("malformed address passed: %s:%s\n", opts->traddr, port); | 
 | 		goto out_free_ctrl; | 
 | 	} | 
 |  | 
 | 	if (opts->mask & NVMF_OPT_HOST_TRADDR) { | 
 | 		ret = inet_pton_with_scope(&init_net, AF_UNSPEC, | 
 | 			opts->host_traddr, NULL, &ctrl->src_addr); | 
 | 		if (ret) { | 
 | 			pr_err("malformed src address passed: %s\n", | 
 | 			       opts->host_traddr); | 
 | 			goto out_free_ctrl; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) { | 
 | 		ret = -EALREADY; | 
 | 		goto out_free_ctrl; | 
 | 	} | 
 |  | 
 | 	INIT_DELAYED_WORK(&ctrl->reconnect_work, | 
 | 			nvme_rdma_reconnect_ctrl_work); | 
 | 	INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work); | 
 | 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work); | 
 |  | 
 | 	ctrl->ctrl.queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */ | 
 | 	ctrl->ctrl.sqsize = opts->queue_size - 1; | 
 | 	ctrl->ctrl.kato = opts->kato; | 
 |  | 
 | 	ret = -ENOMEM; | 
 | 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues), | 
 | 				GFP_KERNEL); | 
 | 	if (!ctrl->queues) | 
 | 		goto out_free_ctrl; | 
 |  | 
 | 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops, | 
 | 				0 /* no quirks, we're perfect! */); | 
 | 	if (ret) | 
 | 		goto out_kfree_queues; | 
 |  | 
 | 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING); | 
 | 	WARN_ON_ONCE(!changed); | 
 |  | 
 | 	ret = nvme_rdma_setup_ctrl(ctrl, true); | 
 | 	if (ret) | 
 | 		goto out_uninit_ctrl; | 
 |  | 
 | 	dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n", | 
 | 		ctrl->ctrl.opts->subsysnqn, &ctrl->addr); | 
 |  | 
 | 	nvme_get_ctrl(&ctrl->ctrl); | 
 |  | 
 | 	mutex_lock(&nvme_rdma_ctrl_mutex); | 
 | 	list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list); | 
 | 	mutex_unlock(&nvme_rdma_ctrl_mutex); | 
 |  | 
 | 	return &ctrl->ctrl; | 
 |  | 
 | out_uninit_ctrl: | 
 | 	nvme_uninit_ctrl(&ctrl->ctrl); | 
 | 	nvme_put_ctrl(&ctrl->ctrl); | 
 | 	if (ret > 0) | 
 | 		ret = -EIO; | 
 | 	return ERR_PTR(ret); | 
 | out_kfree_queues: | 
 | 	kfree(ctrl->queues); | 
 | out_free_ctrl: | 
 | 	kfree(ctrl); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static struct nvmf_transport_ops nvme_rdma_transport = { | 
 | 	.name		= "rdma", | 
 | 	.module		= THIS_MODULE, | 
 | 	.required_opts	= NVMF_OPT_TRADDR, | 
 | 	.allowed_opts	= NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY | | 
 | 			  NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO, | 
 | 	.create_ctrl	= nvme_rdma_create_ctrl, | 
 | }; | 
 |  | 
 | static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data) | 
 | { | 
 | 	struct nvme_rdma_ctrl *ctrl; | 
 | 	struct nvme_rdma_device *ndev; | 
 | 	bool found = false; | 
 |  | 
 | 	mutex_lock(&device_list_mutex); | 
 | 	list_for_each_entry(ndev, &device_list, entry) { | 
 | 		if (ndev->dev == ib_device) { | 
 | 			found = true; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	mutex_unlock(&device_list_mutex); | 
 |  | 
 | 	if (!found) | 
 | 		return; | 
 |  | 
 | 	/* Delete all controllers using this device */ | 
 | 	mutex_lock(&nvme_rdma_ctrl_mutex); | 
 | 	list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) { | 
 | 		if (ctrl->device->dev != ib_device) | 
 | 			continue; | 
 | 		nvme_delete_ctrl(&ctrl->ctrl); | 
 | 	} | 
 | 	mutex_unlock(&nvme_rdma_ctrl_mutex); | 
 |  | 
 | 	flush_workqueue(nvme_delete_wq); | 
 | } | 
 |  | 
 | static struct ib_client nvme_rdma_ib_client = { | 
 | 	.name   = "nvme_rdma", | 
 | 	.remove = nvme_rdma_remove_one | 
 | }; | 
 |  | 
 | static int __init nvme_rdma_init_module(void) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = ib_register_client(&nvme_rdma_ib_client); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = nvmf_register_transport(&nvme_rdma_transport); | 
 | 	if (ret) | 
 | 		goto err_unreg_client; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_unreg_client: | 
 | 	ib_unregister_client(&nvme_rdma_ib_client); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void __exit nvme_rdma_cleanup_module(void) | 
 | { | 
 | 	nvmf_unregister_transport(&nvme_rdma_transport); | 
 | 	ib_unregister_client(&nvme_rdma_ib_client); | 
 | } | 
 |  | 
 | module_init(nvme_rdma_init_module); | 
 | module_exit(nvme_rdma_cleanup_module); | 
 |  | 
 | MODULE_LICENSE("GPL v2"); |