| /* | 
 |  * NVM Express device driver | 
 |  * Copyright (c) 2011-2014, Intel Corporation. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  */ | 
 |  | 
 | #include <linux/aer.h> | 
 | #include <linux/async.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/blk-mq.h> | 
 | #include <linux/blk-mq-pci.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/init.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/io.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/once.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/t10-pi.h> | 
 | #include <linux/types.h> | 
 | #include <linux/io-64-nonatomic-lo-hi.h> | 
 | #include <linux/sed-opal.h> | 
 |  | 
 | #include "nvme.h" | 
 |  | 
 | #define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command)) | 
 | #define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion)) | 
 |  | 
 | #define SGES_PER_PAGE	(PAGE_SIZE / sizeof(struct nvme_sgl_desc)) | 
 |  | 
 | /* | 
 |  * These can be higher, but we need to ensure that any command doesn't | 
 |  * require an sg allocation that needs more than a page of data. | 
 |  */ | 
 | #define NVME_MAX_KB_SZ	4096 | 
 | #define NVME_MAX_SEGS	127 | 
 |  | 
 | static int use_threaded_interrupts; | 
 | module_param(use_threaded_interrupts, int, 0); | 
 |  | 
 | static bool use_cmb_sqes = true; | 
 | module_param(use_cmb_sqes, bool, 0444); | 
 | MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); | 
 |  | 
 | static unsigned int max_host_mem_size_mb = 128; | 
 | module_param(max_host_mem_size_mb, uint, 0444); | 
 | MODULE_PARM_DESC(max_host_mem_size_mb, | 
 | 	"Maximum Host Memory Buffer (HMB) size per controller (in MiB)"); | 
 |  | 
 | static unsigned int sgl_threshold = SZ_32K; | 
 | module_param(sgl_threshold, uint, 0644); | 
 | MODULE_PARM_DESC(sgl_threshold, | 
 | 		"Use SGLs when average request segment size is larger or equal to " | 
 | 		"this size. Use 0 to disable SGLs."); | 
 |  | 
 | static int io_queue_depth_set(const char *val, const struct kernel_param *kp); | 
 | static const struct kernel_param_ops io_queue_depth_ops = { | 
 | 	.set = io_queue_depth_set, | 
 | 	.get = param_get_int, | 
 | }; | 
 |  | 
 | static int io_queue_depth = 1024; | 
 | module_param_cb(io_queue_depth, &io_queue_depth_ops, &io_queue_depth, 0644); | 
 | MODULE_PARM_DESC(io_queue_depth, "set io queue depth, should >= 2"); | 
 |  | 
 | struct nvme_dev; | 
 | struct nvme_queue; | 
 |  | 
 | static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); | 
 |  | 
 | /* | 
 |  * Represents an NVM Express device.  Each nvme_dev is a PCI function. | 
 |  */ | 
 | struct nvme_dev { | 
 | 	struct nvme_queue *queues; | 
 | 	struct blk_mq_tag_set tagset; | 
 | 	struct blk_mq_tag_set admin_tagset; | 
 | 	u32 __iomem *dbs; | 
 | 	struct device *dev; | 
 | 	struct dma_pool *prp_page_pool; | 
 | 	struct dma_pool *prp_small_pool; | 
 | 	unsigned online_queues; | 
 | 	unsigned max_qid; | 
 | 	unsigned int num_vecs; | 
 | 	int q_depth; | 
 | 	u32 db_stride; | 
 | 	void __iomem *bar; | 
 | 	unsigned long bar_mapped_size; | 
 | 	struct work_struct remove_work; | 
 | 	struct mutex shutdown_lock; | 
 | 	bool subsystem; | 
 | 	void __iomem *cmb; | 
 | 	pci_bus_addr_t cmb_bus_addr; | 
 | 	u64 cmb_size; | 
 | 	u32 cmbsz; | 
 | 	u32 cmbloc; | 
 | 	struct nvme_ctrl ctrl; | 
 | 	struct completion ioq_wait; | 
 |  | 
 | 	mempool_t *iod_mempool; | 
 |  | 
 | 	/* shadow doorbell buffer support: */ | 
 | 	u32 *dbbuf_dbs; | 
 | 	dma_addr_t dbbuf_dbs_dma_addr; | 
 | 	u32 *dbbuf_eis; | 
 | 	dma_addr_t dbbuf_eis_dma_addr; | 
 |  | 
 | 	/* host memory buffer support: */ | 
 | 	u64 host_mem_size; | 
 | 	u32 nr_host_mem_descs; | 
 | 	dma_addr_t host_mem_descs_dma; | 
 | 	struct nvme_host_mem_buf_desc *host_mem_descs; | 
 | 	void **host_mem_desc_bufs; | 
 | }; | 
 |  | 
 | static int io_queue_depth_set(const char *val, const struct kernel_param *kp) | 
 | { | 
 | 	int n = 0, ret; | 
 |  | 
 | 	ret = kstrtoint(val, 10, &n); | 
 | 	if (ret != 0 || n < 2) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return param_set_int(val, kp); | 
 | } | 
 |  | 
 | static inline unsigned int sq_idx(unsigned int qid, u32 stride) | 
 | { | 
 | 	return qid * 2 * stride; | 
 | } | 
 |  | 
 | static inline unsigned int cq_idx(unsigned int qid, u32 stride) | 
 | { | 
 | 	return (qid * 2 + 1) * stride; | 
 | } | 
 |  | 
 | static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	return container_of(ctrl, struct nvme_dev, ctrl); | 
 | } | 
 |  | 
 | /* | 
 |  * An NVM Express queue.  Each device has at least two (one for admin | 
 |  * commands and one for I/O commands). | 
 |  */ | 
 | struct nvme_queue { | 
 | 	struct device *q_dmadev; | 
 | 	struct nvme_dev *dev; | 
 | 	spinlock_t sq_lock; | 
 | 	struct nvme_command *sq_cmds; | 
 | 	struct nvme_command __iomem *sq_cmds_io; | 
 | 	spinlock_t cq_lock ____cacheline_aligned_in_smp; | 
 | 	volatile struct nvme_completion *cqes; | 
 | 	struct blk_mq_tags **tags; | 
 | 	dma_addr_t sq_dma_addr; | 
 | 	dma_addr_t cq_dma_addr; | 
 | 	u32 __iomem *q_db; | 
 | 	u16 q_depth; | 
 | 	s16 cq_vector; | 
 | 	u16 sq_tail; | 
 | 	u16 cq_head; | 
 | 	u16 last_cq_head; | 
 | 	u16 qid; | 
 | 	u8 cq_phase; | 
 | 	u32 *dbbuf_sq_db; | 
 | 	u32 *dbbuf_cq_db; | 
 | 	u32 *dbbuf_sq_ei; | 
 | 	u32 *dbbuf_cq_ei; | 
 | }; | 
 |  | 
 | /* | 
 |  * The nvme_iod describes the data in an I/O, including the list of PRP | 
 |  * entries.  You can't see it in this data structure because C doesn't let | 
 |  * me express that.  Use nvme_init_iod to ensure there's enough space | 
 |  * allocated to store the PRP list. | 
 |  */ | 
 | struct nvme_iod { | 
 | 	struct nvme_request req; | 
 | 	struct nvme_queue *nvmeq; | 
 | 	bool use_sgl; | 
 | 	int aborted; | 
 | 	int npages;		/* In the PRP list. 0 means small pool in use */ | 
 | 	int nents;		/* Used in scatterlist */ | 
 | 	int length;		/* Of data, in bytes */ | 
 | 	dma_addr_t first_dma; | 
 | 	struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ | 
 | 	struct scatterlist *sg; | 
 | 	struct scatterlist inline_sg[0]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Check we didin't inadvertently grow the command struct | 
 |  */ | 
 | static inline void _nvme_check_size(void) | 
 | { | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); | 
 | 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64); | 
 | } | 
 |  | 
 | static inline unsigned int nvme_dbbuf_size(u32 stride) | 
 | { | 
 | 	return ((num_possible_cpus() + 1) * 8 * stride); | 
 | } | 
 |  | 
 | static int nvme_dbbuf_dma_alloc(struct nvme_dev *dev) | 
 | { | 
 | 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); | 
 |  | 
 | 	if (dev->dbbuf_dbs) | 
 | 		return 0; | 
 |  | 
 | 	dev->dbbuf_dbs = dma_alloc_coherent(dev->dev, mem_size, | 
 | 					    &dev->dbbuf_dbs_dma_addr, | 
 | 					    GFP_KERNEL); | 
 | 	if (!dev->dbbuf_dbs) | 
 | 		return -ENOMEM; | 
 | 	dev->dbbuf_eis = dma_alloc_coherent(dev->dev, mem_size, | 
 | 					    &dev->dbbuf_eis_dma_addr, | 
 | 					    GFP_KERNEL); | 
 | 	if (!dev->dbbuf_eis) { | 
 | 		dma_free_coherent(dev->dev, mem_size, | 
 | 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); | 
 | 		dev->dbbuf_dbs = NULL; | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_dbbuf_dma_free(struct nvme_dev *dev) | 
 | { | 
 | 	unsigned int mem_size = nvme_dbbuf_size(dev->db_stride); | 
 |  | 
 | 	if (dev->dbbuf_dbs) { | 
 | 		dma_free_coherent(dev->dev, mem_size, | 
 | 				  dev->dbbuf_dbs, dev->dbbuf_dbs_dma_addr); | 
 | 		dev->dbbuf_dbs = NULL; | 
 | 	} | 
 | 	if (dev->dbbuf_eis) { | 
 | 		dma_free_coherent(dev->dev, mem_size, | 
 | 				  dev->dbbuf_eis, dev->dbbuf_eis_dma_addr); | 
 | 		dev->dbbuf_eis = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static void nvme_dbbuf_init(struct nvme_dev *dev, | 
 | 			    struct nvme_queue *nvmeq, int qid) | 
 | { | 
 | 	if (!dev->dbbuf_dbs || !qid) | 
 | 		return; | 
 |  | 
 | 	nvmeq->dbbuf_sq_db = &dev->dbbuf_dbs[sq_idx(qid, dev->db_stride)]; | 
 | 	nvmeq->dbbuf_cq_db = &dev->dbbuf_dbs[cq_idx(qid, dev->db_stride)]; | 
 | 	nvmeq->dbbuf_sq_ei = &dev->dbbuf_eis[sq_idx(qid, dev->db_stride)]; | 
 | 	nvmeq->dbbuf_cq_ei = &dev->dbbuf_eis[cq_idx(qid, dev->db_stride)]; | 
 | } | 
 |  | 
 | static void nvme_dbbuf_set(struct nvme_dev *dev) | 
 | { | 
 | 	struct nvme_command c; | 
 |  | 
 | 	if (!dev->dbbuf_dbs) | 
 | 		return; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.dbbuf.opcode = nvme_admin_dbbuf; | 
 | 	c.dbbuf.prp1 = cpu_to_le64(dev->dbbuf_dbs_dma_addr); | 
 | 	c.dbbuf.prp2 = cpu_to_le64(dev->dbbuf_eis_dma_addr); | 
 |  | 
 | 	if (nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0)) { | 
 | 		dev_warn(dev->ctrl.device, "unable to set dbbuf\n"); | 
 | 		/* Free memory and continue on */ | 
 | 		nvme_dbbuf_dma_free(dev); | 
 | 	} | 
 | } | 
 |  | 
 | static inline int nvme_dbbuf_need_event(u16 event_idx, u16 new_idx, u16 old) | 
 | { | 
 | 	return (u16)(new_idx - event_idx - 1) < (u16)(new_idx - old); | 
 | } | 
 |  | 
 | /* Update dbbuf and return true if an MMIO is required */ | 
 | static bool nvme_dbbuf_update_and_check_event(u16 value, u32 *dbbuf_db, | 
 | 					      volatile u32 *dbbuf_ei) | 
 | { | 
 | 	if (dbbuf_db) { | 
 | 		u16 old_value; | 
 |  | 
 | 		/* | 
 | 		 * Ensure that the queue is written before updating | 
 | 		 * the doorbell in memory | 
 | 		 */ | 
 | 		wmb(); | 
 |  | 
 | 		old_value = *dbbuf_db; | 
 | 		*dbbuf_db = value; | 
 |  | 
 | 		/* | 
 | 		 * Ensure that the doorbell is updated before reading the event | 
 | 		 * index from memory.  The controller needs to provide similar | 
 | 		 * ordering to ensure the envent index is updated before reading | 
 | 		 * the doorbell. | 
 | 		 */ | 
 | 		mb(); | 
 |  | 
 | 		if (!nvme_dbbuf_need_event(*dbbuf_ei, value, old_value)) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * Max size of iod being embedded in the request payload | 
 |  */ | 
 | #define NVME_INT_PAGES		2 | 
 | #define NVME_INT_BYTES(dev)	(NVME_INT_PAGES * (dev)->ctrl.page_size) | 
 |  | 
 | /* | 
 |  * Will slightly overestimate the number of pages needed.  This is OK | 
 |  * as it only leads to a small amount of wasted memory for the lifetime of | 
 |  * the I/O. | 
 |  */ | 
 | static int nvme_npages(unsigned size, struct nvme_dev *dev) | 
 | { | 
 | 	unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, | 
 | 				      dev->ctrl.page_size); | 
 | 	return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); | 
 | } | 
 |  | 
 | /* | 
 |  * Calculates the number of pages needed for the SGL segments. For example a 4k | 
 |  * page can accommodate 256 SGL descriptors. | 
 |  */ | 
 | static int nvme_pci_npages_sgl(unsigned int num_seg) | 
 | { | 
 | 	return DIV_ROUND_UP(num_seg * sizeof(struct nvme_sgl_desc), PAGE_SIZE); | 
 | } | 
 |  | 
 | static unsigned int nvme_pci_iod_alloc_size(struct nvme_dev *dev, | 
 | 		unsigned int size, unsigned int nseg, bool use_sgl) | 
 | { | 
 | 	size_t alloc_size; | 
 |  | 
 | 	if (use_sgl) | 
 | 		alloc_size = sizeof(__le64 *) * nvme_pci_npages_sgl(nseg); | 
 | 	else | 
 | 		alloc_size = sizeof(__le64 *) * nvme_npages(size, dev); | 
 |  | 
 | 	return alloc_size + sizeof(struct scatterlist) * nseg; | 
 | } | 
 |  | 
 | static unsigned int nvme_pci_cmd_size(struct nvme_dev *dev, bool use_sgl) | 
 | { | 
 | 	unsigned int alloc_size = nvme_pci_iod_alloc_size(dev, | 
 | 				    NVME_INT_BYTES(dev), NVME_INT_PAGES, | 
 | 				    use_sgl); | 
 |  | 
 | 	return sizeof(struct nvme_iod) + alloc_size; | 
 | } | 
 |  | 
 | static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
 | 				unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_dev *dev = data; | 
 | 	struct nvme_queue *nvmeq = &dev->queues[0]; | 
 |  | 
 | 	WARN_ON(hctx_idx != 0); | 
 | 	WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); | 
 | 	WARN_ON(nvmeq->tags); | 
 |  | 
 | 	hctx->driver_data = nvmeq; | 
 | 	nvmeq->tags = &dev->admin_tagset.tags[0]; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_queue *nvmeq = hctx->driver_data; | 
 |  | 
 | 	nvmeq->tags = NULL; | 
 | } | 
 |  | 
 | static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, | 
 | 			  unsigned int hctx_idx) | 
 | { | 
 | 	struct nvme_dev *dev = data; | 
 | 	struct nvme_queue *nvmeq = &dev->queues[hctx_idx + 1]; | 
 |  | 
 | 	if (!nvmeq->tags) | 
 | 		nvmeq->tags = &dev->tagset.tags[hctx_idx]; | 
 |  | 
 | 	WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); | 
 | 	hctx->driver_data = nvmeq; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_init_request(struct blk_mq_tag_set *set, struct request *req, | 
 | 		unsigned int hctx_idx, unsigned int numa_node) | 
 | { | 
 | 	struct nvme_dev *dev = set->driver_data; | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	int queue_idx = (set == &dev->tagset) ? hctx_idx + 1 : 0; | 
 | 	struct nvme_queue *nvmeq = &dev->queues[queue_idx]; | 
 |  | 
 | 	BUG_ON(!nvmeq); | 
 | 	iod->nvmeq = nvmeq; | 
 |  | 
 | 	nvme_req(req)->ctrl = &dev->ctrl; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_map_queues(struct blk_mq_tag_set *set) | 
 | { | 
 | 	struct nvme_dev *dev = set->driver_data; | 
 |  | 
 | 	return blk_mq_pci_map_queues(set, to_pci_dev(dev->dev), | 
 | 			dev->num_vecs > 1 ? 1 /* admin queue */ : 0); | 
 | } | 
 |  | 
 | /** | 
 |  * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell | 
 |  * @nvmeq: The queue to use | 
 |  * @cmd: The command to send | 
 |  */ | 
 | static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd) | 
 | { | 
 | 	spin_lock(&nvmeq->sq_lock); | 
 | 	if (nvmeq->sq_cmds_io) | 
 | 		memcpy_toio(&nvmeq->sq_cmds_io[nvmeq->sq_tail], cmd, | 
 | 				sizeof(*cmd)); | 
 | 	else | 
 | 		memcpy(&nvmeq->sq_cmds[nvmeq->sq_tail], cmd, sizeof(*cmd)); | 
 |  | 
 | 	if (++nvmeq->sq_tail == nvmeq->q_depth) | 
 | 		nvmeq->sq_tail = 0; | 
 | 	if (nvme_dbbuf_update_and_check_event(nvmeq->sq_tail, | 
 | 			nvmeq->dbbuf_sq_db, nvmeq->dbbuf_sq_ei)) | 
 | 		writel(nvmeq->sq_tail, nvmeq->q_db); | 
 | 	spin_unlock(&nvmeq->sq_lock); | 
 | } | 
 |  | 
 | static void **nvme_pci_iod_list(struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	return (void **)(iod->sg + blk_rq_nr_phys_segments(req)); | 
 | } | 
 |  | 
 | static inline bool nvme_pci_use_sgls(struct nvme_dev *dev, struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	int nseg = blk_rq_nr_phys_segments(req); | 
 | 	unsigned int avg_seg_size; | 
 |  | 
 | 	if (nseg == 0) | 
 | 		return false; | 
 |  | 
 | 	avg_seg_size = DIV_ROUND_UP(blk_rq_payload_bytes(req), nseg); | 
 |  | 
 | 	if (!(dev->ctrl.sgls & ((1 << 0) | (1 << 1)))) | 
 | 		return false; | 
 | 	if (!iod->nvmeq->qid) | 
 | 		return false; | 
 | 	if (!sgl_threshold || avg_seg_size < sgl_threshold) | 
 | 		return false; | 
 | 	return true; | 
 | } | 
 |  | 
 | static blk_status_t nvme_init_iod(struct request *rq, struct nvme_dev *dev) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); | 
 | 	int nseg = blk_rq_nr_phys_segments(rq); | 
 | 	unsigned int size = blk_rq_payload_bytes(rq); | 
 |  | 
 | 	iod->use_sgl = nvme_pci_use_sgls(dev, rq); | 
 |  | 
 | 	if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { | 
 | 		iod->sg = mempool_alloc(dev->iod_mempool, GFP_ATOMIC); | 
 | 		if (!iod->sg) | 
 | 			return BLK_STS_RESOURCE; | 
 | 	} else { | 
 | 		iod->sg = iod->inline_sg; | 
 | 	} | 
 |  | 
 | 	iod->aborted = 0; | 
 | 	iod->npages = -1; | 
 | 	iod->nents = 0; | 
 | 	iod->length = size; | 
 |  | 
 | 	return BLK_STS_OK; | 
 | } | 
 |  | 
 | static void nvme_free_iod(struct nvme_dev *dev, struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	const int last_prp = dev->ctrl.page_size / sizeof(__le64) - 1; | 
 | 	dma_addr_t dma_addr = iod->first_dma, next_dma_addr; | 
 |  | 
 | 	int i; | 
 |  | 
 | 	if (iod->npages == 0) | 
 | 		dma_pool_free(dev->prp_small_pool, nvme_pci_iod_list(req)[0], | 
 | 			dma_addr); | 
 |  | 
 | 	for (i = 0; i < iod->npages; i++) { | 
 | 		void *addr = nvme_pci_iod_list(req)[i]; | 
 |  | 
 | 		if (iod->use_sgl) { | 
 | 			struct nvme_sgl_desc *sg_list = addr; | 
 |  | 
 | 			next_dma_addr = | 
 | 			    le64_to_cpu((sg_list[SGES_PER_PAGE - 1]).addr); | 
 | 		} else { | 
 | 			__le64 *prp_list = addr; | 
 |  | 
 | 			next_dma_addr = le64_to_cpu(prp_list[last_prp]); | 
 | 		} | 
 |  | 
 | 		dma_pool_free(dev->prp_page_pool, addr, dma_addr); | 
 | 		dma_addr = next_dma_addr; | 
 | 	} | 
 |  | 
 | 	if (iod->sg != iod->inline_sg) | 
 | 		mempool_free(iod->sg, dev->iod_mempool); | 
 | } | 
 |  | 
 | static void nvme_print_sgl(struct scatterlist *sgl, int nents) | 
 | { | 
 | 	int i; | 
 | 	struct scatterlist *sg; | 
 |  | 
 | 	for_each_sg(sgl, sg, nents, i) { | 
 | 		dma_addr_t phys = sg_phys(sg); | 
 | 		pr_warn("sg[%d] phys_addr:%pad offset:%d length:%d " | 
 | 			"dma_address:%pad dma_length:%d\n", | 
 | 			i, &phys, sg->offset, sg->length, &sg_dma_address(sg), | 
 | 			sg_dma_len(sg)); | 
 | 	} | 
 | } | 
 |  | 
 | static blk_status_t nvme_pci_setup_prps(struct nvme_dev *dev, | 
 | 		struct request *req, struct nvme_rw_command *cmnd) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct dma_pool *pool; | 
 | 	int length = blk_rq_payload_bytes(req); | 
 | 	struct scatterlist *sg = iod->sg; | 
 | 	int dma_len = sg_dma_len(sg); | 
 | 	u64 dma_addr = sg_dma_address(sg); | 
 | 	u32 page_size = dev->ctrl.page_size; | 
 | 	int offset = dma_addr & (page_size - 1); | 
 | 	__le64 *prp_list; | 
 | 	void **list = nvme_pci_iod_list(req); | 
 | 	dma_addr_t prp_dma; | 
 | 	int nprps, i; | 
 |  | 
 | 	length -= (page_size - offset); | 
 | 	if (length <= 0) { | 
 | 		iod->first_dma = 0; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	dma_len -= (page_size - offset); | 
 | 	if (dma_len) { | 
 | 		dma_addr += (page_size - offset); | 
 | 	} else { | 
 | 		sg = sg_next(sg); | 
 | 		dma_addr = sg_dma_address(sg); | 
 | 		dma_len = sg_dma_len(sg); | 
 | 	} | 
 |  | 
 | 	if (length <= page_size) { | 
 | 		iod->first_dma = dma_addr; | 
 | 		goto done; | 
 | 	} | 
 |  | 
 | 	nprps = DIV_ROUND_UP(length, page_size); | 
 | 	if (nprps <= (256 / 8)) { | 
 | 		pool = dev->prp_small_pool; | 
 | 		iod->npages = 0; | 
 | 	} else { | 
 | 		pool = dev->prp_page_pool; | 
 | 		iod->npages = 1; | 
 | 	} | 
 |  | 
 | 	prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); | 
 | 	if (!prp_list) { | 
 | 		iod->first_dma = dma_addr; | 
 | 		iod->npages = -1; | 
 | 		return BLK_STS_RESOURCE; | 
 | 	} | 
 | 	list[0] = prp_list; | 
 | 	iod->first_dma = prp_dma; | 
 | 	i = 0; | 
 | 	for (;;) { | 
 | 		if (i == page_size >> 3) { | 
 | 			__le64 *old_prp_list = prp_list; | 
 | 			prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); | 
 | 			if (!prp_list) | 
 | 				return BLK_STS_RESOURCE; | 
 | 			list[iod->npages++] = prp_list; | 
 | 			prp_list[0] = old_prp_list[i - 1]; | 
 | 			old_prp_list[i - 1] = cpu_to_le64(prp_dma); | 
 | 			i = 1; | 
 | 		} | 
 | 		prp_list[i++] = cpu_to_le64(dma_addr); | 
 | 		dma_len -= page_size; | 
 | 		dma_addr += page_size; | 
 | 		length -= page_size; | 
 | 		if (length <= 0) | 
 | 			break; | 
 | 		if (dma_len > 0) | 
 | 			continue; | 
 | 		if (unlikely(dma_len < 0)) | 
 | 			goto bad_sgl; | 
 | 		sg = sg_next(sg); | 
 | 		dma_addr = sg_dma_address(sg); | 
 | 		dma_len = sg_dma_len(sg); | 
 | 	} | 
 |  | 
 | done: | 
 | 	cmnd->dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); | 
 | 	cmnd->dptr.prp2 = cpu_to_le64(iod->first_dma); | 
 |  | 
 | 	return BLK_STS_OK; | 
 |  | 
 |  bad_sgl: | 
 | 	WARN(DO_ONCE(nvme_print_sgl, iod->sg, iod->nents), | 
 | 			"Invalid SGL for payload:%d nents:%d\n", | 
 | 			blk_rq_payload_bytes(req), iod->nents); | 
 | 	return BLK_STS_IOERR; | 
 | } | 
 |  | 
 | static void nvme_pci_sgl_set_data(struct nvme_sgl_desc *sge, | 
 | 		struct scatterlist *sg) | 
 | { | 
 | 	sge->addr = cpu_to_le64(sg_dma_address(sg)); | 
 | 	sge->length = cpu_to_le32(sg_dma_len(sg)); | 
 | 	sge->type = NVME_SGL_FMT_DATA_DESC << 4; | 
 | } | 
 |  | 
 | static void nvme_pci_sgl_set_seg(struct nvme_sgl_desc *sge, | 
 | 		dma_addr_t dma_addr, int entries) | 
 | { | 
 | 	sge->addr = cpu_to_le64(dma_addr); | 
 | 	if (entries < SGES_PER_PAGE) { | 
 | 		sge->length = cpu_to_le32(entries * sizeof(*sge)); | 
 | 		sge->type = NVME_SGL_FMT_LAST_SEG_DESC << 4; | 
 | 	} else { | 
 | 		sge->length = cpu_to_le32(PAGE_SIZE); | 
 | 		sge->type = NVME_SGL_FMT_SEG_DESC << 4; | 
 | 	} | 
 | } | 
 |  | 
 | static blk_status_t nvme_pci_setup_sgls(struct nvme_dev *dev, | 
 | 		struct request *req, struct nvme_rw_command *cmd, int entries) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct dma_pool *pool; | 
 | 	struct nvme_sgl_desc *sg_list; | 
 | 	struct scatterlist *sg = iod->sg; | 
 | 	dma_addr_t sgl_dma; | 
 | 	int i = 0; | 
 |  | 
 | 	/* setting the transfer type as SGL */ | 
 | 	cmd->flags = NVME_CMD_SGL_METABUF; | 
 |  | 
 | 	if (entries == 1) { | 
 | 		nvme_pci_sgl_set_data(&cmd->dptr.sgl, sg); | 
 | 		return BLK_STS_OK; | 
 | 	} | 
 |  | 
 | 	if (entries <= (256 / sizeof(struct nvme_sgl_desc))) { | 
 | 		pool = dev->prp_small_pool; | 
 | 		iod->npages = 0; | 
 | 	} else { | 
 | 		pool = dev->prp_page_pool; | 
 | 		iod->npages = 1; | 
 | 	} | 
 |  | 
 | 	sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); | 
 | 	if (!sg_list) { | 
 | 		iod->npages = -1; | 
 | 		return BLK_STS_RESOURCE; | 
 | 	} | 
 |  | 
 | 	nvme_pci_iod_list(req)[0] = sg_list; | 
 | 	iod->first_dma = sgl_dma; | 
 |  | 
 | 	nvme_pci_sgl_set_seg(&cmd->dptr.sgl, sgl_dma, entries); | 
 |  | 
 | 	do { | 
 | 		if (i == SGES_PER_PAGE) { | 
 | 			struct nvme_sgl_desc *old_sg_desc = sg_list; | 
 | 			struct nvme_sgl_desc *link = &old_sg_desc[i - 1]; | 
 |  | 
 | 			sg_list = dma_pool_alloc(pool, GFP_ATOMIC, &sgl_dma); | 
 | 			if (!sg_list) | 
 | 				return BLK_STS_RESOURCE; | 
 |  | 
 | 			i = 0; | 
 | 			nvme_pci_iod_list(req)[iod->npages++] = sg_list; | 
 | 			sg_list[i++] = *link; | 
 | 			nvme_pci_sgl_set_seg(link, sgl_dma, entries); | 
 | 		} | 
 |  | 
 | 		nvme_pci_sgl_set_data(&sg_list[i++], sg); | 
 | 		sg = sg_next(sg); | 
 | 	} while (--entries > 0); | 
 |  | 
 | 	return BLK_STS_OK; | 
 | } | 
 |  | 
 | static blk_status_t nvme_map_data(struct nvme_dev *dev, struct request *req, | 
 | 		struct nvme_command *cmnd) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct request_queue *q = req->q; | 
 | 	enum dma_data_direction dma_dir = rq_data_dir(req) ? | 
 | 			DMA_TO_DEVICE : DMA_FROM_DEVICE; | 
 | 	blk_status_t ret = BLK_STS_IOERR; | 
 | 	int nr_mapped; | 
 |  | 
 | 	sg_init_table(iod->sg, blk_rq_nr_phys_segments(req)); | 
 | 	iod->nents = blk_rq_map_sg(q, req, iod->sg); | 
 | 	if (!iod->nents) | 
 | 		goto out; | 
 |  | 
 | 	ret = BLK_STS_RESOURCE; | 
 | 	nr_mapped = dma_map_sg_attrs(dev->dev, iod->sg, iod->nents, dma_dir, | 
 | 			DMA_ATTR_NO_WARN); | 
 | 	if (!nr_mapped) | 
 | 		goto out; | 
 |  | 
 | 	if (iod->use_sgl) | 
 | 		ret = nvme_pci_setup_sgls(dev, req, &cmnd->rw, nr_mapped); | 
 | 	else | 
 | 		ret = nvme_pci_setup_prps(dev, req, &cmnd->rw); | 
 |  | 
 | 	if (ret != BLK_STS_OK) | 
 | 		goto out_unmap; | 
 |  | 
 | 	ret = BLK_STS_IOERR; | 
 | 	if (blk_integrity_rq(req)) { | 
 | 		if (blk_rq_count_integrity_sg(q, req->bio) != 1) | 
 | 			goto out_unmap; | 
 |  | 
 | 		sg_init_table(&iod->meta_sg, 1); | 
 | 		if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) | 
 | 			goto out_unmap; | 
 |  | 
 | 		if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) | 
 | 			goto out_unmap; | 
 | 	} | 
 |  | 
 | 	if (blk_integrity_rq(req)) | 
 | 		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); | 
 | 	return BLK_STS_OK; | 
 |  | 
 | out_unmap: | 
 | 	dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	enum dma_data_direction dma_dir = rq_data_dir(req) ? | 
 | 			DMA_TO_DEVICE : DMA_FROM_DEVICE; | 
 |  | 
 | 	if (iod->nents) { | 
 | 		dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); | 
 | 		if (blk_integrity_rq(req)) | 
 | 			dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); | 
 | 	} | 
 |  | 
 | 	nvme_cleanup_cmd(req); | 
 | 	nvme_free_iod(dev, req); | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE: ns is NULL when called on the admin queue. | 
 |  */ | 
 | static blk_status_t nvme_queue_rq(struct blk_mq_hw_ctx *hctx, | 
 | 			 const struct blk_mq_queue_data *bd) | 
 | { | 
 | 	struct nvme_ns *ns = hctx->queue->queuedata; | 
 | 	struct nvme_queue *nvmeq = hctx->driver_data; | 
 | 	struct nvme_dev *dev = nvmeq->dev; | 
 | 	struct request *req = bd->rq; | 
 | 	struct nvme_command cmnd; | 
 | 	blk_status_t ret; | 
 |  | 
 | 	/* | 
 | 	 * We should not need to do this, but we're still using this to | 
 | 	 * ensure we can drain requests on a dying queue. | 
 | 	 */ | 
 | 	if (unlikely(nvmeq->cq_vector < 0)) | 
 | 		return BLK_STS_IOERR; | 
 |  | 
 | 	ret = nvme_setup_cmd(ns, req, &cmnd); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = nvme_init_iod(req, dev); | 
 | 	if (ret) | 
 | 		goto out_free_cmd; | 
 |  | 
 | 	if (blk_rq_nr_phys_segments(req)) { | 
 | 		ret = nvme_map_data(dev, req, &cmnd); | 
 | 		if (ret) | 
 | 			goto out_cleanup_iod; | 
 | 	} | 
 |  | 
 | 	blk_mq_start_request(req); | 
 | 	nvme_submit_cmd(nvmeq, &cmnd); | 
 | 	return BLK_STS_OK; | 
 | out_cleanup_iod: | 
 | 	nvme_free_iod(dev, req); | 
 | out_free_cmd: | 
 | 	nvme_cleanup_cmd(req); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_pci_complete_rq(struct request *req) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 |  | 
 | 	nvme_unmap_data(iod->nvmeq->dev, req); | 
 | 	nvme_complete_rq(req); | 
 | } | 
 |  | 
 | /* We read the CQE phase first to check if the rest of the entry is valid */ | 
 | static inline bool nvme_cqe_pending(struct nvme_queue *nvmeq) | 
 | { | 
 | 	return (le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) == | 
 | 			nvmeq->cq_phase; | 
 | } | 
 |  | 
 | static inline void nvme_ring_cq_doorbell(struct nvme_queue *nvmeq) | 
 | { | 
 | 	u16 head = nvmeq->cq_head; | 
 |  | 
 | 	if (nvme_dbbuf_update_and_check_event(head, nvmeq->dbbuf_cq_db, | 
 | 					      nvmeq->dbbuf_cq_ei)) | 
 | 		writel(head, nvmeq->q_db + nvmeq->dev->db_stride); | 
 | } | 
 |  | 
 | static inline void nvme_handle_cqe(struct nvme_queue *nvmeq, u16 idx) | 
 | { | 
 | 	volatile struct nvme_completion *cqe = &nvmeq->cqes[idx]; | 
 | 	struct request *req; | 
 |  | 
 | 	if (unlikely(cqe->command_id >= nvmeq->q_depth)) { | 
 | 		dev_warn(nvmeq->dev->ctrl.device, | 
 | 			"invalid id %d completed on queue %d\n", | 
 | 			cqe->command_id, le16_to_cpu(cqe->sq_id)); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * AEN requests are special as they don't time out and can | 
 | 	 * survive any kind of queue freeze and often don't respond to | 
 | 	 * aborts.  We don't even bother to allocate a struct request | 
 | 	 * for them but rather special case them here. | 
 | 	 */ | 
 | 	if (unlikely(nvmeq->qid == 0 && | 
 | 			cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH)) { | 
 | 		nvme_complete_async_event(&nvmeq->dev->ctrl, | 
 | 				cqe->status, &cqe->result); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	req = blk_mq_tag_to_rq(*nvmeq->tags, cqe->command_id); | 
 | 	nvme_end_request(req, cqe->status, cqe->result); | 
 | } | 
 |  | 
 | static void nvme_complete_cqes(struct nvme_queue *nvmeq, u16 start, u16 end) | 
 | { | 
 | 	while (start != end) { | 
 | 		nvme_handle_cqe(nvmeq, start); | 
 | 		if (++start == nvmeq->q_depth) | 
 | 			start = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static inline void nvme_update_cq_head(struct nvme_queue *nvmeq) | 
 | { | 
 | 	if (nvmeq->cq_head == nvmeq->q_depth - 1) { | 
 | 		nvmeq->cq_head = 0; | 
 | 		nvmeq->cq_phase = !nvmeq->cq_phase; | 
 | 	} else { | 
 | 		nvmeq->cq_head++; | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool nvme_process_cq(struct nvme_queue *nvmeq, u16 *start, | 
 | 		u16 *end, int tag) | 
 | { | 
 | 	bool found = false; | 
 |  | 
 | 	*start = nvmeq->cq_head; | 
 | 	while (!found && nvme_cqe_pending(nvmeq)) { | 
 | 		if (nvmeq->cqes[nvmeq->cq_head].command_id == tag) | 
 | 			found = true; | 
 | 		nvme_update_cq_head(nvmeq); | 
 | 	} | 
 | 	*end = nvmeq->cq_head; | 
 |  | 
 | 	if (*start != *end) | 
 | 		nvme_ring_cq_doorbell(nvmeq); | 
 | 	return found; | 
 | } | 
 |  | 
 | static irqreturn_t nvme_irq(int irq, void *data) | 
 | { | 
 | 	struct nvme_queue *nvmeq = data; | 
 | 	irqreturn_t ret = IRQ_NONE; | 
 | 	u16 start, end; | 
 |  | 
 | 	spin_lock(&nvmeq->cq_lock); | 
 | 	if (nvmeq->cq_head != nvmeq->last_cq_head) | 
 | 		ret = IRQ_HANDLED; | 
 | 	nvme_process_cq(nvmeq, &start, &end, -1); | 
 | 	nvmeq->last_cq_head = nvmeq->cq_head; | 
 | 	spin_unlock(&nvmeq->cq_lock); | 
 |  | 
 | 	if (start != end) { | 
 | 		nvme_complete_cqes(nvmeq, start, end); | 
 | 		return IRQ_HANDLED; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static irqreturn_t nvme_irq_check(int irq, void *data) | 
 | { | 
 | 	struct nvme_queue *nvmeq = data; | 
 | 	if (nvme_cqe_pending(nvmeq)) | 
 | 		return IRQ_WAKE_THREAD; | 
 | 	return IRQ_NONE; | 
 | } | 
 |  | 
 | static int __nvme_poll(struct nvme_queue *nvmeq, unsigned int tag) | 
 | { | 
 | 	u16 start, end; | 
 | 	bool found; | 
 |  | 
 | 	if (!nvme_cqe_pending(nvmeq)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock_irq(&nvmeq->cq_lock); | 
 | 	found = nvme_process_cq(nvmeq, &start, &end, tag); | 
 | 	spin_unlock_irq(&nvmeq->cq_lock); | 
 |  | 
 | 	nvme_complete_cqes(nvmeq, start, end); | 
 | 	return found; | 
 | } | 
 |  | 
 | static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) | 
 | { | 
 | 	struct nvme_queue *nvmeq = hctx->driver_data; | 
 |  | 
 | 	return __nvme_poll(nvmeq, tag); | 
 | } | 
 |  | 
 | static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_dev *dev = to_nvme_dev(ctrl); | 
 | 	struct nvme_queue *nvmeq = &dev->queues[0]; | 
 | 	struct nvme_command c; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.common.opcode = nvme_admin_async_event; | 
 | 	c.common.command_id = NVME_AQ_BLK_MQ_DEPTH; | 
 | 	nvme_submit_cmd(nvmeq, &c); | 
 | } | 
 |  | 
 | static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) | 
 | { | 
 | 	struct nvme_command c; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.delete_queue.opcode = opcode; | 
 | 	c.delete_queue.qid = cpu_to_le16(id); | 
 |  | 
 | 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); | 
 | } | 
 |  | 
 | static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, | 
 | 		struct nvme_queue *nvmeq, s16 vector) | 
 | { | 
 | 	struct nvme_command c; | 
 | 	int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; | 
 |  | 
 | 	/* | 
 | 	 * Note: we (ab)use the fact that the prp fields survive if no data | 
 | 	 * is attached to the request. | 
 | 	 */ | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.create_cq.opcode = nvme_admin_create_cq; | 
 | 	c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); | 
 | 	c.create_cq.cqid = cpu_to_le16(qid); | 
 | 	c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | 
 | 	c.create_cq.cq_flags = cpu_to_le16(flags); | 
 | 	c.create_cq.irq_vector = cpu_to_le16(vector); | 
 |  | 
 | 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); | 
 | } | 
 |  | 
 | static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, | 
 | 						struct nvme_queue *nvmeq) | 
 | { | 
 | 	struct nvme_ctrl *ctrl = &dev->ctrl; | 
 | 	struct nvme_command c; | 
 | 	int flags = NVME_QUEUE_PHYS_CONTIG; | 
 |  | 
 | 	/* | 
 | 	 * Some drives have a bug that auto-enables WRRU if MEDIUM isn't | 
 | 	 * set. Since URGENT priority is zeroes, it makes all queues | 
 | 	 * URGENT. | 
 | 	 */ | 
 | 	if (ctrl->quirks & NVME_QUIRK_MEDIUM_PRIO_SQ) | 
 | 		flags |= NVME_SQ_PRIO_MEDIUM; | 
 |  | 
 | 	/* | 
 | 	 * Note: we (ab)use the fact that the prp fields survive if no data | 
 | 	 * is attached to the request. | 
 | 	 */ | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.create_sq.opcode = nvme_admin_create_sq; | 
 | 	c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); | 
 | 	c.create_sq.sqid = cpu_to_le16(qid); | 
 | 	c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); | 
 | 	c.create_sq.sq_flags = cpu_to_le16(flags); | 
 | 	c.create_sq.cqid = cpu_to_le16(qid); | 
 |  | 
 | 	return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); | 
 | } | 
 |  | 
 | static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) | 
 | { | 
 | 	return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); | 
 | } | 
 |  | 
 | static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) | 
 | { | 
 | 	return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); | 
 | } | 
 |  | 
 | static void abort_endio(struct request *req, blk_status_t error) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct nvme_queue *nvmeq = iod->nvmeq; | 
 |  | 
 | 	dev_warn(nvmeq->dev->ctrl.device, | 
 | 		 "Abort status: 0x%x", nvme_req(req)->status); | 
 | 	atomic_inc(&nvmeq->dev->ctrl.abort_limit); | 
 | 	blk_mq_free_request(req); | 
 | } | 
 |  | 
 | static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) | 
 | { | 
 |  | 
 | 	/* If true, indicates loss of adapter communication, possibly by a | 
 | 	 * NVMe Subsystem reset. | 
 | 	 */ | 
 | 	bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); | 
 |  | 
 | 	/* If there is a reset/reinit ongoing, we shouldn't reset again. */ | 
 | 	switch (dev->ctrl.state) { | 
 | 	case NVME_CTRL_RESETTING: | 
 | 	case NVME_CTRL_CONNECTING: | 
 | 		return false; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* We shouldn't reset unless the controller is on fatal error state | 
 | 	 * _or_ if we lost the communication with it. | 
 | 	 */ | 
 | 	if (!(csts & NVME_CSTS_CFS) && !nssro) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void nvme_warn_reset(struct nvme_dev *dev, u32 csts) | 
 | { | 
 | 	/* Read a config register to help see what died. */ | 
 | 	u16 pci_status; | 
 | 	int result; | 
 |  | 
 | 	result = pci_read_config_word(to_pci_dev(dev->dev), PCI_STATUS, | 
 | 				      &pci_status); | 
 | 	if (result == PCIBIOS_SUCCESSFUL) | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS=0x%hx\n", | 
 | 			 csts, pci_status); | 
 | 	else | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			 "controller is down; will reset: CSTS=0x%x, PCI_STATUS read failed (%d)\n", | 
 | 			 csts, result); | 
 | } | 
 |  | 
 | static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) | 
 | { | 
 | 	struct nvme_iod *iod = blk_mq_rq_to_pdu(req); | 
 | 	struct nvme_queue *nvmeq = iod->nvmeq; | 
 | 	struct nvme_dev *dev = nvmeq->dev; | 
 | 	struct request *abort_req; | 
 | 	struct nvme_command cmd; | 
 | 	bool shutdown = false; | 
 | 	u32 csts = readl(dev->bar + NVME_REG_CSTS); | 
 |  | 
 | 	/* If PCI error recovery process is happening, we cannot reset or | 
 | 	 * the recovery mechanism will surely fail. | 
 | 	 */ | 
 | 	mb(); | 
 | 	if (pci_channel_offline(to_pci_dev(dev->dev))) | 
 | 		return BLK_EH_RESET_TIMER; | 
 |  | 
 | 	/* | 
 | 	 * Reset immediately if the controller is failed | 
 | 	 */ | 
 | 	if (nvme_should_reset(dev, csts)) { | 
 | 		nvme_warn_reset(dev, csts); | 
 | 		nvme_dev_disable(dev, false); | 
 | 		nvme_reset_ctrl(&dev->ctrl); | 
 | 		return BLK_EH_DONE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Did we miss an interrupt? | 
 | 	 */ | 
 | 	if (__nvme_poll(nvmeq, req->tag)) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			 "I/O %d QID %d timeout, completion polled\n", | 
 | 			 req->tag, nvmeq->qid); | 
 | 		return BLK_EH_DONE; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Shutdown immediately if controller times out while starting. The | 
 | 	 * reset work will see the pci device disabled when it gets the forced | 
 | 	 * cancellation error. All outstanding requests are completed on | 
 | 	 * shutdown, so we return BLK_EH_DONE. | 
 | 	 */ | 
 | 	switch (dev->ctrl.state) { | 
 | 	case NVME_CTRL_DELETING: | 
 | 		shutdown = true; | 
 | 	case NVME_CTRL_CONNECTING: | 
 | 	case NVME_CTRL_RESETTING: | 
 | 		dev_warn_ratelimited(dev->ctrl.device, | 
 | 			 "I/O %d QID %d timeout, disable controller\n", | 
 | 			 req->tag, nvmeq->qid); | 
 | 		nvme_dev_disable(dev, shutdown); | 
 | 		nvme_req(req)->flags |= NVME_REQ_CANCELLED; | 
 | 		return BLK_EH_DONE; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 |  	 * Shutdown the controller immediately and schedule a reset if the | 
 |  	 * command was already aborted once before and still hasn't been | 
 |  	 * returned to the driver, or if this is the admin queue. | 
 | 	 */ | 
 | 	if (!nvmeq->qid || iod->aborted) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			 "I/O %d QID %d timeout, reset controller\n", | 
 | 			 req->tag, nvmeq->qid); | 
 | 		nvme_dev_disable(dev, false); | 
 | 		nvme_reset_ctrl(&dev->ctrl); | 
 |  | 
 | 		nvme_req(req)->flags |= NVME_REQ_CANCELLED; | 
 | 		return BLK_EH_DONE; | 
 | 	} | 
 |  | 
 | 	if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { | 
 | 		atomic_inc(&dev->ctrl.abort_limit); | 
 | 		return BLK_EH_RESET_TIMER; | 
 | 	} | 
 | 	iod->aborted = 1; | 
 |  | 
 | 	memset(&cmd, 0, sizeof(cmd)); | 
 | 	cmd.abort.opcode = nvme_admin_abort_cmd; | 
 | 	cmd.abort.cid = req->tag; | 
 | 	cmd.abort.sqid = cpu_to_le16(nvmeq->qid); | 
 |  | 
 | 	dev_warn(nvmeq->dev->ctrl.device, | 
 | 		"I/O %d QID %d timeout, aborting\n", | 
 | 		 req->tag, nvmeq->qid); | 
 |  | 
 | 	abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, | 
 | 			BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); | 
 | 	if (IS_ERR(abort_req)) { | 
 | 		atomic_inc(&dev->ctrl.abort_limit); | 
 | 		return BLK_EH_RESET_TIMER; | 
 | 	} | 
 |  | 
 | 	abort_req->timeout = ADMIN_TIMEOUT; | 
 | 	abort_req->end_io_data = NULL; | 
 | 	blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); | 
 |  | 
 | 	/* | 
 | 	 * The aborted req will be completed on receiving the abort req. | 
 | 	 * We enable the timer again. If hit twice, it'll cause a device reset, | 
 | 	 * as the device then is in a faulty state. | 
 | 	 */ | 
 | 	return BLK_EH_RESET_TIMER; | 
 | } | 
 |  | 
 | static void nvme_free_queue(struct nvme_queue *nvmeq) | 
 | { | 
 | 	dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), | 
 | 				(void *)nvmeq->cqes, nvmeq->cq_dma_addr); | 
 | 	if (nvmeq->sq_cmds) | 
 | 		dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), | 
 | 					nvmeq->sq_cmds, nvmeq->sq_dma_addr); | 
 | } | 
 |  | 
 | static void nvme_free_queues(struct nvme_dev *dev, int lowest) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = dev->ctrl.queue_count - 1; i >= lowest; i--) { | 
 | 		dev->ctrl.queue_count--; | 
 | 		nvme_free_queue(&dev->queues[i]); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * nvme_suspend_queue - put queue into suspended state | 
 |  * @nvmeq - queue to suspend | 
 |  */ | 
 | static int nvme_suspend_queue(struct nvme_queue *nvmeq) | 
 | { | 
 | 	int vector; | 
 |  | 
 | 	spin_lock_irq(&nvmeq->cq_lock); | 
 | 	if (nvmeq->cq_vector == -1) { | 
 | 		spin_unlock_irq(&nvmeq->cq_lock); | 
 | 		return 1; | 
 | 	} | 
 | 	vector = nvmeq->cq_vector; | 
 | 	nvmeq->dev->online_queues--; | 
 | 	nvmeq->cq_vector = -1; | 
 | 	spin_unlock_irq(&nvmeq->cq_lock); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that nvme_queue_rq() sees it ->cq_vector == -1 without | 
 | 	 * having to grab the lock. | 
 | 	 */ | 
 | 	mb(); | 
 |  | 
 | 	if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) | 
 | 		blk_mq_quiesce_queue(nvmeq->dev->ctrl.admin_q); | 
 |  | 
 | 	pci_free_irq(to_pci_dev(nvmeq->dev->dev), vector, nvmeq); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) | 
 | { | 
 | 	struct nvme_queue *nvmeq = &dev->queues[0]; | 
 | 	u16 start, end; | 
 |  | 
 | 	if (shutdown) | 
 | 		nvme_shutdown_ctrl(&dev->ctrl); | 
 | 	else | 
 | 		nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); | 
 |  | 
 | 	spin_lock_irq(&nvmeq->cq_lock); | 
 | 	nvme_process_cq(nvmeq, &start, &end, -1); | 
 | 	spin_unlock_irq(&nvmeq->cq_lock); | 
 |  | 
 | 	nvme_complete_cqes(nvmeq, start, end); | 
 | } | 
 |  | 
 | static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, | 
 | 				int entry_size) | 
 | { | 
 | 	int q_depth = dev->q_depth; | 
 | 	unsigned q_size_aligned = roundup(q_depth * entry_size, | 
 | 					  dev->ctrl.page_size); | 
 |  | 
 | 	if (q_size_aligned * nr_io_queues > dev->cmb_size) { | 
 | 		u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); | 
 | 		mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); | 
 | 		q_depth = div_u64(mem_per_q, entry_size); | 
 |  | 
 | 		/* | 
 | 		 * Ensure the reduced q_depth is above some threshold where it | 
 | 		 * would be better to map queues in system memory with the | 
 | 		 * original depth | 
 | 		 */ | 
 | 		if (q_depth < 64) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	return q_depth; | 
 | } | 
 |  | 
 | static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, | 
 | 				int qid, int depth) | 
 | { | 
 | 	/* CMB SQEs will be mapped before creation */ | 
 | 	if (qid && dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) | 
 | 		return 0; | 
 |  | 
 | 	nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), | 
 | 					    &nvmeq->sq_dma_addr, GFP_KERNEL); | 
 | 	if (!nvmeq->sq_cmds) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_alloc_queue(struct nvme_dev *dev, int qid, int depth) | 
 | { | 
 | 	struct nvme_queue *nvmeq = &dev->queues[qid]; | 
 |  | 
 | 	if (dev->ctrl.queue_count > qid) | 
 | 		return 0; | 
 |  | 
 | 	nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), | 
 | 					  &nvmeq->cq_dma_addr, GFP_KERNEL); | 
 | 	if (!nvmeq->cqes) | 
 | 		goto free_nvmeq; | 
 |  | 
 | 	if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) | 
 | 		goto free_cqdma; | 
 |  | 
 | 	nvmeq->q_dmadev = dev->dev; | 
 | 	nvmeq->dev = dev; | 
 | 	spin_lock_init(&nvmeq->sq_lock); | 
 | 	spin_lock_init(&nvmeq->cq_lock); | 
 | 	nvmeq->cq_head = 0; | 
 | 	nvmeq->cq_phase = 1; | 
 | 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; | 
 | 	nvmeq->q_depth = depth; | 
 | 	nvmeq->qid = qid; | 
 | 	nvmeq->cq_vector = -1; | 
 | 	dev->ctrl.queue_count++; | 
 |  | 
 | 	return 0; | 
 |  | 
 |  free_cqdma: | 
 | 	dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, | 
 | 							nvmeq->cq_dma_addr); | 
 |  free_nvmeq: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int queue_request_irq(struct nvme_queue *nvmeq) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(nvmeq->dev->dev); | 
 | 	int nr = nvmeq->dev->ctrl.instance; | 
 |  | 
 | 	if (use_threaded_interrupts) { | 
 | 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq_check, | 
 | 				nvme_irq, nvmeq, "nvme%dq%d", nr, nvmeq->qid); | 
 | 	} else { | 
 | 		return pci_request_irq(pdev, nvmeq->cq_vector, nvme_irq, | 
 | 				NULL, nvmeq, "nvme%dq%d", nr, nvmeq->qid); | 
 | 	} | 
 | } | 
 |  | 
 | static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) | 
 | { | 
 | 	struct nvme_dev *dev = nvmeq->dev; | 
 |  | 
 | 	spin_lock_irq(&nvmeq->cq_lock); | 
 | 	nvmeq->sq_tail = 0; | 
 | 	nvmeq->cq_head = 0; | 
 | 	nvmeq->cq_phase = 1; | 
 | 	nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; | 
 | 	memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); | 
 | 	nvme_dbbuf_init(dev, nvmeq, qid); | 
 | 	dev->online_queues++; | 
 | 	spin_unlock_irq(&nvmeq->cq_lock); | 
 | } | 
 |  | 
 | static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) | 
 | { | 
 | 	struct nvme_dev *dev = nvmeq->dev; | 
 | 	int result; | 
 | 	s16 vector; | 
 |  | 
 | 	if (dev->cmb && use_cmb_sqes && (dev->cmbsz & NVME_CMBSZ_SQS)) { | 
 | 		unsigned offset = (qid - 1) * roundup(SQ_SIZE(nvmeq->q_depth), | 
 | 						      dev->ctrl.page_size); | 
 | 		nvmeq->sq_dma_addr = dev->cmb_bus_addr + offset; | 
 | 		nvmeq->sq_cmds_io = dev->cmb + offset; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * A queue's vector matches the queue identifier unless the controller | 
 | 	 * has only one vector available. | 
 | 	 */ | 
 | 	vector = dev->num_vecs == 1 ? 0 : qid; | 
 | 	result = adapter_alloc_cq(dev, qid, nvmeq, vector); | 
 | 	if (result) | 
 | 		return result; | 
 |  | 
 | 	result = adapter_alloc_sq(dev, qid, nvmeq); | 
 | 	if (result < 0) | 
 | 		return result; | 
 | 	else if (result) | 
 | 		goto release_cq; | 
 |  | 
 | 	/* | 
 | 	 * Set cq_vector after alloc cq/sq, otherwise nvme_suspend_queue will | 
 | 	 * invoke free_irq for it and cause a 'Trying to free already-free IRQ | 
 | 	 * xxx' warning if the create CQ/SQ command times out. | 
 | 	 */ | 
 | 	nvmeq->cq_vector = vector; | 
 | 	nvme_init_queue(nvmeq, qid); | 
 | 	result = queue_request_irq(nvmeq); | 
 | 	if (result < 0) | 
 | 		goto release_sq; | 
 |  | 
 | 	return result; | 
 |  | 
 | release_sq: | 
 | 	nvmeq->cq_vector = -1; | 
 | 	dev->online_queues--; | 
 | 	adapter_delete_sq(dev, qid); | 
 | release_cq: | 
 | 	adapter_delete_cq(dev, qid); | 
 | 	return result; | 
 | } | 
 |  | 
 | static const struct blk_mq_ops nvme_mq_admin_ops = { | 
 | 	.queue_rq	= nvme_queue_rq, | 
 | 	.complete	= nvme_pci_complete_rq, | 
 | 	.init_hctx	= nvme_admin_init_hctx, | 
 | 	.exit_hctx      = nvme_admin_exit_hctx, | 
 | 	.init_request	= nvme_init_request, | 
 | 	.timeout	= nvme_timeout, | 
 | }; | 
 |  | 
 | static const struct blk_mq_ops nvme_mq_ops = { | 
 | 	.queue_rq	= nvme_queue_rq, | 
 | 	.complete	= nvme_pci_complete_rq, | 
 | 	.init_hctx	= nvme_init_hctx, | 
 | 	.init_request	= nvme_init_request, | 
 | 	.map_queues	= nvme_pci_map_queues, | 
 | 	.timeout	= nvme_timeout, | 
 | 	.poll		= nvme_poll, | 
 | }; | 
 |  | 
 | static void nvme_dev_remove_admin(struct nvme_dev *dev) | 
 | { | 
 | 	if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { | 
 | 		/* | 
 | 		 * If the controller was reset during removal, it's possible | 
 | 		 * user requests may be waiting on a stopped queue. Start the | 
 | 		 * queue to flush these to completion. | 
 | 		 */ | 
 | 		blk_mq_unquiesce_queue(dev->ctrl.admin_q); | 
 | 		blk_cleanup_queue(dev->ctrl.admin_q); | 
 | 		blk_mq_free_tag_set(&dev->admin_tagset); | 
 | 	} | 
 | } | 
 |  | 
 | static int nvme_alloc_admin_tags(struct nvme_dev *dev) | 
 | { | 
 | 	if (!dev->ctrl.admin_q) { | 
 | 		dev->admin_tagset.ops = &nvme_mq_admin_ops; | 
 | 		dev->admin_tagset.nr_hw_queues = 1; | 
 |  | 
 | 		dev->admin_tagset.queue_depth = NVME_AQ_MQ_TAG_DEPTH; | 
 | 		dev->admin_tagset.timeout = ADMIN_TIMEOUT; | 
 | 		dev->admin_tagset.numa_node = dev_to_node(dev->dev); | 
 | 		dev->admin_tagset.cmd_size = nvme_pci_cmd_size(dev, false); | 
 | 		dev->admin_tagset.flags = BLK_MQ_F_NO_SCHED; | 
 | 		dev->admin_tagset.driver_data = dev; | 
 |  | 
 | 		if (blk_mq_alloc_tag_set(&dev->admin_tagset)) | 
 | 			return -ENOMEM; | 
 | 		dev->ctrl.admin_tagset = &dev->admin_tagset; | 
 |  | 
 | 		dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); | 
 | 		if (IS_ERR(dev->ctrl.admin_q)) { | 
 | 			blk_mq_free_tag_set(&dev->admin_tagset); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		if (!blk_get_queue(dev->ctrl.admin_q)) { | 
 | 			nvme_dev_remove_admin(dev); | 
 | 			dev->ctrl.admin_q = NULL; | 
 | 			return -ENODEV; | 
 | 		} | 
 | 	} else | 
 | 		blk_mq_unquiesce_queue(dev->ctrl.admin_q); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static unsigned long db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) | 
 | { | 
 | 	return NVME_REG_DBS + ((nr_io_queues + 1) * 8 * dev->db_stride); | 
 | } | 
 |  | 
 | static int nvme_remap_bar(struct nvme_dev *dev, unsigned long size) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	if (size <= dev->bar_mapped_size) | 
 | 		return 0; | 
 | 	if (size > pci_resource_len(pdev, 0)) | 
 | 		return -ENOMEM; | 
 | 	if (dev->bar) | 
 | 		iounmap(dev->bar); | 
 | 	dev->bar = ioremap(pci_resource_start(pdev, 0), size); | 
 | 	if (!dev->bar) { | 
 | 		dev->bar_mapped_size = 0; | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	dev->bar_mapped_size = size; | 
 | 	dev->dbs = dev->bar + NVME_REG_DBS; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_configure_admin_queue(struct nvme_dev *dev) | 
 | { | 
 | 	int result; | 
 | 	u32 aqa; | 
 | 	struct nvme_queue *nvmeq; | 
 |  | 
 | 	result = nvme_remap_bar(dev, db_bar_size(dev, 0)); | 
 | 	if (result < 0) | 
 | 		return result; | 
 |  | 
 | 	dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1, 0) ? | 
 | 				NVME_CAP_NSSRC(dev->ctrl.cap) : 0; | 
 |  | 
 | 	if (dev->subsystem && | 
 | 	    (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) | 
 | 		writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); | 
 |  | 
 | 	result = nvme_disable_ctrl(&dev->ctrl, dev->ctrl.cap); | 
 | 	if (result < 0) | 
 | 		return result; | 
 |  | 
 | 	result = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); | 
 | 	if (result) | 
 | 		return result; | 
 |  | 
 | 	nvmeq = &dev->queues[0]; | 
 | 	aqa = nvmeq->q_depth - 1; | 
 | 	aqa |= aqa << 16; | 
 |  | 
 | 	writel(aqa, dev->bar + NVME_REG_AQA); | 
 | 	lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); | 
 | 	lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); | 
 |  | 
 | 	result = nvme_enable_ctrl(&dev->ctrl, dev->ctrl.cap); | 
 | 	if (result) | 
 | 		return result; | 
 |  | 
 | 	nvmeq->cq_vector = 0; | 
 | 	nvme_init_queue(nvmeq, 0); | 
 | 	result = queue_request_irq(nvmeq); | 
 | 	if (result) { | 
 | 		nvmeq->cq_vector = -1; | 
 | 		return result; | 
 | 	} | 
 |  | 
 | 	return result; | 
 | } | 
 |  | 
 | static int nvme_create_io_queues(struct nvme_dev *dev) | 
 | { | 
 | 	unsigned i, max; | 
 | 	int ret = 0; | 
 |  | 
 | 	for (i = dev->ctrl.queue_count; i <= dev->max_qid; i++) { | 
 | 		if (nvme_alloc_queue(dev, i, dev->q_depth)) { | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	max = min(dev->max_qid, dev->ctrl.queue_count - 1); | 
 | 	for (i = dev->online_queues; i <= max; i++) { | 
 | 		ret = nvme_create_queue(&dev->queues[i], i); | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Ignore failing Create SQ/CQ commands, we can continue with less | 
 | 	 * than the desired amount of queues, and even a controller without | 
 | 	 * I/O queues can still be used to issue admin commands.  This might | 
 | 	 * be useful to upgrade a buggy firmware for example. | 
 | 	 */ | 
 | 	return ret >= 0 ? 0 : ret; | 
 | } | 
 |  | 
 | static ssize_t nvme_cmb_show(struct device *dev, | 
 | 			     struct device_attribute *attr, | 
 | 			     char *buf) | 
 | { | 
 | 	struct nvme_dev *ndev = to_nvme_dev(dev_get_drvdata(dev)); | 
 |  | 
 | 	return scnprintf(buf, PAGE_SIZE, "cmbloc : x%08x\ncmbsz  : x%08x\n", | 
 | 		       ndev->cmbloc, ndev->cmbsz); | 
 | } | 
 | static DEVICE_ATTR(cmb, S_IRUGO, nvme_cmb_show, NULL); | 
 |  | 
 | static u64 nvme_cmb_size_unit(struct nvme_dev *dev) | 
 | { | 
 | 	u8 szu = (dev->cmbsz >> NVME_CMBSZ_SZU_SHIFT) & NVME_CMBSZ_SZU_MASK; | 
 |  | 
 | 	return 1ULL << (12 + 4 * szu); | 
 | } | 
 |  | 
 | static u32 nvme_cmb_size(struct nvme_dev *dev) | 
 | { | 
 | 	return (dev->cmbsz >> NVME_CMBSZ_SZ_SHIFT) & NVME_CMBSZ_SZ_MASK; | 
 | } | 
 |  | 
 | static void nvme_map_cmb(struct nvme_dev *dev) | 
 | { | 
 | 	u64 size, offset; | 
 | 	resource_size_t bar_size; | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 | 	int bar; | 
 |  | 
 | 	if (dev->cmb_size) | 
 | 		return; | 
 |  | 
 | 	dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); | 
 | 	if (!dev->cmbsz) | 
 | 		return; | 
 | 	dev->cmbloc = readl(dev->bar + NVME_REG_CMBLOC); | 
 |  | 
 | 	if (!use_cmb_sqes) | 
 | 		return; | 
 |  | 
 | 	size = nvme_cmb_size_unit(dev) * nvme_cmb_size(dev); | 
 | 	offset = nvme_cmb_size_unit(dev) * NVME_CMB_OFST(dev->cmbloc); | 
 | 	bar = NVME_CMB_BIR(dev->cmbloc); | 
 | 	bar_size = pci_resource_len(pdev, bar); | 
 |  | 
 | 	if (offset > bar_size) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Controllers may support a CMB size larger than their BAR, | 
 | 	 * for example, due to being behind a bridge. Reduce the CMB to | 
 | 	 * the reported size of the BAR | 
 | 	 */ | 
 | 	if (size > bar_size - offset) | 
 | 		size = bar_size - offset; | 
 |  | 
 | 	dev->cmb = ioremap_wc(pci_resource_start(pdev, bar) + offset, size); | 
 | 	if (!dev->cmb) | 
 | 		return; | 
 | 	dev->cmb_bus_addr = pci_bus_address(pdev, bar) + offset; | 
 | 	dev->cmb_size = size; | 
 |  | 
 | 	if (sysfs_add_file_to_group(&dev->ctrl.device->kobj, | 
 | 				    &dev_attr_cmb.attr, NULL)) | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			 "failed to add sysfs attribute for CMB\n"); | 
 | } | 
 |  | 
 | static inline void nvme_release_cmb(struct nvme_dev *dev) | 
 | { | 
 | 	if (dev->cmb) { | 
 | 		iounmap(dev->cmb); | 
 | 		dev->cmb = NULL; | 
 | 		sysfs_remove_file_from_group(&dev->ctrl.device->kobj, | 
 | 					     &dev_attr_cmb.attr, NULL); | 
 | 		dev->cmbsz = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static int nvme_set_host_mem(struct nvme_dev *dev, u32 bits) | 
 | { | 
 | 	u64 dma_addr = dev->host_mem_descs_dma; | 
 | 	struct nvme_command c; | 
 | 	int ret; | 
 |  | 
 | 	memset(&c, 0, sizeof(c)); | 
 | 	c.features.opcode	= nvme_admin_set_features; | 
 | 	c.features.fid		= cpu_to_le32(NVME_FEAT_HOST_MEM_BUF); | 
 | 	c.features.dword11	= cpu_to_le32(bits); | 
 | 	c.features.dword12	= cpu_to_le32(dev->host_mem_size >> | 
 | 					      ilog2(dev->ctrl.page_size)); | 
 | 	c.features.dword13	= cpu_to_le32(lower_32_bits(dma_addr)); | 
 | 	c.features.dword14	= cpu_to_le32(upper_32_bits(dma_addr)); | 
 | 	c.features.dword15	= cpu_to_le32(dev->nr_host_mem_descs); | 
 |  | 
 | 	ret = nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); | 
 | 	if (ret) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			 "failed to set host mem (err %d, flags %#x).\n", | 
 | 			 ret, bits); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nvme_free_host_mem(struct nvme_dev *dev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < dev->nr_host_mem_descs; i++) { | 
 | 		struct nvme_host_mem_buf_desc *desc = &dev->host_mem_descs[i]; | 
 | 		size_t size = le32_to_cpu(desc->size) * dev->ctrl.page_size; | 
 |  | 
 | 		dma_free_attrs(dev->dev, size, dev->host_mem_desc_bufs[i], | 
 | 			       le64_to_cpu(desc->addr), | 
 | 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); | 
 | 	} | 
 |  | 
 | 	kfree(dev->host_mem_desc_bufs); | 
 | 	dev->host_mem_desc_bufs = NULL; | 
 | 	dma_free_coherent(dev->dev, | 
 | 			dev->nr_host_mem_descs * sizeof(*dev->host_mem_descs), | 
 | 			dev->host_mem_descs, dev->host_mem_descs_dma); | 
 | 	dev->host_mem_descs = NULL; | 
 | 	dev->nr_host_mem_descs = 0; | 
 | } | 
 |  | 
 | static int __nvme_alloc_host_mem(struct nvme_dev *dev, u64 preferred, | 
 | 		u32 chunk_size) | 
 | { | 
 | 	struct nvme_host_mem_buf_desc *descs; | 
 | 	u32 max_entries, len; | 
 | 	dma_addr_t descs_dma; | 
 | 	int i = 0; | 
 | 	void **bufs; | 
 | 	u64 size, tmp; | 
 |  | 
 | 	tmp = (preferred + chunk_size - 1); | 
 | 	do_div(tmp, chunk_size); | 
 | 	max_entries = tmp; | 
 |  | 
 | 	if (dev->ctrl.hmmaxd && dev->ctrl.hmmaxd < max_entries) | 
 | 		max_entries = dev->ctrl.hmmaxd; | 
 |  | 
 | 	descs = dma_zalloc_coherent(dev->dev, max_entries * sizeof(*descs), | 
 | 			&descs_dma, GFP_KERNEL); | 
 | 	if (!descs) | 
 | 		goto out; | 
 |  | 
 | 	bufs = kcalloc(max_entries, sizeof(*bufs), GFP_KERNEL); | 
 | 	if (!bufs) | 
 | 		goto out_free_descs; | 
 |  | 
 | 	for (size = 0; size < preferred && i < max_entries; size += len) { | 
 | 		dma_addr_t dma_addr; | 
 |  | 
 | 		len = min_t(u64, chunk_size, preferred - size); | 
 | 		bufs[i] = dma_alloc_attrs(dev->dev, len, &dma_addr, GFP_KERNEL, | 
 | 				DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); | 
 | 		if (!bufs[i]) | 
 | 			break; | 
 |  | 
 | 		descs[i].addr = cpu_to_le64(dma_addr); | 
 | 		descs[i].size = cpu_to_le32(len / dev->ctrl.page_size); | 
 | 		i++; | 
 | 	} | 
 |  | 
 | 	if (!size) | 
 | 		goto out_free_bufs; | 
 |  | 
 | 	dev->nr_host_mem_descs = i; | 
 | 	dev->host_mem_size = size; | 
 | 	dev->host_mem_descs = descs; | 
 | 	dev->host_mem_descs_dma = descs_dma; | 
 | 	dev->host_mem_desc_bufs = bufs; | 
 | 	return 0; | 
 |  | 
 | out_free_bufs: | 
 | 	while (--i >= 0) { | 
 | 		size_t size = le32_to_cpu(descs[i].size) * dev->ctrl.page_size; | 
 |  | 
 | 		dma_free_attrs(dev->dev, size, bufs[i], | 
 | 			       le64_to_cpu(descs[i].addr), | 
 | 			       DMA_ATTR_NO_KERNEL_MAPPING | DMA_ATTR_NO_WARN); | 
 | 	} | 
 |  | 
 | 	kfree(bufs); | 
 | out_free_descs: | 
 | 	dma_free_coherent(dev->dev, max_entries * sizeof(*descs), descs, | 
 | 			descs_dma); | 
 | out: | 
 | 	dev->host_mem_descs = NULL; | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int nvme_alloc_host_mem(struct nvme_dev *dev, u64 min, u64 preferred) | 
 | { | 
 | 	u32 chunk_size; | 
 |  | 
 | 	/* start big and work our way down */ | 
 | 	for (chunk_size = min_t(u64, preferred, PAGE_SIZE * MAX_ORDER_NR_PAGES); | 
 | 	     chunk_size >= max_t(u32, dev->ctrl.hmminds * 4096, PAGE_SIZE * 2); | 
 | 	     chunk_size /= 2) { | 
 | 		if (!__nvme_alloc_host_mem(dev, preferred, chunk_size)) { | 
 | 			if (!min || dev->host_mem_size >= min) | 
 | 				return 0; | 
 | 			nvme_free_host_mem(dev); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | static int nvme_setup_host_mem(struct nvme_dev *dev) | 
 | { | 
 | 	u64 max = (u64)max_host_mem_size_mb * SZ_1M; | 
 | 	u64 preferred = (u64)dev->ctrl.hmpre * 4096; | 
 | 	u64 min = (u64)dev->ctrl.hmmin * 4096; | 
 | 	u32 enable_bits = NVME_HOST_MEM_ENABLE; | 
 | 	int ret; | 
 |  | 
 | 	preferred = min(preferred, max); | 
 | 	if (min > max) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			"min host memory (%lld MiB) above limit (%d MiB).\n", | 
 | 			min >> ilog2(SZ_1M), max_host_mem_size_mb); | 
 | 		nvme_free_host_mem(dev); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we already have a buffer allocated check if we can reuse it. | 
 | 	 */ | 
 | 	if (dev->host_mem_descs) { | 
 | 		if (dev->host_mem_size >= min) | 
 | 			enable_bits |= NVME_HOST_MEM_RETURN; | 
 | 		else | 
 | 			nvme_free_host_mem(dev); | 
 | 	} | 
 |  | 
 | 	if (!dev->host_mem_descs) { | 
 | 		if (nvme_alloc_host_mem(dev, min, preferred)) { | 
 | 			dev_warn(dev->ctrl.device, | 
 | 				"failed to allocate host memory buffer.\n"); | 
 | 			return 0; /* controller must work without HMB */ | 
 | 		} | 
 |  | 
 | 		dev_info(dev->ctrl.device, | 
 | 			"allocated %lld MiB host memory buffer.\n", | 
 | 			dev->host_mem_size >> ilog2(SZ_1M)); | 
 | 	} | 
 |  | 
 | 	ret = nvme_set_host_mem(dev, enable_bits); | 
 | 	if (ret) | 
 | 		nvme_free_host_mem(dev); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int nvme_setup_io_queues(struct nvme_dev *dev) | 
 | { | 
 | 	struct nvme_queue *adminq = &dev->queues[0]; | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 | 	int result, nr_io_queues; | 
 | 	unsigned long size; | 
 |  | 
 | 	struct irq_affinity affd = { | 
 | 		.pre_vectors = 1 | 
 | 	}; | 
 |  | 
 | 	nr_io_queues = num_possible_cpus(); | 
 | 	result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); | 
 | 	if (result < 0) | 
 | 		return result; | 
 |  | 
 | 	if (nr_io_queues == 0) | 
 | 		return 0; | 
 |  | 
 | 	if (dev->cmb && (dev->cmbsz & NVME_CMBSZ_SQS)) { | 
 | 		result = nvme_cmb_qdepth(dev, nr_io_queues, | 
 | 				sizeof(struct nvme_command)); | 
 | 		if (result > 0) | 
 | 			dev->q_depth = result; | 
 | 		else | 
 | 			nvme_release_cmb(dev); | 
 | 	} | 
 |  | 
 | 	do { | 
 | 		size = db_bar_size(dev, nr_io_queues); | 
 | 		result = nvme_remap_bar(dev, size); | 
 | 		if (!result) | 
 | 			break; | 
 | 		if (!--nr_io_queues) | 
 | 			return -ENOMEM; | 
 | 	} while (1); | 
 | 	adminq->q_db = dev->dbs; | 
 |  | 
 | 	/* Deregister the admin queue's interrupt */ | 
 | 	pci_free_irq(pdev, 0, adminq); | 
 |  | 
 | 	/* | 
 | 	 * If we enable msix early due to not intx, disable it again before | 
 | 	 * setting up the full range we need. | 
 | 	 */ | 
 | 	pci_free_irq_vectors(pdev); | 
 | 	result = pci_alloc_irq_vectors_affinity(pdev, 1, nr_io_queues + 1, | 
 | 			PCI_IRQ_ALL_TYPES | PCI_IRQ_AFFINITY, &affd); | 
 | 	if (result <= 0) | 
 | 		return -EIO; | 
 | 	dev->num_vecs = result; | 
 | 	dev->max_qid = max(result - 1, 1); | 
 |  | 
 | 	/* | 
 | 	 * Should investigate if there's a performance win from allocating | 
 | 	 * more queues than interrupt vectors; it might allow the submission | 
 | 	 * path to scale better, even if the receive path is limited by the | 
 | 	 * number of interrupts. | 
 | 	 */ | 
 |  | 
 | 	result = queue_request_irq(adminq); | 
 | 	if (result) { | 
 | 		adminq->cq_vector = -1; | 
 | 		return result; | 
 | 	} | 
 | 	return nvme_create_io_queues(dev); | 
 | } | 
 |  | 
 | static void nvme_del_queue_end(struct request *req, blk_status_t error) | 
 | { | 
 | 	struct nvme_queue *nvmeq = req->end_io_data; | 
 |  | 
 | 	blk_mq_free_request(req); | 
 | 	complete(&nvmeq->dev->ioq_wait); | 
 | } | 
 |  | 
 | static void nvme_del_cq_end(struct request *req, blk_status_t error) | 
 | { | 
 | 	struct nvme_queue *nvmeq = req->end_io_data; | 
 | 	u16 start, end; | 
 |  | 
 | 	if (!error) { | 
 | 		unsigned long flags; | 
 |  | 
 | 		spin_lock_irqsave(&nvmeq->cq_lock, flags); | 
 | 		nvme_process_cq(nvmeq, &start, &end, -1); | 
 | 		spin_unlock_irqrestore(&nvmeq->cq_lock, flags); | 
 |  | 
 | 		nvme_complete_cqes(nvmeq, start, end); | 
 | 	} | 
 |  | 
 | 	nvme_del_queue_end(req, error); | 
 | } | 
 |  | 
 | static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) | 
 | { | 
 | 	struct request_queue *q = nvmeq->dev->ctrl.admin_q; | 
 | 	struct request *req; | 
 | 	struct nvme_command cmd; | 
 |  | 
 | 	memset(&cmd, 0, sizeof(cmd)); | 
 | 	cmd.delete_queue.opcode = opcode; | 
 | 	cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); | 
 |  | 
 | 	req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); | 
 | 	if (IS_ERR(req)) | 
 | 		return PTR_ERR(req); | 
 |  | 
 | 	req->timeout = ADMIN_TIMEOUT; | 
 | 	req->end_io_data = nvmeq; | 
 |  | 
 | 	blk_execute_rq_nowait(q, NULL, req, false, | 
 | 			opcode == nvme_admin_delete_cq ? | 
 | 				nvme_del_cq_end : nvme_del_queue_end); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_disable_io_queues(struct nvme_dev *dev) | 
 | { | 
 | 	int pass, queues = dev->online_queues - 1; | 
 | 	unsigned long timeout; | 
 | 	u8 opcode = nvme_admin_delete_sq; | 
 |  | 
 | 	for (pass = 0; pass < 2; pass++) { | 
 | 		int sent = 0, i = queues; | 
 |  | 
 | 		reinit_completion(&dev->ioq_wait); | 
 |  retry: | 
 | 		timeout = ADMIN_TIMEOUT; | 
 | 		for (; i > 0; i--, sent++) | 
 | 			if (nvme_delete_queue(&dev->queues[i], opcode)) | 
 | 				break; | 
 |  | 
 | 		while (sent--) { | 
 | 			timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); | 
 | 			if (timeout == 0) | 
 | 				return; | 
 | 			if (i) | 
 | 				goto retry; | 
 | 		} | 
 | 		opcode = nvme_admin_delete_cq; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * return error value only when tagset allocation failed | 
 |  */ | 
 | static int nvme_dev_add(struct nvme_dev *dev) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (!dev->ctrl.tagset) { | 
 | 		dev->tagset.ops = &nvme_mq_ops; | 
 | 		dev->tagset.nr_hw_queues = dev->online_queues - 1; | 
 | 		dev->tagset.timeout = NVME_IO_TIMEOUT; | 
 | 		dev->tagset.numa_node = dev_to_node(dev->dev); | 
 | 		dev->tagset.queue_depth = | 
 | 				min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; | 
 | 		dev->tagset.cmd_size = nvme_pci_cmd_size(dev, false); | 
 | 		if ((dev->ctrl.sgls & ((1 << 0) | (1 << 1))) && sgl_threshold) { | 
 | 			dev->tagset.cmd_size = max(dev->tagset.cmd_size, | 
 | 					nvme_pci_cmd_size(dev, true)); | 
 | 		} | 
 | 		dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; | 
 | 		dev->tagset.driver_data = dev; | 
 |  | 
 | 		ret = blk_mq_alloc_tag_set(&dev->tagset); | 
 | 		if (ret) { | 
 | 			dev_warn(dev->ctrl.device, | 
 | 				"IO queues tagset allocation failed %d\n", ret); | 
 | 			return ret; | 
 | 		} | 
 | 		dev->ctrl.tagset = &dev->tagset; | 
 |  | 
 | 		nvme_dbbuf_set(dev); | 
 | 	} else { | 
 | 		blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); | 
 |  | 
 | 		/* Free previously allocated queues that are no longer usable */ | 
 | 		nvme_free_queues(dev, dev->online_queues); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_enable(struct nvme_dev *dev) | 
 | { | 
 | 	int result = -ENOMEM; | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	if (pci_enable_device_mem(pdev)) | 
 | 		return result; | 
 |  | 
 | 	pci_set_master(pdev); | 
 |  | 
 | 	if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && | 
 | 	    dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) | 
 | 		goto disable; | 
 |  | 
 | 	if (readl(dev->bar + NVME_REG_CSTS) == -1) { | 
 | 		result = -ENODEV; | 
 | 		goto disable; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Some devices and/or platforms don't advertise or work with INTx | 
 | 	 * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll | 
 | 	 * adjust this later. | 
 | 	 */ | 
 | 	result = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_ALL_TYPES); | 
 | 	if (result < 0) | 
 | 		return result; | 
 |  | 
 | 	dev->ctrl.cap = lo_hi_readq(dev->bar + NVME_REG_CAP); | 
 |  | 
 | 	dev->q_depth = min_t(int, NVME_CAP_MQES(dev->ctrl.cap) + 1, | 
 | 				io_queue_depth); | 
 | 	dev->db_stride = 1 << NVME_CAP_STRIDE(dev->ctrl.cap); | 
 | 	dev->dbs = dev->bar + 4096; | 
 |  | 
 | 	/* | 
 | 	 * Temporary fix for the Apple controller found in the MacBook8,1 and | 
 | 	 * some MacBook7,1 to avoid controller resets and data loss. | 
 | 	 */ | 
 | 	if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { | 
 | 		dev->q_depth = 2; | 
 | 		dev_warn(dev->ctrl.device, "detected Apple NVMe controller, " | 
 | 			"set queue depth=%u to work around controller resets\n", | 
 | 			dev->q_depth); | 
 | 	} else if (pdev->vendor == PCI_VENDOR_ID_SAMSUNG && | 
 | 		   (pdev->device == 0xa821 || pdev->device == 0xa822) && | 
 | 		   NVME_CAP_MQES(dev->ctrl.cap) == 0) { | 
 | 		dev->q_depth = 64; | 
 | 		dev_err(dev->ctrl.device, "detected PM1725 NVMe controller, " | 
 |                         "set queue depth=%u\n", dev->q_depth); | 
 | 	} | 
 |  | 
 | 	nvme_map_cmb(dev); | 
 |  | 
 | 	pci_enable_pcie_error_reporting(pdev); | 
 | 	pci_save_state(pdev); | 
 | 	return 0; | 
 |  | 
 |  disable: | 
 | 	pci_disable_device(pdev); | 
 | 	return result; | 
 | } | 
 |  | 
 | static void nvme_dev_unmap(struct nvme_dev *dev) | 
 | { | 
 | 	if (dev->bar) | 
 | 		iounmap(dev->bar); | 
 | 	pci_release_mem_regions(to_pci_dev(dev->dev)); | 
 | } | 
 |  | 
 | static void nvme_pci_disable(struct nvme_dev *dev) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	pci_free_irq_vectors(pdev); | 
 |  | 
 | 	if (pci_is_enabled(pdev)) { | 
 | 		pci_disable_pcie_error_reporting(pdev); | 
 | 		pci_disable_device(pdev); | 
 | 	} | 
 | } | 
 |  | 
 | static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) | 
 | { | 
 | 	int i; | 
 | 	bool dead = true; | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	mutex_lock(&dev->shutdown_lock); | 
 | 	if (pci_is_enabled(pdev)) { | 
 | 		u32 csts = readl(dev->bar + NVME_REG_CSTS); | 
 |  | 
 | 		if (dev->ctrl.state == NVME_CTRL_LIVE || | 
 | 		    dev->ctrl.state == NVME_CTRL_RESETTING) | 
 | 			nvme_start_freeze(&dev->ctrl); | 
 | 		dead = !!((csts & NVME_CSTS_CFS) || !(csts & NVME_CSTS_RDY) || | 
 | 			pdev->error_state  != pci_channel_io_normal); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Give the controller a chance to complete all entered requests if | 
 | 	 * doing a safe shutdown. | 
 | 	 */ | 
 | 	if (!dead) { | 
 | 		if (shutdown) | 
 | 			nvme_wait_freeze_timeout(&dev->ctrl, NVME_IO_TIMEOUT); | 
 | 	} | 
 |  | 
 | 	nvme_stop_queues(&dev->ctrl); | 
 |  | 
 | 	if (!dead && dev->ctrl.queue_count > 0) { | 
 | 		nvme_disable_io_queues(dev); | 
 | 		nvme_disable_admin_queue(dev, shutdown); | 
 | 	} | 
 | 	for (i = dev->ctrl.queue_count - 1; i >= 0; i--) | 
 | 		nvme_suspend_queue(&dev->queues[i]); | 
 |  | 
 | 	nvme_pci_disable(dev); | 
 |  | 
 | 	blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); | 
 | 	blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); | 
 |  | 
 | 	/* | 
 | 	 * The driver will not be starting up queues again if shutting down so | 
 | 	 * must flush all entered requests to their failed completion to avoid | 
 | 	 * deadlocking blk-mq hot-cpu notifier. | 
 | 	 */ | 
 | 	if (shutdown) { | 
 | 		nvme_start_queues(&dev->ctrl); | 
 | 		if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) | 
 | 			blk_mq_unquiesce_queue(dev->ctrl.admin_q); | 
 | 	} | 
 | 	mutex_unlock(&dev->shutdown_lock); | 
 | } | 
 |  | 
 | static int nvme_setup_prp_pools(struct nvme_dev *dev) | 
 | { | 
 | 	dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, | 
 | 						PAGE_SIZE, PAGE_SIZE, 0); | 
 | 	if (!dev->prp_page_pool) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* Optimisation for I/Os between 4k and 128k */ | 
 | 	dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, | 
 | 						256, 256, 0); | 
 | 	if (!dev->prp_small_pool) { | 
 | 		dma_pool_destroy(dev->prp_page_pool); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_release_prp_pools(struct nvme_dev *dev) | 
 | { | 
 | 	dma_pool_destroy(dev->prp_page_pool); | 
 | 	dma_pool_destroy(dev->prp_small_pool); | 
 | } | 
 |  | 
 | static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) | 
 | { | 
 | 	struct nvme_dev *dev = to_nvme_dev(ctrl); | 
 |  | 
 | 	nvme_dbbuf_dma_free(dev); | 
 | 	put_device(dev->dev); | 
 | 	if (dev->tagset.tags) | 
 | 		blk_mq_free_tag_set(&dev->tagset); | 
 | 	if (dev->ctrl.admin_q) | 
 | 		blk_put_queue(dev->ctrl.admin_q); | 
 | 	kfree(dev->queues); | 
 | 	free_opal_dev(dev->ctrl.opal_dev); | 
 | 	mempool_destroy(dev->iod_mempool); | 
 | 	kfree(dev); | 
 | } | 
 |  | 
 | static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) | 
 | { | 
 | 	dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); | 
 |  | 
 | 	nvme_get_ctrl(&dev->ctrl); | 
 | 	nvme_dev_disable(dev, false); | 
 | 	nvme_kill_queues(&dev->ctrl); | 
 | 	if (!queue_work(nvme_wq, &dev->remove_work)) | 
 | 		nvme_put_ctrl(&dev->ctrl); | 
 | } | 
 |  | 
 | static void nvme_reset_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_dev *dev = | 
 | 		container_of(work, struct nvme_dev, ctrl.reset_work); | 
 | 	bool was_suspend = !!(dev->ctrl.ctrl_config & NVME_CC_SHN_NORMAL); | 
 | 	int result; | 
 | 	enum nvme_ctrl_state new_state = NVME_CTRL_LIVE; | 
 |  | 
 | 	if (WARN_ON(dev->ctrl.state != NVME_CTRL_RESETTING)) { | 
 | 		result = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If we're called to reset a live controller first shut it down before | 
 | 	 * moving on. | 
 | 	 */ | 
 | 	if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) | 
 | 		nvme_dev_disable(dev, false); | 
 |  | 
 | 	mutex_lock(&dev->shutdown_lock); | 
 | 	result = nvme_pci_enable(dev); | 
 | 	if (result) | 
 | 		goto out_unlock; | 
 |  | 
 | 	result = nvme_pci_configure_admin_queue(dev); | 
 | 	if (result) | 
 | 		goto out_unlock; | 
 |  | 
 | 	result = nvme_alloc_admin_tags(dev); | 
 | 	if (result) | 
 | 		goto out_unlock; | 
 |  | 
 | 	/* | 
 | 	 * Limit the max command size to prevent iod->sg allocations going | 
 | 	 * over a single page. | 
 | 	 */ | 
 | 	dev->ctrl.max_hw_sectors = NVME_MAX_KB_SZ << 1; | 
 | 	dev->ctrl.max_segments = NVME_MAX_SEGS; | 
 | 	mutex_unlock(&dev->shutdown_lock); | 
 |  | 
 | 	/* | 
 | 	 * Introduce CONNECTING state from nvme-fc/rdma transports to mark the | 
 | 	 * initializing procedure here. | 
 | 	 */ | 
 | 	if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_CONNECTING)) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			"failed to mark controller CONNECTING\n"); | 
 | 		result = -EBUSY; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	result = nvme_init_identify(&dev->ctrl); | 
 | 	if (result) | 
 | 		goto out; | 
 |  | 
 | 	if (dev->ctrl.oacs & NVME_CTRL_OACS_SEC_SUPP) { | 
 | 		if (!dev->ctrl.opal_dev) | 
 | 			dev->ctrl.opal_dev = | 
 | 				init_opal_dev(&dev->ctrl, &nvme_sec_submit); | 
 | 		else if (was_suspend) | 
 | 			opal_unlock_from_suspend(dev->ctrl.opal_dev); | 
 | 	} else { | 
 | 		free_opal_dev(dev->ctrl.opal_dev); | 
 | 		dev->ctrl.opal_dev = NULL; | 
 | 	} | 
 |  | 
 | 	if (dev->ctrl.oacs & NVME_CTRL_OACS_DBBUF_SUPP) { | 
 | 		result = nvme_dbbuf_dma_alloc(dev); | 
 | 		if (result) | 
 | 			dev_warn(dev->dev, | 
 | 				 "unable to allocate dma for dbbuf\n"); | 
 | 	} | 
 |  | 
 | 	if (dev->ctrl.hmpre) { | 
 | 		result = nvme_setup_host_mem(dev); | 
 | 		if (result < 0) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	result = nvme_setup_io_queues(dev); | 
 | 	if (result) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * Keep the controller around but remove all namespaces if we don't have | 
 | 	 * any working I/O queue. | 
 | 	 */ | 
 | 	if (dev->online_queues < 2) { | 
 | 		dev_warn(dev->ctrl.device, "IO queues not created\n"); | 
 | 		nvme_kill_queues(&dev->ctrl); | 
 | 		nvme_remove_namespaces(&dev->ctrl); | 
 | 		new_state = NVME_CTRL_ADMIN_ONLY; | 
 | 	} else { | 
 | 		nvme_start_queues(&dev->ctrl); | 
 | 		nvme_wait_freeze(&dev->ctrl); | 
 | 		/* hit this only when allocate tagset fails */ | 
 | 		if (nvme_dev_add(dev)) | 
 | 			new_state = NVME_CTRL_ADMIN_ONLY; | 
 | 		nvme_unfreeze(&dev->ctrl); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If only admin queue live, keep it to do further investigation or | 
 | 	 * recovery. | 
 | 	 */ | 
 | 	if (!nvme_change_ctrl_state(&dev->ctrl, new_state)) { | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			"failed to mark controller state %d\n", new_state); | 
 | 		result = -ENODEV; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nvme_start_ctrl(&dev->ctrl); | 
 | 	return; | 
 |  | 
 |  out_unlock: | 
 | 	mutex_unlock(&dev->shutdown_lock); | 
 |  out: | 
 | 	nvme_remove_dead_ctrl(dev, result); | 
 | } | 
 |  | 
 | static void nvme_remove_dead_ctrl_work(struct work_struct *work) | 
 | { | 
 | 	struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	if (pci_get_drvdata(pdev)) | 
 | 		device_release_driver(&pdev->dev); | 
 | 	nvme_put_ctrl(&dev->ctrl); | 
 | } | 
 |  | 
 | static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) | 
 | { | 
 | 	*val = readl(to_nvme_dev(ctrl)->bar + off); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) | 
 | { | 
 | 	writel(val, to_nvme_dev(ctrl)->bar + off); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) | 
 | { | 
 | 	*val = readq(to_nvme_dev(ctrl)->bar + off); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_pci_get_address(struct nvme_ctrl *ctrl, char *buf, int size) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(to_nvme_dev(ctrl)->dev); | 
 |  | 
 | 	return snprintf(buf, size, "%s", dev_name(&pdev->dev)); | 
 | } | 
 |  | 
 | static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { | 
 | 	.name			= "pcie", | 
 | 	.module			= THIS_MODULE, | 
 | 	.flags			= NVME_F_METADATA_SUPPORTED, | 
 | 	.reg_read32		= nvme_pci_reg_read32, | 
 | 	.reg_write32		= nvme_pci_reg_write32, | 
 | 	.reg_read64		= nvme_pci_reg_read64, | 
 | 	.free_ctrl		= nvme_pci_free_ctrl, | 
 | 	.submit_async_event	= nvme_pci_submit_async_event, | 
 | 	.get_address		= nvme_pci_get_address, | 
 | }; | 
 |  | 
 | static int nvme_dev_map(struct nvme_dev *dev) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev->dev); | 
 |  | 
 | 	if (pci_request_mem_regions(pdev, "nvme")) | 
 | 		return -ENODEV; | 
 |  | 
 | 	if (nvme_remap_bar(dev, NVME_REG_DBS + 4096)) | 
 | 		goto release; | 
 |  | 
 | 	return 0; | 
 |   release: | 
 | 	pci_release_mem_regions(pdev); | 
 | 	return -ENODEV; | 
 | } | 
 |  | 
 | static unsigned long check_vendor_combination_bug(struct pci_dev *pdev) | 
 | { | 
 | 	if (pdev->vendor == 0x144d && pdev->device == 0xa802) { | 
 | 		/* | 
 | 		 * Several Samsung devices seem to drop off the PCIe bus | 
 | 		 * randomly when APST is on and uses the deepest sleep state. | 
 | 		 * This has been observed on a Samsung "SM951 NVMe SAMSUNG | 
 | 		 * 256GB", a "PM951 NVMe SAMSUNG 512GB", and a "Samsung SSD | 
 | 		 * 950 PRO 256GB", but it seems to be restricted to two Dell | 
 | 		 * laptops. | 
 | 		 */ | 
 | 		if (dmi_match(DMI_SYS_VENDOR, "Dell Inc.") && | 
 | 		    (dmi_match(DMI_PRODUCT_NAME, "XPS 15 9550") || | 
 | 		     dmi_match(DMI_PRODUCT_NAME, "Precision 5510"))) | 
 | 			return NVME_QUIRK_NO_DEEPEST_PS; | 
 | 	} else if (pdev->vendor == 0x144d && pdev->device == 0xa804) { | 
 | 		/* | 
 | 		 * Samsung SSD 960 EVO drops off the PCIe bus after system | 
 | 		 * suspend on a Ryzen board, ASUS PRIME B350M-A, as well as | 
 | 		 * within few minutes after bootup on a Coffee Lake board - | 
 | 		 * ASUS PRIME Z370-A | 
 | 		 */ | 
 | 		if (dmi_match(DMI_BOARD_VENDOR, "ASUSTeK COMPUTER INC.") && | 
 | 		    (dmi_match(DMI_BOARD_NAME, "PRIME B350M-A") || | 
 | 		     dmi_match(DMI_BOARD_NAME, "PRIME Z370-A"))) | 
 | 			return NVME_QUIRK_NO_APST; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void nvme_async_probe(void *data, async_cookie_t cookie) | 
 | { | 
 | 	struct nvme_dev *dev = data; | 
 |  | 
 | 	flush_work(&dev->ctrl.reset_work); | 
 | 	flush_work(&dev->ctrl.scan_work); | 
 | 	nvme_put_ctrl(&dev->ctrl); | 
 | } | 
 |  | 
 | static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) | 
 | { | 
 | 	int node, result = -ENOMEM; | 
 | 	struct nvme_dev *dev; | 
 | 	unsigned long quirks = id->driver_data; | 
 | 	size_t alloc_size; | 
 |  | 
 | 	node = dev_to_node(&pdev->dev); | 
 | 	if (node == NUMA_NO_NODE) | 
 | 		set_dev_node(&pdev->dev, first_memory_node); | 
 |  | 
 | 	dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); | 
 | 	if (!dev) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	dev->queues = kcalloc_node(num_possible_cpus() + 1, | 
 | 			sizeof(struct nvme_queue), GFP_KERNEL, node); | 
 | 	if (!dev->queues) | 
 | 		goto free; | 
 |  | 
 | 	dev->dev = get_device(&pdev->dev); | 
 | 	pci_set_drvdata(pdev, dev); | 
 |  | 
 | 	result = nvme_dev_map(dev); | 
 | 	if (result) | 
 | 		goto put_pci; | 
 |  | 
 | 	INIT_WORK(&dev->ctrl.reset_work, nvme_reset_work); | 
 | 	INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); | 
 | 	mutex_init(&dev->shutdown_lock); | 
 | 	init_completion(&dev->ioq_wait); | 
 |  | 
 | 	result = nvme_setup_prp_pools(dev); | 
 | 	if (result) | 
 | 		goto unmap; | 
 |  | 
 | 	quirks |= check_vendor_combination_bug(pdev); | 
 |  | 
 | 	/* | 
 | 	 * Double check that our mempool alloc size will cover the biggest | 
 | 	 * command we support. | 
 | 	 */ | 
 | 	alloc_size = nvme_pci_iod_alloc_size(dev, NVME_MAX_KB_SZ, | 
 | 						NVME_MAX_SEGS, true); | 
 | 	WARN_ON_ONCE(alloc_size > PAGE_SIZE); | 
 |  | 
 | 	dev->iod_mempool = mempool_create_node(1, mempool_kmalloc, | 
 | 						mempool_kfree, | 
 | 						(void *) alloc_size, | 
 | 						GFP_KERNEL, node); | 
 | 	if (!dev->iod_mempool) { | 
 | 		result = -ENOMEM; | 
 | 		goto release_pools; | 
 | 	} | 
 |  | 
 | 	result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, | 
 | 			quirks); | 
 | 	if (result) | 
 | 		goto release_mempool; | 
 |  | 
 | 	dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); | 
 |  | 
 | 	nvme_reset_ctrl(&dev->ctrl); | 
 | 	nvme_get_ctrl(&dev->ctrl); | 
 | 	async_schedule(nvme_async_probe, dev); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  release_mempool: | 
 | 	mempool_destroy(dev->iod_mempool); | 
 |  release_pools: | 
 | 	nvme_release_prp_pools(dev); | 
 |  unmap: | 
 | 	nvme_dev_unmap(dev); | 
 |  put_pci: | 
 | 	put_device(dev->dev); | 
 |  free: | 
 | 	kfree(dev->queues); | 
 | 	kfree(dev); | 
 | 	return result; | 
 | } | 
 |  | 
 | static void nvme_reset_prepare(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 | 	nvme_dev_disable(dev, false); | 
 | } | 
 |  | 
 | static void nvme_reset_done(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 | 	nvme_reset_ctrl_sync(&dev->ctrl); | 
 | } | 
 |  | 
 | static void nvme_shutdown(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 | 	nvme_dev_disable(dev, true); | 
 | } | 
 |  | 
 | /* | 
 |  * The driver's remove may be called on a device in a partially initialized | 
 |  * state. This function must not have any dependencies on the device state in | 
 |  * order to proceed. | 
 |  */ | 
 | static void nvme_remove(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 |  | 
 | 	nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); | 
 | 	pci_set_drvdata(pdev, NULL); | 
 |  | 
 | 	if (!pci_device_is_present(pdev)) { | 
 | 		nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); | 
 | 		nvme_dev_disable(dev, true); | 
 | 		nvme_dev_remove_admin(dev); | 
 | 	} | 
 |  | 
 | 	flush_work(&dev->ctrl.reset_work); | 
 | 	nvme_stop_ctrl(&dev->ctrl); | 
 | 	nvme_remove_namespaces(&dev->ctrl); | 
 | 	nvme_dev_disable(dev, true); | 
 | 	nvme_release_cmb(dev); | 
 | 	nvme_free_host_mem(dev); | 
 | 	nvme_dev_remove_admin(dev); | 
 | 	nvme_free_queues(dev, 0); | 
 | 	nvme_uninit_ctrl(&dev->ctrl); | 
 | 	nvme_release_prp_pools(dev); | 
 | 	nvme_dev_unmap(dev); | 
 | 	nvme_put_ctrl(&dev->ctrl); | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM_SLEEP | 
 | static int nvme_suspend(struct device *dev) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 	struct nvme_dev *ndev = pci_get_drvdata(pdev); | 
 |  | 
 | 	nvme_dev_disable(ndev, true); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nvme_resume(struct device *dev) | 
 | { | 
 | 	struct pci_dev *pdev = to_pci_dev(dev); | 
 | 	struct nvme_dev *ndev = pci_get_drvdata(pdev); | 
 |  | 
 | 	nvme_reset_ctrl(&ndev->ctrl); | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); | 
 |  | 
 | static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, | 
 | 						pci_channel_state_t state) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 |  | 
 | 	/* | 
 | 	 * A frozen channel requires a reset. When detected, this method will | 
 | 	 * shutdown the controller to quiesce. The controller will be restarted | 
 | 	 * after the slot reset through driver's slot_reset callback. | 
 | 	 */ | 
 | 	switch (state) { | 
 | 	case pci_channel_io_normal: | 
 | 		return PCI_ERS_RESULT_CAN_RECOVER; | 
 | 	case pci_channel_io_frozen: | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			"frozen state error detected, reset controller\n"); | 
 | 		nvme_dev_disable(dev, false); | 
 | 		return PCI_ERS_RESULT_NEED_RESET; | 
 | 	case pci_channel_io_perm_failure: | 
 | 		dev_warn(dev->ctrl.device, | 
 | 			"failure state error detected, request disconnect\n"); | 
 | 		return PCI_ERS_RESULT_DISCONNECT; | 
 | 	} | 
 | 	return PCI_ERS_RESULT_NEED_RESET; | 
 | } | 
 |  | 
 | static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 |  | 
 | 	dev_info(dev->ctrl.device, "restart after slot reset\n"); | 
 | 	pci_restore_state(pdev); | 
 | 	nvme_reset_ctrl(&dev->ctrl); | 
 | 	return PCI_ERS_RESULT_RECOVERED; | 
 | } | 
 |  | 
 | static void nvme_error_resume(struct pci_dev *pdev) | 
 | { | 
 | 	struct nvme_dev *dev = pci_get_drvdata(pdev); | 
 |  | 
 | 	flush_work(&dev->ctrl.reset_work); | 
 | 	pci_cleanup_aer_uncorrect_error_status(pdev); | 
 | } | 
 |  | 
 | static const struct pci_error_handlers nvme_err_handler = { | 
 | 	.error_detected	= nvme_error_detected, | 
 | 	.slot_reset	= nvme_slot_reset, | 
 | 	.resume		= nvme_error_resume, | 
 | 	.reset_prepare	= nvme_reset_prepare, | 
 | 	.reset_done	= nvme_reset_done, | 
 | }; | 
 |  | 
 | static const struct pci_device_id nvme_id_table[] = { | 
 | 	{ PCI_VDEVICE(INTEL, 0x0953), | 
 | 		.driver_data = NVME_QUIRK_STRIPE_SIZE | | 
 | 				NVME_QUIRK_DEALLOCATE_ZEROES, }, | 
 | 	{ PCI_VDEVICE(INTEL, 0x0a53), | 
 | 		.driver_data = NVME_QUIRK_STRIPE_SIZE | | 
 | 				NVME_QUIRK_DEALLOCATE_ZEROES, }, | 
 | 	{ PCI_VDEVICE(INTEL, 0x0a54), | 
 | 		.driver_data = NVME_QUIRK_STRIPE_SIZE | | 
 | 				NVME_QUIRK_DEALLOCATE_ZEROES, }, | 
 | 	{ PCI_VDEVICE(INTEL, 0x0a55), | 
 | 		.driver_data = NVME_QUIRK_STRIPE_SIZE | | 
 | 				NVME_QUIRK_DEALLOCATE_ZEROES, }, | 
 | 	{ PCI_VDEVICE(INTEL, 0xf1a5),	/* Intel 600P/P3100 */ | 
 | 		.driver_data = NVME_QUIRK_NO_DEEPEST_PS | | 
 | 				NVME_QUIRK_MEDIUM_PRIO_SQ }, | 
 | 	{ PCI_VDEVICE(INTEL, 0x5845),	/* Qemu emulated controller */ | 
 | 		.driver_data = NVME_QUIRK_IDENTIFY_CNS, }, | 
 | 	{ PCI_DEVICE(0x1bb1, 0x0100),   /* Seagate Nytro Flash Storage */ | 
 | 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, | 
 | 	{ PCI_DEVICE(0x1c58, 0x0003),	/* HGST adapter */ | 
 | 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, | 
 | 	{ PCI_DEVICE(0x1c58, 0x0023),	/* WDC SN200 adapter */ | 
 | 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, | 
 | 	{ PCI_DEVICE(0x1c5f, 0x0540),	/* Memblaze Pblaze4 adapter */ | 
 | 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, | 
 | 	{ PCI_DEVICE(0x144d, 0xa821),   /* Samsung PM1725 */ | 
 | 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, | 
 | 	{ PCI_DEVICE(0x144d, 0xa822),   /* Samsung PM1725a */ | 
 | 		.driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, | 
 | 	{ PCI_DEVICE(0x1d1d, 0x1f1f),	/* LighNVM qemu device */ | 
 | 		.driver_data = NVME_QUIRK_LIGHTNVM, }, | 
 | 	{ PCI_DEVICE(0x1d1d, 0x2807),	/* CNEX WL */ | 
 | 		.driver_data = NVME_QUIRK_LIGHTNVM, }, | 
 | 	{ PCI_DEVICE(0x1d1d, 0x2601),	/* CNEX Granby */ | 
 | 		.driver_data = NVME_QUIRK_LIGHTNVM, }, | 
 | 	{ PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, | 
 | 	{ PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2003) }, | 
 | 	{ 0, } | 
 | }; | 
 | MODULE_DEVICE_TABLE(pci, nvme_id_table); | 
 |  | 
 | static struct pci_driver nvme_driver = { | 
 | 	.name		= "nvme", | 
 | 	.id_table	= nvme_id_table, | 
 | 	.probe		= nvme_probe, | 
 | 	.remove		= nvme_remove, | 
 | 	.shutdown	= nvme_shutdown, | 
 | 	.driver		= { | 
 | 		.pm	= &nvme_dev_pm_ops, | 
 | 	}, | 
 | 	.sriov_configure = pci_sriov_configure_simple, | 
 | 	.err_handler	= &nvme_err_handler, | 
 | }; | 
 |  | 
 | static int __init nvme_init(void) | 
 | { | 
 | 	return pci_register_driver(&nvme_driver); | 
 | } | 
 |  | 
 | static void __exit nvme_exit(void) | 
 | { | 
 | 	pci_unregister_driver(&nvme_driver); | 
 | 	flush_workqueue(nvme_wq); | 
 | 	_nvme_check_size(); | 
 | } | 
 |  | 
 | MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_VERSION("1.0"); | 
 | module_init(nvme_init); | 
 | module_exit(nvme_exit); |