| /* | 
 |  * Driver for I2C adapter in Rockchip RK3xxx SoC | 
 |  * | 
 |  * Max Schwarz <max.schwarz@online.de> | 
 |  * based on the patches by Rockchip Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/i2c.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/err.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/io.h> | 
 | #include <linux/of_address.h> | 
 | #include <linux/of_irq.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/clk.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/mfd/syscon.h> | 
 | #include <linux/regmap.h> | 
 | #include <linux/math64.h> | 
 |  | 
 |  | 
 | /* Register Map */ | 
 | #define REG_CON        0x00 /* control register */ | 
 | #define REG_CLKDIV     0x04 /* clock divisor register */ | 
 | #define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */ | 
 | #define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */ | 
 | #define REG_MTXCNT     0x10 /* number of bytes to be transmitted */ | 
 | #define REG_MRXCNT     0x14 /* number of bytes to be received */ | 
 | #define REG_IEN        0x18 /* interrupt enable */ | 
 | #define REG_IPD        0x1c /* interrupt pending */ | 
 | #define REG_FCNT       0x20 /* finished count */ | 
 |  | 
 | /* Data buffer offsets */ | 
 | #define TXBUFFER_BASE 0x100 | 
 | #define RXBUFFER_BASE 0x200 | 
 |  | 
 | /* REG_CON bits */ | 
 | #define REG_CON_EN        BIT(0) | 
 | enum { | 
 | 	REG_CON_MOD_TX = 0,      /* transmit data */ | 
 | 	REG_CON_MOD_REGISTER_TX, /* select register and restart */ | 
 | 	REG_CON_MOD_RX,          /* receive data */ | 
 | 	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes | 
 | 				  * register addr */ | 
 | }; | 
 | #define REG_CON_MOD(mod)  ((mod) << 1) | 
 | #define REG_CON_MOD_MASK  (BIT(1) | BIT(2)) | 
 | #define REG_CON_START     BIT(3) | 
 | #define REG_CON_STOP      BIT(4) | 
 | #define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */ | 
 | #define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */ | 
 |  | 
 | #define REG_CON_TUNING_MASK GENMASK_ULL(15, 8) | 
 |  | 
 | #define REG_CON_SDA_CFG(cfg) ((cfg) << 8) | 
 | #define REG_CON_STA_CFG(cfg) ((cfg) << 12) | 
 | #define REG_CON_STO_CFG(cfg) ((cfg) << 14) | 
 |  | 
 | /* REG_MRXADDR bits */ | 
 | #define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */ | 
 |  | 
 | /* REG_IEN/REG_IPD bits */ | 
 | #define REG_INT_BTF       BIT(0) /* a byte was transmitted */ | 
 | #define REG_INT_BRF       BIT(1) /* a byte was received */ | 
 | #define REG_INT_MBTF      BIT(2) /* master data transmit finished */ | 
 | #define REG_INT_MBRF      BIT(3) /* master data receive finished */ | 
 | #define REG_INT_START     BIT(4) /* START condition generated */ | 
 | #define REG_INT_STOP      BIT(5) /* STOP condition generated */ | 
 | #define REG_INT_NAKRCV    BIT(6) /* NACK received */ | 
 | #define REG_INT_ALL       0x7f | 
 |  | 
 | /* Constants */ | 
 | #define WAIT_TIMEOUT      1000 /* ms */ | 
 | #define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */ | 
 |  | 
 | /** | 
 |  * struct i2c_spec_values: | 
 |  * @min_hold_start_ns: min hold time (repeated) START condition | 
 |  * @min_low_ns: min LOW period of the SCL clock | 
 |  * @min_high_ns: min HIGH period of the SCL cloc | 
 |  * @min_setup_start_ns: min set-up time for a repeated START conditio | 
 |  * @max_data_hold_ns: max data hold time | 
 |  * @min_data_setup_ns: min data set-up time | 
 |  * @min_setup_stop_ns: min set-up time for STOP condition | 
 |  * @min_hold_buffer_ns: min bus free time between a STOP and | 
 |  * START condition | 
 |  */ | 
 | struct i2c_spec_values { | 
 | 	unsigned long min_hold_start_ns; | 
 | 	unsigned long min_low_ns; | 
 | 	unsigned long min_high_ns; | 
 | 	unsigned long min_setup_start_ns; | 
 | 	unsigned long max_data_hold_ns; | 
 | 	unsigned long min_data_setup_ns; | 
 | 	unsigned long min_setup_stop_ns; | 
 | 	unsigned long min_hold_buffer_ns; | 
 | }; | 
 |  | 
 | static const struct i2c_spec_values standard_mode_spec = { | 
 | 	.min_hold_start_ns = 4000, | 
 | 	.min_low_ns = 4700, | 
 | 	.min_high_ns = 4000, | 
 | 	.min_setup_start_ns = 4700, | 
 | 	.max_data_hold_ns = 3450, | 
 | 	.min_data_setup_ns = 250, | 
 | 	.min_setup_stop_ns = 4000, | 
 | 	.min_hold_buffer_ns = 4700, | 
 | }; | 
 |  | 
 | static const struct i2c_spec_values fast_mode_spec = { | 
 | 	.min_hold_start_ns = 600, | 
 | 	.min_low_ns = 1300, | 
 | 	.min_high_ns = 600, | 
 | 	.min_setup_start_ns = 600, | 
 | 	.max_data_hold_ns = 900, | 
 | 	.min_data_setup_ns = 100, | 
 | 	.min_setup_stop_ns = 600, | 
 | 	.min_hold_buffer_ns = 1300, | 
 | }; | 
 |  | 
 | static const struct i2c_spec_values fast_mode_plus_spec = { | 
 | 	.min_hold_start_ns = 260, | 
 | 	.min_low_ns = 500, | 
 | 	.min_high_ns = 260, | 
 | 	.min_setup_start_ns = 260, | 
 | 	.max_data_hold_ns = 400, | 
 | 	.min_data_setup_ns = 50, | 
 | 	.min_setup_stop_ns = 260, | 
 | 	.min_hold_buffer_ns = 500, | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rk3x_i2c_calced_timings: | 
 |  * @div_low: Divider output for low | 
 |  * @div_high: Divider output for high | 
 |  * @tuning: Used to adjust setup/hold data time, | 
 |  * setup/hold start time and setup stop time for | 
 |  * v1's calc_timings, the tuning should all be 0 | 
 |  * for old hardware anyone using v0's calc_timings. | 
 |  */ | 
 | struct rk3x_i2c_calced_timings { | 
 | 	unsigned long div_low; | 
 | 	unsigned long div_high; | 
 | 	unsigned int tuning; | 
 | }; | 
 |  | 
 | enum rk3x_i2c_state { | 
 | 	STATE_IDLE, | 
 | 	STATE_START, | 
 | 	STATE_READ, | 
 | 	STATE_WRITE, | 
 | 	STATE_STOP | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rk3x_i2c_soc_data: | 
 |  * @grf_offset: offset inside the grf regmap for setting the i2c type | 
 |  * @calc_timings: Callback function for i2c timing information calculated | 
 |  */ | 
 | struct rk3x_i2c_soc_data { | 
 | 	int grf_offset; | 
 | 	int (*calc_timings)(unsigned long, struct i2c_timings *, | 
 | 			    struct rk3x_i2c_calced_timings *); | 
 | }; | 
 |  | 
 | /** | 
 |  * struct rk3x_i2c - private data of the controller | 
 |  * @adap: corresponding I2C adapter | 
 |  * @dev: device for this controller | 
 |  * @soc_data: related soc data struct | 
 |  * @regs: virtual memory area | 
 |  * @clk: function clk for rk3399 or function & Bus clks for others | 
 |  * @pclk: Bus clk for rk3399 | 
 |  * @clk_rate_nb: i2c clk rate change notify | 
 |  * @t: I2C known timing information | 
 |  * @lock: spinlock for the i2c bus | 
 |  * @wait: the waitqueue to wait for i2c transfer | 
 |  * @busy: the condition for the event to wait for | 
 |  * @msg: current i2c message | 
 |  * @addr: addr of i2c slave device | 
 |  * @mode: mode of i2c transfer | 
 |  * @is_last_msg: flag determines whether it is the last msg in this transfer | 
 |  * @state: state of i2c transfer | 
 |  * @processed: byte length which has been send or received | 
 |  * @error: error code for i2c transfer | 
 |  */ | 
 | struct rk3x_i2c { | 
 | 	struct i2c_adapter adap; | 
 | 	struct device *dev; | 
 | 	const struct rk3x_i2c_soc_data *soc_data; | 
 |  | 
 | 	/* Hardware resources */ | 
 | 	void __iomem *regs; | 
 | 	struct clk *clk; | 
 | 	struct clk *pclk; | 
 | 	struct notifier_block clk_rate_nb; | 
 |  | 
 | 	/* Settings */ | 
 | 	struct i2c_timings t; | 
 |  | 
 | 	/* Synchronization & notification */ | 
 | 	spinlock_t lock; | 
 | 	wait_queue_head_t wait; | 
 | 	bool busy; | 
 |  | 
 | 	/* Current message */ | 
 | 	struct i2c_msg *msg; | 
 | 	u8 addr; | 
 | 	unsigned int mode; | 
 | 	bool is_last_msg; | 
 |  | 
 | 	/* I2C state machine */ | 
 | 	enum rk3x_i2c_state state; | 
 | 	unsigned int processed; | 
 | 	int error; | 
 | }; | 
 |  | 
 | static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value, | 
 | 			      unsigned int offset) | 
 | { | 
 | 	writel(value, i2c->regs + offset); | 
 | } | 
 |  | 
 | static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset) | 
 | { | 
 | 	return readl(i2c->regs + offset); | 
 | } | 
 |  | 
 | /* Reset all interrupt pending bits */ | 
 | static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c) | 
 | { | 
 | 	i2c_writel(i2c, REG_INT_ALL, REG_IPD); | 
 | } | 
 |  | 
 | /** | 
 |  * Generate a START condition, which triggers a REG_INT_START interrupt. | 
 |  */ | 
 | static void rk3x_i2c_start(struct rk3x_i2c *i2c) | 
 | { | 
 | 	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; | 
 |  | 
 | 	i2c_writel(i2c, REG_INT_START, REG_IEN); | 
 |  | 
 | 	/* enable adapter with correct mode, send START condition */ | 
 | 	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START; | 
 |  | 
 | 	/* if we want to react to NACK, set ACTACK bit */ | 
 | 	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) | 
 | 		val |= REG_CON_ACTACK; | 
 |  | 
 | 	i2c_writel(i2c, val, REG_CON); | 
 | } | 
 |  | 
 | /** | 
 |  * Generate a STOP condition, which triggers a REG_INT_STOP interrupt. | 
 |  * | 
 |  * @error: Error code to return in rk3x_i2c_xfer | 
 |  */ | 
 | static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error) | 
 | { | 
 | 	unsigned int ctrl; | 
 |  | 
 | 	i2c->processed = 0; | 
 | 	i2c->msg = NULL; | 
 | 	i2c->error = error; | 
 |  | 
 | 	if (i2c->is_last_msg) { | 
 | 		/* Enable stop interrupt */ | 
 | 		i2c_writel(i2c, REG_INT_STOP, REG_IEN); | 
 |  | 
 | 		i2c->state = STATE_STOP; | 
 |  | 
 | 		ctrl = i2c_readl(i2c, REG_CON); | 
 | 		ctrl |= REG_CON_STOP; | 
 | 		i2c_writel(i2c, ctrl, REG_CON); | 
 | 	} else { | 
 | 		/* Signal rk3x_i2c_xfer to start the next message. */ | 
 | 		i2c->busy = false; | 
 | 		i2c->state = STATE_IDLE; | 
 |  | 
 | 		/* | 
 | 		 * The HW is actually not capable of REPEATED START. But we can | 
 | 		 * get the intended effect by resetting its internal state | 
 | 		 * and issuing an ordinary START. | 
 | 		 */ | 
 | 		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; | 
 | 		i2c_writel(i2c, ctrl, REG_CON); | 
 |  | 
 | 		/* signal that we are finished with the current msg */ | 
 | 		wake_up(&i2c->wait); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * Setup a read according to i2c->msg | 
 |  */ | 
 | static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c) | 
 | { | 
 | 	unsigned int len = i2c->msg->len - i2c->processed; | 
 | 	u32 con; | 
 |  | 
 | 	con = i2c_readl(i2c, REG_CON); | 
 |  | 
 | 	/* | 
 | 	 * The hw can read up to 32 bytes at a time. If we need more than one | 
 | 	 * chunk, send an ACK after the last byte of the current chunk. | 
 | 	 */ | 
 | 	if (len > 32) { | 
 | 		len = 32; | 
 | 		con &= ~REG_CON_LASTACK; | 
 | 	} else { | 
 | 		con |= REG_CON_LASTACK; | 
 | 	} | 
 |  | 
 | 	/* make sure we are in plain RX mode if we read a second chunk */ | 
 | 	if (i2c->processed != 0) { | 
 | 		con &= ~REG_CON_MOD_MASK; | 
 | 		con |= REG_CON_MOD(REG_CON_MOD_RX); | 
 | 	} | 
 |  | 
 | 	i2c_writel(i2c, con, REG_CON); | 
 | 	i2c_writel(i2c, len, REG_MRXCNT); | 
 | } | 
 |  | 
 | /** | 
 |  * Fill the transmit buffer with data from i2c->msg | 
 |  */ | 
 | static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c) | 
 | { | 
 | 	unsigned int i, j; | 
 | 	u32 cnt = 0; | 
 | 	u32 val; | 
 | 	u8 byte; | 
 |  | 
 | 	for (i = 0; i < 8; ++i) { | 
 | 		val = 0; | 
 | 		for (j = 0; j < 4; ++j) { | 
 | 			if ((i2c->processed == i2c->msg->len) && (cnt != 0)) | 
 | 				break; | 
 |  | 
 | 			if (i2c->processed == 0 && cnt == 0) | 
 | 				byte = (i2c->addr & 0x7f) << 1; | 
 | 			else | 
 | 				byte = i2c->msg->buf[i2c->processed++]; | 
 |  | 
 | 			val |= byte << (j * 8); | 
 | 			cnt++; | 
 | 		} | 
 |  | 
 | 		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i); | 
 |  | 
 | 		if (i2c->processed == i2c->msg->len) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	i2c_writel(i2c, cnt, REG_MTXCNT); | 
 | } | 
 |  | 
 |  | 
 | /* IRQ handlers for individual states */ | 
 |  | 
 | static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd) | 
 | { | 
 | 	if (!(ipd & REG_INT_START)) { | 
 | 		rk3x_i2c_stop(i2c, -EIO); | 
 | 		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd); | 
 | 		rk3x_i2c_clean_ipd(i2c); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* ack interrupt */ | 
 | 	i2c_writel(i2c, REG_INT_START, REG_IPD); | 
 |  | 
 | 	/* disable start bit */ | 
 | 	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON); | 
 |  | 
 | 	/* enable appropriate interrupts and transition */ | 
 | 	if (i2c->mode == REG_CON_MOD_TX) { | 
 | 		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN); | 
 | 		i2c->state = STATE_WRITE; | 
 | 		rk3x_i2c_fill_transmit_buf(i2c); | 
 | 	} else { | 
 | 		/* in any other case, we are going to be reading. */ | 
 | 		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN); | 
 | 		i2c->state = STATE_READ; | 
 | 		rk3x_i2c_prepare_read(i2c); | 
 | 	} | 
 | } | 
 |  | 
 | static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd) | 
 | { | 
 | 	if (!(ipd & REG_INT_MBTF)) { | 
 | 		rk3x_i2c_stop(i2c, -EIO); | 
 | 		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd); | 
 | 		rk3x_i2c_clean_ipd(i2c); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* ack interrupt */ | 
 | 	i2c_writel(i2c, REG_INT_MBTF, REG_IPD); | 
 |  | 
 | 	/* are we finished? */ | 
 | 	if (i2c->processed == i2c->msg->len) | 
 | 		rk3x_i2c_stop(i2c, i2c->error); | 
 | 	else | 
 | 		rk3x_i2c_fill_transmit_buf(i2c); | 
 | } | 
 |  | 
 | static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd) | 
 | { | 
 | 	unsigned int i; | 
 | 	unsigned int len = i2c->msg->len - i2c->processed; | 
 | 	u32 uninitialized_var(val); | 
 | 	u8 byte; | 
 |  | 
 | 	/* we only care for MBRF here. */ | 
 | 	if (!(ipd & REG_INT_MBRF)) | 
 | 		return; | 
 |  | 
 | 	/* ack interrupt */ | 
 | 	i2c_writel(i2c, REG_INT_MBRF, REG_IPD); | 
 |  | 
 | 	/* Can only handle a maximum of 32 bytes at a time */ | 
 | 	if (len > 32) | 
 | 		len = 32; | 
 |  | 
 | 	/* read the data from receive buffer */ | 
 | 	for (i = 0; i < len; ++i) { | 
 | 		if (i % 4 == 0) | 
 | 			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4); | 
 |  | 
 | 		byte = (val >> ((i % 4) * 8)) & 0xff; | 
 | 		i2c->msg->buf[i2c->processed++] = byte; | 
 | 	} | 
 |  | 
 | 	/* are we finished? */ | 
 | 	if (i2c->processed == i2c->msg->len) | 
 | 		rk3x_i2c_stop(i2c, i2c->error); | 
 | 	else | 
 | 		rk3x_i2c_prepare_read(i2c); | 
 | } | 
 |  | 
 | static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd) | 
 | { | 
 | 	unsigned int con; | 
 |  | 
 | 	if (!(ipd & REG_INT_STOP)) { | 
 | 		rk3x_i2c_stop(i2c, -EIO); | 
 | 		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd); | 
 | 		rk3x_i2c_clean_ipd(i2c); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* ack interrupt */ | 
 | 	i2c_writel(i2c, REG_INT_STOP, REG_IPD); | 
 |  | 
 | 	/* disable STOP bit */ | 
 | 	con = i2c_readl(i2c, REG_CON); | 
 | 	con &= ~REG_CON_STOP; | 
 | 	i2c_writel(i2c, con, REG_CON); | 
 |  | 
 | 	i2c->busy = false; | 
 | 	i2c->state = STATE_IDLE; | 
 |  | 
 | 	/* signal rk3x_i2c_xfer that we are finished */ | 
 | 	wake_up(&i2c->wait); | 
 | } | 
 |  | 
 | static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id) | 
 | { | 
 | 	struct rk3x_i2c *i2c = dev_id; | 
 | 	unsigned int ipd; | 
 |  | 
 | 	spin_lock(&i2c->lock); | 
 |  | 
 | 	ipd = i2c_readl(i2c, REG_IPD); | 
 | 	if (i2c->state == STATE_IDLE) { | 
 | 		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd); | 
 | 		rk3x_i2c_clean_ipd(i2c); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd); | 
 |  | 
 | 	/* Clean interrupt bits we don't care about */ | 
 | 	ipd &= ~(REG_INT_BRF | REG_INT_BTF); | 
 |  | 
 | 	if (ipd & REG_INT_NAKRCV) { | 
 | 		/* | 
 | 		 * We got a NACK in the last operation. Depending on whether | 
 | 		 * IGNORE_NAK is set, we have to stop the operation and report | 
 | 		 * an error. | 
 | 		 */ | 
 | 		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD); | 
 |  | 
 | 		ipd &= ~REG_INT_NAKRCV; | 
 |  | 
 | 		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK)) | 
 | 			rk3x_i2c_stop(i2c, -ENXIO); | 
 | 	} | 
 |  | 
 | 	/* is there anything left to handle? */ | 
 | 	if ((ipd & REG_INT_ALL) == 0) | 
 | 		goto out; | 
 |  | 
 | 	switch (i2c->state) { | 
 | 	case STATE_START: | 
 | 		rk3x_i2c_handle_start(i2c, ipd); | 
 | 		break; | 
 | 	case STATE_WRITE: | 
 | 		rk3x_i2c_handle_write(i2c, ipd); | 
 | 		break; | 
 | 	case STATE_READ: | 
 | 		rk3x_i2c_handle_read(i2c, ipd); | 
 | 		break; | 
 | 	case STATE_STOP: | 
 | 		rk3x_i2c_handle_stop(i2c, ipd); | 
 | 		break; | 
 | 	case STATE_IDLE: | 
 | 		break; | 
 | 	} | 
 |  | 
 | out: | 
 | 	spin_unlock(&i2c->lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  * Get timing values of I2C specification | 
 |  * | 
 |  * @speed: Desired SCL frequency | 
 |  * | 
 |  * Returns: Matched i2c spec values. | 
 |  */ | 
 | static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed) | 
 | { | 
 | 	if (speed <= 100000) | 
 | 		return &standard_mode_spec; | 
 | 	else if (speed <= 400000) | 
 | 		return &fast_mode_spec; | 
 | 	else | 
 | 		return &fast_mode_plus_spec; | 
 | } | 
 |  | 
 | /** | 
 |  * Calculate divider values for desired SCL frequency | 
 |  * | 
 |  * @clk_rate: I2C input clock rate | 
 |  * @t: Known I2C timing information | 
 |  * @t_calc: Caculated rk3x private timings that would be written into regs | 
 |  * | 
 |  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case | 
 |  * a best-effort divider value is returned in divs. If the target rate is | 
 |  * too high, we silently use the highest possible rate. | 
 |  */ | 
 | static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate, | 
 | 				    struct i2c_timings *t, | 
 | 				    struct rk3x_i2c_calced_timings *t_calc) | 
 | { | 
 | 	unsigned long min_low_ns, min_high_ns; | 
 | 	unsigned long max_low_ns, min_total_ns; | 
 |  | 
 | 	unsigned long clk_rate_khz, scl_rate_khz; | 
 |  | 
 | 	unsigned long min_low_div, min_high_div; | 
 | 	unsigned long max_low_div; | 
 |  | 
 | 	unsigned long min_div_for_hold, min_total_div; | 
 | 	unsigned long extra_div, extra_low_div, ideal_low_div; | 
 |  | 
 | 	unsigned long data_hold_buffer_ns = 50; | 
 | 	const struct i2c_spec_values *spec; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Only support standard-mode and fast-mode */ | 
 | 	if (WARN_ON(t->bus_freq_hz > 400000)) | 
 | 		t->bus_freq_hz = 400000; | 
 |  | 
 | 	/* prevent scl_rate_khz from becoming 0 */ | 
 | 	if (WARN_ON(t->bus_freq_hz < 1000)) | 
 | 		t->bus_freq_hz = 1000; | 
 |  | 
 | 	/* | 
 | 	 * min_low_ns:  The minimum number of ns we need to hold low to | 
 | 	 *		meet I2C specification, should include fall time. | 
 | 	 * min_high_ns: The minimum number of ns we need to hold high to | 
 | 	 *		meet I2C specification, should include rise time. | 
 | 	 * max_low_ns:  The maximum number of ns we can hold low to meet | 
 | 	 *		I2C specification. | 
 | 	 * | 
 | 	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer) | 
 | 	 *	 This is because the i2c host on Rockchip holds the data line | 
 | 	 *	 for half the low time. | 
 | 	 */ | 
 | 	spec = rk3x_i2c_get_spec(t->bus_freq_hz); | 
 | 	min_high_ns = t->scl_rise_ns + spec->min_high_ns; | 
 |  | 
 | 	/* | 
 | 	 * Timings for repeated start: | 
 | 	 * - controller appears to drop SDA at .875x (7/8) programmed clk high. | 
 | 	 * - controller appears to keep SCL high for 2x programmed clk high. | 
 | 	 * | 
 | 	 * We need to account for those rules in picking our "high" time so | 
 | 	 * we meet tSU;STA and tHD;STA times. | 
 | 	 */ | 
 | 	min_high_ns = max(min_high_ns, DIV_ROUND_UP( | 
 | 		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875)); | 
 | 	min_high_ns = max(min_high_ns, DIV_ROUND_UP( | 
 | 		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns + | 
 | 		spec->min_high_ns), 2)); | 
 |  | 
 | 	min_low_ns = t->scl_fall_ns + spec->min_low_ns; | 
 | 	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns; | 
 | 	min_total_ns = min_low_ns + min_high_ns; | 
 |  | 
 | 	/* Adjust to avoid overflow */ | 
 | 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); | 
 | 	scl_rate_khz = t->bus_freq_hz / 1000; | 
 |  | 
 | 	/* | 
 | 	 * We need the total div to be >= this number | 
 | 	 * so we don't clock too fast. | 
 | 	 */ | 
 | 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); | 
 |  | 
 | 	/* These are the min dividers needed for min hold times. */ | 
 | 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); | 
 | 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); | 
 | 	min_div_for_hold = (min_low_div + min_high_div); | 
 |  | 
 | 	/* | 
 | 	 * This is the maximum divider so we don't go over the maximum. | 
 | 	 * We don't round up here (we round down) since this is a maximum. | 
 | 	 */ | 
 | 	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000); | 
 |  | 
 | 	if (min_low_div > max_low_div) { | 
 | 		WARN_ONCE(true, | 
 | 			  "Conflicting, min_low_div %lu, max_low_div %lu\n", | 
 | 			  min_low_div, max_low_div); | 
 | 		max_low_div = min_low_div; | 
 | 	} | 
 |  | 
 | 	if (min_div_for_hold > min_total_div) { | 
 | 		/* | 
 | 		 * Time needed to meet hold requirements is important. | 
 | 		 * Just use that. | 
 | 		 */ | 
 | 		t_calc->div_low = min_low_div; | 
 | 		t_calc->div_high = min_high_div; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We've got to distribute some time among the low and high | 
 | 		 * so we don't run too fast. | 
 | 		 */ | 
 | 		extra_div = min_total_div - min_div_for_hold; | 
 |  | 
 | 		/* | 
 | 		 * We'll try to split things up perfectly evenly, | 
 | 		 * biasing slightly towards having a higher div | 
 | 		 * for low (spend more time low). | 
 | 		 */ | 
 | 		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, | 
 | 					     scl_rate_khz * 8 * min_total_ns); | 
 |  | 
 | 		/* Don't allow it to go over the maximum */ | 
 | 		if (ideal_low_div > max_low_div) | 
 | 			ideal_low_div = max_low_div; | 
 |  | 
 | 		/* | 
 | 		 * Handle when the ideal low div is going to take up | 
 | 		 * more than we have. | 
 | 		 */ | 
 | 		if (ideal_low_div > min_low_div + extra_div) | 
 | 			ideal_low_div = min_low_div + extra_div; | 
 |  | 
 | 		/* Give low the "ideal" and give high whatever extra is left */ | 
 | 		extra_low_div = ideal_low_div - min_low_div; | 
 | 		t_calc->div_low = ideal_low_div; | 
 | 		t_calc->div_high = min_high_div + (extra_div - extra_low_div); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Adjust to the fact that the hardware has an implicit "+1". | 
 | 	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0. | 
 | 	 */ | 
 | 	t_calc->div_low--; | 
 | 	t_calc->div_high--; | 
 |  | 
 | 	/* Give the tuning value 0, that would not update con register */ | 
 | 	t_calc->tuning = 0; | 
 | 	/* Maximum divider supported by hw is 0xffff */ | 
 | 	if (t_calc->div_low > 0xffff) { | 
 | 		t_calc->div_low = 0xffff; | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (t_calc->div_high > 0xffff) { | 
 | 		t_calc->div_high = 0xffff; | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * Calculate timing values for desired SCL frequency | 
 |  * | 
 |  * @clk_rate: I2C input clock rate | 
 |  * @t: Known I2C timing information | 
 |  * @t_calc: Caculated rk3x private timings that would be written into regs | 
 |  * | 
 |  * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case | 
 |  * a best-effort divider value is returned in divs. If the target rate is | 
 |  * too high, we silently use the highest possible rate. | 
 |  * The following formulas are v1's method to calculate timings. | 
 |  * | 
 |  * l = divl + 1; | 
 |  * h = divh + 1; | 
 |  * s = sda_update_config + 1; | 
 |  * u = start_setup_config + 1; | 
 |  * p = stop_setup_config + 1; | 
 |  * T = Tclk_i2c; | 
 |  * | 
 |  * tHigh = 8 * h * T; | 
 |  * tLow = 8 * l * T; | 
 |  * | 
 |  * tHD;sda = (l * s + 1) * T; | 
 |  * tSU;sda = [(8 - s) * l + 1] * T; | 
 |  * tI2C = 8 * (l + h) * T; | 
 |  * | 
 |  * tSU;sta = (8h * u + 1) * T; | 
 |  * tHD;sta = [8h * (u + 1) - 1] * T; | 
 |  * tSU;sto = (8h * p + 1) * T; | 
 |  */ | 
 | static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate, | 
 | 				    struct i2c_timings *t, | 
 | 				    struct rk3x_i2c_calced_timings *t_calc) | 
 | { | 
 | 	unsigned long min_low_ns, min_high_ns; | 
 | 	unsigned long min_setup_start_ns, min_setup_data_ns; | 
 | 	unsigned long min_setup_stop_ns, max_hold_data_ns; | 
 |  | 
 | 	unsigned long clk_rate_khz, scl_rate_khz; | 
 |  | 
 | 	unsigned long min_low_div, min_high_div; | 
 |  | 
 | 	unsigned long min_div_for_hold, min_total_div; | 
 | 	unsigned long extra_div, extra_low_div; | 
 | 	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg; | 
 |  | 
 | 	const struct i2c_spec_values *spec; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* Support standard-mode, fast-mode and fast-mode plus */ | 
 | 	if (WARN_ON(t->bus_freq_hz > 1000000)) | 
 | 		t->bus_freq_hz = 1000000; | 
 |  | 
 | 	/* prevent scl_rate_khz from becoming 0 */ | 
 | 	if (WARN_ON(t->bus_freq_hz < 1000)) | 
 | 		t->bus_freq_hz = 1000; | 
 |  | 
 | 	/* | 
 | 	 * min_low_ns: The minimum number of ns we need to hold low to | 
 | 	 *	       meet I2C specification, should include fall time. | 
 | 	 * min_high_ns: The minimum number of ns we need to hold high to | 
 | 	 *	        meet I2C specification, should include rise time. | 
 | 	 */ | 
 | 	spec = rk3x_i2c_get_spec(t->bus_freq_hz); | 
 |  | 
 | 	/* calculate min-divh and min-divl */ | 
 | 	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000); | 
 | 	scl_rate_khz = t->bus_freq_hz / 1000; | 
 | 	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8); | 
 |  | 
 | 	min_high_ns = t->scl_rise_ns + spec->min_high_ns; | 
 | 	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000); | 
 |  | 
 | 	min_low_ns = t->scl_fall_ns + spec->min_low_ns; | 
 | 	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000); | 
 |  | 
 | 	/* | 
 | 	 * Final divh and divl must be greater than 0, otherwise the | 
 | 	 * hardware would not output the i2c clk. | 
 | 	 */ | 
 | 	min_high_div = (min_high_div < 1) ? 2 : min_high_div; | 
 | 	min_low_div = (min_low_div < 1) ? 2 : min_low_div; | 
 |  | 
 | 	/* These are the min dividers needed for min hold times. */ | 
 | 	min_div_for_hold = (min_low_div + min_high_div); | 
 |  | 
 | 	/* | 
 | 	 * This is the maximum divider so we don't go over the maximum. | 
 | 	 * We don't round up here (we round down) since this is a maximum. | 
 | 	 */ | 
 | 	if (min_div_for_hold >= min_total_div) { | 
 | 		/* | 
 | 		 * Time needed to meet hold requirements is important. | 
 | 		 * Just use that. | 
 | 		 */ | 
 | 		t_calc->div_low = min_low_div; | 
 | 		t_calc->div_high = min_high_div; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We've got to distribute some time among the low and high | 
 | 		 * so we don't run too fast. | 
 | 		 * We'll try to split things up by the scale of min_low_div and | 
 | 		 * min_high_div, biasing slightly towards having a higher div | 
 | 		 * for low (spend more time low). | 
 | 		 */ | 
 | 		extra_div = min_total_div - min_div_for_hold; | 
 | 		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div, | 
 | 					     min_div_for_hold); | 
 |  | 
 | 		t_calc->div_low = min_low_div + extra_low_div; | 
 | 		t_calc->div_high = min_high_div + (extra_div - extra_low_div); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * calculate sda data hold count by the rules, data_upd_st:3 | 
 | 	 * is a appropriate value to reduce calculated times. | 
 | 	 */ | 
 | 	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) { | 
 | 		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg | 
 | 						 * (t_calc->div_low) + 1) | 
 | 						 * 1000000, clk_rate_khz); | 
 | 		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg) | 
 | 						 * (t_calc->div_low) + 1) | 
 | 						 * 1000000, clk_rate_khz); | 
 | 		if ((max_hold_data_ns < spec->max_data_hold_ns) && | 
 | 		    (min_setup_data_ns > spec->min_data_setup_ns)) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* calculate setup start config */ | 
 | 	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns; | 
 | 	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns | 
 | 			   - 1000000, 8 * 1000000 * (t_calc->div_high)); | 
 |  | 
 | 	/* calculate setup stop config */ | 
 | 	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns; | 
 | 	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns | 
 | 			   - 1000000, 8 * 1000000 * (t_calc->div_high)); | 
 |  | 
 | 	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) | | 
 | 			 REG_CON_STA_CFG(--stp_sta_cfg) | | 
 | 			 REG_CON_STO_CFG(--stp_sto_cfg); | 
 |  | 
 | 	t_calc->div_low--; | 
 | 	t_calc->div_high--; | 
 |  | 
 | 	/* Maximum divider supported by hw is 0xffff */ | 
 | 	if (t_calc->div_low > 0xffff) { | 
 | 		t_calc->div_low = 0xffff; | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (t_calc->div_high > 0xffff) { | 
 | 		t_calc->div_high = 0xffff; | 
 | 		ret = -EINVAL; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate) | 
 | { | 
 | 	struct i2c_timings *t = &i2c->t; | 
 | 	struct rk3x_i2c_calced_timings calc; | 
 | 	u64 t_low_ns, t_high_ns; | 
 | 	unsigned long flags; | 
 | 	u32 val; | 
 | 	int ret; | 
 |  | 
 | 	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc); | 
 | 	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz); | 
 |  | 
 | 	clk_enable(i2c->pclk); | 
 |  | 
 | 	spin_lock_irqsave(&i2c->lock, flags); | 
 | 	val = i2c_readl(i2c, REG_CON); | 
 | 	val &= ~REG_CON_TUNING_MASK; | 
 | 	val |= calc.tuning; | 
 | 	i2c_writel(i2c, val, REG_CON); | 
 | 	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff), | 
 | 		   REG_CLKDIV); | 
 | 	spin_unlock_irqrestore(&i2c->lock, flags); | 
 |  | 
 | 	clk_disable(i2c->pclk); | 
 |  | 
 | 	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate); | 
 | 	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000, | 
 | 			    clk_rate); | 
 | 	dev_dbg(i2c->dev, | 
 | 		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n", | 
 | 		clk_rate / 1000, | 
 | 		1000000000 / t->bus_freq_hz, | 
 | 		t_low_ns, t_high_ns); | 
 | } | 
 |  | 
 | /** | 
 |  * rk3x_i2c_clk_notifier_cb - Clock rate change callback | 
 |  * @nb:		Pointer to notifier block | 
 |  * @event:	Notification reason | 
 |  * @data:	Pointer to notification data object | 
 |  * | 
 |  * The callback checks whether a valid bus frequency can be generated after the | 
 |  * change. If so, the change is acknowledged, otherwise the change is aborted. | 
 |  * New dividers are written to the HW in the pre- or post change notification | 
 |  * depending on the scaling direction. | 
 |  * | 
 |  * Code adapted from i2c-cadence.c. | 
 |  * | 
 |  * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK | 
 |  *		to acknowledge the change, NOTIFY_DONE if the notification is | 
 |  *		considered irrelevant. | 
 |  */ | 
 | static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long | 
 | 				    event, void *data) | 
 | { | 
 | 	struct clk_notifier_data *ndata = data; | 
 | 	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb); | 
 | 	struct rk3x_i2c_calced_timings calc; | 
 |  | 
 | 	switch (event) { | 
 | 	case PRE_RATE_CHANGE: | 
 | 		/* | 
 | 		 * Try the calculation (but don't store the result) ahead of | 
 | 		 * time to see if we need to block the clock change.  Timings | 
 | 		 * shouldn't actually take effect until rk3x_i2c_adapt_div(). | 
 | 		 */ | 
 | 		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t, | 
 | 						&calc) != 0) | 
 | 			return NOTIFY_STOP; | 
 |  | 
 | 		/* scale up */ | 
 | 		if (ndata->new_rate > ndata->old_rate) | 
 | 			rk3x_i2c_adapt_div(i2c, ndata->new_rate); | 
 |  | 
 | 		return NOTIFY_OK; | 
 | 	case POST_RATE_CHANGE: | 
 | 		/* scale down */ | 
 | 		if (ndata->new_rate < ndata->old_rate) | 
 | 			rk3x_i2c_adapt_div(i2c, ndata->new_rate); | 
 | 		return NOTIFY_OK; | 
 | 	case ABORT_RATE_CHANGE: | 
 | 		/* scale up */ | 
 | 		if (ndata->new_rate > ndata->old_rate) | 
 | 			rk3x_i2c_adapt_div(i2c, ndata->old_rate); | 
 | 		return NOTIFY_OK; | 
 | 	default: | 
 | 		return NOTIFY_DONE; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * Setup I2C registers for an I2C operation specified by msgs, num. | 
 |  * | 
 |  * Must be called with i2c->lock held. | 
 |  * | 
 |  * @msgs: I2C msgs to process | 
 |  * @num: Number of msgs | 
 |  * | 
 |  * returns: Number of I2C msgs processed or negative in case of error | 
 |  */ | 
 | static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num) | 
 | { | 
 | 	u32 addr = (msgs[0].addr & 0x7f) << 1; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * The I2C adapter can issue a small (len < 4) write packet before | 
 | 	 * reading. This speeds up SMBus-style register reads. | 
 | 	 * The MRXADDR/MRXRADDR hold the slave address and the slave register | 
 | 	 * address in this case. | 
 | 	 */ | 
 |  | 
 | 	if (num >= 2 && msgs[0].len < 4 && | 
 | 	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) { | 
 | 		u32 reg_addr = 0; | 
 | 		int i; | 
 |  | 
 | 		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n", | 
 | 			addr >> 1); | 
 |  | 
 | 		/* Fill MRXRADDR with the register address(es) */ | 
 | 		for (i = 0; i < msgs[0].len; ++i) { | 
 | 			reg_addr |= msgs[0].buf[i] << (i * 8); | 
 | 			reg_addr |= REG_MRXADDR_VALID(i); | 
 | 		} | 
 |  | 
 | 		/* msgs[0] is handled by hw. */ | 
 | 		i2c->msg = &msgs[1]; | 
 |  | 
 | 		i2c->mode = REG_CON_MOD_REGISTER_TX; | 
 |  | 
 | 		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR); | 
 | 		i2c_writel(i2c, reg_addr, REG_MRXRADDR); | 
 |  | 
 | 		ret = 2; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We'll have to do it the boring way and process the msgs | 
 | 		 * one-by-one. | 
 | 		 */ | 
 |  | 
 | 		if (msgs[0].flags & I2C_M_RD) { | 
 | 			addr |= 1; /* set read bit */ | 
 |  | 
 | 			/* | 
 | 			 * We have to transmit the slave addr first. Use | 
 | 			 * MOD_REGISTER_TX for that purpose. | 
 | 			 */ | 
 | 			i2c->mode = REG_CON_MOD_REGISTER_TX; | 
 | 			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), | 
 | 				   REG_MRXADDR); | 
 | 			i2c_writel(i2c, 0, REG_MRXRADDR); | 
 | 		} else { | 
 | 			i2c->mode = REG_CON_MOD_TX; | 
 | 		} | 
 |  | 
 | 		i2c->msg = &msgs[0]; | 
 |  | 
 | 		ret = 1; | 
 | 	} | 
 |  | 
 | 	i2c->addr = msgs[0].addr; | 
 | 	i2c->busy = true; | 
 | 	i2c->state = STATE_START; | 
 | 	i2c->processed = 0; | 
 | 	i2c->error = 0; | 
 |  | 
 | 	rk3x_i2c_clean_ipd(i2c); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int rk3x_i2c_xfer(struct i2c_adapter *adap, | 
 | 			 struct i2c_msg *msgs, int num) | 
 | { | 
 | 	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data; | 
 | 	unsigned long timeout, flags; | 
 | 	u32 val; | 
 | 	int ret = 0; | 
 | 	int i; | 
 |  | 
 | 	spin_lock_irqsave(&i2c->lock, flags); | 
 |  | 
 | 	clk_enable(i2c->clk); | 
 | 	clk_enable(i2c->pclk); | 
 |  | 
 | 	i2c->is_last_msg = false; | 
 |  | 
 | 	/* | 
 | 	 * Process msgs. We can handle more than one message at once (see | 
 | 	 * rk3x_i2c_setup()). | 
 | 	 */ | 
 | 	for (i = 0; i < num; i += ret) { | 
 | 		ret = rk3x_i2c_setup(i2c, msgs + i, num - i); | 
 |  | 
 | 		if (ret < 0) { | 
 | 			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n"); | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (i + ret >= num) | 
 | 			i2c->is_last_msg = true; | 
 |  | 
 | 		spin_unlock_irqrestore(&i2c->lock, flags); | 
 |  | 
 | 		rk3x_i2c_start(i2c); | 
 |  | 
 | 		timeout = wait_event_timeout(i2c->wait, !i2c->busy, | 
 | 					     msecs_to_jiffies(WAIT_TIMEOUT)); | 
 |  | 
 | 		spin_lock_irqsave(&i2c->lock, flags); | 
 |  | 
 | 		if (timeout == 0) { | 
 | 			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n", | 
 | 				i2c_readl(i2c, REG_IPD), i2c->state); | 
 |  | 
 | 			/* Force a STOP condition without interrupt */ | 
 | 			i2c_writel(i2c, 0, REG_IEN); | 
 | 			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK; | 
 | 			val |= REG_CON_EN | REG_CON_STOP; | 
 | 			i2c_writel(i2c, val, REG_CON); | 
 |  | 
 | 			i2c->state = STATE_IDLE; | 
 |  | 
 | 			ret = -ETIMEDOUT; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		if (i2c->error) { | 
 | 			ret = i2c->error; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	clk_disable(i2c->pclk); | 
 | 	clk_disable(i2c->clk); | 
 |  | 
 | 	spin_unlock_irqrestore(&i2c->lock, flags); | 
 |  | 
 | 	return ret < 0 ? ret : num; | 
 | } | 
 |  | 
 | static __maybe_unused int rk3x_i2c_resume(struct device *dev) | 
 | { | 
 | 	struct rk3x_i2c *i2c = dev_get_drvdata(dev); | 
 |  | 
 | 	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 rk3x_i2c_func(struct i2c_adapter *adap) | 
 | { | 
 | 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING; | 
 | } | 
 |  | 
 | static const struct i2c_algorithm rk3x_i2c_algorithm = { | 
 | 	.master_xfer		= rk3x_i2c_xfer, | 
 | 	.functionality		= rk3x_i2c_func, | 
 | }; | 
 |  | 
 | static const struct rk3x_i2c_soc_data rv1108_soc_data = { | 
 | 	.grf_offset = -1, | 
 | 	.calc_timings = rk3x_i2c_v1_calc_timings, | 
 | }; | 
 |  | 
 | static const struct rk3x_i2c_soc_data rk3066_soc_data = { | 
 | 	.grf_offset = 0x154, | 
 | 	.calc_timings = rk3x_i2c_v0_calc_timings, | 
 | }; | 
 |  | 
 | static const struct rk3x_i2c_soc_data rk3188_soc_data = { | 
 | 	.grf_offset = 0x0a4, | 
 | 	.calc_timings = rk3x_i2c_v0_calc_timings, | 
 | }; | 
 |  | 
 | static const struct rk3x_i2c_soc_data rk3228_soc_data = { | 
 | 	.grf_offset = -1, | 
 | 	.calc_timings = rk3x_i2c_v0_calc_timings, | 
 | }; | 
 |  | 
 | static const struct rk3x_i2c_soc_data rk3288_soc_data = { | 
 | 	.grf_offset = -1, | 
 | 	.calc_timings = rk3x_i2c_v0_calc_timings, | 
 | }; | 
 |  | 
 | static const struct rk3x_i2c_soc_data rk3399_soc_data = { | 
 | 	.grf_offset = -1, | 
 | 	.calc_timings = rk3x_i2c_v1_calc_timings, | 
 | }; | 
 |  | 
 | static const struct of_device_id rk3x_i2c_match[] = { | 
 | 	{ | 
 | 		.compatible = "rockchip,rv1108-i2c", | 
 | 		.data = &rv1108_soc_data | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "rockchip,rk3066-i2c", | 
 | 		.data = &rk3066_soc_data | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "rockchip,rk3188-i2c", | 
 | 		.data = &rk3188_soc_data | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "rockchip,rk3228-i2c", | 
 | 		.data = &rk3228_soc_data | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "rockchip,rk3288-i2c", | 
 | 		.data = &rk3288_soc_data | 
 | 	}, | 
 | 	{ | 
 | 		.compatible = "rockchip,rk3399-i2c", | 
 | 		.data = &rk3399_soc_data | 
 | 	}, | 
 | 	{}, | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, rk3x_i2c_match); | 
 |  | 
 | static int rk3x_i2c_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct device_node *np = pdev->dev.of_node; | 
 | 	const struct of_device_id *match; | 
 | 	struct rk3x_i2c *i2c; | 
 | 	struct resource *mem; | 
 | 	int ret = 0; | 
 | 	int bus_nr; | 
 | 	u32 value; | 
 | 	int irq; | 
 | 	unsigned long clk_rate; | 
 |  | 
 | 	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL); | 
 | 	if (!i2c) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	match = of_match_node(rk3x_i2c_match, np); | 
 | 	i2c->soc_data = match->data; | 
 |  | 
 | 	/* use common interface to get I2C timing properties */ | 
 | 	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true); | 
 |  | 
 | 	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name)); | 
 | 	i2c->adap.owner = THIS_MODULE; | 
 | 	i2c->adap.algo = &rk3x_i2c_algorithm; | 
 | 	i2c->adap.retries = 3; | 
 | 	i2c->adap.dev.of_node = np; | 
 | 	i2c->adap.algo_data = i2c; | 
 | 	i2c->adap.dev.parent = &pdev->dev; | 
 |  | 
 | 	i2c->dev = &pdev->dev; | 
 |  | 
 | 	spin_lock_init(&i2c->lock); | 
 | 	init_waitqueue_head(&i2c->wait); | 
 |  | 
 | 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
 | 	i2c->regs = devm_ioremap_resource(&pdev->dev, mem); | 
 | 	if (IS_ERR(i2c->regs)) | 
 | 		return PTR_ERR(i2c->regs); | 
 |  | 
 | 	/* Try to set the I2C adapter number from dt */ | 
 | 	bus_nr = of_alias_get_id(np, "i2c"); | 
 |  | 
 | 	/* | 
 | 	 * Switch to new interface if the SoC also offers the old one. | 
 | 	 * The control bit is located in the GRF register space. | 
 | 	 */ | 
 | 	if (i2c->soc_data->grf_offset >= 0) { | 
 | 		struct regmap *grf; | 
 |  | 
 | 		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf"); | 
 | 		if (IS_ERR(grf)) { | 
 | 			dev_err(&pdev->dev, | 
 | 				"rk3x-i2c needs 'rockchip,grf' property\n"); | 
 | 			return PTR_ERR(grf); | 
 | 		} | 
 |  | 
 | 		if (bus_nr < 0) { | 
 | 			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		/* 27+i: write mask, 11+i: value */ | 
 | 		value = BIT(27 + bus_nr) | BIT(11 + bus_nr); | 
 |  | 
 | 		ret = regmap_write(grf, i2c->soc_data->grf_offset, value); | 
 | 		if (ret != 0) { | 
 | 			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* IRQ setup */ | 
 | 	irq = platform_get_irq(pdev, 0); | 
 | 	if (irq < 0) { | 
 | 		dev_err(&pdev->dev, "cannot find rk3x IRQ\n"); | 
 | 		return irq; | 
 | 	} | 
 |  | 
 | 	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq, | 
 | 			       0, dev_name(&pdev->dev), i2c); | 
 | 	if (ret < 0) { | 
 | 		dev_err(&pdev->dev, "cannot request IRQ\n"); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	platform_set_drvdata(pdev, i2c); | 
 |  | 
 | 	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) { | 
 | 		/* Only one clock to use for bus clock and peripheral clock */ | 
 | 		i2c->clk = devm_clk_get(&pdev->dev, NULL); | 
 | 		i2c->pclk = i2c->clk; | 
 | 	} else { | 
 | 		i2c->clk = devm_clk_get(&pdev->dev, "i2c"); | 
 | 		i2c->pclk = devm_clk_get(&pdev->dev, "pclk"); | 
 | 	} | 
 |  | 
 | 	if (IS_ERR(i2c->clk)) { | 
 | 		ret = PTR_ERR(i2c->clk); | 
 | 		if (ret != -EPROBE_DEFER) | 
 | 			dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 | 	if (IS_ERR(i2c->pclk)) { | 
 | 		ret = PTR_ERR(i2c->pclk); | 
 | 		if (ret != -EPROBE_DEFER) | 
 | 			dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = clk_prepare(i2c->clk); | 
 | 	if (ret < 0) { | 
 | 		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret); | 
 | 		return ret; | 
 | 	} | 
 | 	ret = clk_prepare(i2c->pclk); | 
 | 	if (ret < 0) { | 
 | 		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret); | 
 | 		goto err_clk; | 
 | 	} | 
 |  | 
 | 	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb; | 
 | 	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb); | 
 | 	if (ret != 0) { | 
 | 		dev_err(&pdev->dev, "Unable to register clock notifier\n"); | 
 | 		goto err_pclk; | 
 | 	} | 
 |  | 
 | 	clk_rate = clk_get_rate(i2c->clk); | 
 | 	rk3x_i2c_adapt_div(i2c, clk_rate); | 
 |  | 
 | 	ret = i2c_add_adapter(&i2c->adap); | 
 | 	if (ret < 0) | 
 | 		goto err_clk_notifier; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_clk_notifier: | 
 | 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); | 
 | err_pclk: | 
 | 	clk_unprepare(i2c->pclk); | 
 | err_clk: | 
 | 	clk_unprepare(i2c->clk); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int rk3x_i2c_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct rk3x_i2c *i2c = platform_get_drvdata(pdev); | 
 |  | 
 | 	i2c_del_adapter(&i2c->adap); | 
 |  | 
 | 	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb); | 
 | 	clk_unprepare(i2c->pclk); | 
 | 	clk_unprepare(i2c->clk); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume); | 
 |  | 
 | static struct platform_driver rk3x_i2c_driver = { | 
 | 	.probe   = rk3x_i2c_probe, | 
 | 	.remove  = rk3x_i2c_remove, | 
 | 	.driver  = { | 
 | 		.name  = "rk3x-i2c", | 
 | 		.of_match_table = rk3x_i2c_match, | 
 | 		.pm = &rk3x_i2c_pm_ops, | 
 | 	}, | 
 | }; | 
 |  | 
 | module_platform_driver(rk3x_i2c_driver); | 
 |  | 
 | MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver"); | 
 | MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>"); | 
 | MODULE_LICENSE("GPL v2"); |