| /* | 
 |  * Copyright (c) 2016 Avago Technologies.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of version 2 of the GNU General Public License as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful. | 
 |  * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, | 
 |  * INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A | 
 |  * PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO | 
 |  * THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. | 
 |  * See the GNU General Public License for more details, a copy of which | 
 |  * can be found in the file COPYING included with this package | 
 |  * | 
 |  */ | 
 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
 | #include <linux/module.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blk-mq.h> | 
 | #include <linux/parser.h> | 
 | #include <linux/random.h> | 
 | #include <uapi/scsi/fc/fc_fs.h> | 
 | #include <uapi/scsi/fc/fc_els.h> | 
 |  | 
 | #include "nvmet.h" | 
 | #include <linux/nvme-fc-driver.h> | 
 | #include <linux/nvme-fc.h> | 
 |  | 
 |  | 
 | /* *************************** Data Structures/Defines ****************** */ | 
 |  | 
 |  | 
 | #define NVMET_LS_CTX_COUNT		256 | 
 |  | 
 | /* for this implementation, assume small single frame rqst/rsp */ | 
 | #define NVME_FC_MAX_LS_BUFFER_SIZE		2048 | 
 |  | 
 | struct nvmet_fc_tgtport; | 
 | struct nvmet_fc_tgt_assoc; | 
 |  | 
 | struct nvmet_fc_ls_iod { | 
 | 	struct nvmefc_tgt_ls_req	*lsreq; | 
 | 	struct nvmefc_tgt_fcp_req	*fcpreq;	/* only if RS */ | 
 |  | 
 | 	struct list_head		ls_list;	/* tgtport->ls_list */ | 
 |  | 
 | 	struct nvmet_fc_tgtport		*tgtport; | 
 | 	struct nvmet_fc_tgt_assoc	*assoc; | 
 |  | 
 | 	u8				*rqstbuf; | 
 | 	u8				*rspbuf; | 
 | 	u16				rqstdatalen; | 
 | 	dma_addr_t			rspdma; | 
 |  | 
 | 	struct scatterlist		sg[2]; | 
 |  | 
 | 	struct work_struct		work; | 
 | } __aligned(sizeof(unsigned long long)); | 
 |  | 
 | /* desired maximum for a single sequence - if sg list allows it */ | 
 | #define NVMET_FC_MAX_SEQ_LENGTH		(256 * 1024) | 
 |  | 
 | enum nvmet_fcp_datadir { | 
 | 	NVMET_FCP_NODATA, | 
 | 	NVMET_FCP_WRITE, | 
 | 	NVMET_FCP_READ, | 
 | 	NVMET_FCP_ABORTED, | 
 | }; | 
 |  | 
 | struct nvmet_fc_fcp_iod { | 
 | 	struct nvmefc_tgt_fcp_req	*fcpreq; | 
 |  | 
 | 	struct nvme_fc_cmd_iu		cmdiubuf; | 
 | 	struct nvme_fc_ersp_iu		rspiubuf; | 
 | 	dma_addr_t			rspdma; | 
 | 	struct scatterlist		*next_sg; | 
 | 	struct scatterlist		*data_sg; | 
 | 	int				data_sg_cnt; | 
 | 	u32				offset; | 
 | 	enum nvmet_fcp_datadir		io_dir; | 
 | 	bool				active; | 
 | 	bool				abort; | 
 | 	bool				aborted; | 
 | 	bool				writedataactive; | 
 | 	spinlock_t			flock; | 
 |  | 
 | 	struct nvmet_req		req; | 
 | 	struct work_struct		work; | 
 | 	struct work_struct		done_work; | 
 | 	struct work_struct		defer_work; | 
 |  | 
 | 	struct nvmet_fc_tgtport		*tgtport; | 
 | 	struct nvmet_fc_tgt_queue	*queue; | 
 |  | 
 | 	struct list_head		fcp_list;	/* tgtport->fcp_list */ | 
 | }; | 
 |  | 
 | struct nvmet_fc_tgtport { | 
 |  | 
 | 	struct nvmet_fc_target_port	fc_target_port; | 
 |  | 
 | 	struct list_head		tgt_list; /* nvmet_fc_target_list */ | 
 | 	struct device			*dev;	/* dev for dma mapping */ | 
 | 	struct nvmet_fc_target_template	*ops; | 
 |  | 
 | 	struct nvmet_fc_ls_iod		*iod; | 
 | 	spinlock_t			lock; | 
 | 	struct list_head		ls_list; | 
 | 	struct list_head		ls_busylist; | 
 | 	struct list_head		assoc_list; | 
 | 	struct ida			assoc_cnt; | 
 | 	struct nvmet_port		*port; | 
 | 	struct kref			ref; | 
 | 	u32				max_sg_cnt; | 
 | }; | 
 |  | 
 | struct nvmet_fc_defer_fcp_req { | 
 | 	struct list_head		req_list; | 
 | 	struct nvmefc_tgt_fcp_req	*fcp_req; | 
 | }; | 
 |  | 
 | struct nvmet_fc_tgt_queue { | 
 | 	bool				ninetypercent; | 
 | 	u16				qid; | 
 | 	u16				sqsize; | 
 | 	u16				ersp_ratio; | 
 | 	__le16				sqhd; | 
 | 	int				cpu; | 
 | 	atomic_t			connected; | 
 | 	atomic_t			sqtail; | 
 | 	atomic_t			zrspcnt; | 
 | 	atomic_t			rsn; | 
 | 	spinlock_t			qlock; | 
 | 	struct nvmet_port		*port; | 
 | 	struct nvmet_cq			nvme_cq; | 
 | 	struct nvmet_sq			nvme_sq; | 
 | 	struct nvmet_fc_tgt_assoc	*assoc; | 
 | 	struct nvmet_fc_fcp_iod		*fod;		/* array of fcp_iods */ | 
 | 	struct list_head		fod_list; | 
 | 	struct list_head		pending_cmd_list; | 
 | 	struct list_head		avail_defer_list; | 
 | 	struct workqueue_struct		*work_q; | 
 | 	struct kref			ref; | 
 | } __aligned(sizeof(unsigned long long)); | 
 |  | 
 | struct nvmet_fc_tgt_assoc { | 
 | 	u64				association_id; | 
 | 	u32				a_id; | 
 | 	struct nvmet_fc_tgtport		*tgtport; | 
 | 	struct list_head		a_list; | 
 | 	struct nvmet_fc_tgt_queue	*queues[NVMET_NR_QUEUES + 1]; | 
 | 	struct kref			ref; | 
 | 	struct work_struct		del_work; | 
 | }; | 
 |  | 
 |  | 
 | static inline int | 
 | nvmet_fc_iodnum(struct nvmet_fc_ls_iod *iodptr) | 
 | { | 
 | 	return (iodptr - iodptr->tgtport->iod); | 
 | } | 
 |  | 
 | static inline int | 
 | nvmet_fc_fodnum(struct nvmet_fc_fcp_iod *fodptr) | 
 | { | 
 | 	return (fodptr - fodptr->queue->fod); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Association and Connection IDs: | 
 |  * | 
 |  * Association ID will have random number in upper 6 bytes and zero | 
 |  *   in lower 2 bytes | 
 |  * | 
 |  * Connection IDs will be Association ID with QID or'd in lower 2 bytes | 
 |  * | 
 |  * note: Association ID = Connection ID for queue 0 | 
 |  */ | 
 | #define BYTES_FOR_QID			sizeof(u16) | 
 | #define BYTES_FOR_QID_SHIFT		(BYTES_FOR_QID * 8) | 
 | #define NVMET_FC_QUEUEID_MASK		((u64)((1 << BYTES_FOR_QID_SHIFT) - 1)) | 
 |  | 
 | static inline u64 | 
 | nvmet_fc_makeconnid(struct nvmet_fc_tgt_assoc *assoc, u16 qid) | 
 | { | 
 | 	return (assoc->association_id | qid); | 
 | } | 
 |  | 
 | static inline u64 | 
 | nvmet_fc_getassociationid(u64 connectionid) | 
 | { | 
 | 	return connectionid & ~NVMET_FC_QUEUEID_MASK; | 
 | } | 
 |  | 
 | static inline u16 | 
 | nvmet_fc_getqueueid(u64 connectionid) | 
 | { | 
 | 	return (u16)(connectionid & NVMET_FC_QUEUEID_MASK); | 
 | } | 
 |  | 
 | static inline struct nvmet_fc_tgtport * | 
 | targetport_to_tgtport(struct nvmet_fc_target_port *targetport) | 
 | { | 
 | 	return container_of(targetport, struct nvmet_fc_tgtport, | 
 | 				 fc_target_port); | 
 | } | 
 |  | 
 | static inline struct nvmet_fc_fcp_iod * | 
 | nvmet_req_to_fod(struct nvmet_req *nvme_req) | 
 | { | 
 | 	return container_of(nvme_req, struct nvmet_fc_fcp_iod, req); | 
 | } | 
 |  | 
 |  | 
 | /* *************************** Globals **************************** */ | 
 |  | 
 |  | 
 | static DEFINE_SPINLOCK(nvmet_fc_tgtlock); | 
 |  | 
 | static LIST_HEAD(nvmet_fc_target_list); | 
 | static DEFINE_IDA(nvmet_fc_tgtport_cnt); | 
 |  | 
 |  | 
 | static void nvmet_fc_handle_ls_rqst_work(struct work_struct *work); | 
 | static void nvmet_fc_handle_fcp_rqst_work(struct work_struct *work); | 
 | static void nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work); | 
 | static void nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work); | 
 | static void nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc); | 
 | static int nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc); | 
 | static void nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue); | 
 | static int nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue); | 
 | static void nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport); | 
 | static int nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport); | 
 | static void nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, | 
 | 					struct nvmet_fc_fcp_iod *fod); | 
 | static void nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc); | 
 |  | 
 |  | 
 | /* *********************** FC-NVME DMA Handling **************************** */ | 
 |  | 
 | /* | 
 |  * The fcloop device passes in a NULL device pointer. Real LLD's will | 
 |  * pass in a valid device pointer. If NULL is passed to the dma mapping | 
 |  * routines, depending on the platform, it may or may not succeed, and | 
 |  * may crash. | 
 |  * | 
 |  * As such: | 
 |  * Wrapper all the dma routines and check the dev pointer. | 
 |  * | 
 |  * If simple mappings (return just a dma address, we'll noop them, | 
 |  * returning a dma address of 0. | 
 |  * | 
 |  * On more complex mappings (dma_map_sg), a pseudo routine fills | 
 |  * in the scatter list, setting all dma addresses to 0. | 
 |  */ | 
 |  | 
 | static inline dma_addr_t | 
 | fc_dma_map_single(struct device *dev, void *ptr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L; | 
 | } | 
 |  | 
 | static inline int | 
 | fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr) | 
 | { | 
 | 	return dev ? dma_mapping_error(dev, dma_addr) : 0; | 
 | } | 
 |  | 
 | static inline void | 
 | fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size, | 
 | 	enum dma_data_direction dir) | 
 | { | 
 | 	if (dev) | 
 | 		dma_unmap_single(dev, addr, size, dir); | 
 | } | 
 |  | 
 | static inline void | 
 | fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	if (dev) | 
 | 		dma_sync_single_for_cpu(dev, addr, size, dir); | 
 | } | 
 |  | 
 | static inline void | 
 | fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	if (dev) | 
 | 		dma_sync_single_for_device(dev, addr, size, dir); | 
 | } | 
 |  | 
 | /* pseudo dma_map_sg call */ | 
 | static int | 
 | fc_map_sg(struct scatterlist *sg, int nents) | 
 | { | 
 | 	struct scatterlist *s; | 
 | 	int i; | 
 |  | 
 | 	WARN_ON(nents == 0 || sg[0].length == 0); | 
 |  | 
 | 	for_each_sg(sg, s, nents, i) { | 
 | 		s->dma_address = 0L; | 
 | #ifdef CONFIG_NEED_SG_DMA_LENGTH | 
 | 		s->dma_length = s->length; | 
 | #endif | 
 | 	} | 
 | 	return nents; | 
 | } | 
 |  | 
 | static inline int | 
 | fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents); | 
 | } | 
 |  | 
 | static inline void | 
 | fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents, | 
 | 		enum dma_data_direction dir) | 
 | { | 
 | 	if (dev) | 
 | 		dma_unmap_sg(dev, sg, nents, dir); | 
 | } | 
 |  | 
 |  | 
 | /* *********************** FC-NVME Port Management ************************ */ | 
 |  | 
 |  | 
 | static int | 
 | nvmet_fc_alloc_ls_iodlist(struct nvmet_fc_tgtport *tgtport) | 
 | { | 
 | 	struct nvmet_fc_ls_iod *iod; | 
 | 	int i; | 
 |  | 
 | 	iod = kcalloc(NVMET_LS_CTX_COUNT, sizeof(struct nvmet_fc_ls_iod), | 
 | 			GFP_KERNEL); | 
 | 	if (!iod) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	tgtport->iod = iod; | 
 |  | 
 | 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { | 
 | 		INIT_WORK(&iod->work, nvmet_fc_handle_ls_rqst_work); | 
 | 		iod->tgtport = tgtport; | 
 | 		list_add_tail(&iod->ls_list, &tgtport->ls_list); | 
 |  | 
 | 		iod->rqstbuf = kcalloc(2, NVME_FC_MAX_LS_BUFFER_SIZE, | 
 | 			GFP_KERNEL); | 
 | 		if (!iod->rqstbuf) | 
 | 			goto out_fail; | 
 |  | 
 | 		iod->rspbuf = iod->rqstbuf + NVME_FC_MAX_LS_BUFFER_SIZE; | 
 |  | 
 | 		iod->rspdma = fc_dma_map_single(tgtport->dev, iod->rspbuf, | 
 | 						NVME_FC_MAX_LS_BUFFER_SIZE, | 
 | 						DMA_TO_DEVICE); | 
 | 		if (fc_dma_mapping_error(tgtport->dev, iod->rspdma)) | 
 | 			goto out_fail; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_fail: | 
 | 	kfree(iod->rqstbuf); | 
 | 	list_del(&iod->ls_list); | 
 | 	for (iod--, i--; i >= 0; iod--, i--) { | 
 | 		fc_dma_unmap_single(tgtport->dev, iod->rspdma, | 
 | 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); | 
 | 		kfree(iod->rqstbuf); | 
 | 		list_del(&iod->ls_list); | 
 | 	} | 
 |  | 
 | 	kfree(iod); | 
 |  | 
 | 	return -EFAULT; | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_free_ls_iodlist(struct nvmet_fc_tgtport *tgtport) | 
 | { | 
 | 	struct nvmet_fc_ls_iod *iod = tgtport->iod; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NVMET_LS_CTX_COUNT; iod++, i++) { | 
 | 		fc_dma_unmap_single(tgtport->dev, | 
 | 				iod->rspdma, NVME_FC_MAX_LS_BUFFER_SIZE, | 
 | 				DMA_TO_DEVICE); | 
 | 		kfree(iod->rqstbuf); | 
 | 		list_del(&iod->ls_list); | 
 | 	} | 
 | 	kfree(tgtport->iod); | 
 | } | 
 |  | 
 | static struct nvmet_fc_ls_iod * | 
 | nvmet_fc_alloc_ls_iod(struct nvmet_fc_tgtport *tgtport) | 
 | { | 
 | 	struct nvmet_fc_ls_iod *iod; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&tgtport->lock, flags); | 
 | 	iod = list_first_entry_or_null(&tgtport->ls_list, | 
 | 					struct nvmet_fc_ls_iod, ls_list); | 
 | 	if (iod) | 
 | 		list_move_tail(&iod->ls_list, &tgtport->ls_busylist); | 
 | 	spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | 	return iod; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | nvmet_fc_free_ls_iod(struct nvmet_fc_tgtport *tgtport, | 
 | 			struct nvmet_fc_ls_iod *iod) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&tgtport->lock, flags); | 
 | 	list_move(&iod->ls_list, &tgtport->ls_list); | 
 | 	spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_prep_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, | 
 | 				struct nvmet_fc_tgt_queue *queue) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = queue->fod; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < queue->sqsize; fod++, i++) { | 
 | 		INIT_WORK(&fod->work, nvmet_fc_handle_fcp_rqst_work); | 
 | 		INIT_WORK(&fod->done_work, nvmet_fc_fcp_rqst_op_done_work); | 
 | 		INIT_WORK(&fod->defer_work, nvmet_fc_fcp_rqst_op_defer_work); | 
 | 		fod->tgtport = tgtport; | 
 | 		fod->queue = queue; | 
 | 		fod->active = false; | 
 | 		fod->abort = false; | 
 | 		fod->aborted = false; | 
 | 		fod->fcpreq = NULL; | 
 | 		list_add_tail(&fod->fcp_list, &queue->fod_list); | 
 | 		spin_lock_init(&fod->flock); | 
 |  | 
 | 		fod->rspdma = fc_dma_map_single(tgtport->dev, &fod->rspiubuf, | 
 | 					sizeof(fod->rspiubuf), DMA_TO_DEVICE); | 
 | 		if (fc_dma_mapping_error(tgtport->dev, fod->rspdma)) { | 
 | 			list_del(&fod->fcp_list); | 
 | 			for (fod--, i--; i >= 0; fod--, i--) { | 
 | 				fc_dma_unmap_single(tgtport->dev, fod->rspdma, | 
 | 						sizeof(fod->rspiubuf), | 
 | 						DMA_TO_DEVICE); | 
 | 				fod->rspdma = 0L; | 
 | 				list_del(&fod->fcp_list); | 
 | 			} | 
 |  | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_destroy_fcp_iodlist(struct nvmet_fc_tgtport *tgtport, | 
 | 				struct nvmet_fc_tgt_queue *queue) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = queue->fod; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < queue->sqsize; fod++, i++) { | 
 | 		if (fod->rspdma) | 
 | 			fc_dma_unmap_single(tgtport->dev, fod->rspdma, | 
 | 				sizeof(fod->rspiubuf), DMA_TO_DEVICE); | 
 | 	} | 
 | } | 
 |  | 
 | static struct nvmet_fc_fcp_iod * | 
 | nvmet_fc_alloc_fcp_iod(struct nvmet_fc_tgt_queue *queue) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod; | 
 |  | 
 | 	lockdep_assert_held(&queue->qlock); | 
 |  | 
 | 	fod = list_first_entry_or_null(&queue->fod_list, | 
 | 					struct nvmet_fc_fcp_iod, fcp_list); | 
 | 	if (fod) { | 
 | 		list_del(&fod->fcp_list); | 
 | 		fod->active = true; | 
 | 		/* | 
 | 		 * no queue reference is taken, as it was taken by the | 
 | 		 * queue lookup just prior to the allocation. The iod | 
 | 		 * will "inherit" that reference. | 
 | 		 */ | 
 | 	} | 
 | 	return fod; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | nvmet_fc_queue_fcp_req(struct nvmet_fc_tgtport *tgtport, | 
 | 		       struct nvmet_fc_tgt_queue *queue, | 
 | 		       struct nvmefc_tgt_fcp_req *fcpreq) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; | 
 |  | 
 | 	/* | 
 | 	 * put all admin cmds on hw queue id 0. All io commands go to | 
 | 	 * the respective hw queue based on a modulo basis | 
 | 	 */ | 
 | 	fcpreq->hwqid = queue->qid ? | 
 | 			((queue->qid - 1) % tgtport->ops->max_hw_queues) : 0; | 
 |  | 
 | 	if (tgtport->ops->target_features & NVMET_FCTGTFEAT_CMD_IN_ISR) | 
 | 		queue_work_on(queue->cpu, queue->work_q, &fod->work); | 
 | 	else | 
 | 		nvmet_fc_handle_fcp_rqst(tgtport, fod); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_fcp_rqst_op_defer_work(struct work_struct *work) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = | 
 | 		container_of(work, struct nvmet_fc_fcp_iod, defer_work); | 
 |  | 
 | 	/* Submit deferred IO for processing */ | 
 | 	nvmet_fc_queue_fcp_req(fod->tgtport, fod->queue, fod->fcpreq); | 
 |  | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_free_fcp_iod(struct nvmet_fc_tgt_queue *queue, | 
 | 			struct nvmet_fc_fcp_iod *fod) | 
 | { | 
 | 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; | 
 | 	struct nvmet_fc_tgtport *tgtport = fod->tgtport; | 
 | 	struct nvmet_fc_defer_fcp_req *deferfcp; | 
 | 	unsigned long flags; | 
 |  | 
 | 	fc_dma_sync_single_for_cpu(tgtport->dev, fod->rspdma, | 
 | 				sizeof(fod->rspiubuf), DMA_TO_DEVICE); | 
 |  | 
 | 	fcpreq->nvmet_fc_private = NULL; | 
 |  | 
 | 	fod->active = false; | 
 | 	fod->abort = false; | 
 | 	fod->aborted = false; | 
 | 	fod->writedataactive = false; | 
 | 	fod->fcpreq = NULL; | 
 |  | 
 | 	tgtport->ops->fcp_req_release(&tgtport->fc_target_port, fcpreq); | 
 |  | 
 | 	/* release the queue lookup reference on the completed IO */ | 
 | 	nvmet_fc_tgt_q_put(queue); | 
 |  | 
 | 	spin_lock_irqsave(&queue->qlock, flags); | 
 | 	deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, | 
 | 				struct nvmet_fc_defer_fcp_req, req_list); | 
 | 	if (!deferfcp) { | 
 | 		list_add_tail(&fod->fcp_list, &fod->queue->fod_list); | 
 | 		spin_unlock_irqrestore(&queue->qlock, flags); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Re-use the fod for the next pending cmd that was deferred */ | 
 | 	list_del(&deferfcp->req_list); | 
 |  | 
 | 	fcpreq = deferfcp->fcp_req; | 
 |  | 
 | 	/* deferfcp can be reused for another IO at a later date */ | 
 | 	list_add_tail(&deferfcp->req_list, &queue->avail_defer_list); | 
 |  | 
 | 	spin_unlock_irqrestore(&queue->qlock, flags); | 
 |  | 
 | 	/* Save NVME CMD IO in fod */ | 
 | 	memcpy(&fod->cmdiubuf, fcpreq->rspaddr, fcpreq->rsplen); | 
 |  | 
 | 	/* Setup new fcpreq to be processed */ | 
 | 	fcpreq->rspaddr = NULL; | 
 | 	fcpreq->rsplen  = 0; | 
 | 	fcpreq->nvmet_fc_private = fod; | 
 | 	fod->fcpreq = fcpreq; | 
 | 	fod->active = true; | 
 |  | 
 | 	/* inform LLDD IO is now being processed */ | 
 | 	tgtport->ops->defer_rcv(&tgtport->fc_target_port, fcpreq); | 
 |  | 
 | 	/* | 
 | 	 * Leave the queue lookup get reference taken when | 
 | 	 * fod was originally allocated. | 
 | 	 */ | 
 |  | 
 | 	queue_work(queue->work_q, &fod->defer_work); | 
 | } | 
 |  | 
 | static int | 
 | nvmet_fc_queue_to_cpu(struct nvmet_fc_tgtport *tgtport, int qid) | 
 | { | 
 | 	int cpu, idx, cnt; | 
 |  | 
 | 	if (tgtport->ops->max_hw_queues == 1) | 
 | 		return WORK_CPU_UNBOUND; | 
 |  | 
 | 	/* Simple cpu selection based on qid modulo active cpu count */ | 
 | 	idx = !qid ? 0 : (qid - 1) % num_active_cpus(); | 
 |  | 
 | 	/* find the n'th active cpu */ | 
 | 	for (cpu = 0, cnt = 0; ; ) { | 
 | 		if (cpu_active(cpu)) { | 
 | 			if (cnt == idx) | 
 | 				break; | 
 | 			cnt++; | 
 | 		} | 
 | 		cpu = (cpu + 1) % num_possible_cpus(); | 
 | 	} | 
 |  | 
 | 	return cpu; | 
 | } | 
 |  | 
 | static struct nvmet_fc_tgt_queue * | 
 | nvmet_fc_alloc_target_queue(struct nvmet_fc_tgt_assoc *assoc, | 
 | 			u16 qid, u16 sqsize) | 
 | { | 
 | 	struct nvmet_fc_tgt_queue *queue; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	if (qid > NVMET_NR_QUEUES) | 
 | 		return NULL; | 
 |  | 
 | 	queue = kzalloc((sizeof(*queue) + | 
 | 				(sizeof(struct nvmet_fc_fcp_iod) * sqsize)), | 
 | 				GFP_KERNEL); | 
 | 	if (!queue) | 
 | 		return NULL; | 
 |  | 
 | 	if (!nvmet_fc_tgt_a_get(assoc)) | 
 | 		goto out_free_queue; | 
 |  | 
 | 	queue->work_q = alloc_workqueue("ntfc%d.%d.%d", 0, 0, | 
 | 				assoc->tgtport->fc_target_port.port_num, | 
 | 				assoc->a_id, qid); | 
 | 	if (!queue->work_q) | 
 | 		goto out_a_put; | 
 |  | 
 | 	queue->fod = (struct nvmet_fc_fcp_iod *)&queue[1]; | 
 | 	queue->qid = qid; | 
 | 	queue->sqsize = sqsize; | 
 | 	queue->assoc = assoc; | 
 | 	queue->port = assoc->tgtport->port; | 
 | 	queue->cpu = nvmet_fc_queue_to_cpu(assoc->tgtport, qid); | 
 | 	INIT_LIST_HEAD(&queue->fod_list); | 
 | 	INIT_LIST_HEAD(&queue->avail_defer_list); | 
 | 	INIT_LIST_HEAD(&queue->pending_cmd_list); | 
 | 	atomic_set(&queue->connected, 0); | 
 | 	atomic_set(&queue->sqtail, 0); | 
 | 	atomic_set(&queue->rsn, 1); | 
 | 	atomic_set(&queue->zrspcnt, 0); | 
 | 	spin_lock_init(&queue->qlock); | 
 | 	kref_init(&queue->ref); | 
 |  | 
 | 	nvmet_fc_prep_fcp_iodlist(assoc->tgtport, queue); | 
 |  | 
 | 	ret = nvmet_sq_init(&queue->nvme_sq); | 
 | 	if (ret) | 
 | 		goto out_fail_iodlist; | 
 |  | 
 | 	WARN_ON(assoc->queues[qid]); | 
 | 	spin_lock_irqsave(&assoc->tgtport->lock, flags); | 
 | 	assoc->queues[qid] = queue; | 
 | 	spin_unlock_irqrestore(&assoc->tgtport->lock, flags); | 
 |  | 
 | 	return queue; | 
 |  | 
 | out_fail_iodlist: | 
 | 	nvmet_fc_destroy_fcp_iodlist(assoc->tgtport, queue); | 
 | 	destroy_workqueue(queue->work_q); | 
 | out_a_put: | 
 | 	nvmet_fc_tgt_a_put(assoc); | 
 | out_free_queue: | 
 | 	kfree(queue); | 
 | 	return NULL; | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | nvmet_fc_tgt_queue_free(struct kref *ref) | 
 | { | 
 | 	struct nvmet_fc_tgt_queue *queue = | 
 | 		container_of(ref, struct nvmet_fc_tgt_queue, ref); | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&queue->assoc->tgtport->lock, flags); | 
 | 	queue->assoc->queues[queue->qid] = NULL; | 
 | 	spin_unlock_irqrestore(&queue->assoc->tgtport->lock, flags); | 
 |  | 
 | 	nvmet_fc_destroy_fcp_iodlist(queue->assoc->tgtport, queue); | 
 |  | 
 | 	nvmet_fc_tgt_a_put(queue->assoc); | 
 |  | 
 | 	destroy_workqueue(queue->work_q); | 
 |  | 
 | 	kfree(queue); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_tgt_q_put(struct nvmet_fc_tgt_queue *queue) | 
 | { | 
 | 	kref_put(&queue->ref, nvmet_fc_tgt_queue_free); | 
 | } | 
 |  | 
 | static int | 
 | nvmet_fc_tgt_q_get(struct nvmet_fc_tgt_queue *queue) | 
 | { | 
 | 	return kref_get_unless_zero(&queue->ref); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | nvmet_fc_delete_target_queue(struct nvmet_fc_tgt_queue *queue) | 
 | { | 
 | 	struct nvmet_fc_tgtport *tgtport = queue->assoc->tgtport; | 
 | 	struct nvmet_fc_fcp_iod *fod = queue->fod; | 
 | 	struct nvmet_fc_defer_fcp_req *deferfcp, *tempptr; | 
 | 	unsigned long flags; | 
 | 	int i, writedataactive; | 
 | 	bool disconnect; | 
 |  | 
 | 	disconnect = atomic_xchg(&queue->connected, 0); | 
 |  | 
 | 	spin_lock_irqsave(&queue->qlock, flags); | 
 | 	/* about outstanding io's */ | 
 | 	for (i = 0; i < queue->sqsize; fod++, i++) { | 
 | 		if (fod->active) { | 
 | 			spin_lock(&fod->flock); | 
 | 			fod->abort = true; | 
 | 			writedataactive = fod->writedataactive; | 
 | 			spin_unlock(&fod->flock); | 
 | 			/* | 
 | 			 * only call lldd abort routine if waiting for | 
 | 			 * writedata. other outstanding ops should finish | 
 | 			 * on their own. | 
 | 			 */ | 
 | 			if (writedataactive) { | 
 | 				spin_lock(&fod->flock); | 
 | 				fod->aborted = true; | 
 | 				spin_unlock(&fod->flock); | 
 | 				tgtport->ops->fcp_abort( | 
 | 					&tgtport->fc_target_port, fod->fcpreq); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Cleanup defer'ed IOs in queue */ | 
 | 	list_for_each_entry_safe(deferfcp, tempptr, &queue->avail_defer_list, | 
 | 				req_list) { | 
 | 		list_del(&deferfcp->req_list); | 
 | 		kfree(deferfcp); | 
 | 	} | 
 |  | 
 | 	for (;;) { | 
 | 		deferfcp = list_first_entry_or_null(&queue->pending_cmd_list, | 
 | 				struct nvmet_fc_defer_fcp_req, req_list); | 
 | 		if (!deferfcp) | 
 | 			break; | 
 |  | 
 | 		list_del(&deferfcp->req_list); | 
 | 		spin_unlock_irqrestore(&queue->qlock, flags); | 
 |  | 
 | 		tgtport->ops->defer_rcv(&tgtport->fc_target_port, | 
 | 				deferfcp->fcp_req); | 
 |  | 
 | 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, | 
 | 				deferfcp->fcp_req); | 
 |  | 
 | 		tgtport->ops->fcp_req_release(&tgtport->fc_target_port, | 
 | 				deferfcp->fcp_req); | 
 |  | 
 | 		/* release the queue lookup reference */ | 
 | 		nvmet_fc_tgt_q_put(queue); | 
 |  | 
 | 		kfree(deferfcp); | 
 |  | 
 | 		spin_lock_irqsave(&queue->qlock, flags); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&queue->qlock, flags); | 
 |  | 
 | 	flush_workqueue(queue->work_q); | 
 |  | 
 | 	if (disconnect) | 
 | 		nvmet_sq_destroy(&queue->nvme_sq); | 
 |  | 
 | 	nvmet_fc_tgt_q_put(queue); | 
 | } | 
 |  | 
 | static struct nvmet_fc_tgt_queue * | 
 | nvmet_fc_find_target_queue(struct nvmet_fc_tgtport *tgtport, | 
 | 				u64 connection_id) | 
 | { | 
 | 	struct nvmet_fc_tgt_assoc *assoc; | 
 | 	struct nvmet_fc_tgt_queue *queue; | 
 | 	u64 association_id = nvmet_fc_getassociationid(connection_id); | 
 | 	u16 qid = nvmet_fc_getqueueid(connection_id); | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (qid > NVMET_NR_QUEUES) | 
 | 		return NULL; | 
 |  | 
 | 	spin_lock_irqsave(&tgtport->lock, flags); | 
 | 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { | 
 | 		if (association_id == assoc->association_id) { | 
 | 			queue = assoc->queues[qid]; | 
 | 			if (queue && | 
 | 			    (!atomic_read(&queue->connected) || | 
 | 			     !nvmet_fc_tgt_q_get(queue))) | 
 | 				queue = NULL; | 
 | 			spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | 			return queue; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_delete_assoc(struct work_struct *work) | 
 | { | 
 | 	struct nvmet_fc_tgt_assoc *assoc = | 
 | 		container_of(work, struct nvmet_fc_tgt_assoc, del_work); | 
 |  | 
 | 	nvmet_fc_delete_target_assoc(assoc); | 
 | 	nvmet_fc_tgt_a_put(assoc); | 
 | } | 
 |  | 
 | static struct nvmet_fc_tgt_assoc * | 
 | nvmet_fc_alloc_target_assoc(struct nvmet_fc_tgtport *tgtport) | 
 | { | 
 | 	struct nvmet_fc_tgt_assoc *assoc, *tmpassoc; | 
 | 	unsigned long flags; | 
 | 	u64 ran; | 
 | 	int idx; | 
 | 	bool needrandom = true; | 
 |  | 
 | 	assoc = kzalloc(sizeof(*assoc), GFP_KERNEL); | 
 | 	if (!assoc) | 
 | 		return NULL; | 
 |  | 
 | 	idx = ida_simple_get(&tgtport->assoc_cnt, 0, 0, GFP_KERNEL); | 
 | 	if (idx < 0) | 
 | 		goto out_free_assoc; | 
 |  | 
 | 	if (!nvmet_fc_tgtport_get(tgtport)) | 
 | 		goto out_ida_put; | 
 |  | 
 | 	assoc->tgtport = tgtport; | 
 | 	assoc->a_id = idx; | 
 | 	INIT_LIST_HEAD(&assoc->a_list); | 
 | 	kref_init(&assoc->ref); | 
 | 	INIT_WORK(&assoc->del_work, nvmet_fc_delete_assoc); | 
 |  | 
 | 	while (needrandom) { | 
 | 		get_random_bytes(&ran, sizeof(ran) - BYTES_FOR_QID); | 
 | 		ran = ran << BYTES_FOR_QID_SHIFT; | 
 |  | 
 | 		spin_lock_irqsave(&tgtport->lock, flags); | 
 | 		needrandom = false; | 
 | 		list_for_each_entry(tmpassoc, &tgtport->assoc_list, a_list) | 
 | 			if (ran == tmpassoc->association_id) { | 
 | 				needrandom = true; | 
 | 				break; | 
 | 			} | 
 | 		if (!needrandom) { | 
 | 			assoc->association_id = ran; | 
 | 			list_add_tail(&assoc->a_list, &tgtport->assoc_list); | 
 | 		} | 
 | 		spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | 	} | 
 |  | 
 | 	return assoc; | 
 |  | 
 | out_ida_put: | 
 | 	ida_simple_remove(&tgtport->assoc_cnt, idx); | 
 | out_free_assoc: | 
 | 	kfree(assoc); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_target_assoc_free(struct kref *ref) | 
 | { | 
 | 	struct nvmet_fc_tgt_assoc *assoc = | 
 | 		container_of(ref, struct nvmet_fc_tgt_assoc, ref); | 
 | 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&tgtport->lock, flags); | 
 | 	list_del(&assoc->a_list); | 
 | 	spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | 	ida_simple_remove(&tgtport->assoc_cnt, assoc->a_id); | 
 | 	kfree(assoc); | 
 | 	nvmet_fc_tgtport_put(tgtport); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_tgt_a_put(struct nvmet_fc_tgt_assoc *assoc) | 
 | { | 
 | 	kref_put(&assoc->ref, nvmet_fc_target_assoc_free); | 
 | } | 
 |  | 
 | static int | 
 | nvmet_fc_tgt_a_get(struct nvmet_fc_tgt_assoc *assoc) | 
 | { | 
 | 	return kref_get_unless_zero(&assoc->ref); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_delete_target_assoc(struct nvmet_fc_tgt_assoc *assoc) | 
 | { | 
 | 	struct nvmet_fc_tgtport *tgtport = assoc->tgtport; | 
 | 	struct nvmet_fc_tgt_queue *queue; | 
 | 	unsigned long flags; | 
 | 	int i; | 
 |  | 
 | 	spin_lock_irqsave(&tgtport->lock, flags); | 
 | 	for (i = NVMET_NR_QUEUES; i >= 0; i--) { | 
 | 		queue = assoc->queues[i]; | 
 | 		if (queue) { | 
 | 			if (!nvmet_fc_tgt_q_get(queue)) | 
 | 				continue; | 
 | 			spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | 			nvmet_fc_delete_target_queue(queue); | 
 | 			nvmet_fc_tgt_q_put(queue); | 
 | 			spin_lock_irqsave(&tgtport->lock, flags); | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&tgtport->lock, flags); | 
 |  | 
 | 	nvmet_fc_tgt_a_put(assoc); | 
 | } | 
 |  | 
 | static struct nvmet_fc_tgt_assoc * | 
 | nvmet_fc_find_target_assoc(struct nvmet_fc_tgtport *tgtport, | 
 | 				u64 association_id) | 
 | { | 
 | 	struct nvmet_fc_tgt_assoc *assoc; | 
 | 	struct nvmet_fc_tgt_assoc *ret = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&tgtport->lock, flags); | 
 | 	list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { | 
 | 		if (association_id == assoc->association_id) { | 
 | 			ret = assoc; | 
 | 			nvmet_fc_tgt_a_get(assoc); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&tgtport->lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * nvme_fc_register_targetport - transport entry point called by an | 
 |  *                              LLDD to register the existence of a local | 
 |  *                              NVME subystem FC port. | 
 |  * @pinfo:     pointer to information about the port to be registered | 
 |  * @template:  LLDD entrypoints and operational parameters for the port | 
 |  * @dev:       physical hardware device node port corresponds to. Will be | 
 |  *             used for DMA mappings | 
 |  * @portptr:   pointer to a local port pointer. Upon success, the routine | 
 |  *             will allocate a nvme_fc_local_port structure and place its | 
 |  *             address in the local port pointer. Upon failure, local port | 
 |  *             pointer will be set to NULL. | 
 |  * | 
 |  * Returns: | 
 |  * a completion status. Must be 0 upon success; a negative errno | 
 |  * (ex: -ENXIO) upon failure. | 
 |  */ | 
 | int | 
 | nvmet_fc_register_targetport(struct nvmet_fc_port_info *pinfo, | 
 | 			struct nvmet_fc_target_template *template, | 
 | 			struct device *dev, | 
 | 			struct nvmet_fc_target_port **portptr) | 
 | { | 
 | 	struct nvmet_fc_tgtport *newrec; | 
 | 	unsigned long flags; | 
 | 	int ret, idx; | 
 |  | 
 | 	if (!template->xmt_ls_rsp || !template->fcp_op || | 
 | 	    !template->fcp_abort || | 
 | 	    !template->fcp_req_release || !template->targetport_delete || | 
 | 	    !template->max_hw_queues || !template->max_sgl_segments || | 
 | 	    !template->max_dif_sgl_segments || !template->dma_boundary) { | 
 | 		ret = -EINVAL; | 
 | 		goto out_regtgt_failed; | 
 | 	} | 
 |  | 
 | 	newrec = kzalloc((sizeof(*newrec) + template->target_priv_sz), | 
 | 			 GFP_KERNEL); | 
 | 	if (!newrec) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_regtgt_failed; | 
 | 	} | 
 |  | 
 | 	idx = ida_simple_get(&nvmet_fc_tgtport_cnt, 0, 0, GFP_KERNEL); | 
 | 	if (idx < 0) { | 
 | 		ret = -ENOSPC; | 
 | 		goto out_fail_kfree; | 
 | 	} | 
 |  | 
 | 	if (!get_device(dev) && dev) { | 
 | 		ret = -ENODEV; | 
 | 		goto out_ida_put; | 
 | 	} | 
 |  | 
 | 	newrec->fc_target_port.node_name = pinfo->node_name; | 
 | 	newrec->fc_target_port.port_name = pinfo->port_name; | 
 | 	newrec->fc_target_port.private = &newrec[1]; | 
 | 	newrec->fc_target_port.port_id = pinfo->port_id; | 
 | 	newrec->fc_target_port.port_num = idx; | 
 | 	INIT_LIST_HEAD(&newrec->tgt_list); | 
 | 	newrec->dev = dev; | 
 | 	newrec->ops = template; | 
 | 	spin_lock_init(&newrec->lock); | 
 | 	INIT_LIST_HEAD(&newrec->ls_list); | 
 | 	INIT_LIST_HEAD(&newrec->ls_busylist); | 
 | 	INIT_LIST_HEAD(&newrec->assoc_list); | 
 | 	kref_init(&newrec->ref); | 
 | 	ida_init(&newrec->assoc_cnt); | 
 | 	newrec->max_sg_cnt = template->max_sgl_segments; | 
 |  | 
 | 	ret = nvmet_fc_alloc_ls_iodlist(newrec); | 
 | 	if (ret) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out_free_newrec; | 
 | 	} | 
 |  | 
 | 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags); | 
 | 	list_add_tail(&newrec->tgt_list, &nvmet_fc_target_list); | 
 | 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); | 
 |  | 
 | 	*portptr = &newrec->fc_target_port; | 
 | 	return 0; | 
 |  | 
 | out_free_newrec: | 
 | 	put_device(dev); | 
 | out_ida_put: | 
 | 	ida_simple_remove(&nvmet_fc_tgtport_cnt, idx); | 
 | out_fail_kfree: | 
 | 	kfree(newrec); | 
 | out_regtgt_failed: | 
 | 	*portptr = NULL; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvmet_fc_register_targetport); | 
 |  | 
 |  | 
 | static void | 
 | nvmet_fc_free_tgtport(struct kref *ref) | 
 | { | 
 | 	struct nvmet_fc_tgtport *tgtport = | 
 | 		container_of(ref, struct nvmet_fc_tgtport, ref); | 
 | 	struct device *dev = tgtport->dev; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags); | 
 | 	list_del(&tgtport->tgt_list); | 
 | 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); | 
 |  | 
 | 	nvmet_fc_free_ls_iodlist(tgtport); | 
 |  | 
 | 	/* let the LLDD know we've finished tearing it down */ | 
 | 	tgtport->ops->targetport_delete(&tgtport->fc_target_port); | 
 |  | 
 | 	ida_simple_remove(&nvmet_fc_tgtport_cnt, | 
 | 			tgtport->fc_target_port.port_num); | 
 |  | 
 | 	ida_destroy(&tgtport->assoc_cnt); | 
 |  | 
 | 	kfree(tgtport); | 
 |  | 
 | 	put_device(dev); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_tgtport_put(struct nvmet_fc_tgtport *tgtport) | 
 | { | 
 | 	kref_put(&tgtport->ref, nvmet_fc_free_tgtport); | 
 | } | 
 |  | 
 | static int | 
 | nvmet_fc_tgtport_get(struct nvmet_fc_tgtport *tgtport) | 
 | { | 
 | 	return kref_get_unless_zero(&tgtport->ref); | 
 | } | 
 |  | 
 | static void | 
 | __nvmet_fc_free_assocs(struct nvmet_fc_tgtport *tgtport) | 
 | { | 
 | 	struct nvmet_fc_tgt_assoc *assoc, *next; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&tgtport->lock, flags); | 
 | 	list_for_each_entry_safe(assoc, next, | 
 | 				&tgtport->assoc_list, a_list) { | 
 | 		if (!nvmet_fc_tgt_a_get(assoc)) | 
 | 			continue; | 
 | 		spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | 		nvmet_fc_delete_target_assoc(assoc); | 
 | 		nvmet_fc_tgt_a_put(assoc); | 
 | 		spin_lock_irqsave(&tgtport->lock, flags); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&tgtport->lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * nvmet layer has called to terminate an association | 
 |  */ | 
 | static void | 
 | nvmet_fc_delete_ctrl(struct nvmet_ctrl *ctrl) | 
 | { | 
 | 	struct nvmet_fc_tgtport *tgtport, *next; | 
 | 	struct nvmet_fc_tgt_assoc *assoc; | 
 | 	struct nvmet_fc_tgt_queue *queue; | 
 | 	unsigned long flags; | 
 | 	bool found_ctrl = false; | 
 |  | 
 | 	/* this is a bit ugly, but don't want to make locks layered */ | 
 | 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags); | 
 | 	list_for_each_entry_safe(tgtport, next, &nvmet_fc_target_list, | 
 | 			tgt_list) { | 
 | 		if (!nvmet_fc_tgtport_get(tgtport)) | 
 | 			continue; | 
 | 		spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); | 
 |  | 
 | 		spin_lock_irqsave(&tgtport->lock, flags); | 
 | 		list_for_each_entry(assoc, &tgtport->assoc_list, a_list) { | 
 | 			queue = assoc->queues[0]; | 
 | 			if (queue && queue->nvme_sq.ctrl == ctrl) { | 
 | 				if (nvmet_fc_tgt_a_get(assoc)) | 
 | 					found_ctrl = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irqrestore(&tgtport->lock, flags); | 
 |  | 
 | 		nvmet_fc_tgtport_put(tgtport); | 
 |  | 
 | 		if (found_ctrl) { | 
 | 			schedule_work(&assoc->del_work); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		spin_lock_irqsave(&nvmet_fc_tgtlock, flags); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); | 
 | } | 
 |  | 
 | /** | 
 |  * nvme_fc_unregister_targetport - transport entry point called by an | 
 |  *                              LLDD to deregister/remove a previously | 
 |  *                              registered a local NVME subsystem FC port. | 
 |  * @tgtport: pointer to the (registered) target port that is to be | 
 |  *           deregistered. | 
 |  * | 
 |  * Returns: | 
 |  * a completion status. Must be 0 upon success; a negative errno | 
 |  * (ex: -ENXIO) upon failure. | 
 |  */ | 
 | int | 
 | nvmet_fc_unregister_targetport(struct nvmet_fc_target_port *target_port) | 
 | { | 
 | 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); | 
 |  | 
 | 	/* terminate any outstanding associations */ | 
 | 	__nvmet_fc_free_assocs(tgtport); | 
 |  | 
 | 	nvmet_fc_tgtport_put(tgtport); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvmet_fc_unregister_targetport); | 
 |  | 
 |  | 
 | /* *********************** FC-NVME LS Handling **************************** */ | 
 |  | 
 |  | 
 | static void | 
 | nvmet_fc_format_rsp_hdr(void *buf, u8 ls_cmd, __be32 desc_len, u8 rqst_ls_cmd) | 
 | { | 
 | 	struct fcnvme_ls_acc_hdr *acc = buf; | 
 |  | 
 | 	acc->w0.ls_cmd = ls_cmd; | 
 | 	acc->desc_list_len = desc_len; | 
 | 	acc->rqst.desc_tag = cpu_to_be32(FCNVME_LSDESC_RQST); | 
 | 	acc->rqst.desc_len = | 
 | 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)); | 
 | 	acc->rqst.w0.ls_cmd = rqst_ls_cmd; | 
 | } | 
 |  | 
 | static int | 
 | nvmet_fc_format_rjt(void *buf, u16 buflen, u8 ls_cmd, | 
 | 			u8 reason, u8 explanation, u8 vendor) | 
 | { | 
 | 	struct fcnvme_ls_rjt *rjt = buf; | 
 |  | 
 | 	nvmet_fc_format_rsp_hdr(buf, FCNVME_LSDESC_RQST, | 
 | 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_rjt)), | 
 | 			ls_cmd); | 
 | 	rjt->rjt.desc_tag = cpu_to_be32(FCNVME_LSDESC_RJT); | 
 | 	rjt->rjt.desc_len = fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rjt)); | 
 | 	rjt->rjt.reason_code = reason; | 
 | 	rjt->rjt.reason_explanation = explanation; | 
 | 	rjt->rjt.vendor = vendor; | 
 |  | 
 | 	return sizeof(struct fcnvme_ls_rjt); | 
 | } | 
 |  | 
 | /* Validation Error indexes into the string table below */ | 
 | enum { | 
 | 	VERR_NO_ERROR		= 0, | 
 | 	VERR_CR_ASSOC_LEN	= 1, | 
 | 	VERR_CR_ASSOC_RQST_LEN	= 2, | 
 | 	VERR_CR_ASSOC_CMD	= 3, | 
 | 	VERR_CR_ASSOC_CMD_LEN	= 4, | 
 | 	VERR_ERSP_RATIO		= 5, | 
 | 	VERR_ASSOC_ALLOC_FAIL	= 6, | 
 | 	VERR_QUEUE_ALLOC_FAIL	= 7, | 
 | 	VERR_CR_CONN_LEN	= 8, | 
 | 	VERR_CR_CONN_RQST_LEN	= 9, | 
 | 	VERR_ASSOC_ID		= 10, | 
 | 	VERR_ASSOC_ID_LEN	= 11, | 
 | 	VERR_NO_ASSOC		= 12, | 
 | 	VERR_CONN_ID		= 13, | 
 | 	VERR_CONN_ID_LEN	= 14, | 
 | 	VERR_NO_CONN		= 15, | 
 | 	VERR_CR_CONN_CMD	= 16, | 
 | 	VERR_CR_CONN_CMD_LEN	= 17, | 
 | 	VERR_DISCONN_LEN	= 18, | 
 | 	VERR_DISCONN_RQST_LEN	= 19, | 
 | 	VERR_DISCONN_CMD	= 20, | 
 | 	VERR_DISCONN_CMD_LEN	= 21, | 
 | 	VERR_DISCONN_SCOPE	= 22, | 
 | 	VERR_RS_LEN		= 23, | 
 | 	VERR_RS_RQST_LEN	= 24, | 
 | 	VERR_RS_CMD		= 25, | 
 | 	VERR_RS_CMD_LEN		= 26, | 
 | 	VERR_RS_RCTL		= 27, | 
 | 	VERR_RS_RO		= 28, | 
 | }; | 
 |  | 
 | static char *validation_errors[] = { | 
 | 	"OK", | 
 | 	"Bad CR_ASSOC Length", | 
 | 	"Bad CR_ASSOC Rqst Length", | 
 | 	"Not CR_ASSOC Cmd", | 
 | 	"Bad CR_ASSOC Cmd Length", | 
 | 	"Bad Ersp Ratio", | 
 | 	"Association Allocation Failed", | 
 | 	"Queue Allocation Failed", | 
 | 	"Bad CR_CONN Length", | 
 | 	"Bad CR_CONN Rqst Length", | 
 | 	"Not Association ID", | 
 | 	"Bad Association ID Length", | 
 | 	"No Association", | 
 | 	"Not Connection ID", | 
 | 	"Bad Connection ID Length", | 
 | 	"No Connection", | 
 | 	"Not CR_CONN Cmd", | 
 | 	"Bad CR_CONN Cmd Length", | 
 | 	"Bad DISCONN Length", | 
 | 	"Bad DISCONN Rqst Length", | 
 | 	"Not DISCONN Cmd", | 
 | 	"Bad DISCONN Cmd Length", | 
 | 	"Bad Disconnect Scope", | 
 | 	"Bad RS Length", | 
 | 	"Bad RS Rqst Length", | 
 | 	"Not RS Cmd", | 
 | 	"Bad RS Cmd Length", | 
 | 	"Bad RS R_CTL", | 
 | 	"Bad RS Relative Offset", | 
 | }; | 
 |  | 
 | static void | 
 | nvmet_fc_ls_create_association(struct nvmet_fc_tgtport *tgtport, | 
 | 			struct nvmet_fc_ls_iod *iod) | 
 | { | 
 | 	struct fcnvme_ls_cr_assoc_rqst *rqst = | 
 | 				(struct fcnvme_ls_cr_assoc_rqst *)iod->rqstbuf; | 
 | 	struct fcnvme_ls_cr_assoc_acc *acc = | 
 | 				(struct fcnvme_ls_cr_assoc_acc *)iod->rspbuf; | 
 | 	struct nvmet_fc_tgt_queue *queue; | 
 | 	int ret = 0; | 
 |  | 
 | 	memset(acc, 0, sizeof(*acc)); | 
 |  | 
 | 	/* | 
 | 	 * FC-NVME spec changes. There are initiators sending different | 
 | 	 * lengths as padding sizes for Create Association Cmd descriptor | 
 | 	 * was incorrect. | 
 | 	 * Accept anything of "minimum" length. Assume format per 1.15 | 
 | 	 * spec (with HOSTID reduced to 16 bytes), ignore how long the | 
 | 	 * trailing pad length is. | 
 | 	 */ | 
 | 	if (iod->rqstdatalen < FCNVME_LSDESC_CRA_RQST_MINLEN) | 
 | 		ret = VERR_CR_ASSOC_LEN; | 
 | 	else if (be32_to_cpu(rqst->desc_list_len) < | 
 | 			FCNVME_LSDESC_CRA_RQST_MIN_LISTLEN) | 
 | 		ret = VERR_CR_ASSOC_RQST_LEN; | 
 | 	else if (rqst->assoc_cmd.desc_tag != | 
 | 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD)) | 
 | 		ret = VERR_CR_ASSOC_CMD; | 
 | 	else if (be32_to_cpu(rqst->assoc_cmd.desc_len) < | 
 | 			FCNVME_LSDESC_CRA_CMD_DESC_MIN_DESCLEN) | 
 | 		ret = VERR_CR_ASSOC_CMD_LEN; | 
 | 	else if (!rqst->assoc_cmd.ersp_ratio || | 
 | 		 (be16_to_cpu(rqst->assoc_cmd.ersp_ratio) >= | 
 | 				be16_to_cpu(rqst->assoc_cmd.sqsize))) | 
 | 		ret = VERR_ERSP_RATIO; | 
 |  | 
 | 	else { | 
 | 		/* new association w/ admin queue */ | 
 | 		iod->assoc = nvmet_fc_alloc_target_assoc(tgtport); | 
 | 		if (!iod->assoc) | 
 | 			ret = VERR_ASSOC_ALLOC_FAIL; | 
 | 		else { | 
 | 			queue = nvmet_fc_alloc_target_queue(iod->assoc, 0, | 
 | 					be16_to_cpu(rqst->assoc_cmd.sqsize)); | 
 | 			if (!queue) | 
 | 				ret = VERR_QUEUE_ALLOC_FAIL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		dev_err(tgtport->dev, | 
 | 			"Create Association LS failed: %s\n", | 
 | 			validation_errors[ret]); | 
 | 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, | 
 | 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, | 
 | 				FCNVME_RJT_RC_LOGIC, | 
 | 				FCNVME_RJT_EXP_NONE, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	queue->ersp_ratio = be16_to_cpu(rqst->assoc_cmd.ersp_ratio); | 
 | 	atomic_set(&queue->connected, 1); | 
 | 	queue->sqhd = 0;	/* best place to init value */ | 
 |  | 
 | 	/* format a response */ | 
 |  | 
 | 	iod->lsreq->rsplen = sizeof(*acc); | 
 |  | 
 | 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_ls_cr_assoc_acc)), | 
 | 			FCNVME_LS_CREATE_ASSOCIATION); | 
 | 	acc->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID); | 
 | 	acc->associd.desc_len = | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_assoc_id)); | 
 | 	acc->associd.association_id = | 
 | 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, 0)); | 
 | 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); | 
 | 	acc->connectid.desc_len = | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_conn_id)); | 
 | 	acc->connectid.connection_id = acc->associd.association_id; | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_ls_create_connection(struct nvmet_fc_tgtport *tgtport, | 
 | 			struct nvmet_fc_ls_iod *iod) | 
 | { | 
 | 	struct fcnvme_ls_cr_conn_rqst *rqst = | 
 | 				(struct fcnvme_ls_cr_conn_rqst *)iod->rqstbuf; | 
 | 	struct fcnvme_ls_cr_conn_acc *acc = | 
 | 				(struct fcnvme_ls_cr_conn_acc *)iod->rspbuf; | 
 | 	struct nvmet_fc_tgt_queue *queue; | 
 | 	int ret = 0; | 
 |  | 
 | 	memset(acc, 0, sizeof(*acc)); | 
 |  | 
 | 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_cr_conn_rqst)) | 
 | 		ret = VERR_CR_CONN_LEN; | 
 | 	else if (rqst->desc_list_len != | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_ls_cr_conn_rqst))) | 
 | 		ret = VERR_CR_CONN_RQST_LEN; | 
 | 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) | 
 | 		ret = VERR_ASSOC_ID; | 
 | 	else if (rqst->associd.desc_len != | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_assoc_id))) | 
 | 		ret = VERR_ASSOC_ID_LEN; | 
 | 	else if (rqst->connect_cmd.desc_tag != | 
 | 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD)) | 
 | 		ret = VERR_CR_CONN_CMD; | 
 | 	else if (rqst->connect_cmd.desc_len != | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd))) | 
 | 		ret = VERR_CR_CONN_CMD_LEN; | 
 | 	else if (!rqst->connect_cmd.ersp_ratio || | 
 | 		 (be16_to_cpu(rqst->connect_cmd.ersp_ratio) >= | 
 | 				be16_to_cpu(rqst->connect_cmd.sqsize))) | 
 | 		ret = VERR_ERSP_RATIO; | 
 |  | 
 | 	else { | 
 | 		/* new io queue */ | 
 | 		iod->assoc = nvmet_fc_find_target_assoc(tgtport, | 
 | 				be64_to_cpu(rqst->associd.association_id)); | 
 | 		if (!iod->assoc) | 
 | 			ret = VERR_NO_ASSOC; | 
 | 		else { | 
 | 			queue = nvmet_fc_alloc_target_queue(iod->assoc, | 
 | 					be16_to_cpu(rqst->connect_cmd.qid), | 
 | 					be16_to_cpu(rqst->connect_cmd.sqsize)); | 
 | 			if (!queue) | 
 | 				ret = VERR_QUEUE_ALLOC_FAIL; | 
 |  | 
 | 			/* release get taken in nvmet_fc_find_target_assoc */ | 
 | 			nvmet_fc_tgt_a_put(iod->assoc); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		dev_err(tgtport->dev, | 
 | 			"Create Connection LS failed: %s\n", | 
 | 			validation_errors[ret]); | 
 | 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, | 
 | 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, | 
 | 				(ret == VERR_NO_ASSOC) ? | 
 | 					FCNVME_RJT_RC_INV_ASSOC : | 
 | 					FCNVME_RJT_RC_LOGIC, | 
 | 				FCNVME_RJT_EXP_NONE, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	queue->ersp_ratio = be16_to_cpu(rqst->connect_cmd.ersp_ratio); | 
 | 	atomic_set(&queue->connected, 1); | 
 | 	queue->sqhd = 0;	/* best place to init value */ | 
 |  | 
 | 	/* format a response */ | 
 |  | 
 | 	iod->lsreq->rsplen = sizeof(*acc); | 
 |  | 
 | 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, | 
 | 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)), | 
 | 			FCNVME_LS_CREATE_CONNECTION); | 
 | 	acc->connectid.desc_tag = cpu_to_be32(FCNVME_LSDESC_CONN_ID); | 
 | 	acc->connectid.desc_len = | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_conn_id)); | 
 | 	acc->connectid.connection_id = | 
 | 			cpu_to_be64(nvmet_fc_makeconnid(iod->assoc, | 
 | 				be16_to_cpu(rqst->connect_cmd.qid))); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_ls_disconnect(struct nvmet_fc_tgtport *tgtport, | 
 | 			struct nvmet_fc_ls_iod *iod) | 
 | { | 
 | 	struct fcnvme_ls_disconnect_rqst *rqst = | 
 | 			(struct fcnvme_ls_disconnect_rqst *)iod->rqstbuf; | 
 | 	struct fcnvme_ls_disconnect_acc *acc = | 
 | 			(struct fcnvme_ls_disconnect_acc *)iod->rspbuf; | 
 | 	struct nvmet_fc_tgt_queue *queue = NULL; | 
 | 	struct nvmet_fc_tgt_assoc *assoc; | 
 | 	int ret = 0; | 
 | 	bool del_assoc = false; | 
 |  | 
 | 	memset(acc, 0, sizeof(*acc)); | 
 |  | 
 | 	if (iod->rqstdatalen < sizeof(struct fcnvme_ls_disconnect_rqst)) | 
 | 		ret = VERR_DISCONN_LEN; | 
 | 	else if (rqst->desc_list_len != | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_ls_disconnect_rqst))) | 
 | 		ret = VERR_DISCONN_RQST_LEN; | 
 | 	else if (rqst->associd.desc_tag != cpu_to_be32(FCNVME_LSDESC_ASSOC_ID)) | 
 | 		ret = VERR_ASSOC_ID; | 
 | 	else if (rqst->associd.desc_len != | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_assoc_id))) | 
 | 		ret = VERR_ASSOC_ID_LEN; | 
 | 	else if (rqst->discon_cmd.desc_tag != | 
 | 			cpu_to_be32(FCNVME_LSDESC_DISCONN_CMD)) | 
 | 		ret = VERR_DISCONN_CMD; | 
 | 	else if (rqst->discon_cmd.desc_len != | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_lsdesc_disconn_cmd))) | 
 | 		ret = VERR_DISCONN_CMD_LEN; | 
 | 	else if ((rqst->discon_cmd.scope != FCNVME_DISCONN_ASSOCIATION) && | 
 | 			(rqst->discon_cmd.scope != FCNVME_DISCONN_CONNECTION)) | 
 | 		ret = VERR_DISCONN_SCOPE; | 
 | 	else { | 
 | 		/* match an active association */ | 
 | 		assoc = nvmet_fc_find_target_assoc(tgtport, | 
 | 				be64_to_cpu(rqst->associd.association_id)); | 
 | 		iod->assoc = assoc; | 
 | 		if (assoc) { | 
 | 			if (rqst->discon_cmd.scope == | 
 | 					FCNVME_DISCONN_CONNECTION) { | 
 | 				queue = nvmet_fc_find_target_queue(tgtport, | 
 | 						be64_to_cpu( | 
 | 							rqst->discon_cmd.id)); | 
 | 				if (!queue) { | 
 | 					nvmet_fc_tgt_a_put(assoc); | 
 | 					ret = VERR_NO_CONN; | 
 | 				} | 
 | 			} | 
 | 		} else | 
 | 			ret = VERR_NO_ASSOC; | 
 | 	} | 
 |  | 
 | 	if (ret) { | 
 | 		dev_err(tgtport->dev, | 
 | 			"Disconnect LS failed: %s\n", | 
 | 			validation_errors[ret]); | 
 | 		iod->lsreq->rsplen = nvmet_fc_format_rjt(acc, | 
 | 				NVME_FC_MAX_LS_BUFFER_SIZE, rqst->w0.ls_cmd, | 
 | 				(ret == VERR_NO_ASSOC) ? | 
 | 					FCNVME_RJT_RC_INV_ASSOC : | 
 | 					(ret == VERR_NO_CONN) ? | 
 | 						FCNVME_RJT_RC_INV_CONN : | 
 | 						FCNVME_RJT_RC_LOGIC, | 
 | 				FCNVME_RJT_EXP_NONE, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* format a response */ | 
 |  | 
 | 	iod->lsreq->rsplen = sizeof(*acc); | 
 |  | 
 | 	nvmet_fc_format_rsp_hdr(acc, FCNVME_LS_ACC, | 
 | 			fcnvme_lsdesc_len( | 
 | 				sizeof(struct fcnvme_ls_disconnect_acc)), | 
 | 			FCNVME_LS_DISCONNECT); | 
 |  | 
 |  | 
 | 	/* are we to delete a Connection ID (queue) */ | 
 | 	if (queue) { | 
 | 		int qid = queue->qid; | 
 |  | 
 | 		nvmet_fc_delete_target_queue(queue); | 
 |  | 
 | 		/* release the get taken by find_target_queue */ | 
 | 		nvmet_fc_tgt_q_put(queue); | 
 |  | 
 | 		/* tear association down if io queue terminated */ | 
 | 		if (!qid) | 
 | 			del_assoc = true; | 
 | 	} | 
 |  | 
 | 	/* release get taken in nvmet_fc_find_target_assoc */ | 
 | 	nvmet_fc_tgt_a_put(iod->assoc); | 
 |  | 
 | 	if (del_assoc) | 
 | 		nvmet_fc_delete_target_assoc(iod->assoc); | 
 | } | 
 |  | 
 |  | 
 | /* *********************** NVME Ctrl Routines **************************** */ | 
 |  | 
 |  | 
 | static void nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req); | 
 |  | 
 | static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops; | 
 |  | 
 | static void | 
 | nvmet_fc_xmt_ls_rsp_done(struct nvmefc_tgt_ls_req *lsreq) | 
 | { | 
 | 	struct nvmet_fc_ls_iod *iod = lsreq->nvmet_fc_private; | 
 | 	struct nvmet_fc_tgtport *tgtport = iod->tgtport; | 
 |  | 
 | 	fc_dma_sync_single_for_cpu(tgtport->dev, iod->rspdma, | 
 | 				NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); | 
 | 	nvmet_fc_free_ls_iod(tgtport, iod); | 
 | 	nvmet_fc_tgtport_put(tgtport); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_xmt_ls_rsp(struct nvmet_fc_tgtport *tgtport, | 
 | 				struct nvmet_fc_ls_iod *iod) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	fc_dma_sync_single_for_device(tgtport->dev, iod->rspdma, | 
 | 				  NVME_FC_MAX_LS_BUFFER_SIZE, DMA_TO_DEVICE); | 
 |  | 
 | 	ret = tgtport->ops->xmt_ls_rsp(&tgtport->fc_target_port, iod->lsreq); | 
 | 	if (ret) | 
 | 		nvmet_fc_xmt_ls_rsp_done(iod->lsreq); | 
 | } | 
 |  | 
 | /* | 
 |  * Actual processing routine for received FC-NVME LS Requests from the LLD | 
 |  */ | 
 | static void | 
 | nvmet_fc_handle_ls_rqst(struct nvmet_fc_tgtport *tgtport, | 
 | 			struct nvmet_fc_ls_iod *iod) | 
 | { | 
 | 	struct fcnvme_ls_rqst_w0 *w0 = | 
 | 			(struct fcnvme_ls_rqst_w0 *)iod->rqstbuf; | 
 |  | 
 | 	iod->lsreq->nvmet_fc_private = iod; | 
 | 	iod->lsreq->rspbuf = iod->rspbuf; | 
 | 	iod->lsreq->rspdma = iod->rspdma; | 
 | 	iod->lsreq->done = nvmet_fc_xmt_ls_rsp_done; | 
 | 	/* Be preventative. handlers will later set to valid length */ | 
 | 	iod->lsreq->rsplen = 0; | 
 |  | 
 | 	iod->assoc = NULL; | 
 |  | 
 | 	/* | 
 | 	 * handlers: | 
 | 	 *   parse request input, execute the request, and format the | 
 | 	 *   LS response | 
 | 	 */ | 
 | 	switch (w0->ls_cmd) { | 
 | 	case FCNVME_LS_CREATE_ASSOCIATION: | 
 | 		/* Creates Association and initial Admin Queue/Connection */ | 
 | 		nvmet_fc_ls_create_association(tgtport, iod); | 
 | 		break; | 
 | 	case FCNVME_LS_CREATE_CONNECTION: | 
 | 		/* Creates an IO Queue/Connection */ | 
 | 		nvmet_fc_ls_create_connection(tgtport, iod); | 
 | 		break; | 
 | 	case FCNVME_LS_DISCONNECT: | 
 | 		/* Terminate a Queue/Connection or the Association */ | 
 | 		nvmet_fc_ls_disconnect(tgtport, iod); | 
 | 		break; | 
 | 	default: | 
 | 		iod->lsreq->rsplen = nvmet_fc_format_rjt(iod->rspbuf, | 
 | 				NVME_FC_MAX_LS_BUFFER_SIZE, w0->ls_cmd, | 
 | 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0); | 
 | 	} | 
 |  | 
 | 	nvmet_fc_xmt_ls_rsp(tgtport, iod); | 
 | } | 
 |  | 
 | /* | 
 |  * Actual processing routine for received FC-NVME LS Requests from the LLD | 
 |  */ | 
 | static void | 
 | nvmet_fc_handle_ls_rqst_work(struct work_struct *work) | 
 | { | 
 | 	struct nvmet_fc_ls_iod *iod = | 
 | 		container_of(work, struct nvmet_fc_ls_iod, work); | 
 | 	struct nvmet_fc_tgtport *tgtport = iod->tgtport; | 
 |  | 
 | 	nvmet_fc_handle_ls_rqst(tgtport, iod); | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  * nvmet_fc_rcv_ls_req - transport entry point called by an LLDD | 
 |  *                       upon the reception of a NVME LS request. | 
 |  * | 
 |  * The nvmet-fc layer will copy payload to an internal structure for | 
 |  * processing.  As such, upon completion of the routine, the LLDD may | 
 |  * immediately free/reuse the LS request buffer passed in the call. | 
 |  * | 
 |  * If this routine returns error, the LLDD should abort the exchange. | 
 |  * | 
 |  * @tgtport:    pointer to the (registered) target port the LS was | 
 |  *              received on. | 
 |  * @lsreq:      pointer to a lsreq request structure to be used to reference | 
 |  *              the exchange corresponding to the LS. | 
 |  * @lsreqbuf:   pointer to the buffer containing the LS Request | 
 |  * @lsreqbuf_len: length, in bytes, of the received LS request | 
 |  */ | 
 | int | 
 | nvmet_fc_rcv_ls_req(struct nvmet_fc_target_port *target_port, | 
 | 			struct nvmefc_tgt_ls_req *lsreq, | 
 | 			void *lsreqbuf, u32 lsreqbuf_len) | 
 | { | 
 | 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); | 
 | 	struct nvmet_fc_ls_iod *iod; | 
 |  | 
 | 	if (lsreqbuf_len > NVME_FC_MAX_LS_BUFFER_SIZE) | 
 | 		return -E2BIG; | 
 |  | 
 | 	if (!nvmet_fc_tgtport_get(tgtport)) | 
 | 		return -ESHUTDOWN; | 
 |  | 
 | 	iod = nvmet_fc_alloc_ls_iod(tgtport); | 
 | 	if (!iod) { | 
 | 		nvmet_fc_tgtport_put(tgtport); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	iod->lsreq = lsreq; | 
 | 	iod->fcpreq = NULL; | 
 | 	memcpy(iod->rqstbuf, lsreqbuf, lsreqbuf_len); | 
 | 	iod->rqstdatalen = lsreqbuf_len; | 
 |  | 
 | 	schedule_work(&iod->work); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvmet_fc_rcv_ls_req); | 
 |  | 
 |  | 
 | /* | 
 |  * ********************** | 
 |  * Start of FCP handling | 
 |  * ********************** | 
 |  */ | 
 |  | 
 | static int | 
 | nvmet_fc_alloc_tgt_pgs(struct nvmet_fc_fcp_iod *fod) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	unsigned int nent; | 
 |  | 
 | 	sg = sgl_alloc(fod->req.transfer_len, GFP_KERNEL, &nent); | 
 | 	if (!sg) | 
 | 		goto out; | 
 |  | 
 | 	fod->data_sg = sg; | 
 | 	fod->data_sg_cnt = nent; | 
 | 	fod->data_sg_cnt = fc_dma_map_sg(fod->tgtport->dev, sg, nent, | 
 | 				((fod->io_dir == NVMET_FCP_WRITE) ? | 
 | 					DMA_FROM_DEVICE : DMA_TO_DEVICE)); | 
 | 				/* note: write from initiator perspective */ | 
 | 	fod->next_sg = fod->data_sg; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out: | 
 | 	return NVME_SC_INTERNAL; | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_free_tgt_pgs(struct nvmet_fc_fcp_iod *fod) | 
 | { | 
 | 	if (!fod->data_sg || !fod->data_sg_cnt) | 
 | 		return; | 
 |  | 
 | 	fc_dma_unmap_sg(fod->tgtport->dev, fod->data_sg, fod->data_sg_cnt, | 
 | 				((fod->io_dir == NVMET_FCP_WRITE) ? | 
 | 					DMA_FROM_DEVICE : DMA_TO_DEVICE)); | 
 | 	sgl_free(fod->data_sg); | 
 | 	fod->data_sg = NULL; | 
 | 	fod->data_sg_cnt = 0; | 
 | } | 
 |  | 
 |  | 
 | static bool | 
 | queue_90percent_full(struct nvmet_fc_tgt_queue *q, u32 sqhd) | 
 | { | 
 | 	u32 sqtail, used; | 
 |  | 
 | 	/* egad, this is ugly. And sqtail is just a best guess */ | 
 | 	sqtail = atomic_read(&q->sqtail) % q->sqsize; | 
 |  | 
 | 	used = (sqtail < sqhd) ? (sqtail + q->sqsize - sqhd) : (sqtail - sqhd); | 
 | 	return ((used * 10) >= (((u32)(q->sqsize - 1) * 9))); | 
 | } | 
 |  | 
 | /* | 
 |  * Prep RSP payload. | 
 |  * May be a NVMET_FCOP_RSP or NVMET_FCOP_READDATA_RSP op | 
 |  */ | 
 | static void | 
 | nvmet_fc_prep_fcp_rsp(struct nvmet_fc_tgtport *tgtport, | 
 | 				struct nvmet_fc_fcp_iod *fod) | 
 | { | 
 | 	struct nvme_fc_ersp_iu *ersp = &fod->rspiubuf; | 
 | 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; | 
 | 	struct nvme_completion *cqe = &ersp->cqe; | 
 | 	u32 *cqewd = (u32 *)cqe; | 
 | 	bool send_ersp = false; | 
 | 	u32 rsn, rspcnt, xfr_length; | 
 |  | 
 | 	if (fod->fcpreq->op == NVMET_FCOP_READDATA_RSP) | 
 | 		xfr_length = fod->req.transfer_len; | 
 | 	else | 
 | 		xfr_length = fod->offset; | 
 |  | 
 | 	/* | 
 | 	 * check to see if we can send a 0's rsp. | 
 | 	 *   Note: to send a 0's response, the NVME-FC host transport will | 
 | 	 *   recreate the CQE. The host transport knows: sq id, SQHD (last | 
 | 	 *   seen in an ersp), and command_id. Thus it will create a | 
 | 	 *   zero-filled CQE with those known fields filled in. Transport | 
 | 	 *   must send an ersp for any condition where the cqe won't match | 
 | 	 *   this. | 
 | 	 * | 
 | 	 * Here are the FC-NVME mandated cases where we must send an ersp: | 
 | 	 *  every N responses, where N=ersp_ratio | 
 | 	 *  force fabric commands to send ersp's (not in FC-NVME but good | 
 | 	 *    practice) | 
 | 	 *  normal cmds: any time status is non-zero, or status is zero | 
 | 	 *     but words 0 or 1 are non-zero. | 
 | 	 *  the SQ is 90% or more full | 
 | 	 *  the cmd is a fused command | 
 | 	 *  transferred data length not equal to cmd iu length | 
 | 	 */ | 
 | 	rspcnt = atomic_inc_return(&fod->queue->zrspcnt); | 
 | 	if (!(rspcnt % fod->queue->ersp_ratio) || | 
 | 	    sqe->opcode == nvme_fabrics_command || | 
 | 	    xfr_length != fod->req.transfer_len || | 
 | 	    (le16_to_cpu(cqe->status) & 0xFFFE) || cqewd[0] || cqewd[1] || | 
 | 	    (sqe->flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND)) || | 
 | 	    queue_90percent_full(fod->queue, le16_to_cpu(cqe->sq_head))) | 
 | 		send_ersp = true; | 
 |  | 
 | 	/* re-set the fields */ | 
 | 	fod->fcpreq->rspaddr = ersp; | 
 | 	fod->fcpreq->rspdma = fod->rspdma; | 
 |  | 
 | 	if (!send_ersp) { | 
 | 		memset(ersp, 0, NVME_FC_SIZEOF_ZEROS_RSP); | 
 | 		fod->fcpreq->rsplen = NVME_FC_SIZEOF_ZEROS_RSP; | 
 | 	} else { | 
 | 		ersp->iu_len = cpu_to_be16(sizeof(*ersp)/sizeof(u32)); | 
 | 		rsn = atomic_inc_return(&fod->queue->rsn); | 
 | 		ersp->rsn = cpu_to_be32(rsn); | 
 | 		ersp->xfrd_len = cpu_to_be32(xfr_length); | 
 | 		fod->fcpreq->rsplen = sizeof(*ersp); | 
 | 	} | 
 |  | 
 | 	fc_dma_sync_single_for_device(tgtport->dev, fod->rspdma, | 
 | 				  sizeof(fod->rspiubuf), DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | static void nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq); | 
 |  | 
 | static void | 
 | nvmet_fc_abort_op(struct nvmet_fc_tgtport *tgtport, | 
 | 				struct nvmet_fc_fcp_iod *fod) | 
 | { | 
 | 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; | 
 |  | 
 | 	/* data no longer needed */ | 
 | 	nvmet_fc_free_tgt_pgs(fod); | 
 |  | 
 | 	/* | 
 | 	 * if an ABTS was received or we issued the fcp_abort early | 
 | 	 * don't call abort routine again. | 
 | 	 */ | 
 | 	/* no need to take lock - lock was taken earlier to get here */ | 
 | 	if (!fod->aborted) | 
 | 		tgtport->ops->fcp_abort(&tgtport->fc_target_port, fcpreq); | 
 |  | 
 | 	nvmet_fc_free_fcp_iod(fod->queue, fod); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_xmt_fcp_rsp(struct nvmet_fc_tgtport *tgtport, | 
 | 				struct nvmet_fc_fcp_iod *fod) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	fod->fcpreq->op = NVMET_FCOP_RSP; | 
 | 	fod->fcpreq->timeout = 0; | 
 |  | 
 | 	nvmet_fc_prep_fcp_rsp(tgtport, fod); | 
 |  | 
 | 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); | 
 | 	if (ret) | 
 | 		nvmet_fc_abort_op(tgtport, fod); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_transfer_fcp_data(struct nvmet_fc_tgtport *tgtport, | 
 | 				struct nvmet_fc_fcp_iod *fod, u8 op) | 
 | { | 
 | 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; | 
 | 	struct scatterlist *sg = fod->next_sg; | 
 | 	unsigned long flags; | 
 | 	u32 remaininglen = fod->req.transfer_len - fod->offset; | 
 | 	u32 tlen = 0; | 
 | 	int ret; | 
 |  | 
 | 	fcpreq->op = op; | 
 | 	fcpreq->offset = fod->offset; | 
 | 	fcpreq->timeout = NVME_FC_TGTOP_TIMEOUT_SEC; | 
 |  | 
 | 	/* | 
 | 	 * for next sequence: | 
 | 	 *  break at a sg element boundary | 
 | 	 *  attempt to keep sequence length capped at | 
 | 	 *    NVMET_FC_MAX_SEQ_LENGTH but allow sequence to | 
 | 	 *    be longer if a single sg element is larger | 
 | 	 *    than that amount. This is done to avoid creating | 
 | 	 *    a new sg list to use for the tgtport api. | 
 | 	 */ | 
 | 	fcpreq->sg = sg; | 
 | 	fcpreq->sg_cnt = 0; | 
 | 	while (tlen < remaininglen && | 
 | 	       fcpreq->sg_cnt < tgtport->max_sg_cnt && | 
 | 	       tlen + sg_dma_len(sg) < NVMET_FC_MAX_SEQ_LENGTH) { | 
 | 		fcpreq->sg_cnt++; | 
 | 		tlen += sg_dma_len(sg); | 
 | 		sg = sg_next(sg); | 
 | 	} | 
 | 	if (tlen < remaininglen && fcpreq->sg_cnt == 0) { | 
 | 		fcpreq->sg_cnt++; | 
 | 		tlen += min_t(u32, sg_dma_len(sg), remaininglen); | 
 | 		sg = sg_next(sg); | 
 | 	} | 
 | 	if (tlen < remaininglen) | 
 | 		fod->next_sg = sg; | 
 | 	else | 
 | 		fod->next_sg = NULL; | 
 |  | 
 | 	fcpreq->transfer_length = tlen; | 
 | 	fcpreq->transferred_length = 0; | 
 | 	fcpreq->fcp_error = 0; | 
 | 	fcpreq->rsplen = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the last READDATA request: check if LLDD supports | 
 | 	 * combined xfr with response. | 
 | 	 */ | 
 | 	if ((op == NVMET_FCOP_READDATA) && | 
 | 	    ((fod->offset + fcpreq->transfer_length) == fod->req.transfer_len) && | 
 | 	    (tgtport->ops->target_features & NVMET_FCTGTFEAT_READDATA_RSP)) { | 
 | 		fcpreq->op = NVMET_FCOP_READDATA_RSP; | 
 | 		nvmet_fc_prep_fcp_rsp(tgtport, fod); | 
 | 	} | 
 |  | 
 | 	ret = tgtport->ops->fcp_op(&tgtport->fc_target_port, fod->fcpreq); | 
 | 	if (ret) { | 
 | 		/* | 
 | 		 * should be ok to set w/o lock as its in the thread of | 
 | 		 * execution (not an async timer routine) and doesn't | 
 | 		 * contend with any clearing action | 
 | 		 */ | 
 | 		fod->abort = true; | 
 |  | 
 | 		if (op == NVMET_FCOP_WRITEDATA) { | 
 | 			spin_lock_irqsave(&fod->flock, flags); | 
 | 			fod->writedataactive = false; | 
 | 			spin_unlock_irqrestore(&fod->flock, flags); | 
 | 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); | 
 | 		} else /* NVMET_FCOP_READDATA or NVMET_FCOP_READDATA_RSP */ { | 
 | 			fcpreq->fcp_error = ret; | 
 | 			fcpreq->transferred_length = 0; | 
 | 			nvmet_fc_xmt_fcp_op_done(fod->fcpreq); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static inline bool | 
 | __nvmet_fc_fod_op_abort(struct nvmet_fc_fcp_iod *fod, bool abort) | 
 | { | 
 | 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; | 
 | 	struct nvmet_fc_tgtport *tgtport = fod->tgtport; | 
 |  | 
 | 	/* if in the middle of an io and we need to tear down */ | 
 | 	if (abort) { | 
 | 		if (fcpreq->op == NVMET_FCOP_WRITEDATA) { | 
 | 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); | 
 | 			return true; | 
 | 		} | 
 |  | 
 | 		nvmet_fc_abort_op(tgtport, fod); | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * actual done handler for FCP operations when completed by the lldd | 
 |  */ | 
 | static void | 
 | nvmet_fc_fod_op_done(struct nvmet_fc_fcp_iod *fod) | 
 | { | 
 | 	struct nvmefc_tgt_fcp_req *fcpreq = fod->fcpreq; | 
 | 	struct nvmet_fc_tgtport *tgtport = fod->tgtport; | 
 | 	unsigned long flags; | 
 | 	bool abort; | 
 |  | 
 | 	spin_lock_irqsave(&fod->flock, flags); | 
 | 	abort = fod->abort; | 
 | 	fod->writedataactive = false; | 
 | 	spin_unlock_irqrestore(&fod->flock, flags); | 
 |  | 
 | 	switch (fcpreq->op) { | 
 |  | 
 | 	case NVMET_FCOP_WRITEDATA: | 
 | 		if (__nvmet_fc_fod_op_abort(fod, abort)) | 
 | 			return; | 
 | 		if (fcpreq->fcp_error || | 
 | 		    fcpreq->transferred_length != fcpreq->transfer_length) { | 
 | 			spin_lock(&fod->flock); | 
 | 			fod->abort = true; | 
 | 			spin_unlock(&fod->flock); | 
 |  | 
 | 			nvmet_req_complete(&fod->req, NVME_SC_INTERNAL); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		fod->offset += fcpreq->transferred_length; | 
 | 		if (fod->offset != fod->req.transfer_len) { | 
 | 			spin_lock_irqsave(&fod->flock, flags); | 
 | 			fod->writedataactive = true; | 
 | 			spin_unlock_irqrestore(&fod->flock, flags); | 
 |  | 
 | 			/* transfer the next chunk */ | 
 | 			nvmet_fc_transfer_fcp_data(tgtport, fod, | 
 | 						NVMET_FCOP_WRITEDATA); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* data transfer complete, resume with nvmet layer */ | 
 | 		nvmet_req_execute(&fod->req); | 
 | 		break; | 
 |  | 
 | 	case NVMET_FCOP_READDATA: | 
 | 	case NVMET_FCOP_READDATA_RSP: | 
 | 		if (__nvmet_fc_fod_op_abort(fod, abort)) | 
 | 			return; | 
 | 		if (fcpreq->fcp_error || | 
 | 		    fcpreq->transferred_length != fcpreq->transfer_length) { | 
 | 			nvmet_fc_abort_op(tgtport, fod); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* success */ | 
 |  | 
 | 		if (fcpreq->op == NVMET_FCOP_READDATA_RSP) { | 
 | 			/* data no longer needed */ | 
 | 			nvmet_fc_free_tgt_pgs(fod); | 
 | 			nvmet_fc_free_fcp_iod(fod->queue, fod); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		fod->offset += fcpreq->transferred_length; | 
 | 		if (fod->offset != fod->req.transfer_len) { | 
 | 			/* transfer the next chunk */ | 
 | 			nvmet_fc_transfer_fcp_data(tgtport, fod, | 
 | 						NVMET_FCOP_READDATA); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* data transfer complete, send response */ | 
 |  | 
 | 		/* data no longer needed */ | 
 | 		nvmet_fc_free_tgt_pgs(fod); | 
 |  | 
 | 		nvmet_fc_xmt_fcp_rsp(tgtport, fod); | 
 |  | 
 | 		break; | 
 |  | 
 | 	case NVMET_FCOP_RSP: | 
 | 		if (__nvmet_fc_fod_op_abort(fod, abort)) | 
 | 			return; | 
 | 		nvmet_fc_free_fcp_iod(fod->queue, fod); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_fcp_rqst_op_done_work(struct work_struct *work) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = | 
 | 		container_of(work, struct nvmet_fc_fcp_iod, done_work); | 
 |  | 
 | 	nvmet_fc_fod_op_done(fod); | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_xmt_fcp_op_done(struct nvmefc_tgt_fcp_req *fcpreq) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; | 
 | 	struct nvmet_fc_tgt_queue *queue = fod->queue; | 
 |  | 
 | 	if (fod->tgtport->ops->target_features & NVMET_FCTGTFEAT_OPDONE_IN_ISR) | 
 | 		/* context switch so completion is not in ISR context */ | 
 | 		queue_work_on(queue->cpu, queue->work_q, &fod->done_work); | 
 | 	else | 
 | 		nvmet_fc_fod_op_done(fod); | 
 | } | 
 |  | 
 | /* | 
 |  * actual completion handler after execution by the nvmet layer | 
 |  */ | 
 | static void | 
 | __nvmet_fc_fcp_nvme_cmd_done(struct nvmet_fc_tgtport *tgtport, | 
 | 			struct nvmet_fc_fcp_iod *fod, int status) | 
 | { | 
 | 	struct nvme_common_command *sqe = &fod->cmdiubuf.sqe.common; | 
 | 	struct nvme_completion *cqe = &fod->rspiubuf.cqe; | 
 | 	unsigned long flags; | 
 | 	bool abort; | 
 |  | 
 | 	spin_lock_irqsave(&fod->flock, flags); | 
 | 	abort = fod->abort; | 
 | 	spin_unlock_irqrestore(&fod->flock, flags); | 
 |  | 
 | 	/* if we have a CQE, snoop the last sq_head value */ | 
 | 	if (!status) | 
 | 		fod->queue->sqhd = cqe->sq_head; | 
 |  | 
 | 	if (abort) { | 
 | 		nvmet_fc_abort_op(tgtport, fod); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* if an error handling the cmd post initial parsing */ | 
 | 	if (status) { | 
 | 		/* fudge up a failed CQE status for our transport error */ | 
 | 		memset(cqe, 0, sizeof(*cqe)); | 
 | 		cqe->sq_head = fod->queue->sqhd;	/* echo last cqe sqhd */ | 
 | 		cqe->sq_id = cpu_to_le16(fod->queue->qid); | 
 | 		cqe->command_id = sqe->command_id; | 
 | 		cqe->status = cpu_to_le16(status); | 
 | 	} else { | 
 |  | 
 | 		/* | 
 | 		 * try to push the data even if the SQE status is non-zero. | 
 | 		 * There may be a status where data still was intended to | 
 | 		 * be moved | 
 | 		 */ | 
 | 		if ((fod->io_dir == NVMET_FCP_READ) && (fod->data_sg_cnt)) { | 
 | 			/* push the data over before sending rsp */ | 
 | 			nvmet_fc_transfer_fcp_data(tgtport, fod, | 
 | 						NVMET_FCOP_READDATA); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* writes & no data - fall thru */ | 
 | 	} | 
 |  | 
 | 	/* data no longer needed */ | 
 | 	nvmet_fc_free_tgt_pgs(fod); | 
 |  | 
 | 	nvmet_fc_xmt_fcp_rsp(tgtport, fod); | 
 | } | 
 |  | 
 |  | 
 | static void | 
 | nvmet_fc_fcp_nvme_cmd_done(struct nvmet_req *nvme_req) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = nvmet_req_to_fod(nvme_req); | 
 | 	struct nvmet_fc_tgtport *tgtport = fod->tgtport; | 
 |  | 
 | 	__nvmet_fc_fcp_nvme_cmd_done(tgtport, fod, 0); | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Actual processing routine for received FC-NVME LS Requests from the LLD | 
 |  */ | 
 | static void | 
 | nvmet_fc_handle_fcp_rqst(struct nvmet_fc_tgtport *tgtport, | 
 | 			struct nvmet_fc_fcp_iod *fod) | 
 | { | 
 | 	struct nvme_fc_cmd_iu *cmdiu = &fod->cmdiubuf; | 
 | 	u32 xfrlen = be32_to_cpu(cmdiu->data_len); | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * Fused commands are currently not supported in the linux | 
 | 	 * implementation. | 
 | 	 * | 
 | 	 * As such, the implementation of the FC transport does not | 
 | 	 * look at the fused commands and order delivery to the upper | 
 | 	 * layer until we have both based on csn. | 
 | 	 */ | 
 |  | 
 | 	fod->fcpreq->done = nvmet_fc_xmt_fcp_op_done; | 
 |  | 
 | 	if (cmdiu->flags & FCNVME_CMD_FLAGS_WRITE) { | 
 | 		fod->io_dir = NVMET_FCP_WRITE; | 
 | 		if (!nvme_is_write(&cmdiu->sqe)) | 
 | 			goto transport_error; | 
 | 	} else if (cmdiu->flags & FCNVME_CMD_FLAGS_READ) { | 
 | 		fod->io_dir = NVMET_FCP_READ; | 
 | 		if (nvme_is_write(&cmdiu->sqe)) | 
 | 			goto transport_error; | 
 | 	} else { | 
 | 		fod->io_dir = NVMET_FCP_NODATA; | 
 | 		if (xfrlen) | 
 | 			goto transport_error; | 
 | 	} | 
 |  | 
 | 	fod->req.cmd = &fod->cmdiubuf.sqe; | 
 | 	fod->req.rsp = &fod->rspiubuf.cqe; | 
 | 	fod->req.port = fod->queue->port; | 
 |  | 
 | 	/* clear any response payload */ | 
 | 	memset(&fod->rspiubuf, 0, sizeof(fod->rspiubuf)); | 
 |  | 
 | 	fod->data_sg = NULL; | 
 | 	fod->data_sg_cnt = 0; | 
 |  | 
 | 	ret = nvmet_req_init(&fod->req, | 
 | 				&fod->queue->nvme_cq, | 
 | 				&fod->queue->nvme_sq, | 
 | 				&nvmet_fc_tgt_fcp_ops); | 
 | 	if (!ret) { | 
 | 		/* bad SQE content or invalid ctrl state */ | 
 | 		/* nvmet layer has already called op done to send rsp. */ | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	fod->req.transfer_len = xfrlen; | 
 |  | 
 | 	/* keep a running counter of tail position */ | 
 | 	atomic_inc(&fod->queue->sqtail); | 
 |  | 
 | 	if (fod->req.transfer_len) { | 
 | 		ret = nvmet_fc_alloc_tgt_pgs(fod); | 
 | 		if (ret) { | 
 | 			nvmet_req_complete(&fod->req, ret); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	fod->req.sg = fod->data_sg; | 
 | 	fod->req.sg_cnt = fod->data_sg_cnt; | 
 | 	fod->offset = 0; | 
 |  | 
 | 	if (fod->io_dir == NVMET_FCP_WRITE) { | 
 | 		/* pull the data over before invoking nvmet layer */ | 
 | 		nvmet_fc_transfer_fcp_data(tgtport, fod, NVMET_FCOP_WRITEDATA); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Reads or no data: | 
 | 	 * | 
 | 	 * can invoke the nvmet_layer now. If read data, cmd completion will | 
 | 	 * push the data | 
 | 	 */ | 
 | 	nvmet_req_execute(&fod->req); | 
 | 	return; | 
 |  | 
 | transport_error: | 
 | 	nvmet_fc_abort_op(tgtport, fod); | 
 | } | 
 |  | 
 | /* | 
 |  * Actual processing routine for received FC-NVME LS Requests from the LLD | 
 |  */ | 
 | static void | 
 | nvmet_fc_handle_fcp_rqst_work(struct work_struct *work) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = | 
 | 		container_of(work, struct nvmet_fc_fcp_iod, work); | 
 | 	struct nvmet_fc_tgtport *tgtport = fod->tgtport; | 
 |  | 
 | 	nvmet_fc_handle_fcp_rqst(tgtport, fod); | 
 | } | 
 |  | 
 | /** | 
 |  * nvmet_fc_rcv_fcp_req - transport entry point called by an LLDD | 
 |  *                       upon the reception of a NVME FCP CMD IU. | 
 |  * | 
 |  * Pass a FC-NVME FCP CMD IU received from the FC link to the nvmet-fc | 
 |  * layer for processing. | 
 |  * | 
 |  * The nvmet_fc layer allocates a local job structure (struct | 
 |  * nvmet_fc_fcp_iod) from the queue for the io and copies the | 
 |  * CMD IU buffer to the job structure. As such, on a successful | 
 |  * completion (returns 0), the LLDD may immediately free/reuse | 
 |  * the CMD IU buffer passed in the call. | 
 |  * | 
 |  * However, in some circumstances, due to the packetized nature of FC | 
 |  * and the api of the FC LLDD which may issue a hw command to send the | 
 |  * response, but the LLDD may not get the hw completion for that command | 
 |  * and upcall the nvmet_fc layer before a new command may be | 
 |  * asynchronously received - its possible for a command to be received | 
 |  * before the LLDD and nvmet_fc have recycled the job structure. It gives | 
 |  * the appearance of more commands received than fits in the sq. | 
 |  * To alleviate this scenario, a temporary queue is maintained in the | 
 |  * transport for pending LLDD requests waiting for a queue job structure. | 
 |  * In these "overrun" cases, a temporary queue element is allocated | 
 |  * the LLDD request and CMD iu buffer information remembered, and the | 
 |  * routine returns a -EOVERFLOW status. Subsequently, when a queue job | 
 |  * structure is freed, it is immediately reallocated for anything on the | 
 |  * pending request list. The LLDDs defer_rcv() callback is called, | 
 |  * informing the LLDD that it may reuse the CMD IU buffer, and the io | 
 |  * is then started normally with the transport. | 
 |  * | 
 |  * The LLDD, when receiving an -EOVERFLOW completion status, is to treat | 
 |  * the completion as successful but must not reuse the CMD IU buffer | 
 |  * until the LLDD's defer_rcv() callback has been called for the | 
 |  * corresponding struct nvmefc_tgt_fcp_req pointer. | 
 |  * | 
 |  * If there is any other condition in which an error occurs, the | 
 |  * transport will return a non-zero status indicating the error. | 
 |  * In all cases other than -EOVERFLOW, the transport has not accepted the | 
 |  * request and the LLDD should abort the exchange. | 
 |  * | 
 |  * @target_port: pointer to the (registered) target port the FCP CMD IU | 
 |  *              was received on. | 
 |  * @fcpreq:     pointer to a fcpreq request structure to be used to reference | 
 |  *              the exchange corresponding to the FCP Exchange. | 
 |  * @cmdiubuf:   pointer to the buffer containing the FCP CMD IU | 
 |  * @cmdiubuf_len: length, in bytes, of the received FCP CMD IU | 
 |  */ | 
 | int | 
 | nvmet_fc_rcv_fcp_req(struct nvmet_fc_target_port *target_port, | 
 | 			struct nvmefc_tgt_fcp_req *fcpreq, | 
 | 			void *cmdiubuf, u32 cmdiubuf_len) | 
 | { | 
 | 	struct nvmet_fc_tgtport *tgtport = targetport_to_tgtport(target_port); | 
 | 	struct nvme_fc_cmd_iu *cmdiu = cmdiubuf; | 
 | 	struct nvmet_fc_tgt_queue *queue; | 
 | 	struct nvmet_fc_fcp_iod *fod; | 
 | 	struct nvmet_fc_defer_fcp_req *deferfcp; | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* validate iu, so the connection id can be used to find the queue */ | 
 | 	if ((cmdiubuf_len != sizeof(*cmdiu)) || | 
 | 			(cmdiu->scsi_id != NVME_CMD_SCSI_ID) || | 
 | 			(cmdiu->fc_id != NVME_CMD_FC_ID) || | 
 | 			(be16_to_cpu(cmdiu->iu_len) != (sizeof(*cmdiu)/4))) | 
 | 		return -EIO; | 
 |  | 
 | 	queue = nvmet_fc_find_target_queue(tgtport, | 
 | 				be64_to_cpu(cmdiu->connection_id)); | 
 | 	if (!queue) | 
 | 		return -ENOTCONN; | 
 |  | 
 | 	/* | 
 | 	 * note: reference taken by find_target_queue | 
 | 	 * After successful fod allocation, the fod will inherit the | 
 | 	 * ownership of that reference and will remove the reference | 
 | 	 * when the fod is freed. | 
 | 	 */ | 
 |  | 
 | 	spin_lock_irqsave(&queue->qlock, flags); | 
 |  | 
 | 	fod = nvmet_fc_alloc_fcp_iod(queue); | 
 | 	if (fod) { | 
 | 		spin_unlock_irqrestore(&queue->qlock, flags); | 
 |  | 
 | 		fcpreq->nvmet_fc_private = fod; | 
 | 		fod->fcpreq = fcpreq; | 
 |  | 
 | 		memcpy(&fod->cmdiubuf, cmdiubuf, cmdiubuf_len); | 
 |  | 
 | 		nvmet_fc_queue_fcp_req(tgtport, queue, fcpreq); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!tgtport->ops->defer_rcv) { | 
 | 		spin_unlock_irqrestore(&queue->qlock, flags); | 
 | 		/* release the queue lookup reference */ | 
 | 		nvmet_fc_tgt_q_put(queue); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	deferfcp = list_first_entry_or_null(&queue->avail_defer_list, | 
 | 			struct nvmet_fc_defer_fcp_req, req_list); | 
 | 	if (deferfcp) { | 
 | 		/* Just re-use one that was previously allocated */ | 
 | 		list_del(&deferfcp->req_list); | 
 | 	} else { | 
 | 		spin_unlock_irqrestore(&queue->qlock, flags); | 
 |  | 
 | 		/* Now we need to dynamically allocate one */ | 
 | 		deferfcp = kmalloc(sizeof(*deferfcp), GFP_KERNEL); | 
 | 		if (!deferfcp) { | 
 | 			/* release the queue lookup reference */ | 
 | 			nvmet_fc_tgt_q_put(queue); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		spin_lock_irqsave(&queue->qlock, flags); | 
 | 	} | 
 |  | 
 | 	/* For now, use rspaddr / rsplen to save payload information */ | 
 | 	fcpreq->rspaddr = cmdiubuf; | 
 | 	fcpreq->rsplen  = cmdiubuf_len; | 
 | 	deferfcp->fcp_req = fcpreq; | 
 |  | 
 | 	/* defer processing till a fod becomes available */ | 
 | 	list_add_tail(&deferfcp->req_list, &queue->pending_cmd_list); | 
 |  | 
 | 	/* NOTE: the queue lookup reference is still valid */ | 
 |  | 
 | 	spin_unlock_irqrestore(&queue->qlock, flags); | 
 |  | 
 | 	return -EOVERFLOW; | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_req); | 
 |  | 
 | /** | 
 |  * nvmet_fc_rcv_fcp_abort - transport entry point called by an LLDD | 
 |  *                       upon the reception of an ABTS for a FCP command | 
 |  * | 
 |  * Notify the transport that an ABTS has been received for a FCP command | 
 |  * that had been given to the transport via nvmet_fc_rcv_fcp_req(). The | 
 |  * LLDD believes the command is still being worked on | 
 |  * (template_ops->fcp_req_release() has not been called). | 
 |  * | 
 |  * The transport will wait for any outstanding work (an op to the LLDD, | 
 |  * which the lldd should complete with error due to the ABTS; or the | 
 |  * completion from the nvmet layer of the nvme command), then will | 
 |  * stop processing and call the nvmet_fc_rcv_fcp_req() callback to | 
 |  * return the i/o context to the LLDD.  The LLDD may send the BA_ACC | 
 |  * to the ABTS either after return from this function (assuming any | 
 |  * outstanding op work has been terminated) or upon the callback being | 
 |  * called. | 
 |  * | 
 |  * @target_port: pointer to the (registered) target port the FCP CMD IU | 
 |  *              was received on. | 
 |  * @fcpreq:     pointer to the fcpreq request structure that corresponds | 
 |  *              to the exchange that received the ABTS. | 
 |  */ | 
 | void | 
 | nvmet_fc_rcv_fcp_abort(struct nvmet_fc_target_port *target_port, | 
 | 			struct nvmefc_tgt_fcp_req *fcpreq) | 
 | { | 
 | 	struct nvmet_fc_fcp_iod *fod = fcpreq->nvmet_fc_private; | 
 | 	struct nvmet_fc_tgt_queue *queue; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!fod || fod->fcpreq != fcpreq) | 
 | 		/* job appears to have already completed, ignore abort */ | 
 | 		return; | 
 |  | 
 | 	queue = fod->queue; | 
 |  | 
 | 	spin_lock_irqsave(&queue->qlock, flags); | 
 | 	if (fod->active) { | 
 | 		/* | 
 | 		 * mark as abort. The abort handler, invoked upon completion | 
 | 		 * of any work, will detect the aborted status and do the | 
 | 		 * callback. | 
 | 		 */ | 
 | 		spin_lock(&fod->flock); | 
 | 		fod->abort = true; | 
 | 		fod->aborted = true; | 
 | 		spin_unlock(&fod->flock); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&queue->qlock, flags); | 
 | } | 
 | EXPORT_SYMBOL_GPL(nvmet_fc_rcv_fcp_abort); | 
 |  | 
 |  | 
 | struct nvmet_fc_traddr { | 
 | 	u64	nn; | 
 | 	u64	pn; | 
 | }; | 
 |  | 
 | static int | 
 | __nvme_fc_parse_u64(substring_t *sstr, u64 *val) | 
 | { | 
 | 	u64 token64; | 
 |  | 
 | 	if (match_u64(sstr, &token64)) | 
 | 		return -EINVAL; | 
 | 	*val = token64; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This routine validates and extracts the WWN's from the TRADDR string. | 
 |  * As kernel parsers need the 0x to determine number base, universally | 
 |  * build string to parse with 0x prefix before parsing name strings. | 
 |  */ | 
 | static int | 
 | nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen) | 
 | { | 
 | 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1]; | 
 | 	substring_t wwn = { name, &name[sizeof(name)-1] }; | 
 | 	int nnoffset, pnoffset; | 
 |  | 
 | 	/* validate it string one of the 2 allowed formats */ | 
 | 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH && | 
 | 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) && | 
 | 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET], | 
 | 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) { | 
 | 		nnoffset = NVME_FC_TRADDR_OXNNLEN; | 
 | 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET + | 
 | 						NVME_FC_TRADDR_OXNNLEN; | 
 | 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH && | 
 | 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) && | 
 | 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET], | 
 | 				"pn-", NVME_FC_TRADDR_NNLEN))) { | 
 | 		nnoffset = NVME_FC_TRADDR_NNLEN; | 
 | 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN; | 
 | 	} else | 
 | 		goto out_einval; | 
 |  | 
 | 	name[0] = '0'; | 
 | 	name[1] = 'x'; | 
 | 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0; | 
 |  | 
 | 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN); | 
 | 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn)) | 
 | 		goto out_einval; | 
 |  | 
 | 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN); | 
 | 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn)) | 
 | 		goto out_einval; | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_einval: | 
 | 	pr_warn("%s: bad traddr string\n", __func__); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int | 
 | nvmet_fc_add_port(struct nvmet_port *port) | 
 | { | 
 | 	struct nvmet_fc_tgtport *tgtport; | 
 | 	struct nvmet_fc_traddr traddr = { 0L, 0L }; | 
 | 	unsigned long flags; | 
 | 	int ret; | 
 |  | 
 | 	/* validate the address info */ | 
 | 	if ((port->disc_addr.trtype != NVMF_TRTYPE_FC) || | 
 | 	    (port->disc_addr.adrfam != NVMF_ADDR_FAMILY_FC)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* map the traddr address info to a target port */ | 
 |  | 
 | 	ret = nvme_fc_parse_traddr(&traddr, port->disc_addr.traddr, | 
 | 			sizeof(port->disc_addr.traddr)); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = -ENXIO; | 
 | 	spin_lock_irqsave(&nvmet_fc_tgtlock, flags); | 
 | 	list_for_each_entry(tgtport, &nvmet_fc_target_list, tgt_list) { | 
 | 		if ((tgtport->fc_target_port.node_name == traddr.nn) && | 
 | 		    (tgtport->fc_target_port.port_name == traddr.pn)) { | 
 | 			tgtport->port = port; | 
 | 			ret = 0; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&nvmet_fc_tgtlock, flags); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void | 
 | nvmet_fc_remove_port(struct nvmet_port *port) | 
 | { | 
 | 	/* nothing to do */ | 
 | } | 
 |  | 
 | static const struct nvmet_fabrics_ops nvmet_fc_tgt_fcp_ops = { | 
 | 	.owner			= THIS_MODULE, | 
 | 	.type			= NVMF_TRTYPE_FC, | 
 | 	.msdbd			= 1, | 
 | 	.add_port		= nvmet_fc_add_port, | 
 | 	.remove_port		= nvmet_fc_remove_port, | 
 | 	.queue_response		= nvmet_fc_fcp_nvme_cmd_done, | 
 | 	.delete_ctrl		= nvmet_fc_delete_ctrl, | 
 | }; | 
 |  | 
 | static int __init nvmet_fc_init_module(void) | 
 | { | 
 | 	return nvmet_register_transport(&nvmet_fc_tgt_fcp_ops); | 
 | } | 
 |  | 
 | static void __exit nvmet_fc_exit_module(void) | 
 | { | 
 | 	/* sanity check - all lports should be removed */ | 
 | 	if (!list_empty(&nvmet_fc_target_list)) | 
 | 		pr_warn("%s: targetport list not empty\n", __func__); | 
 |  | 
 | 	nvmet_unregister_transport(&nvmet_fc_tgt_fcp_ops); | 
 |  | 
 | 	ida_destroy(&nvmet_fc_tgtport_cnt); | 
 | } | 
 |  | 
 | module_init(nvmet_fc_init_module); | 
 | module_exit(nvmet_fc_exit_module); | 
 |  | 
 | MODULE_LICENSE("GPL v2"); |