| /* | 
 |  *	Adaptec AAC series RAID controller driver | 
 |  *	(c) Copyright 2001 Red Hat Inc. | 
 |  * | 
 |  * based on the old aacraid driver that is.. | 
 |  * Adaptec aacraid device driver for Linux. | 
 |  * | 
 |  * Copyright (c) 2000-2010 Adaptec, Inc. | 
 |  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com) | 
 |  *		 2016-2017 Microsemi Corp. (aacraid@microsemi.com) | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2, or (at your option) | 
 |  * any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; see the file COPYING.  If not, write to | 
 |  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
 |  * | 
 |  * Module Name: | 
 |  *  dpcsup.c | 
 |  * | 
 |  * Abstract: All DPC processing routines for the cyclone board occur here. | 
 |  * | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/types.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/semaphore.h> | 
 |  | 
 | #include "aacraid.h" | 
 |  | 
 | /** | 
 |  *	aac_response_normal	-	Handle command replies | 
 |  *	@q: Queue to read from | 
 |  * | 
 |  *	This DPC routine will be run when the adapter interrupts us to let us | 
 |  *	know there is a response on our normal priority queue. We will pull off | 
 |  *	all QE there are and wake up all the waiters before exiting. We will | 
 |  *	take a spinlock out on the queue before operating on it. | 
 |  */ | 
 |  | 
 | unsigned int aac_response_normal(struct aac_queue * q) | 
 | { | 
 | 	struct aac_dev * dev = q->dev; | 
 | 	struct aac_entry *entry; | 
 | 	struct hw_fib * hwfib; | 
 | 	struct fib * fib; | 
 | 	int consumed = 0; | 
 | 	unsigned long flags, mflags; | 
 |  | 
 | 	spin_lock_irqsave(q->lock, flags); | 
 | 	/* | 
 | 	 *	Keep pulling response QEs off the response queue and waking | 
 | 	 *	up the waiters until there are no more QEs. We then return | 
 | 	 *	back to the system. If no response was requested we just | 
 | 	 *	deallocate the Fib here and continue. | 
 | 	 */ | 
 | 	while(aac_consumer_get(dev, q, &entry)) | 
 | 	{ | 
 | 		int fast; | 
 | 		u32 index = le32_to_cpu(entry->addr); | 
 | 		fast = index & 0x01; | 
 | 		fib = &dev->fibs[index >> 2]; | 
 | 		hwfib = fib->hw_fib_va; | 
 | 		 | 
 | 		aac_consumer_free(dev, q, HostNormRespQueue); | 
 | 		/* | 
 | 		 *	Remove this fib from the Outstanding I/O queue. | 
 | 		 *	But only if it has not already been timed out. | 
 | 		 * | 
 | 		 *	If the fib has been timed out already, then just  | 
 | 		 *	continue. The caller has already been notified that | 
 | 		 *	the fib timed out. | 
 | 		 */ | 
 | 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending); | 
 |  | 
 | 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { | 
 | 			spin_unlock_irqrestore(q->lock, flags); | 
 | 			aac_fib_complete(fib); | 
 | 			aac_fib_free(fib); | 
 | 			spin_lock_irqsave(q->lock, flags); | 
 | 			continue; | 
 | 		} | 
 | 		spin_unlock_irqrestore(q->lock, flags); | 
 |  | 
 | 		if (fast) { | 
 | 			/* | 
 | 			 *	Doctor the fib | 
 | 			 */ | 
 | 			*(__le32 *)hwfib->data = cpu_to_le32(ST_OK); | 
 | 			hwfib->header.XferState |= cpu_to_le32(AdapterProcessed); | 
 | 			fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; | 
 | 		} | 
 |  | 
 | 		FIB_COUNTER_INCREMENT(aac_config.FibRecved); | 
 |  | 
 | 		if (hwfib->header.Command == cpu_to_le16(NuFileSystem)) | 
 | 		{ | 
 | 			__le32 *pstatus = (__le32 *)hwfib->data; | 
 | 			if (*pstatus & cpu_to_le32(0xffff0000)) | 
 | 				*pstatus = cpu_to_le32(ST_OK); | 
 | 		} | 
 | 		if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected | Async))  | 
 | 		{ | 
 | 	        	if (hwfib->header.XferState & cpu_to_le32(NoResponseExpected)) | 
 | 				FIB_COUNTER_INCREMENT(aac_config.NoResponseRecved); | 
 | 			else  | 
 | 				FIB_COUNTER_INCREMENT(aac_config.AsyncRecved); | 
 | 			/* | 
 | 			 *	NOTE:  we cannot touch the fib after this | 
 | 			 *	    call, because it may have been deallocated. | 
 | 			 */ | 
 | 			fib->callback(fib->callback_data, fib); | 
 | 		} else { | 
 | 			unsigned long flagv; | 
 | 			spin_lock_irqsave(&fib->event_lock, flagv); | 
 | 			if (!fib->done) { | 
 | 				fib->done = 1; | 
 | 				up(&fib->event_wait); | 
 | 			} | 
 | 			spin_unlock_irqrestore(&fib->event_lock, flagv); | 
 |  | 
 | 			spin_lock_irqsave(&dev->manage_lock, mflags); | 
 | 			dev->management_fib_count--; | 
 | 			spin_unlock_irqrestore(&dev->manage_lock, mflags); | 
 |  | 
 | 			FIB_COUNTER_INCREMENT(aac_config.NormalRecved); | 
 | 			if (fib->done == 2) { | 
 | 				spin_lock_irqsave(&fib->event_lock, flagv); | 
 | 				fib->done = 0; | 
 | 				spin_unlock_irqrestore(&fib->event_lock, flagv); | 
 | 				aac_fib_complete(fib); | 
 | 				aac_fib_free(fib); | 
 | 			} | 
 | 		} | 
 | 		consumed++; | 
 | 		spin_lock_irqsave(q->lock, flags); | 
 | 	} | 
 |  | 
 | 	if (consumed > aac_config.peak_fibs) | 
 | 		aac_config.peak_fibs = consumed; | 
 | 	if (consumed == 0)  | 
 | 		aac_config.zero_fibs++; | 
 |  | 
 | 	spin_unlock_irqrestore(q->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  *	aac_command_normal	-	handle commands | 
 |  *	@q: queue to process | 
 |  * | 
 |  *	This DPC routine will be queued when the adapter interrupts us to  | 
 |  *	let us know there is a command on our normal priority queue. We will  | 
 |  *	pull off all QE there are and wake up all the waiters before exiting. | 
 |  *	We will take a spinlock out on the queue before operating on it. | 
 |  */ | 
 |   | 
 | unsigned int aac_command_normal(struct aac_queue *q) | 
 | { | 
 | 	struct aac_dev * dev = q->dev; | 
 | 	struct aac_entry *entry; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(q->lock, flags); | 
 |  | 
 | 	/* | 
 | 	 *	Keep pulling response QEs off the response queue and waking | 
 | 	 *	up the waiters until there are no more QEs. We then return | 
 | 	 *	back to the system. | 
 | 	 */ | 
 | 	while(aac_consumer_get(dev, q, &entry)) | 
 | 	{ | 
 | 		struct fib fibctx; | 
 | 		struct hw_fib * hw_fib; | 
 | 		u32 index; | 
 | 		struct fib *fib = &fibctx; | 
 | 		 | 
 | 		index = le32_to_cpu(entry->addr) / sizeof(struct hw_fib); | 
 | 		hw_fib = &dev->aif_base_va[index]; | 
 | 		 | 
 | 		/* | 
 | 		 *	Allocate a FIB at all costs. For non queued stuff | 
 | 		 *	we can just use the stack so we are happy. We need | 
 | 		 *	a fib object in order to manage the linked lists | 
 | 		 */ | 
 | 		if (dev->aif_thread) | 
 | 			if((fib = kmalloc(sizeof(struct fib), GFP_ATOMIC)) == NULL) | 
 | 				fib = &fibctx; | 
 | 		 | 
 | 		memset(fib, 0, sizeof(struct fib)); | 
 | 		INIT_LIST_HEAD(&fib->fiblink); | 
 | 		fib->type = FSAFS_NTC_FIB_CONTEXT; | 
 | 		fib->size = sizeof(struct fib); | 
 | 		fib->hw_fib_va = hw_fib; | 
 | 		fib->data = hw_fib->data; | 
 | 		fib->dev = dev; | 
 | 		 | 
 | 				 | 
 | 		if (dev->aif_thread && fib != &fibctx) { | 
 | 		        list_add_tail(&fib->fiblink, &q->cmdq); | 
 | 	 	        aac_consumer_free(dev, q, HostNormCmdQueue); | 
 | 		        wake_up_interruptible(&q->cmdready); | 
 | 		} else { | 
 | 	 	        aac_consumer_free(dev, q, HostNormCmdQueue); | 
 | 			spin_unlock_irqrestore(q->lock, flags); | 
 | 			/* | 
 | 			 *	Set the status of this FIB | 
 | 			 */ | 
 | 			*(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); | 
 | 			aac_fib_adapter_complete(fib, sizeof(u32)); | 
 | 			spin_lock_irqsave(q->lock, flags); | 
 | 		}		 | 
 | 	} | 
 | 	spin_unlock_irqrestore(q->lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * | 
 |  * aac_aif_callback | 
 |  * @context: the context set in the fib - here it is scsi cmd | 
 |  * @fibptr: pointer to the fib | 
 |  * | 
 |  * Handles the AIFs - new method (SRC) | 
 |  * | 
 |  */ | 
 |  | 
 | static void aac_aif_callback(void *context, struct fib * fibptr) | 
 | { | 
 | 	struct fib *fibctx; | 
 | 	struct aac_dev *dev; | 
 | 	struct aac_aifcmd *cmd; | 
 | 	int status; | 
 |  | 
 | 	fibctx = (struct fib *)context; | 
 | 	BUG_ON(fibptr == NULL); | 
 | 	dev = fibptr->dev; | 
 |  | 
 | 	if ((fibptr->hw_fib_va->header.XferState & | 
 | 	    cpu_to_le32(NoMoreAifDataAvailable)) || | 
 | 		dev->sa_firmware) { | 
 | 		aac_fib_complete(fibptr); | 
 | 		aac_fib_free(fibptr); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	aac_intr_normal(dev, 0, 1, 0, fibptr->hw_fib_va); | 
 |  | 
 | 	aac_fib_init(fibctx); | 
 | 	cmd = (struct aac_aifcmd *) fib_data(fibctx); | 
 | 	cmd->command = cpu_to_le32(AifReqEvent); | 
 |  | 
 | 	status = aac_fib_send(AifRequest, | 
 | 		fibctx, | 
 | 		sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), | 
 | 		FsaNormal, | 
 | 		0, 1, | 
 | 		(fib_callback)aac_aif_callback, fibctx); | 
 | } | 
 |  | 
 |  | 
 | /** | 
 |  *	aac_intr_normal	-	Handle command replies | 
 |  *	@dev: Device | 
 |  *	@index: completion reference | 
 |  * | 
 |  *	This DPC routine will be run when the adapter interrupts us to let us | 
 |  *	know there is a response on our normal priority queue. We will pull off | 
 |  *	all QE there are and wake up all the waiters before exiting. | 
 |  */ | 
 | unsigned int aac_intr_normal(struct aac_dev *dev, u32 index, int isAif, | 
 | 	int isFastResponse, struct hw_fib *aif_fib) | 
 | { | 
 | 	unsigned long mflags; | 
 | 	dprintk((KERN_INFO "aac_intr_normal(%p,%x)\n", dev, index)); | 
 | 	if (isAif == 1) {	/* AIF - common */ | 
 | 		struct hw_fib * hw_fib; | 
 | 		struct fib * fib; | 
 | 		struct aac_queue *q = &dev->queues->queue[HostNormCmdQueue]; | 
 | 		unsigned long flags; | 
 |  | 
 | 		/* | 
 | 		 *	Allocate a FIB. For non queued stuff we can just use | 
 | 		 * the stack so we are happy. We need a fib object in order to | 
 | 		 * manage the linked lists. | 
 | 		 */ | 
 | 		if ((!dev->aif_thread) | 
 | 		 || (!(fib = kzalloc(sizeof(struct fib),GFP_ATOMIC)))) | 
 | 			return 1; | 
 | 		if (!(hw_fib = kzalloc(sizeof(struct hw_fib),GFP_ATOMIC))) { | 
 | 			kfree (fib); | 
 | 			return 1; | 
 | 		} | 
 | 		if (dev->sa_firmware) { | 
 | 			fib->hbacmd_size = index;	/* store event type */ | 
 | 		} else if (aif_fib != NULL) { | 
 | 			memcpy(hw_fib, aif_fib, sizeof(struct hw_fib)); | 
 | 		} else { | 
 | 			memcpy(hw_fib, (struct hw_fib *) | 
 | 				(((uintptr_t)(dev->regs.sa)) + index), | 
 | 				sizeof(struct hw_fib)); | 
 | 		} | 
 | 		INIT_LIST_HEAD(&fib->fiblink); | 
 | 		fib->type = FSAFS_NTC_FIB_CONTEXT; | 
 | 		fib->size = sizeof(struct fib); | 
 | 		fib->hw_fib_va = hw_fib; | 
 | 		fib->data = hw_fib->data; | 
 | 		fib->dev = dev; | 
 | 	 | 
 | 		spin_lock_irqsave(q->lock, flags); | 
 | 		list_add_tail(&fib->fiblink, &q->cmdq); | 
 | 	        wake_up_interruptible(&q->cmdready); | 
 | 		spin_unlock_irqrestore(q->lock, flags); | 
 | 		return 1; | 
 | 	} else if (isAif == 2) {	/* AIF - new (SRC) */ | 
 | 		struct fib *fibctx; | 
 | 		struct aac_aifcmd *cmd; | 
 |  | 
 | 		fibctx = aac_fib_alloc(dev); | 
 | 		if (!fibctx) | 
 | 			return 1; | 
 | 		aac_fib_init(fibctx); | 
 |  | 
 | 		cmd = (struct aac_aifcmd *) fib_data(fibctx); | 
 | 		cmd->command = cpu_to_le32(AifReqEvent); | 
 |  | 
 | 		return aac_fib_send(AifRequest, | 
 | 			fibctx, | 
 | 			sizeof(struct hw_fib)-sizeof(struct aac_fibhdr), | 
 | 			FsaNormal, | 
 | 			0, 1, | 
 | 			(fib_callback)aac_aif_callback, fibctx); | 
 | 	} else { | 
 | 		struct fib *fib = &dev->fibs[index]; | 
 | 		int start_callback = 0; | 
 |  | 
 | 		/* | 
 | 		 *	Remove this fib from the Outstanding I/O queue. | 
 | 		 *	But only if it has not already been timed out. | 
 | 		 * | 
 | 		 *	If the fib has been timed out already, then just  | 
 | 		 *	continue. The caller has already been notified that | 
 | 		 *	the fib timed out. | 
 | 		 */ | 
 | 		atomic_dec(&dev->queues->queue[AdapNormCmdQueue].numpending); | 
 |  | 
 | 		if (unlikely(fib->flags & FIB_CONTEXT_FLAG_TIMED_OUT)) { | 
 | 			aac_fib_complete(fib); | 
 | 			aac_fib_free(fib); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		FIB_COUNTER_INCREMENT(aac_config.FibRecved); | 
 |  | 
 | 		if (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) { | 
 |  | 
 | 			if (isFastResponse) | 
 | 				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; | 
 |  | 
 | 			if (fib->callback) { | 
 | 				start_callback = 1; | 
 | 			} else { | 
 | 				unsigned long flagv; | 
 | 				int complete = 0; | 
 |  | 
 | 				dprintk((KERN_INFO "event_wait up\n")); | 
 | 				spin_lock_irqsave(&fib->event_lock, flagv); | 
 | 				if (fib->done == 2) { | 
 | 					fib->done = 1; | 
 | 					complete = 1; | 
 | 				} else { | 
 | 					fib->done = 1; | 
 | 					up(&fib->event_wait); | 
 | 				} | 
 | 				spin_unlock_irqrestore(&fib->event_lock, flagv); | 
 |  | 
 | 				spin_lock_irqsave(&dev->manage_lock, mflags); | 
 | 				dev->management_fib_count--; | 
 | 				spin_unlock_irqrestore(&dev->manage_lock, | 
 | 					mflags); | 
 |  | 
 | 				FIB_COUNTER_INCREMENT(aac_config.NativeRecved); | 
 | 				if (complete) | 
 | 					aac_fib_complete(fib); | 
 | 			} | 
 | 		} else { | 
 | 			struct hw_fib *hwfib = fib->hw_fib_va; | 
 |  | 
 | 			if (isFastResponse) { | 
 | 				/* Doctor the fib */ | 
 | 				*(__le32 *)hwfib->data = cpu_to_le32(ST_OK); | 
 | 				hwfib->header.XferState |= | 
 | 					cpu_to_le32(AdapterProcessed); | 
 | 				fib->flags |= FIB_CONTEXT_FLAG_FASTRESP; | 
 | 			} | 
 |  | 
 | 			if (hwfib->header.Command == | 
 | 				cpu_to_le16(NuFileSystem)) { | 
 | 				__le32 *pstatus = (__le32 *)hwfib->data; | 
 |  | 
 | 				if (*pstatus & cpu_to_le32(0xffff0000)) | 
 | 					*pstatus = cpu_to_le32(ST_OK); | 
 | 			} | 
 | 			if (hwfib->header.XferState & | 
 | 				cpu_to_le32(NoResponseExpected | Async)) { | 
 | 				if (hwfib->header.XferState & cpu_to_le32( | 
 | 					NoResponseExpected)) | 
 | 					FIB_COUNTER_INCREMENT( | 
 | 						aac_config.NoResponseRecved); | 
 | 				else | 
 | 					FIB_COUNTER_INCREMENT( | 
 | 						aac_config.AsyncRecved); | 
 | 				start_callback = 1; | 
 | 			} else { | 
 | 				unsigned long flagv; | 
 | 				int complete = 0; | 
 |  | 
 | 				dprintk((KERN_INFO "event_wait up\n")); | 
 | 				spin_lock_irqsave(&fib->event_lock, flagv); | 
 | 				if (fib->done == 2) { | 
 | 					fib->done = 1; | 
 | 					complete = 1; | 
 | 				} else { | 
 | 					fib->done = 1; | 
 | 					up(&fib->event_wait); | 
 | 				} | 
 | 				spin_unlock_irqrestore(&fib->event_lock, flagv); | 
 |  | 
 | 				spin_lock_irqsave(&dev->manage_lock, mflags); | 
 | 				dev->management_fib_count--; | 
 | 				spin_unlock_irqrestore(&dev->manage_lock, | 
 | 					mflags); | 
 |  | 
 | 				FIB_COUNTER_INCREMENT(aac_config.NormalRecved); | 
 | 				if (complete) | 
 | 					aac_fib_complete(fib); | 
 | 			} | 
 | 		} | 
 |  | 
 |  | 
 | 		if (start_callback) { | 
 | 			/* | 
 | 			 * NOTE:  we cannot touch the fib after this | 
 | 			 *  call, because it may have been deallocated. | 
 | 			 */ | 
 | 			if (likely(fib->callback && fib->callback_data)) { | 
 | 				fib->callback(fib->callback_data, fib); | 
 | 			} else { | 
 | 				aac_fib_complete(fib); | 
 | 				aac_fib_free(fib); | 
 | 			} | 
 |  | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 | } |