| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * fs/f2fs/node.c | 
 |  * | 
 |  * Copyright (c) 2012 Samsung Electronics Co., Ltd. | 
 |  *             http://www.samsung.com/ | 
 |  */ | 
 | #include <linux/fs.h> | 
 | #include <linux/f2fs_fs.h> | 
 | #include <linux/mpage.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/pagevec.h> | 
 | #include <linux/swap.h> | 
 |  | 
 | #include "f2fs.h" | 
 | #include "node.h" | 
 | #include "segment.h" | 
 | #include "xattr.h" | 
 | #include "trace.h" | 
 | #include <trace/events/f2fs.h> | 
 |  | 
 | #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock) | 
 |  | 
 | static struct kmem_cache *nat_entry_slab; | 
 | static struct kmem_cache *free_nid_slab; | 
 | static struct kmem_cache *nat_entry_set_slab; | 
 | static struct kmem_cache *fsync_node_entry_slab; | 
 |  | 
 | /* | 
 |  * Check whether the given nid is within node id range. | 
 |  */ | 
 | int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) { | 
 | 		set_sbi_flag(sbi, SBI_NEED_FSCK); | 
 | 		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.", | 
 | 			  __func__, nid); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct sysinfo val; | 
 | 	unsigned long avail_ram; | 
 | 	unsigned long mem_size = 0; | 
 | 	bool res = false; | 
 |  | 
 | 	si_meminfo(&val); | 
 |  | 
 | 	/* only uses low memory */ | 
 | 	avail_ram = val.totalram - val.totalhigh; | 
 |  | 
 | 	/* | 
 | 	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively | 
 | 	 */ | 
 | 	if (type == FREE_NIDS) { | 
 | 		mem_size = (nm_i->nid_cnt[FREE_NID] * | 
 | 				sizeof(struct free_nid)) >> PAGE_SHIFT; | 
 | 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); | 
 | 	} else if (type == NAT_ENTRIES) { | 
 | 		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >> | 
 | 							PAGE_SHIFT; | 
 | 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2); | 
 | 		if (excess_cached_nats(sbi)) | 
 | 			res = false; | 
 | 	} else if (type == DIRTY_DENTS) { | 
 | 		if (sbi->sb->s_bdi->wb.dirty_exceeded) | 
 | 			return false; | 
 | 		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS); | 
 | 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); | 
 | 	} else if (type == INO_ENTRIES) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < MAX_INO_ENTRY; i++) | 
 | 			mem_size += sbi->im[i].ino_num * | 
 | 						sizeof(struct ino_entry); | 
 | 		mem_size >>= PAGE_SHIFT; | 
 | 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); | 
 | 	} else if (type == EXTENT_CACHE) { | 
 | 		mem_size = (atomic_read(&sbi->total_ext_tree) * | 
 | 				sizeof(struct extent_tree) + | 
 | 				atomic_read(&sbi->total_ext_node) * | 
 | 				sizeof(struct extent_node)) >> PAGE_SHIFT; | 
 | 		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1); | 
 | 	} else if (type == INMEM_PAGES) { | 
 | 		/* it allows 20% / total_ram for inmemory pages */ | 
 | 		mem_size = get_pages(sbi, F2FS_INMEM_PAGES); | 
 | 		res = mem_size < (val.totalram / 5); | 
 | 	} else { | 
 | 		if (!sbi->sb->s_bdi->wb.dirty_exceeded) | 
 | 			return true; | 
 | 	} | 
 | 	return res; | 
 | } | 
 |  | 
 | static void clear_node_page_dirty(struct page *page) | 
 | { | 
 | 	if (PageDirty(page)) { | 
 | 		f2fs_clear_radix_tree_dirty_tag(page); | 
 | 		clear_page_dirty_for_io(page); | 
 | 		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); | 
 | 	} | 
 | 	ClearPageUptodate(page); | 
 | } | 
 |  | 
 | static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	return f2fs_get_meta_page_nofail(sbi, current_nat_addr(sbi, nid)); | 
 | } | 
 |  | 
 | static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	struct page *src_page; | 
 | 	struct page *dst_page; | 
 | 	pgoff_t dst_off; | 
 | 	void *src_addr; | 
 | 	void *dst_addr; | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 |  | 
 | 	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid)); | 
 |  | 
 | 	/* get current nat block page with lock */ | 
 | 	src_page = get_current_nat_page(sbi, nid); | 
 | 	if (IS_ERR(src_page)) | 
 | 		return src_page; | 
 | 	dst_page = f2fs_grab_meta_page(sbi, dst_off); | 
 | 	f2fs_bug_on(sbi, PageDirty(src_page)); | 
 |  | 
 | 	src_addr = page_address(src_page); | 
 | 	dst_addr = page_address(dst_page); | 
 | 	memcpy(dst_addr, src_addr, PAGE_SIZE); | 
 | 	set_page_dirty(dst_page); | 
 | 	f2fs_put_page(src_page, 1); | 
 |  | 
 | 	set_to_next_nat(nm_i, nid); | 
 |  | 
 | 	return dst_page; | 
 | } | 
 |  | 
 | static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail) | 
 | { | 
 | 	struct nat_entry *new; | 
 |  | 
 | 	if (no_fail) | 
 | 		new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); | 
 | 	else | 
 | 		new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO); | 
 | 	if (new) { | 
 | 		nat_set_nid(new, nid); | 
 | 		nat_reset_flag(new); | 
 | 	} | 
 | 	return new; | 
 | } | 
 |  | 
 | static void __free_nat_entry(struct nat_entry *e) | 
 | { | 
 | 	kmem_cache_free(nat_entry_slab, e); | 
 | } | 
 |  | 
 | /* must be locked by nat_tree_lock */ | 
 | static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i, | 
 | 	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail) | 
 | { | 
 | 	if (no_fail) | 
 | 		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne); | 
 | 	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne)) | 
 | 		return NULL; | 
 |  | 
 | 	if (raw_ne) | 
 | 		node_info_from_raw_nat(&ne->ni, raw_ne); | 
 |  | 
 | 	spin_lock(&nm_i->nat_list_lock); | 
 | 	list_add_tail(&ne->list, &nm_i->nat_entries); | 
 | 	spin_unlock(&nm_i->nat_list_lock); | 
 |  | 
 | 	nm_i->nat_cnt++; | 
 | 	return ne; | 
 | } | 
 |  | 
 | static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n) | 
 | { | 
 | 	struct nat_entry *ne; | 
 |  | 
 | 	ne = radix_tree_lookup(&nm_i->nat_root, n); | 
 |  | 
 | 	/* for recent accessed nat entry, move it to tail of lru list */ | 
 | 	if (ne && !get_nat_flag(ne, IS_DIRTY)) { | 
 | 		spin_lock(&nm_i->nat_list_lock); | 
 | 		if (!list_empty(&ne->list)) | 
 | 			list_move_tail(&ne->list, &nm_i->nat_entries); | 
 | 		spin_unlock(&nm_i->nat_list_lock); | 
 | 	} | 
 |  | 
 | 	return ne; | 
 | } | 
 |  | 
 | static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i, | 
 | 		nid_t start, unsigned int nr, struct nat_entry **ep) | 
 | { | 
 | 	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr); | 
 | } | 
 |  | 
 | static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e) | 
 | { | 
 | 	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e)); | 
 | 	nm_i->nat_cnt--; | 
 | 	__free_nat_entry(e); | 
 | } | 
 |  | 
 | static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i, | 
 | 							struct nat_entry *ne) | 
 | { | 
 | 	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid); | 
 | 	struct nat_entry_set *head; | 
 |  | 
 | 	head = radix_tree_lookup(&nm_i->nat_set_root, set); | 
 | 	if (!head) { | 
 | 		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS); | 
 |  | 
 | 		INIT_LIST_HEAD(&head->entry_list); | 
 | 		INIT_LIST_HEAD(&head->set_list); | 
 | 		head->set = set; | 
 | 		head->entry_cnt = 0; | 
 | 		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head); | 
 | 	} | 
 | 	return head; | 
 | } | 
 |  | 
 | static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i, | 
 | 						struct nat_entry *ne) | 
 | { | 
 | 	struct nat_entry_set *head; | 
 | 	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR; | 
 |  | 
 | 	if (!new_ne) | 
 | 		head = __grab_nat_entry_set(nm_i, ne); | 
 |  | 
 | 	/* | 
 | 	 * update entry_cnt in below condition: | 
 | 	 * 1. update NEW_ADDR to valid block address; | 
 | 	 * 2. update old block address to new one; | 
 | 	 */ | 
 | 	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) || | 
 | 				!get_nat_flag(ne, IS_DIRTY))) | 
 | 		head->entry_cnt++; | 
 |  | 
 | 	set_nat_flag(ne, IS_PREALLOC, new_ne); | 
 |  | 
 | 	if (get_nat_flag(ne, IS_DIRTY)) | 
 | 		goto refresh_list; | 
 |  | 
 | 	nm_i->dirty_nat_cnt++; | 
 | 	set_nat_flag(ne, IS_DIRTY, true); | 
 | refresh_list: | 
 | 	spin_lock(&nm_i->nat_list_lock); | 
 | 	if (new_ne) | 
 | 		list_del_init(&ne->list); | 
 | 	else | 
 | 		list_move_tail(&ne->list, &head->entry_list); | 
 | 	spin_unlock(&nm_i->nat_list_lock); | 
 | } | 
 |  | 
 | static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i, | 
 | 		struct nat_entry_set *set, struct nat_entry *ne) | 
 | { | 
 | 	spin_lock(&nm_i->nat_list_lock); | 
 | 	list_move_tail(&ne->list, &nm_i->nat_entries); | 
 | 	spin_unlock(&nm_i->nat_list_lock); | 
 |  | 
 | 	set_nat_flag(ne, IS_DIRTY, false); | 
 | 	set->entry_cnt--; | 
 | 	nm_i->dirty_nat_cnt--; | 
 | } | 
 |  | 
 | static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i, | 
 | 		nid_t start, unsigned int nr, struct nat_entry_set **ep) | 
 | { | 
 | 	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep, | 
 | 							start, nr); | 
 | } | 
 |  | 
 | bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page) | 
 | { | 
 | 	return NODE_MAPPING(sbi) == page->mapping && | 
 | 			IS_DNODE(page) && is_cold_node(page); | 
 | } | 
 |  | 
 | void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	spin_lock_init(&sbi->fsync_node_lock); | 
 | 	INIT_LIST_HEAD(&sbi->fsync_node_list); | 
 | 	sbi->fsync_seg_id = 0; | 
 | 	sbi->fsync_node_num = 0; | 
 | } | 
 |  | 
 | static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi, | 
 | 							struct page *page) | 
 | { | 
 | 	struct fsync_node_entry *fn; | 
 | 	unsigned long flags; | 
 | 	unsigned int seq_id; | 
 |  | 
 | 	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab, GFP_NOFS); | 
 |  | 
 | 	get_page(page); | 
 | 	fn->page = page; | 
 | 	INIT_LIST_HEAD(&fn->list); | 
 |  | 
 | 	spin_lock_irqsave(&sbi->fsync_node_lock, flags); | 
 | 	list_add_tail(&fn->list, &sbi->fsync_node_list); | 
 | 	fn->seq_id = sbi->fsync_seg_id++; | 
 | 	seq_id = fn->seq_id; | 
 | 	sbi->fsync_node_num++; | 
 | 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); | 
 |  | 
 | 	return seq_id; | 
 | } | 
 |  | 
 | void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page) | 
 | { | 
 | 	struct fsync_node_entry *fn; | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&sbi->fsync_node_lock, flags); | 
 | 	list_for_each_entry(fn, &sbi->fsync_node_list, list) { | 
 | 		if (fn->page == page) { | 
 | 			list_del(&fn->list); | 
 | 			sbi->fsync_node_num--; | 
 | 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); | 
 | 			kmem_cache_free(fsync_node_entry_slab, fn); | 
 | 			put_page(page); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); | 
 | 	f2fs_bug_on(sbi, 1); | 
 | } | 
 |  | 
 | void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&sbi->fsync_node_lock, flags); | 
 | 	sbi->fsync_seg_id = 0; | 
 | 	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); | 
 | } | 
 |  | 
 | int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct nat_entry *e; | 
 | 	bool need = false; | 
 |  | 
 | 	down_read(&nm_i->nat_tree_lock); | 
 | 	e = __lookup_nat_cache(nm_i, nid); | 
 | 	if (e) { | 
 | 		if (!get_nat_flag(e, IS_CHECKPOINTED) && | 
 | 				!get_nat_flag(e, HAS_FSYNCED_INODE)) | 
 | 			need = true; | 
 | 	} | 
 | 	up_read(&nm_i->nat_tree_lock); | 
 | 	return need; | 
 | } | 
 |  | 
 | bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct nat_entry *e; | 
 | 	bool is_cp = true; | 
 |  | 
 | 	down_read(&nm_i->nat_tree_lock); | 
 | 	e = __lookup_nat_cache(nm_i, nid); | 
 | 	if (e && !get_nat_flag(e, IS_CHECKPOINTED)) | 
 | 		is_cp = false; | 
 | 	up_read(&nm_i->nat_tree_lock); | 
 | 	return is_cp; | 
 | } | 
 |  | 
 | bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct nat_entry *e; | 
 | 	bool need_update = true; | 
 |  | 
 | 	down_read(&nm_i->nat_tree_lock); | 
 | 	e = __lookup_nat_cache(nm_i, ino); | 
 | 	if (e && get_nat_flag(e, HAS_LAST_FSYNC) && | 
 | 			(get_nat_flag(e, IS_CHECKPOINTED) || | 
 | 			 get_nat_flag(e, HAS_FSYNCED_INODE))) | 
 | 		need_update = false; | 
 | 	up_read(&nm_i->nat_tree_lock); | 
 | 	return need_update; | 
 | } | 
 |  | 
 | /* must be locked by nat_tree_lock */ | 
 | static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid, | 
 | 						struct f2fs_nat_entry *ne) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct nat_entry *new, *e; | 
 |  | 
 | 	new = __alloc_nat_entry(nid, false); | 
 | 	if (!new) | 
 | 		return; | 
 |  | 
 | 	down_write(&nm_i->nat_tree_lock); | 
 | 	e = __lookup_nat_cache(nm_i, nid); | 
 | 	if (!e) | 
 | 		e = __init_nat_entry(nm_i, new, ne, false); | 
 | 	else | 
 | 		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) || | 
 | 				nat_get_blkaddr(e) != | 
 | 					le32_to_cpu(ne->block_addr) || | 
 | 				nat_get_version(e) != ne->version); | 
 | 	up_write(&nm_i->nat_tree_lock); | 
 | 	if (e != new) | 
 | 		__free_nat_entry(new); | 
 | } | 
 |  | 
 | static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni, | 
 | 			block_t new_blkaddr, bool fsync_done) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct nat_entry *e; | 
 | 	struct nat_entry *new = __alloc_nat_entry(ni->nid, true); | 
 |  | 
 | 	down_write(&nm_i->nat_tree_lock); | 
 | 	e = __lookup_nat_cache(nm_i, ni->nid); | 
 | 	if (!e) { | 
 | 		e = __init_nat_entry(nm_i, new, NULL, true); | 
 | 		copy_node_info(&e->ni, ni); | 
 | 		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR); | 
 | 	} else if (new_blkaddr == NEW_ADDR) { | 
 | 		/* | 
 | 		 * when nid is reallocated, | 
 | 		 * previous nat entry can be remained in nat cache. | 
 | 		 * So, reinitialize it with new information. | 
 | 		 */ | 
 | 		copy_node_info(&e->ni, ni); | 
 | 		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR); | 
 | 	} | 
 | 	/* let's free early to reduce memory consumption */ | 
 | 	if (e != new) | 
 | 		__free_nat_entry(new); | 
 |  | 
 | 	/* sanity check */ | 
 | 	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr); | 
 | 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR && | 
 | 			new_blkaddr == NULL_ADDR); | 
 | 	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR && | 
 | 			new_blkaddr == NEW_ADDR); | 
 | 	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) && | 
 | 			new_blkaddr == NEW_ADDR); | 
 |  | 
 | 	/* increment version no as node is removed */ | 
 | 	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) { | 
 | 		unsigned char version = nat_get_version(e); | 
 | 		nat_set_version(e, inc_node_version(version)); | 
 | 	} | 
 |  | 
 | 	/* change address */ | 
 | 	nat_set_blkaddr(e, new_blkaddr); | 
 | 	if (!__is_valid_data_blkaddr(new_blkaddr)) | 
 | 		set_nat_flag(e, IS_CHECKPOINTED, false); | 
 | 	__set_nat_cache_dirty(nm_i, e); | 
 |  | 
 | 	/* update fsync_mark if its inode nat entry is still alive */ | 
 | 	if (ni->nid != ni->ino) | 
 | 		e = __lookup_nat_cache(nm_i, ni->ino); | 
 | 	if (e) { | 
 | 		if (fsync_done && ni->nid == ni->ino) | 
 | 			set_nat_flag(e, HAS_FSYNCED_INODE, true); | 
 | 		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done); | 
 | 	} | 
 | 	up_write(&nm_i->nat_tree_lock); | 
 | } | 
 |  | 
 | int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	int nr = nr_shrink; | 
 |  | 
 | 	if (!down_write_trylock(&nm_i->nat_tree_lock)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&nm_i->nat_list_lock); | 
 | 	while (nr_shrink) { | 
 | 		struct nat_entry *ne; | 
 |  | 
 | 		if (list_empty(&nm_i->nat_entries)) | 
 | 			break; | 
 |  | 
 | 		ne = list_first_entry(&nm_i->nat_entries, | 
 | 					struct nat_entry, list); | 
 | 		list_del(&ne->list); | 
 | 		spin_unlock(&nm_i->nat_list_lock); | 
 |  | 
 | 		__del_from_nat_cache(nm_i, ne); | 
 | 		nr_shrink--; | 
 |  | 
 | 		spin_lock(&nm_i->nat_list_lock); | 
 | 	} | 
 | 	spin_unlock(&nm_i->nat_list_lock); | 
 |  | 
 | 	up_write(&nm_i->nat_tree_lock); | 
 | 	return nr - nr_shrink; | 
 | } | 
 |  | 
 | /* | 
 |  * This function always returns success | 
 |  */ | 
 | int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid, | 
 | 						struct node_info *ni) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
 | 	struct f2fs_journal *journal = curseg->journal; | 
 | 	nid_t start_nid = START_NID(nid); | 
 | 	struct f2fs_nat_block *nat_blk; | 
 | 	struct page *page = NULL; | 
 | 	struct f2fs_nat_entry ne; | 
 | 	struct nat_entry *e; | 
 | 	pgoff_t index; | 
 | 	block_t blkaddr; | 
 | 	int i; | 
 |  | 
 | 	ni->nid = nid; | 
 |  | 
 | 	/* Check nat cache */ | 
 | 	down_read(&nm_i->nat_tree_lock); | 
 | 	e = __lookup_nat_cache(nm_i, nid); | 
 | 	if (e) { | 
 | 		ni->ino = nat_get_ino(e); | 
 | 		ni->blk_addr = nat_get_blkaddr(e); | 
 | 		ni->version = nat_get_version(e); | 
 | 		up_read(&nm_i->nat_tree_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	memset(&ne, 0, sizeof(struct f2fs_nat_entry)); | 
 |  | 
 | 	/* Check current segment summary */ | 
 | 	down_read(&curseg->journal_rwsem); | 
 | 	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0); | 
 | 	if (i >= 0) { | 
 | 		ne = nat_in_journal(journal, i); | 
 | 		node_info_from_raw_nat(ni, &ne); | 
 | 	} | 
 | 	up_read(&curseg->journal_rwsem); | 
 | 	if (i >= 0) { | 
 | 		up_read(&nm_i->nat_tree_lock); | 
 | 		goto cache; | 
 | 	} | 
 |  | 
 | 	/* Fill node_info from nat page */ | 
 | 	index = current_nat_addr(sbi, nid); | 
 | 	up_read(&nm_i->nat_tree_lock); | 
 |  | 
 | 	page = f2fs_get_meta_page(sbi, index); | 
 | 	if (IS_ERR(page)) | 
 | 		return PTR_ERR(page); | 
 |  | 
 | 	nat_blk = (struct f2fs_nat_block *)page_address(page); | 
 | 	ne = nat_blk->entries[nid - start_nid]; | 
 | 	node_info_from_raw_nat(ni, &ne); | 
 | 	f2fs_put_page(page, 1); | 
 | cache: | 
 | 	blkaddr = le32_to_cpu(ne.block_addr); | 
 | 	if (__is_valid_data_blkaddr(blkaddr) && | 
 | 		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	/* cache nat entry */ | 
 | 	cache_nat_entry(sbi, nid, &ne); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * readahead MAX_RA_NODE number of node pages. | 
 |  */ | 
 | static void f2fs_ra_node_pages(struct page *parent, int start, int n) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent); | 
 | 	struct blk_plug plug; | 
 | 	int i, end; | 
 | 	nid_t nid; | 
 |  | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	/* Then, try readahead for siblings of the desired node */ | 
 | 	end = start + n; | 
 | 	end = min(end, NIDS_PER_BLOCK); | 
 | 	for (i = start; i < end; i++) { | 
 | 		nid = get_nid(parent, i, false); | 
 | 		f2fs_ra_node_page(sbi, nid); | 
 | 	} | 
 |  | 
 | 	blk_finish_plug(&plug); | 
 | } | 
 |  | 
 | pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs) | 
 | { | 
 | 	const long direct_index = ADDRS_PER_INODE(dn->inode); | 
 | 	const long direct_blks = ADDRS_PER_BLOCK(dn->inode); | 
 | 	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK; | 
 | 	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode); | 
 | 	int cur_level = dn->cur_level; | 
 | 	int max_level = dn->max_level; | 
 | 	pgoff_t base = 0; | 
 |  | 
 | 	if (!dn->max_level) | 
 | 		return pgofs + 1; | 
 |  | 
 | 	while (max_level-- > cur_level) | 
 | 		skipped_unit *= NIDS_PER_BLOCK; | 
 |  | 
 | 	switch (dn->max_level) { | 
 | 	case 3: | 
 | 		base += 2 * indirect_blks; | 
 | 	case 2: | 
 | 		base += 2 * direct_blks; | 
 | 	case 1: | 
 | 		base += direct_index; | 
 | 		break; | 
 | 	default: | 
 | 		f2fs_bug_on(F2FS_I_SB(dn->inode), 1); | 
 | 	} | 
 |  | 
 | 	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base; | 
 | } | 
 |  | 
 | /* | 
 |  * The maximum depth is four. | 
 |  * Offset[0] will have raw inode offset. | 
 |  */ | 
 | static int get_node_path(struct inode *inode, long block, | 
 | 				int offset[4], unsigned int noffset[4]) | 
 | { | 
 | 	const long direct_index = ADDRS_PER_INODE(inode); | 
 | 	const long direct_blks = ADDRS_PER_BLOCK(inode); | 
 | 	const long dptrs_per_blk = NIDS_PER_BLOCK; | 
 | 	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK; | 
 | 	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK; | 
 | 	int n = 0; | 
 | 	int level = 0; | 
 |  | 
 | 	noffset[0] = 0; | 
 |  | 
 | 	if (block < direct_index) { | 
 | 		offset[n] = block; | 
 | 		goto got; | 
 | 	} | 
 | 	block -= direct_index; | 
 | 	if (block < direct_blks) { | 
 | 		offset[n++] = NODE_DIR1_BLOCK; | 
 | 		noffset[n] = 1; | 
 | 		offset[n] = block; | 
 | 		level = 1; | 
 | 		goto got; | 
 | 	} | 
 | 	block -= direct_blks; | 
 | 	if (block < direct_blks) { | 
 | 		offset[n++] = NODE_DIR2_BLOCK; | 
 | 		noffset[n] = 2; | 
 | 		offset[n] = block; | 
 | 		level = 1; | 
 | 		goto got; | 
 | 	} | 
 | 	block -= direct_blks; | 
 | 	if (block < indirect_blks) { | 
 | 		offset[n++] = NODE_IND1_BLOCK; | 
 | 		noffset[n] = 3; | 
 | 		offset[n++] = block / direct_blks; | 
 | 		noffset[n] = 4 + offset[n - 1]; | 
 | 		offset[n] = block % direct_blks; | 
 | 		level = 2; | 
 | 		goto got; | 
 | 	} | 
 | 	block -= indirect_blks; | 
 | 	if (block < indirect_blks) { | 
 | 		offset[n++] = NODE_IND2_BLOCK; | 
 | 		noffset[n] = 4 + dptrs_per_blk; | 
 | 		offset[n++] = block / direct_blks; | 
 | 		noffset[n] = 5 + dptrs_per_blk + offset[n - 1]; | 
 | 		offset[n] = block % direct_blks; | 
 | 		level = 2; | 
 | 		goto got; | 
 | 	} | 
 | 	block -= indirect_blks; | 
 | 	if (block < dindirect_blks) { | 
 | 		offset[n++] = NODE_DIND_BLOCK; | 
 | 		noffset[n] = 5 + (dptrs_per_blk * 2); | 
 | 		offset[n++] = block / indirect_blks; | 
 | 		noffset[n] = 6 + (dptrs_per_blk * 2) + | 
 | 			      offset[n - 1] * (dptrs_per_blk + 1); | 
 | 		offset[n++] = (block / direct_blks) % dptrs_per_blk; | 
 | 		noffset[n] = 7 + (dptrs_per_blk * 2) + | 
 | 			      offset[n - 2] * (dptrs_per_blk + 1) + | 
 | 			      offset[n - 1]; | 
 | 		offset[n] = block % direct_blks; | 
 | 		level = 3; | 
 | 		goto got; | 
 | 	} else { | 
 | 		return -E2BIG; | 
 | 	} | 
 | got: | 
 | 	return level; | 
 | } | 
 |  | 
 | /* | 
 |  * Caller should call f2fs_put_dnode(dn). | 
 |  * Also, it should grab and release a rwsem by calling f2fs_lock_op() and | 
 |  * f2fs_unlock_op() only if ro is not set RDONLY_NODE. | 
 |  * In the case of RDONLY_NODE, we don't need to care about mutex. | 
 |  */ | 
 | int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); | 
 | 	struct page *npage[4]; | 
 | 	struct page *parent = NULL; | 
 | 	int offset[4]; | 
 | 	unsigned int noffset[4]; | 
 | 	nid_t nids[4]; | 
 | 	int level, i = 0; | 
 | 	int err = 0; | 
 |  | 
 | 	level = get_node_path(dn->inode, index, offset, noffset); | 
 | 	if (level < 0) | 
 | 		return level; | 
 |  | 
 | 	nids[0] = dn->inode->i_ino; | 
 | 	npage[0] = dn->inode_page; | 
 |  | 
 | 	if (!npage[0]) { | 
 | 		npage[0] = f2fs_get_node_page(sbi, nids[0]); | 
 | 		if (IS_ERR(npage[0])) | 
 | 			return PTR_ERR(npage[0]); | 
 | 	} | 
 |  | 
 | 	/* if inline_data is set, should not report any block indices */ | 
 | 	if (f2fs_has_inline_data(dn->inode) && index) { | 
 | 		err = -ENOENT; | 
 | 		f2fs_put_page(npage[0], 1); | 
 | 		goto release_out; | 
 | 	} | 
 |  | 
 | 	parent = npage[0]; | 
 | 	if (level != 0) | 
 | 		nids[1] = get_nid(parent, offset[0], true); | 
 | 	dn->inode_page = npage[0]; | 
 | 	dn->inode_page_locked = true; | 
 |  | 
 | 	/* get indirect or direct nodes */ | 
 | 	for (i = 1; i <= level; i++) { | 
 | 		bool done = false; | 
 |  | 
 | 		if (!nids[i] && mode == ALLOC_NODE) { | 
 | 			/* alloc new node */ | 
 | 			if (!f2fs_alloc_nid(sbi, &(nids[i]))) { | 
 | 				err = -ENOSPC; | 
 | 				goto release_pages; | 
 | 			} | 
 |  | 
 | 			dn->nid = nids[i]; | 
 | 			npage[i] = f2fs_new_node_page(dn, noffset[i]); | 
 | 			if (IS_ERR(npage[i])) { | 
 | 				f2fs_alloc_nid_failed(sbi, nids[i]); | 
 | 				err = PTR_ERR(npage[i]); | 
 | 				goto release_pages; | 
 | 			} | 
 |  | 
 | 			set_nid(parent, offset[i - 1], nids[i], i == 1); | 
 | 			f2fs_alloc_nid_done(sbi, nids[i]); | 
 | 			done = true; | 
 | 		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) { | 
 | 			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]); | 
 | 			if (IS_ERR(npage[i])) { | 
 | 				err = PTR_ERR(npage[i]); | 
 | 				goto release_pages; | 
 | 			} | 
 | 			done = true; | 
 | 		} | 
 | 		if (i == 1) { | 
 | 			dn->inode_page_locked = false; | 
 | 			unlock_page(parent); | 
 | 		} else { | 
 | 			f2fs_put_page(parent, 1); | 
 | 		} | 
 |  | 
 | 		if (!done) { | 
 | 			npage[i] = f2fs_get_node_page(sbi, nids[i]); | 
 | 			if (IS_ERR(npage[i])) { | 
 | 				err = PTR_ERR(npage[i]); | 
 | 				f2fs_put_page(npage[0], 0); | 
 | 				goto release_out; | 
 | 			} | 
 | 		} | 
 | 		if (i < level) { | 
 | 			parent = npage[i]; | 
 | 			nids[i + 1] = get_nid(parent, offset[i], false); | 
 | 		} | 
 | 	} | 
 | 	dn->nid = nids[level]; | 
 | 	dn->ofs_in_node = offset[level]; | 
 | 	dn->node_page = npage[level]; | 
 | 	dn->data_blkaddr = datablock_addr(dn->inode, | 
 | 				dn->node_page, dn->ofs_in_node); | 
 | 	return 0; | 
 |  | 
 | release_pages: | 
 | 	f2fs_put_page(parent, 1); | 
 | 	if (i > 1) | 
 | 		f2fs_put_page(npage[0], 0); | 
 | release_out: | 
 | 	dn->inode_page = NULL; | 
 | 	dn->node_page = NULL; | 
 | 	if (err == -ENOENT) { | 
 | 		dn->cur_level = i; | 
 | 		dn->max_level = level; | 
 | 		dn->ofs_in_node = offset[level]; | 
 | 	} | 
 | 	return err; | 
 | } | 
 |  | 
 | static int truncate_node(struct dnode_of_data *dn) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); | 
 | 	struct node_info ni; | 
 | 	int err; | 
 | 	pgoff_t index; | 
 |  | 
 | 	err = f2fs_get_node_info(sbi, dn->nid, &ni); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* Deallocate node address */ | 
 | 	f2fs_invalidate_blocks(sbi, ni.blk_addr); | 
 | 	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino); | 
 | 	set_node_addr(sbi, &ni, NULL_ADDR, false); | 
 |  | 
 | 	if (dn->nid == dn->inode->i_ino) { | 
 | 		f2fs_remove_orphan_inode(sbi, dn->nid); | 
 | 		dec_valid_inode_count(sbi); | 
 | 		f2fs_inode_synced(dn->inode); | 
 | 	} | 
 |  | 
 | 	clear_node_page_dirty(dn->node_page); | 
 | 	set_sbi_flag(sbi, SBI_IS_DIRTY); | 
 |  | 
 | 	index = dn->node_page->index; | 
 | 	f2fs_put_page(dn->node_page, 1); | 
 |  | 
 | 	invalidate_mapping_pages(NODE_MAPPING(sbi), | 
 | 			index, index); | 
 |  | 
 | 	dn->node_page = NULL; | 
 | 	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int truncate_dnode(struct dnode_of_data *dn) | 
 | { | 
 | 	struct page *page; | 
 | 	int err; | 
 |  | 
 | 	if (dn->nid == 0) | 
 | 		return 1; | 
 |  | 
 | 	/* get direct node */ | 
 | 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); | 
 | 	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT) | 
 | 		return 1; | 
 | 	else if (IS_ERR(page)) | 
 | 		return PTR_ERR(page); | 
 |  | 
 | 	/* Make dnode_of_data for parameter */ | 
 | 	dn->node_page = page; | 
 | 	dn->ofs_in_node = 0; | 
 | 	f2fs_truncate_data_blocks(dn); | 
 | 	err = truncate_node(dn); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs, | 
 | 						int ofs, int depth) | 
 | { | 
 | 	struct dnode_of_data rdn = *dn; | 
 | 	struct page *page; | 
 | 	struct f2fs_node *rn; | 
 | 	nid_t child_nid; | 
 | 	unsigned int child_nofs; | 
 | 	int freed = 0; | 
 | 	int i, ret; | 
 |  | 
 | 	if (dn->nid == 0) | 
 | 		return NIDS_PER_BLOCK + 1; | 
 |  | 
 | 	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr); | 
 |  | 
 | 	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid); | 
 | 	if (IS_ERR(page)) { | 
 | 		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page)); | 
 | 		return PTR_ERR(page); | 
 | 	} | 
 |  | 
 | 	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK); | 
 |  | 
 | 	rn = F2FS_NODE(page); | 
 | 	if (depth < 3) { | 
 | 		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) { | 
 | 			child_nid = le32_to_cpu(rn->in.nid[i]); | 
 | 			if (child_nid == 0) | 
 | 				continue; | 
 | 			rdn.nid = child_nid; | 
 | 			ret = truncate_dnode(&rdn); | 
 | 			if (ret < 0) | 
 | 				goto out_err; | 
 | 			if (set_nid(page, i, 0, false)) | 
 | 				dn->node_changed = true; | 
 | 		} | 
 | 	} else { | 
 | 		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1; | 
 | 		for (i = ofs; i < NIDS_PER_BLOCK; i++) { | 
 | 			child_nid = le32_to_cpu(rn->in.nid[i]); | 
 | 			if (child_nid == 0) { | 
 | 				child_nofs += NIDS_PER_BLOCK + 1; | 
 | 				continue; | 
 | 			} | 
 | 			rdn.nid = child_nid; | 
 | 			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1); | 
 | 			if (ret == (NIDS_PER_BLOCK + 1)) { | 
 | 				if (set_nid(page, i, 0, false)) | 
 | 					dn->node_changed = true; | 
 | 				child_nofs += ret; | 
 | 			} else if (ret < 0 && ret != -ENOENT) { | 
 | 				goto out_err; | 
 | 			} | 
 | 		} | 
 | 		freed = child_nofs; | 
 | 	} | 
 |  | 
 | 	if (!ofs) { | 
 | 		/* remove current indirect node */ | 
 | 		dn->node_page = page; | 
 | 		ret = truncate_node(dn); | 
 | 		if (ret) | 
 | 			goto out_err; | 
 | 		freed++; | 
 | 	} else { | 
 | 		f2fs_put_page(page, 1); | 
 | 	} | 
 | 	trace_f2fs_truncate_nodes_exit(dn->inode, freed); | 
 | 	return freed; | 
 |  | 
 | out_err: | 
 | 	f2fs_put_page(page, 1); | 
 | 	trace_f2fs_truncate_nodes_exit(dn->inode, ret); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int truncate_partial_nodes(struct dnode_of_data *dn, | 
 | 			struct f2fs_inode *ri, int *offset, int depth) | 
 | { | 
 | 	struct page *pages[2]; | 
 | 	nid_t nid[3]; | 
 | 	nid_t child_nid; | 
 | 	int err = 0; | 
 | 	int i; | 
 | 	int idx = depth - 2; | 
 |  | 
 | 	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | 
 | 	if (!nid[0]) | 
 | 		return 0; | 
 |  | 
 | 	/* get indirect nodes in the path */ | 
 | 	for (i = 0; i < idx + 1; i++) { | 
 | 		/* reference count'll be increased */ | 
 | 		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]); | 
 | 		if (IS_ERR(pages[i])) { | 
 | 			err = PTR_ERR(pages[i]); | 
 | 			idx = i - 1; | 
 | 			goto fail; | 
 | 		} | 
 | 		nid[i + 1] = get_nid(pages[i], offset[i + 1], false); | 
 | 	} | 
 |  | 
 | 	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK); | 
 |  | 
 | 	/* free direct nodes linked to a partial indirect node */ | 
 | 	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) { | 
 | 		child_nid = get_nid(pages[idx], i, false); | 
 | 		if (!child_nid) | 
 | 			continue; | 
 | 		dn->nid = child_nid; | 
 | 		err = truncate_dnode(dn); | 
 | 		if (err < 0) | 
 | 			goto fail; | 
 | 		if (set_nid(pages[idx], i, 0, false)) | 
 | 			dn->node_changed = true; | 
 | 	} | 
 |  | 
 | 	if (offset[idx + 1] == 0) { | 
 | 		dn->node_page = pages[idx]; | 
 | 		dn->nid = nid[idx]; | 
 | 		err = truncate_node(dn); | 
 | 		if (err) | 
 | 			goto fail; | 
 | 	} else { | 
 | 		f2fs_put_page(pages[idx], 1); | 
 | 	} | 
 | 	offset[idx]++; | 
 | 	offset[idx + 1] = 0; | 
 | 	idx--; | 
 | fail: | 
 | 	for (i = idx; i >= 0; i--) | 
 | 		f2fs_put_page(pages[i], 1); | 
 |  | 
 | 	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * All the block addresses of data and nodes should be nullified. | 
 |  */ | 
 | int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	int err = 0, cont = 1; | 
 | 	int level, offset[4], noffset[4]; | 
 | 	unsigned int nofs = 0; | 
 | 	struct f2fs_inode *ri; | 
 | 	struct dnode_of_data dn; | 
 | 	struct page *page; | 
 |  | 
 | 	trace_f2fs_truncate_inode_blocks_enter(inode, from); | 
 |  | 
 | 	level = get_node_path(inode, from, offset, noffset); | 
 | 	if (level < 0) | 
 | 		return level; | 
 |  | 
 | 	page = f2fs_get_node_page(sbi, inode->i_ino); | 
 | 	if (IS_ERR(page)) { | 
 | 		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page)); | 
 | 		return PTR_ERR(page); | 
 | 	} | 
 |  | 
 | 	set_new_dnode(&dn, inode, page, NULL, 0); | 
 | 	unlock_page(page); | 
 |  | 
 | 	ri = F2FS_INODE(page); | 
 | 	switch (level) { | 
 | 	case 0: | 
 | 	case 1: | 
 | 		nofs = noffset[1]; | 
 | 		break; | 
 | 	case 2: | 
 | 		nofs = noffset[1]; | 
 | 		if (!offset[level - 1]) | 
 | 			goto skip_partial; | 
 | 		err = truncate_partial_nodes(&dn, ri, offset, level); | 
 | 		if (err < 0 && err != -ENOENT) | 
 | 			goto fail; | 
 | 		nofs += 1 + NIDS_PER_BLOCK; | 
 | 		break; | 
 | 	case 3: | 
 | 		nofs = 5 + 2 * NIDS_PER_BLOCK; | 
 | 		if (!offset[level - 1]) | 
 | 			goto skip_partial; | 
 | 		err = truncate_partial_nodes(&dn, ri, offset, level); | 
 | 		if (err < 0 && err != -ENOENT) | 
 | 			goto fail; | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | skip_partial: | 
 | 	while (cont) { | 
 | 		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]); | 
 | 		switch (offset[0]) { | 
 | 		case NODE_DIR1_BLOCK: | 
 | 		case NODE_DIR2_BLOCK: | 
 | 			err = truncate_dnode(&dn); | 
 | 			break; | 
 |  | 
 | 		case NODE_IND1_BLOCK: | 
 | 		case NODE_IND2_BLOCK: | 
 | 			err = truncate_nodes(&dn, nofs, offset[1], 2); | 
 | 			break; | 
 |  | 
 | 		case NODE_DIND_BLOCK: | 
 | 			err = truncate_nodes(&dn, nofs, offset[1], 3); | 
 | 			cont = 0; | 
 | 			break; | 
 |  | 
 | 		default: | 
 | 			BUG(); | 
 | 		} | 
 | 		if (err < 0 && err != -ENOENT) | 
 | 			goto fail; | 
 | 		if (offset[1] == 0 && | 
 | 				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) { | 
 | 			lock_page(page); | 
 | 			BUG_ON(page->mapping != NODE_MAPPING(sbi)); | 
 | 			f2fs_wait_on_page_writeback(page, NODE, true, true); | 
 | 			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0; | 
 | 			set_page_dirty(page); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		offset[1] = 0; | 
 | 		offset[0]++; | 
 | 		nofs += err; | 
 | 	} | 
 | fail: | 
 | 	f2fs_put_page(page, 0); | 
 | 	trace_f2fs_truncate_inode_blocks_exit(inode, err); | 
 | 	return err > 0 ? 0 : err; | 
 | } | 
 |  | 
 | /* caller must lock inode page */ | 
 | int f2fs_truncate_xattr_node(struct inode *inode) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	nid_t nid = F2FS_I(inode)->i_xattr_nid; | 
 | 	struct dnode_of_data dn; | 
 | 	struct page *npage; | 
 | 	int err; | 
 |  | 
 | 	if (!nid) | 
 | 		return 0; | 
 |  | 
 | 	npage = f2fs_get_node_page(sbi, nid); | 
 | 	if (IS_ERR(npage)) | 
 | 		return PTR_ERR(npage); | 
 |  | 
 | 	set_new_dnode(&dn, inode, NULL, npage, nid); | 
 | 	err = truncate_node(&dn); | 
 | 	if (err) { | 
 | 		f2fs_put_page(npage, 1); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	f2fs_i_xnid_write(inode, 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Caller should grab and release a rwsem by calling f2fs_lock_op() and | 
 |  * f2fs_unlock_op(). | 
 |  */ | 
 | int f2fs_remove_inode_page(struct inode *inode) | 
 | { | 
 | 	struct dnode_of_data dn; | 
 | 	int err; | 
 |  | 
 | 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | 
 | 	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = f2fs_truncate_xattr_node(inode); | 
 | 	if (err) { | 
 | 		f2fs_put_dnode(&dn); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	/* remove potential inline_data blocks */ | 
 | 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || | 
 | 				S_ISLNK(inode->i_mode)) | 
 | 		f2fs_truncate_data_blocks_range(&dn, 1); | 
 |  | 
 | 	/* 0 is possible, after f2fs_new_inode() has failed */ | 
 | 	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) { | 
 | 		f2fs_put_dnode(&dn); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) { | 
 | 		f2fs_warn(F2FS_I_SB(inode), "Inconsistent i_blocks, ino:%lu, iblocks:%llu", | 
 | 			  inode->i_ino, (unsigned long long)inode->i_blocks); | 
 | 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK); | 
 | 	} | 
 |  | 
 | 	/* will put inode & node pages */ | 
 | 	err = truncate_node(&dn); | 
 | 	if (err) { | 
 | 		f2fs_put_dnode(&dn); | 
 | 		return err; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct page *f2fs_new_inode_page(struct inode *inode) | 
 | { | 
 | 	struct dnode_of_data dn; | 
 |  | 
 | 	/* allocate inode page for new inode */ | 
 | 	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino); | 
 |  | 
 | 	/* caller should f2fs_put_page(page, 1); */ | 
 | 	return f2fs_new_node_page(&dn, 0); | 
 | } | 
 |  | 
 | struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); | 
 | 	struct node_info new_ni; | 
 | 	struct page *page; | 
 | 	int err; | 
 |  | 
 | 	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC))) | 
 | 		return ERR_PTR(-EPERM); | 
 |  | 
 | 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false); | 
 | 	if (!page) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs)))) | 
 | 		goto fail; | 
 |  | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	err = f2fs_get_node_info(sbi, dn->nid, &new_ni); | 
 | 	if (err) { | 
 | 		dec_valid_node_count(sbi, dn->inode, !ofs); | 
 | 		goto fail; | 
 | 	} | 
 | 	f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR); | 
 | #endif | 
 | 	new_ni.nid = dn->nid; | 
 | 	new_ni.ino = dn->inode->i_ino; | 
 | 	new_ni.blk_addr = NULL_ADDR; | 
 | 	new_ni.flag = 0; | 
 | 	new_ni.version = 0; | 
 | 	set_node_addr(sbi, &new_ni, NEW_ADDR, false); | 
 |  | 
 | 	f2fs_wait_on_page_writeback(page, NODE, true, true); | 
 | 	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true); | 
 | 	set_cold_node(page, S_ISDIR(dn->inode->i_mode)); | 
 | 	if (!PageUptodate(page)) | 
 | 		SetPageUptodate(page); | 
 | 	if (set_page_dirty(page)) | 
 | 		dn->node_changed = true; | 
 |  | 
 | 	if (f2fs_has_xattr_block(ofs)) | 
 | 		f2fs_i_xnid_write(dn->inode, dn->nid); | 
 |  | 
 | 	if (ofs == 0) | 
 | 		inc_valid_inode_count(sbi); | 
 | 	return page; | 
 |  | 
 | fail: | 
 | 	clear_node_page_dirty(page); | 
 | 	f2fs_put_page(page, 1); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* | 
 |  * Caller should do after getting the following values. | 
 |  * 0: f2fs_put_page(page, 0) | 
 |  * LOCKED_PAGE or error: f2fs_put_page(page, 1) | 
 |  */ | 
 | static int read_node_page(struct page *page, int op_flags) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_P_SB(page); | 
 | 	struct node_info ni; | 
 | 	struct f2fs_io_info fio = { | 
 | 		.sbi = sbi, | 
 | 		.type = NODE, | 
 | 		.op = REQ_OP_READ, | 
 | 		.op_flags = op_flags, | 
 | 		.page = page, | 
 | 		.encrypted_page = NULL, | 
 | 	}; | 
 | 	int err; | 
 |  | 
 | 	if (PageUptodate(page)) { | 
 | 		if (!f2fs_inode_chksum_verify(sbi, page)) { | 
 | 			ClearPageUptodate(page); | 
 | 			return -EFSBADCRC; | 
 | 		} | 
 | 		return LOCKED_PAGE; | 
 | 	} | 
 |  | 
 | 	err = f2fs_get_node_info(sbi, page->index, &ni); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (unlikely(ni.blk_addr == NULL_ADDR) || | 
 | 			is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) { | 
 | 		ClearPageUptodate(page); | 
 | 		return -ENOENT; | 
 | 	} | 
 |  | 
 | 	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr; | 
 | 	return f2fs_submit_page_bio(&fio); | 
 | } | 
 |  | 
 | /* | 
 |  * Readahead a node page | 
 |  */ | 
 | void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	struct page *apage; | 
 | 	int err; | 
 |  | 
 | 	if (!nid) | 
 | 		return; | 
 | 	if (f2fs_check_nid_range(sbi, nid)) | 
 | 		return; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid); | 
 | 	rcu_read_unlock(); | 
 | 	if (apage) | 
 | 		return; | 
 |  | 
 | 	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); | 
 | 	if (!apage) | 
 | 		return; | 
 |  | 
 | 	err = read_node_page(apage, REQ_RAHEAD); | 
 | 	f2fs_put_page(apage, err ? 1 : 0); | 
 | } | 
 |  | 
 | static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid, | 
 | 					struct page *parent, int start) | 
 | { | 
 | 	struct page *page; | 
 | 	int err; | 
 |  | 
 | 	if (!nid) | 
 | 		return ERR_PTR(-ENOENT); | 
 | 	if (f2fs_check_nid_range(sbi, nid)) | 
 | 		return ERR_PTR(-EINVAL); | 
 | repeat: | 
 | 	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false); | 
 | 	if (!page) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	err = read_node_page(page, 0); | 
 | 	if (err < 0) { | 
 | 		f2fs_put_page(page, 1); | 
 | 		return ERR_PTR(err); | 
 | 	} else if (err == LOCKED_PAGE) { | 
 | 		err = 0; | 
 | 		goto page_hit; | 
 | 	} | 
 |  | 
 | 	if (parent) | 
 | 		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE); | 
 |  | 
 | 	lock_page(page); | 
 |  | 
 | 	if (unlikely(page->mapping != NODE_MAPPING(sbi))) { | 
 | 		f2fs_put_page(page, 1); | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!PageUptodate(page))) { | 
 | 		err = -EIO; | 
 | 		goto out_err; | 
 | 	} | 
 |  | 
 | 	if (!f2fs_inode_chksum_verify(sbi, page)) { | 
 | 		err = -EFSBADCRC; | 
 | 		goto out_err; | 
 | 	} | 
 | page_hit: | 
 | 	if(unlikely(nid != nid_of_node(page))) { | 
 | 		f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]", | 
 | 			  nid, nid_of_node(page), ino_of_node(page), | 
 | 			  ofs_of_node(page), cpver_of_node(page), | 
 | 			  next_blkaddr_of_node(page)); | 
 | 		err = -EINVAL; | 
 | out_err: | 
 | 		ClearPageUptodate(page); | 
 | 		f2fs_put_page(page, 1); | 
 | 		return ERR_PTR(err); | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid) | 
 | { | 
 | 	return __get_node_page(sbi, nid, NULL, 0); | 
 | } | 
 |  | 
 | struct page *f2fs_get_node_page_ra(struct page *parent, int start) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_P_SB(parent); | 
 | 	nid_t nid = get_nid(parent, start, false); | 
 |  | 
 | 	return __get_node_page(sbi, nid, parent, start); | 
 | } | 
 |  | 
 | static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct page *page; | 
 | 	int ret; | 
 |  | 
 | 	/* should flush inline_data before evict_inode */ | 
 | 	inode = ilookup(sbi->sb, ino); | 
 | 	if (!inode) | 
 | 		return; | 
 |  | 
 | 	page = f2fs_pagecache_get_page(inode->i_mapping, 0, | 
 | 					FGP_LOCK|FGP_NOWAIT, 0); | 
 | 	if (!page) | 
 | 		goto iput_out; | 
 |  | 
 | 	if (!PageUptodate(page)) | 
 | 		goto page_out; | 
 |  | 
 | 	if (!PageDirty(page)) | 
 | 		goto page_out; | 
 |  | 
 | 	if (!clear_page_dirty_for_io(page)) | 
 | 		goto page_out; | 
 |  | 
 | 	ret = f2fs_write_inline_data(inode, page); | 
 | 	inode_dec_dirty_pages(inode); | 
 | 	f2fs_remove_dirty_inode(inode); | 
 | 	if (ret) | 
 | 		set_page_dirty(page); | 
 | page_out: | 
 | 	f2fs_put_page(page, 1); | 
 | iput_out: | 
 | 	iput(inode); | 
 | } | 
 |  | 
 | static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino) | 
 | { | 
 | 	pgoff_t index; | 
 | 	struct pagevec pvec; | 
 | 	struct page *last_page = NULL; | 
 | 	int nr_pages; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 | 	index = 0; | 
 |  | 
 | 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, | 
 | 				PAGECACHE_TAG_DIRTY))) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 |  | 
 | 			if (unlikely(f2fs_cp_error(sbi))) { | 
 | 				f2fs_put_page(last_page, 0); | 
 | 				pagevec_release(&pvec); | 
 | 				return ERR_PTR(-EIO); | 
 | 			} | 
 |  | 
 | 			if (!IS_DNODE(page) || !is_cold_node(page)) | 
 | 				continue; | 
 | 			if (ino_of_node(page) != ino) | 
 | 				continue; | 
 |  | 
 | 			lock_page(page); | 
 |  | 
 | 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) { | 
 | continue_unlock: | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 | 			if (ino_of_node(page) != ino) | 
 | 				goto continue_unlock; | 
 |  | 
 | 			if (!PageDirty(page)) { | 
 | 				/* someone wrote it for us */ | 
 | 				goto continue_unlock; | 
 | 			} | 
 |  | 
 | 			if (last_page) | 
 | 				f2fs_put_page(last_page, 0); | 
 |  | 
 | 			get_page(page); | 
 | 			last_page = page; | 
 | 			unlock_page(page); | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return last_page; | 
 | } | 
 |  | 
 | static int __write_node_page(struct page *page, bool atomic, bool *submitted, | 
 | 				struct writeback_control *wbc, bool do_balance, | 
 | 				enum iostat_type io_type, unsigned int *seq_id) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_P_SB(page); | 
 | 	nid_t nid; | 
 | 	struct node_info ni; | 
 | 	struct f2fs_io_info fio = { | 
 | 		.sbi = sbi, | 
 | 		.ino = ino_of_node(page), | 
 | 		.type = NODE, | 
 | 		.op = REQ_OP_WRITE, | 
 | 		.op_flags = wbc_to_write_flags(wbc), | 
 | 		.page = page, | 
 | 		.encrypted_page = NULL, | 
 | 		.submitted = false, | 
 | 		.io_type = io_type, | 
 | 		.io_wbc = wbc, | 
 | 	}; | 
 | 	unsigned int seq; | 
 |  | 
 | 	trace_f2fs_writepage(page, NODE); | 
 |  | 
 | 	if (unlikely(f2fs_cp_error(sbi))) | 
 | 		goto redirty_out; | 
 |  | 
 | 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) | 
 | 		goto redirty_out; | 
 |  | 
 | 	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && | 
 | 			wbc->sync_mode == WB_SYNC_NONE && | 
 | 			IS_DNODE(page) && is_cold_node(page)) | 
 | 		goto redirty_out; | 
 |  | 
 | 	/* get old block addr of this node page */ | 
 | 	nid = nid_of_node(page); | 
 | 	f2fs_bug_on(sbi, page->index != nid); | 
 |  | 
 | 	if (f2fs_get_node_info(sbi, nid, &ni)) | 
 | 		goto redirty_out; | 
 |  | 
 | 	if (wbc->for_reclaim) { | 
 | 		if (!down_read_trylock(&sbi->node_write)) | 
 | 			goto redirty_out; | 
 | 	} else { | 
 | 		down_read(&sbi->node_write); | 
 | 	} | 
 |  | 
 | 	/* This page is already truncated */ | 
 | 	if (unlikely(ni.blk_addr == NULL_ADDR)) { | 
 | 		ClearPageUptodate(page); | 
 | 		dec_page_count(sbi, F2FS_DIRTY_NODES); | 
 | 		up_read(&sbi->node_write); | 
 | 		unlock_page(page); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (__is_valid_data_blkaddr(ni.blk_addr) && | 
 | 		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, | 
 | 					DATA_GENERIC_ENHANCE)) { | 
 | 		up_read(&sbi->node_write); | 
 | 		goto redirty_out; | 
 | 	} | 
 |  | 
 | 	if (atomic && !test_opt(sbi, NOBARRIER)) | 
 | 		fio.op_flags |= REQ_PREFLUSH | REQ_FUA; | 
 |  | 
 | 	set_page_writeback(page); | 
 | 	ClearPageError(page); | 
 |  | 
 | 	if (f2fs_in_warm_node_list(sbi, page)) { | 
 | 		seq = f2fs_add_fsync_node_entry(sbi, page); | 
 | 		if (seq_id) | 
 | 			*seq_id = seq; | 
 | 	} | 
 |  | 
 | 	fio.old_blkaddr = ni.blk_addr; | 
 | 	f2fs_do_write_node_page(nid, &fio); | 
 | 	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page)); | 
 | 	dec_page_count(sbi, F2FS_DIRTY_NODES); | 
 | 	up_read(&sbi->node_write); | 
 |  | 
 | 	if (wbc->for_reclaim) { | 
 | 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE); | 
 | 		submitted = NULL; | 
 | 	} | 
 |  | 
 | 	unlock_page(page); | 
 |  | 
 | 	if (unlikely(f2fs_cp_error(sbi))) { | 
 | 		f2fs_submit_merged_write(sbi, NODE); | 
 | 		submitted = NULL; | 
 | 	} | 
 | 	if (submitted) | 
 | 		*submitted = fio.submitted; | 
 |  | 
 | 	if (do_balance) | 
 | 		f2fs_balance_fs(sbi, false); | 
 | 	return 0; | 
 |  | 
 | redirty_out: | 
 | 	redirty_page_for_writepage(wbc, page); | 
 | 	return AOP_WRITEPAGE_ACTIVATE; | 
 | } | 
 |  | 
 | int f2fs_move_node_page(struct page *node_page, int gc_type) | 
 | { | 
 | 	int err = 0; | 
 |  | 
 | 	if (gc_type == FG_GC) { | 
 | 		struct writeback_control wbc = { | 
 | 			.sync_mode = WB_SYNC_ALL, | 
 | 			.nr_to_write = 1, | 
 | 			.for_reclaim = 0, | 
 | 		}; | 
 |  | 
 | 		f2fs_wait_on_page_writeback(node_page, NODE, true, true); | 
 |  | 
 | 		set_page_dirty(node_page); | 
 |  | 
 | 		if (!clear_page_dirty_for_io(node_page)) { | 
 | 			err = -EAGAIN; | 
 | 			goto out_page; | 
 | 		} | 
 |  | 
 | 		if (__write_node_page(node_page, false, NULL, | 
 | 					&wbc, false, FS_GC_NODE_IO, NULL)) { | 
 | 			err = -EAGAIN; | 
 | 			unlock_page(node_page); | 
 | 		} | 
 | 		goto release_page; | 
 | 	} else { | 
 | 		/* set page dirty and write it */ | 
 | 		if (!PageWriteback(node_page)) | 
 | 			set_page_dirty(node_page); | 
 | 	} | 
 | out_page: | 
 | 	unlock_page(node_page); | 
 | release_page: | 
 | 	f2fs_put_page(node_page, 0); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int f2fs_write_node_page(struct page *page, | 
 | 				struct writeback_control *wbc) | 
 | { | 
 | 	return __write_node_page(page, false, NULL, wbc, false, | 
 | 						FS_NODE_IO, NULL); | 
 | } | 
 |  | 
 | int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode, | 
 | 			struct writeback_control *wbc, bool atomic, | 
 | 			unsigned int *seq_id) | 
 | { | 
 | 	pgoff_t index; | 
 | 	struct pagevec pvec; | 
 | 	int ret = 0; | 
 | 	struct page *last_page = NULL; | 
 | 	bool marked = false; | 
 | 	nid_t ino = inode->i_ino; | 
 | 	int nr_pages; | 
 | 	int nwritten = 0; | 
 |  | 
 | 	if (atomic) { | 
 | 		last_page = last_fsync_dnode(sbi, ino); | 
 | 		if (IS_ERR_OR_NULL(last_page)) | 
 | 			return PTR_ERR_OR_ZERO(last_page); | 
 | 	} | 
 | retry: | 
 | 	pagevec_init(&pvec); | 
 | 	index = 0; | 
 |  | 
 | 	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index, | 
 | 				PAGECACHE_TAG_DIRTY))) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			bool submitted = false; | 
 |  | 
 | 			if (unlikely(f2fs_cp_error(sbi))) { | 
 | 				f2fs_put_page(last_page, 0); | 
 | 				pagevec_release(&pvec); | 
 | 				ret = -EIO; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (!IS_DNODE(page) || !is_cold_node(page)) | 
 | 				continue; | 
 | 			if (ino_of_node(page) != ino) | 
 | 				continue; | 
 |  | 
 | 			lock_page(page); | 
 |  | 
 | 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) { | 
 | continue_unlock: | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 | 			if (ino_of_node(page) != ino) | 
 | 				goto continue_unlock; | 
 |  | 
 | 			if (!PageDirty(page) && page != last_page) { | 
 | 				/* someone wrote it for us */ | 
 | 				goto continue_unlock; | 
 | 			} | 
 |  | 
 | 			f2fs_wait_on_page_writeback(page, NODE, true, true); | 
 |  | 
 | 			set_fsync_mark(page, 0); | 
 | 			set_dentry_mark(page, 0); | 
 |  | 
 | 			if (!atomic || page == last_page) { | 
 | 				set_fsync_mark(page, 1); | 
 | 				if (IS_INODE(page)) { | 
 | 					if (is_inode_flag_set(inode, | 
 | 								FI_DIRTY_INODE)) | 
 | 						f2fs_update_inode(inode, page); | 
 | 					set_dentry_mark(page, | 
 | 						f2fs_need_dentry_mark(sbi, ino)); | 
 | 				} | 
 | 				/*  may be written by other thread */ | 
 | 				if (!PageDirty(page)) | 
 | 					set_page_dirty(page); | 
 | 			} | 
 |  | 
 | 			if (!clear_page_dirty_for_io(page)) | 
 | 				goto continue_unlock; | 
 |  | 
 | 			ret = __write_node_page(page, atomic && | 
 | 						page == last_page, | 
 | 						&submitted, wbc, true, | 
 | 						FS_NODE_IO, seq_id); | 
 | 			if (ret) { | 
 | 				unlock_page(page); | 
 | 				f2fs_put_page(last_page, 0); | 
 | 				break; | 
 | 			} else if (submitted) { | 
 | 				nwritten++; | 
 | 			} | 
 |  | 
 | 			if (page == last_page) { | 
 | 				f2fs_put_page(page, 0); | 
 | 				marked = true; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 |  | 
 | 		if (ret || marked) | 
 | 			break; | 
 | 	} | 
 | 	if (!ret && atomic && !marked) { | 
 | 		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx", | 
 | 			   ino, last_page->index); | 
 | 		lock_page(last_page); | 
 | 		f2fs_wait_on_page_writeback(last_page, NODE, true, true); | 
 | 		set_page_dirty(last_page); | 
 | 		unlock_page(last_page); | 
 | 		goto retry; | 
 | 	} | 
 | out: | 
 | 	if (nwritten) | 
 | 		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE); | 
 | 	return ret ? -EIO: 0; | 
 | } | 
 |  | 
 | static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	bool clean; | 
 |  | 
 | 	if (inode->i_ino != ino) | 
 | 		return 0; | 
 |  | 
 | 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&sbi->inode_lock[DIRTY_META]); | 
 | 	clean = list_empty(&F2FS_I(inode)->gdirty_list); | 
 | 	spin_unlock(&sbi->inode_lock[DIRTY_META]); | 
 |  | 
 | 	if (clean) | 
 | 		return 0; | 
 |  | 
 | 	inode = igrab(inode); | 
 | 	if (!inode) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static bool flush_dirty_inode(struct page *page) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_P_SB(page); | 
 | 	struct inode *inode; | 
 | 	nid_t ino = ino_of_node(page); | 
 |  | 
 | 	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL); | 
 | 	if (!inode) | 
 | 		return false; | 
 |  | 
 | 	f2fs_update_inode(inode, page); | 
 | 	unlock_page(page); | 
 |  | 
 | 	iput(inode); | 
 | 	return true; | 
 | } | 
 |  | 
 | int f2fs_sync_node_pages(struct f2fs_sb_info *sbi, | 
 | 				struct writeback_control *wbc, | 
 | 				bool do_balance, enum iostat_type io_type) | 
 | { | 
 | 	pgoff_t index; | 
 | 	struct pagevec pvec; | 
 | 	int step = 0; | 
 | 	int nwritten = 0; | 
 | 	int ret = 0; | 
 | 	int nr_pages, done = 0; | 
 |  | 
 | 	pagevec_init(&pvec); | 
 |  | 
 | next_step: | 
 | 	index = 0; | 
 |  | 
 | 	while (!done && (nr_pages = pagevec_lookup_tag(&pvec, | 
 | 			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < nr_pages; i++) { | 
 | 			struct page *page = pvec.pages[i]; | 
 | 			bool submitted = false; | 
 | 			bool may_dirty = true; | 
 |  | 
 | 			/* give a priority to WB_SYNC threads */ | 
 | 			if (atomic_read(&sbi->wb_sync_req[NODE]) && | 
 | 					wbc->sync_mode == WB_SYNC_NONE) { | 
 | 				done = 1; | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * flushing sequence with step: | 
 | 			 * 0. indirect nodes | 
 | 			 * 1. dentry dnodes | 
 | 			 * 2. file dnodes | 
 | 			 */ | 
 | 			if (step == 0 && IS_DNODE(page)) | 
 | 				continue; | 
 | 			if (step == 1 && (!IS_DNODE(page) || | 
 | 						is_cold_node(page))) | 
 | 				continue; | 
 | 			if (step == 2 && (!IS_DNODE(page) || | 
 | 						!is_cold_node(page))) | 
 | 				continue; | 
 | lock_node: | 
 | 			if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 				lock_page(page); | 
 | 			else if (!trylock_page(page)) | 
 | 				continue; | 
 |  | 
 | 			if (unlikely(page->mapping != NODE_MAPPING(sbi))) { | 
 | continue_unlock: | 
 | 				unlock_page(page); | 
 | 				continue; | 
 | 			} | 
 |  | 
 | 			if (!PageDirty(page)) { | 
 | 				/* someone wrote it for us */ | 
 | 				goto continue_unlock; | 
 | 			} | 
 |  | 
 | 			/* flush inline_data */ | 
 | 			if (is_inline_node(page)) { | 
 | 				clear_inline_node(page); | 
 | 				unlock_page(page); | 
 | 				flush_inline_data(sbi, ino_of_node(page)); | 
 | 				goto lock_node; | 
 | 			} | 
 |  | 
 | 			/* flush dirty inode */ | 
 | 			if (IS_INODE(page) && may_dirty) { | 
 | 				may_dirty = false; | 
 | 				if (flush_dirty_inode(page)) | 
 | 					goto lock_node; | 
 | 			} | 
 |  | 
 | 			f2fs_wait_on_page_writeback(page, NODE, true, true); | 
 |  | 
 | 			if (!clear_page_dirty_for_io(page)) | 
 | 				goto continue_unlock; | 
 |  | 
 | 			set_fsync_mark(page, 0); | 
 | 			set_dentry_mark(page, 0); | 
 |  | 
 | 			ret = __write_node_page(page, false, &submitted, | 
 | 						wbc, do_balance, io_type, NULL); | 
 | 			if (ret) | 
 | 				unlock_page(page); | 
 | 			else if (submitted) | 
 | 				nwritten++; | 
 |  | 
 | 			if (--wbc->nr_to_write == 0) | 
 | 				break; | 
 | 		} | 
 | 		pagevec_release(&pvec); | 
 | 		cond_resched(); | 
 |  | 
 | 		if (wbc->nr_to_write == 0) { | 
 | 			step = 2; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (step < 2) { | 
 | 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) && | 
 | 				wbc->sync_mode == WB_SYNC_NONE && step == 1) | 
 | 			goto out; | 
 | 		step++; | 
 | 		goto next_step; | 
 | 	} | 
 | out: | 
 | 	if (nwritten) | 
 | 		f2fs_submit_merged_write(sbi, NODE); | 
 |  | 
 | 	if (unlikely(f2fs_cp_error(sbi))) | 
 | 		return -EIO; | 
 | 	return ret; | 
 | } | 
 |  | 
 | int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, | 
 | 						unsigned int seq_id) | 
 | { | 
 | 	struct fsync_node_entry *fn; | 
 | 	struct page *page; | 
 | 	struct list_head *head = &sbi->fsync_node_list; | 
 | 	unsigned long flags; | 
 | 	unsigned int cur_seq_id = 0; | 
 | 	int ret2, ret = 0; | 
 |  | 
 | 	while (seq_id && cur_seq_id < seq_id) { | 
 | 		spin_lock_irqsave(&sbi->fsync_node_lock, flags); | 
 | 		if (list_empty(head)) { | 
 | 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); | 
 | 			break; | 
 | 		} | 
 | 		fn = list_first_entry(head, struct fsync_node_entry, list); | 
 | 		if (fn->seq_id > seq_id) { | 
 | 			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); | 
 | 			break; | 
 | 		} | 
 | 		cur_seq_id = fn->seq_id; | 
 | 		page = fn->page; | 
 | 		get_page(page); | 
 | 		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags); | 
 |  | 
 | 		f2fs_wait_on_page_writeback(page, NODE, true, false); | 
 | 		if (TestClearPageError(page)) | 
 | 			ret = -EIO; | 
 |  | 
 | 		put_page(page); | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	ret2 = filemap_check_errors(NODE_MAPPING(sbi)); | 
 | 	if (!ret) | 
 | 		ret = ret2; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int f2fs_write_node_pages(struct address_space *mapping, | 
 | 			    struct writeback_control *wbc) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping); | 
 | 	struct blk_plug plug; | 
 | 	long diff; | 
 |  | 
 | 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) | 
 | 		goto skip_write; | 
 |  | 
 | 	/* balancing f2fs's metadata in background */ | 
 | 	f2fs_balance_fs_bg(sbi); | 
 |  | 
 | 	/* collect a number of dirty node pages and write together */ | 
 | 	if (wbc->sync_mode != WB_SYNC_ALL && | 
 | 			get_pages(sbi, F2FS_DIRTY_NODES) < | 
 | 					nr_pages_to_skip(sbi, NODE)) | 
 | 		goto skip_write; | 
 |  | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 		atomic_inc(&sbi->wb_sync_req[NODE]); | 
 | 	else if (atomic_read(&sbi->wb_sync_req[NODE])) | 
 | 		goto skip_write; | 
 |  | 
 | 	trace_f2fs_writepages(mapping->host, wbc, NODE); | 
 |  | 
 | 	diff = nr_pages_to_write(sbi, NODE, wbc); | 
 | 	blk_start_plug(&plug); | 
 | 	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO); | 
 | 	blk_finish_plug(&plug); | 
 | 	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff); | 
 |  | 
 | 	if (wbc->sync_mode == WB_SYNC_ALL) | 
 | 		atomic_dec(&sbi->wb_sync_req[NODE]); | 
 | 	return 0; | 
 |  | 
 | skip_write: | 
 | 	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES); | 
 | 	trace_f2fs_writepages(mapping->host, wbc, NODE); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int f2fs_set_node_page_dirty(struct page *page) | 
 | { | 
 | 	trace_f2fs_set_page_dirty(page, NODE); | 
 |  | 
 | 	if (!PageUptodate(page)) | 
 | 		SetPageUptodate(page); | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	if (IS_INODE(page)) | 
 | 		f2fs_inode_chksum_set(F2FS_P_SB(page), page); | 
 | #endif | 
 | 	if (!PageDirty(page)) { | 
 | 		__set_page_dirty_nobuffers(page); | 
 | 		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES); | 
 | 		f2fs_set_page_private(page, 0); | 
 | 		f2fs_trace_pid(page); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Structure of the f2fs node operations | 
 |  */ | 
 | const struct address_space_operations f2fs_node_aops = { | 
 | 	.writepage	= f2fs_write_node_page, | 
 | 	.writepages	= f2fs_write_node_pages, | 
 | 	.set_page_dirty	= f2fs_set_node_page_dirty, | 
 | 	.invalidatepage	= f2fs_invalidate_page, | 
 | 	.releasepage	= f2fs_release_page, | 
 | #ifdef CONFIG_MIGRATION | 
 | 	.migratepage    = f2fs_migrate_page, | 
 | #endif | 
 | }; | 
 |  | 
 | static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i, | 
 | 						nid_t n) | 
 | { | 
 | 	return radix_tree_lookup(&nm_i->free_nid_root, n); | 
 | } | 
 |  | 
 | static int __insert_free_nid(struct f2fs_sb_info *sbi, | 
 | 			struct free_nid *i, enum nid_state state) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 |  | 
 | 	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	f2fs_bug_on(sbi, state != i->state); | 
 | 	nm_i->nid_cnt[state]++; | 
 | 	if (state == FREE_NID) | 
 | 		list_add_tail(&i->list, &nm_i->free_nid_list); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __remove_free_nid(struct f2fs_sb_info *sbi, | 
 | 			struct free_nid *i, enum nid_state state) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 |  | 
 | 	f2fs_bug_on(sbi, state != i->state); | 
 | 	nm_i->nid_cnt[state]--; | 
 | 	if (state == FREE_NID) | 
 | 		list_del(&i->list); | 
 | 	radix_tree_delete(&nm_i->free_nid_root, i->nid); | 
 | } | 
 |  | 
 | static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i, | 
 | 			enum nid_state org_state, enum nid_state dst_state) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 |  | 
 | 	f2fs_bug_on(sbi, org_state != i->state); | 
 | 	i->state = dst_state; | 
 | 	nm_i->nid_cnt[org_state]--; | 
 | 	nm_i->nid_cnt[dst_state]++; | 
 |  | 
 | 	switch (dst_state) { | 
 | 	case PREALLOC_NID: | 
 | 		list_del(&i->list); | 
 | 		break; | 
 | 	case FREE_NID: | 
 | 		list_add_tail(&i->list, &nm_i->free_nid_list); | 
 | 		break; | 
 | 	default: | 
 | 		BUG_ON(1); | 
 | 	} | 
 | } | 
 |  | 
 | static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid, | 
 | 							bool set, bool build) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid); | 
 | 	unsigned int nid_ofs = nid - START_NID(nid); | 
 |  | 
 | 	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap)) | 
 | 		return; | 
 |  | 
 | 	if (set) { | 
 | 		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) | 
 | 			return; | 
 | 		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); | 
 | 		nm_i->free_nid_count[nat_ofs]++; | 
 | 	} else { | 
 | 		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs])) | 
 | 			return; | 
 | 		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]); | 
 | 		if (!build) | 
 | 			nm_i->free_nid_count[nat_ofs]--; | 
 | 	} | 
 | } | 
 |  | 
 | /* return if the nid is recognized as free */ | 
 | static bool add_free_nid(struct f2fs_sb_info *sbi, | 
 | 				nid_t nid, bool build, bool update) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct free_nid *i, *e; | 
 | 	struct nat_entry *ne; | 
 | 	int err = -EINVAL; | 
 | 	bool ret = false; | 
 |  | 
 | 	/* 0 nid should not be used */ | 
 | 	if (unlikely(nid == 0)) | 
 | 		return false; | 
 |  | 
 | 	if (unlikely(f2fs_check_nid_range(sbi, nid))) | 
 | 		return false; | 
 |  | 
 | 	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS); | 
 | 	i->nid = nid; | 
 | 	i->state = FREE_NID; | 
 |  | 
 | 	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL); | 
 |  | 
 | 	spin_lock(&nm_i->nid_list_lock); | 
 |  | 
 | 	if (build) { | 
 | 		/* | 
 | 		 *   Thread A             Thread B | 
 | 		 *  - f2fs_create | 
 | 		 *   - f2fs_new_inode | 
 | 		 *    - f2fs_alloc_nid | 
 | 		 *     - __insert_nid_to_list(PREALLOC_NID) | 
 | 		 *                     - f2fs_balance_fs_bg | 
 | 		 *                      - f2fs_build_free_nids | 
 | 		 *                       - __f2fs_build_free_nids | 
 | 		 *                        - scan_nat_page | 
 | 		 *                         - add_free_nid | 
 | 		 *                          - __lookup_nat_cache | 
 | 		 *  - f2fs_add_link | 
 | 		 *   - f2fs_init_inode_metadata | 
 | 		 *    - f2fs_new_inode_page | 
 | 		 *     - f2fs_new_node_page | 
 | 		 *      - set_node_addr | 
 | 		 *  - f2fs_alloc_nid_done | 
 | 		 *   - __remove_nid_from_list(PREALLOC_NID) | 
 | 		 *                         - __insert_nid_to_list(FREE_NID) | 
 | 		 */ | 
 | 		ne = __lookup_nat_cache(nm_i, nid); | 
 | 		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) || | 
 | 				nat_get_blkaddr(ne) != NULL_ADDR)) | 
 | 			goto err_out; | 
 |  | 
 | 		e = __lookup_free_nid_list(nm_i, nid); | 
 | 		if (e) { | 
 | 			if (e->state == FREE_NID) | 
 | 				ret = true; | 
 | 			goto err_out; | 
 | 		} | 
 | 	} | 
 | 	ret = true; | 
 | 	err = __insert_free_nid(sbi, i, FREE_NID); | 
 | err_out: | 
 | 	if (update) { | 
 | 		update_free_nid_bitmap(sbi, nid, ret, build); | 
 | 		if (!build) | 
 | 			nm_i->available_nids++; | 
 | 	} | 
 | 	spin_unlock(&nm_i->nid_list_lock); | 
 | 	radix_tree_preload_end(); | 
 |  | 
 | 	if (err) | 
 | 		kmem_cache_free(free_nid_slab, i); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct free_nid *i; | 
 | 	bool need_free = false; | 
 |  | 
 | 	spin_lock(&nm_i->nid_list_lock); | 
 | 	i = __lookup_free_nid_list(nm_i, nid); | 
 | 	if (i && i->state == FREE_NID) { | 
 | 		__remove_free_nid(sbi, i, FREE_NID); | 
 | 		need_free = true; | 
 | 	} | 
 | 	spin_unlock(&nm_i->nid_list_lock); | 
 |  | 
 | 	if (need_free) | 
 | 		kmem_cache_free(free_nid_slab, i); | 
 | } | 
 |  | 
 | static int scan_nat_page(struct f2fs_sb_info *sbi, | 
 | 			struct page *nat_page, nid_t start_nid) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct f2fs_nat_block *nat_blk = page_address(nat_page); | 
 | 	block_t blk_addr; | 
 | 	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid); | 
 | 	int i; | 
 |  | 
 | 	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap); | 
 |  | 
 | 	i = start_nid % NAT_ENTRY_PER_BLOCK; | 
 |  | 
 | 	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) { | 
 | 		if (unlikely(start_nid >= nm_i->max_nid)) | 
 | 			break; | 
 |  | 
 | 		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr); | 
 |  | 
 | 		if (blk_addr == NEW_ADDR) | 
 | 			return -EINVAL; | 
 |  | 
 | 		if (blk_addr == NULL_ADDR) { | 
 | 			add_free_nid(sbi, start_nid, true, true); | 
 | 		} else { | 
 | 			spin_lock(&NM_I(sbi)->nid_list_lock); | 
 | 			update_free_nid_bitmap(sbi, start_nid, false, true); | 
 | 			spin_unlock(&NM_I(sbi)->nid_list_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scan_curseg_cache(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
 | 	struct f2fs_journal *journal = curseg->journal; | 
 | 	int i; | 
 |  | 
 | 	down_read(&curseg->journal_rwsem); | 
 | 	for (i = 0; i < nats_in_cursum(journal); i++) { | 
 | 		block_t addr; | 
 | 		nid_t nid; | 
 |  | 
 | 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr); | 
 | 		nid = le32_to_cpu(nid_in_journal(journal, i)); | 
 | 		if (addr == NULL_ADDR) | 
 | 			add_free_nid(sbi, nid, true, false); | 
 | 		else | 
 | 			remove_free_nid(sbi, nid); | 
 | 	} | 
 | 	up_read(&curseg->journal_rwsem); | 
 | } | 
 |  | 
 | static void scan_free_nid_bits(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	unsigned int i, idx; | 
 | 	nid_t nid; | 
 |  | 
 | 	down_read(&nm_i->nat_tree_lock); | 
 |  | 
 | 	for (i = 0; i < nm_i->nat_blocks; i++) { | 
 | 		if (!test_bit_le(i, nm_i->nat_block_bitmap)) | 
 | 			continue; | 
 | 		if (!nm_i->free_nid_count[i]) | 
 | 			continue; | 
 | 		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) { | 
 | 			idx = find_next_bit_le(nm_i->free_nid_bitmap[i], | 
 | 						NAT_ENTRY_PER_BLOCK, idx); | 
 | 			if (idx >= NAT_ENTRY_PER_BLOCK) | 
 | 				break; | 
 |  | 
 | 			nid = i * NAT_ENTRY_PER_BLOCK + idx; | 
 | 			add_free_nid(sbi, nid, true, false); | 
 |  | 
 | 			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	scan_curseg_cache(sbi); | 
 |  | 
 | 	up_read(&nm_i->nat_tree_lock); | 
 | } | 
 |  | 
 | static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi, | 
 | 						bool sync, bool mount) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	int i = 0, ret; | 
 | 	nid_t nid = nm_i->next_scan_nid; | 
 |  | 
 | 	if (unlikely(nid >= nm_i->max_nid)) | 
 | 		nid = 0; | 
 |  | 
 | 	/* Enough entries */ | 
 | 	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) | 
 | 		return 0; | 
 |  | 
 | 	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS)) | 
 | 		return 0; | 
 |  | 
 | 	if (!mount) { | 
 | 		/* try to find free nids in free_nid_bitmap */ | 
 | 		scan_free_nid_bits(sbi); | 
 |  | 
 | 		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* readahead nat pages to be scanned */ | 
 | 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, | 
 | 							META_NAT, true); | 
 |  | 
 | 	down_read(&nm_i->nat_tree_lock); | 
 |  | 
 | 	while (1) { | 
 | 		if (!test_bit_le(NAT_BLOCK_OFFSET(nid), | 
 | 						nm_i->nat_block_bitmap)) { | 
 | 			struct page *page = get_current_nat_page(sbi, nid); | 
 |  | 
 | 			if (IS_ERR(page)) { | 
 | 				ret = PTR_ERR(page); | 
 | 			} else { | 
 | 				ret = scan_nat_page(sbi, page, nid); | 
 | 				f2fs_put_page(page, 1); | 
 | 			} | 
 |  | 
 | 			if (ret) { | 
 | 				up_read(&nm_i->nat_tree_lock); | 
 | 				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it"); | 
 | 				return ret; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK)); | 
 | 		if (unlikely(nid >= nm_i->max_nid)) | 
 | 			nid = 0; | 
 |  | 
 | 		if (++i >= FREE_NID_PAGES) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* go to the next free nat pages to find free nids abundantly */ | 
 | 	nm_i->next_scan_nid = nid; | 
 |  | 
 | 	/* find free nids from current sum_pages */ | 
 | 	scan_curseg_cache(sbi); | 
 |  | 
 | 	up_read(&nm_i->nat_tree_lock); | 
 |  | 
 | 	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid), | 
 | 					nm_i->ra_nid_pages, META_NAT, false); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&NM_I(sbi)->build_lock); | 
 | 	ret = __f2fs_build_free_nids(sbi, sync, mount); | 
 | 	mutex_unlock(&NM_I(sbi)->build_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * If this function returns success, caller can obtain a new nid | 
 |  * from second parameter of this function. | 
 |  * The returned nid could be used ino as well as nid when inode is created. | 
 |  */ | 
 | bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct free_nid *i = NULL; | 
 | retry: | 
 | 	if (time_to_inject(sbi, FAULT_ALLOC_NID)) { | 
 | 		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	spin_lock(&nm_i->nid_list_lock); | 
 |  | 
 | 	if (unlikely(nm_i->available_nids == 0)) { | 
 | 		spin_unlock(&nm_i->nid_list_lock); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	/* We should not use stale free nids created by f2fs_build_free_nids */ | 
 | 	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) { | 
 | 		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list)); | 
 | 		i = list_first_entry(&nm_i->free_nid_list, | 
 | 					struct free_nid, list); | 
 | 		*nid = i->nid; | 
 |  | 
 | 		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID); | 
 | 		nm_i->available_nids--; | 
 |  | 
 | 		update_free_nid_bitmap(sbi, *nid, false, false); | 
 |  | 
 | 		spin_unlock(&nm_i->nid_list_lock); | 
 | 		return true; | 
 | 	} | 
 | 	spin_unlock(&nm_i->nid_list_lock); | 
 |  | 
 | 	/* Let's scan nat pages and its caches to get free nids */ | 
 | 	if (!f2fs_build_free_nids(sbi, true, false)) | 
 | 		goto retry; | 
 | 	return false; | 
 | } | 
 |  | 
 | /* | 
 |  * f2fs_alloc_nid() should be called prior to this function. | 
 |  */ | 
 | void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct free_nid *i; | 
 |  | 
 | 	spin_lock(&nm_i->nid_list_lock); | 
 | 	i = __lookup_free_nid_list(nm_i, nid); | 
 | 	f2fs_bug_on(sbi, !i); | 
 | 	__remove_free_nid(sbi, i, PREALLOC_NID); | 
 | 	spin_unlock(&nm_i->nid_list_lock); | 
 |  | 
 | 	kmem_cache_free(free_nid_slab, i); | 
 | } | 
 |  | 
 | /* | 
 |  * f2fs_alloc_nid() should be called prior to this function. | 
 |  */ | 
 | void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct free_nid *i; | 
 | 	bool need_free = false; | 
 |  | 
 | 	if (!nid) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&nm_i->nid_list_lock); | 
 | 	i = __lookup_free_nid_list(nm_i, nid); | 
 | 	f2fs_bug_on(sbi, !i); | 
 |  | 
 | 	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) { | 
 | 		__remove_free_nid(sbi, i, PREALLOC_NID); | 
 | 		need_free = true; | 
 | 	} else { | 
 | 		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID); | 
 | 	} | 
 |  | 
 | 	nm_i->available_nids++; | 
 |  | 
 | 	update_free_nid_bitmap(sbi, nid, true, false); | 
 |  | 
 | 	spin_unlock(&nm_i->nid_list_lock); | 
 |  | 
 | 	if (need_free) | 
 | 		kmem_cache_free(free_nid_slab, i); | 
 | } | 
 |  | 
 | int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct free_nid *i, *next; | 
 | 	int nr = nr_shrink; | 
 |  | 
 | 	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) | 
 | 		return 0; | 
 |  | 
 | 	if (!mutex_trylock(&nm_i->build_lock)) | 
 | 		return 0; | 
 |  | 
 | 	spin_lock(&nm_i->nid_list_lock); | 
 | 	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) { | 
 | 		if (nr_shrink <= 0 || | 
 | 				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS) | 
 | 			break; | 
 |  | 
 | 		__remove_free_nid(sbi, i, FREE_NID); | 
 | 		kmem_cache_free(free_nid_slab, i); | 
 | 		nr_shrink--; | 
 | 	} | 
 | 	spin_unlock(&nm_i->nid_list_lock); | 
 | 	mutex_unlock(&nm_i->build_lock); | 
 |  | 
 | 	return nr - nr_shrink; | 
 | } | 
 |  | 
 | void f2fs_recover_inline_xattr(struct inode *inode, struct page *page) | 
 | { | 
 | 	void *src_addr, *dst_addr; | 
 | 	size_t inline_size; | 
 | 	struct page *ipage; | 
 | 	struct f2fs_inode *ri; | 
 |  | 
 | 	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino); | 
 | 	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage)); | 
 |  | 
 | 	ri = F2FS_INODE(page); | 
 | 	if (ri->i_inline & F2FS_INLINE_XATTR) { | 
 | 		set_inode_flag(inode, FI_INLINE_XATTR); | 
 | 	} else { | 
 | 		clear_inode_flag(inode, FI_INLINE_XATTR); | 
 | 		goto update_inode; | 
 | 	} | 
 |  | 
 | 	dst_addr = inline_xattr_addr(inode, ipage); | 
 | 	src_addr = inline_xattr_addr(inode, page); | 
 | 	inline_size = inline_xattr_size(inode); | 
 |  | 
 | 	f2fs_wait_on_page_writeback(ipage, NODE, true, true); | 
 | 	memcpy(dst_addr, src_addr, inline_size); | 
 | update_inode: | 
 | 	f2fs_update_inode(inode, ipage); | 
 | 	f2fs_put_page(ipage, 1); | 
 | } | 
 |  | 
 | int f2fs_recover_xattr_data(struct inode *inode, struct page *page) | 
 | { | 
 | 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode); | 
 | 	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid; | 
 | 	nid_t new_xnid; | 
 | 	struct dnode_of_data dn; | 
 | 	struct node_info ni; | 
 | 	struct page *xpage; | 
 | 	int err; | 
 |  | 
 | 	if (!prev_xnid) | 
 | 		goto recover_xnid; | 
 |  | 
 | 	/* 1: invalidate the previous xattr nid */ | 
 | 	err = f2fs_get_node_info(sbi, prev_xnid, &ni); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	f2fs_invalidate_blocks(sbi, ni.blk_addr); | 
 | 	dec_valid_node_count(sbi, inode, false); | 
 | 	set_node_addr(sbi, &ni, NULL_ADDR, false); | 
 |  | 
 | recover_xnid: | 
 | 	/* 2: update xattr nid in inode */ | 
 | 	if (!f2fs_alloc_nid(sbi, &new_xnid)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	set_new_dnode(&dn, inode, NULL, NULL, new_xnid); | 
 | 	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); | 
 | 	if (IS_ERR(xpage)) { | 
 | 		f2fs_alloc_nid_failed(sbi, new_xnid); | 
 | 		return PTR_ERR(xpage); | 
 | 	} | 
 |  | 
 | 	f2fs_alloc_nid_done(sbi, new_xnid); | 
 | 	f2fs_update_inode_page(inode); | 
 |  | 
 | 	/* 3: update and set xattr node page dirty */ | 
 | 	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE); | 
 |  | 
 | 	set_page_dirty(xpage); | 
 | 	f2fs_put_page(xpage, 1); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page) | 
 | { | 
 | 	struct f2fs_inode *src, *dst; | 
 | 	nid_t ino = ino_of_node(page); | 
 | 	struct node_info old_ni, new_ni; | 
 | 	struct page *ipage; | 
 | 	int err; | 
 |  | 
 | 	err = f2fs_get_node_info(sbi, ino, &old_ni); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (unlikely(old_ni.blk_addr != NULL_ADDR)) | 
 | 		return -EINVAL; | 
 | retry: | 
 | 	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false); | 
 | 	if (!ipage) { | 
 | 		congestion_wait(BLK_RW_ASYNC, HZ/50); | 
 | 		goto retry; | 
 | 	} | 
 |  | 
 | 	/* Should not use this inode from free nid list */ | 
 | 	remove_free_nid(sbi, ino); | 
 |  | 
 | 	if (!PageUptodate(ipage)) | 
 | 		SetPageUptodate(ipage); | 
 | 	fill_node_footer(ipage, ino, ino, 0, true); | 
 | 	set_cold_node(ipage, false); | 
 |  | 
 | 	src = F2FS_INODE(page); | 
 | 	dst = F2FS_INODE(ipage); | 
 |  | 
 | 	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src); | 
 | 	dst->i_size = 0; | 
 | 	dst->i_blocks = cpu_to_le64(1); | 
 | 	dst->i_links = cpu_to_le32(1); | 
 | 	dst->i_xattr_nid = 0; | 
 | 	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR); | 
 | 	if (dst->i_inline & F2FS_EXTRA_ATTR) { | 
 | 		dst->i_extra_isize = src->i_extra_isize; | 
 |  | 
 | 		if (f2fs_sb_has_flexible_inline_xattr(sbi) && | 
 | 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), | 
 | 							i_inline_xattr_size)) | 
 | 			dst->i_inline_xattr_size = src->i_inline_xattr_size; | 
 |  | 
 | 		if (f2fs_sb_has_project_quota(sbi) && | 
 | 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), | 
 | 								i_projid)) | 
 | 			dst->i_projid = src->i_projid; | 
 |  | 
 | 		if (f2fs_sb_has_inode_crtime(sbi) && | 
 | 			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize), | 
 | 							i_crtime_nsec)) { | 
 | 			dst->i_crtime = src->i_crtime; | 
 | 			dst->i_crtime_nsec = src->i_crtime_nsec; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	new_ni = old_ni; | 
 | 	new_ni.ino = ino; | 
 |  | 
 | 	if (unlikely(inc_valid_node_count(sbi, NULL, true))) | 
 | 		WARN_ON(1); | 
 | 	set_node_addr(sbi, &new_ni, NEW_ADDR, false); | 
 | 	inc_valid_inode_count(sbi); | 
 | 	set_page_dirty(ipage); | 
 | 	f2fs_put_page(ipage, 1); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int f2fs_restore_node_summary(struct f2fs_sb_info *sbi, | 
 | 			unsigned int segno, struct f2fs_summary_block *sum) | 
 | { | 
 | 	struct f2fs_node *rn; | 
 | 	struct f2fs_summary *sum_entry; | 
 | 	block_t addr; | 
 | 	int i, idx, last_offset, nrpages; | 
 |  | 
 | 	/* scan the node segment */ | 
 | 	last_offset = sbi->blocks_per_seg; | 
 | 	addr = START_BLOCK(sbi, segno); | 
 | 	sum_entry = &sum->entries[0]; | 
 |  | 
 | 	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) { | 
 | 		nrpages = min(last_offset - i, BIO_MAX_PAGES); | 
 |  | 
 | 		/* readahead node pages */ | 
 | 		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true); | 
 |  | 
 | 		for (idx = addr; idx < addr + nrpages; idx++) { | 
 | 			struct page *page = f2fs_get_tmp_page(sbi, idx); | 
 |  | 
 | 			if (IS_ERR(page)) | 
 | 				return PTR_ERR(page); | 
 |  | 
 | 			rn = F2FS_NODE(page); | 
 | 			sum_entry->nid = rn->footer.nid; | 
 | 			sum_entry->version = 0; | 
 | 			sum_entry->ofs_in_node = 0; | 
 | 			sum_entry++; | 
 | 			f2fs_put_page(page, 1); | 
 | 		} | 
 |  | 
 | 		invalidate_mapping_pages(META_MAPPING(sbi), addr, | 
 | 							addr + nrpages); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void remove_nats_in_journal(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
 | 	struct f2fs_journal *journal = curseg->journal; | 
 | 	int i; | 
 |  | 
 | 	down_write(&curseg->journal_rwsem); | 
 | 	for (i = 0; i < nats_in_cursum(journal); i++) { | 
 | 		struct nat_entry *ne; | 
 | 		struct f2fs_nat_entry raw_ne; | 
 | 		nid_t nid = le32_to_cpu(nid_in_journal(journal, i)); | 
 |  | 
 | 		raw_ne = nat_in_journal(journal, i); | 
 |  | 
 | 		ne = __lookup_nat_cache(nm_i, nid); | 
 | 		if (!ne) { | 
 | 			ne = __alloc_nat_entry(nid, true); | 
 | 			__init_nat_entry(nm_i, ne, &raw_ne, true); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * if a free nat in journal has not been used after last | 
 | 		 * checkpoint, we should remove it from available nids, | 
 | 		 * since later we will add it again. | 
 | 		 */ | 
 | 		if (!get_nat_flag(ne, IS_DIRTY) && | 
 | 				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) { | 
 | 			spin_lock(&nm_i->nid_list_lock); | 
 | 			nm_i->available_nids--; | 
 | 			spin_unlock(&nm_i->nid_list_lock); | 
 | 		} | 
 |  | 
 | 		__set_nat_cache_dirty(nm_i, ne); | 
 | 	} | 
 | 	update_nats_in_cursum(journal, -i); | 
 | 	up_write(&curseg->journal_rwsem); | 
 | } | 
 |  | 
 | static void __adjust_nat_entry_set(struct nat_entry_set *nes, | 
 | 						struct list_head *head, int max) | 
 | { | 
 | 	struct nat_entry_set *cur; | 
 |  | 
 | 	if (nes->entry_cnt >= max) | 
 | 		goto add_out; | 
 |  | 
 | 	list_for_each_entry(cur, head, set_list) { | 
 | 		if (cur->entry_cnt >= nes->entry_cnt) { | 
 | 			list_add(&nes->set_list, cur->set_list.prev); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | add_out: | 
 | 	list_add_tail(&nes->set_list, head); | 
 | } | 
 |  | 
 | static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid, | 
 | 						struct page *page) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK; | 
 | 	struct f2fs_nat_block *nat_blk = page_address(page); | 
 | 	int valid = 0; | 
 | 	int i = 0; | 
 |  | 
 | 	if (!enabled_nat_bits(sbi, NULL)) | 
 | 		return; | 
 |  | 
 | 	if (nat_index == 0) { | 
 | 		valid = 1; | 
 | 		i = 1; | 
 | 	} | 
 | 	for (; i < NAT_ENTRY_PER_BLOCK; i++) { | 
 | 		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR) | 
 | 			valid++; | 
 | 	} | 
 | 	if (valid == 0) { | 
 | 		__set_bit_le(nat_index, nm_i->empty_nat_bits); | 
 | 		__clear_bit_le(nat_index, nm_i->full_nat_bits); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	__clear_bit_le(nat_index, nm_i->empty_nat_bits); | 
 | 	if (valid == NAT_ENTRY_PER_BLOCK) | 
 | 		__set_bit_le(nat_index, nm_i->full_nat_bits); | 
 | 	else | 
 | 		__clear_bit_le(nat_index, nm_i->full_nat_bits); | 
 | } | 
 |  | 
 | static int __flush_nat_entry_set(struct f2fs_sb_info *sbi, | 
 | 		struct nat_entry_set *set, struct cp_control *cpc) | 
 | { | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
 | 	struct f2fs_journal *journal = curseg->journal; | 
 | 	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK; | 
 | 	bool to_journal = true; | 
 | 	struct f2fs_nat_block *nat_blk; | 
 | 	struct nat_entry *ne, *cur; | 
 | 	struct page *page = NULL; | 
 |  | 
 | 	/* | 
 | 	 * there are two steps to flush nat entries: | 
 | 	 * #1, flush nat entries to journal in current hot data summary block. | 
 | 	 * #2, flush nat entries to nat page. | 
 | 	 */ | 
 | 	if (enabled_nat_bits(sbi, cpc) || | 
 | 		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL)) | 
 | 		to_journal = false; | 
 |  | 
 | 	if (to_journal) { | 
 | 		down_write(&curseg->journal_rwsem); | 
 | 	} else { | 
 | 		page = get_next_nat_page(sbi, start_nid); | 
 | 		if (IS_ERR(page)) | 
 | 			return PTR_ERR(page); | 
 |  | 
 | 		nat_blk = page_address(page); | 
 | 		f2fs_bug_on(sbi, !nat_blk); | 
 | 	} | 
 |  | 
 | 	/* flush dirty nats in nat entry set */ | 
 | 	list_for_each_entry_safe(ne, cur, &set->entry_list, list) { | 
 | 		struct f2fs_nat_entry *raw_ne; | 
 | 		nid_t nid = nat_get_nid(ne); | 
 | 		int offset; | 
 |  | 
 | 		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR); | 
 |  | 
 | 		if (to_journal) { | 
 | 			offset = f2fs_lookup_journal_in_cursum(journal, | 
 | 							NAT_JOURNAL, nid, 1); | 
 | 			f2fs_bug_on(sbi, offset < 0); | 
 | 			raw_ne = &nat_in_journal(journal, offset); | 
 | 			nid_in_journal(journal, offset) = cpu_to_le32(nid); | 
 | 		} else { | 
 | 			raw_ne = &nat_blk->entries[nid - start_nid]; | 
 | 		} | 
 | 		raw_nat_from_node_info(raw_ne, &ne->ni); | 
 | 		nat_reset_flag(ne); | 
 | 		__clear_nat_cache_dirty(NM_I(sbi), set, ne); | 
 | 		if (nat_get_blkaddr(ne) == NULL_ADDR) { | 
 | 			add_free_nid(sbi, nid, false, true); | 
 | 		} else { | 
 | 			spin_lock(&NM_I(sbi)->nid_list_lock); | 
 | 			update_free_nid_bitmap(sbi, nid, false, false); | 
 | 			spin_unlock(&NM_I(sbi)->nid_list_lock); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (to_journal) { | 
 | 		up_write(&curseg->journal_rwsem); | 
 | 	} else { | 
 | 		__update_nat_bits(sbi, start_nid, page); | 
 | 		f2fs_put_page(page, 1); | 
 | 	} | 
 |  | 
 | 	/* Allow dirty nats by node block allocation in write_begin */ | 
 | 	if (!set->entry_cnt) { | 
 | 		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set); | 
 | 		kmem_cache_free(nat_entry_set_slab, set); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This function is called during the checkpointing process. | 
 |  */ | 
 | int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA); | 
 | 	struct f2fs_journal *journal = curseg->journal; | 
 | 	struct nat_entry_set *setvec[SETVEC_SIZE]; | 
 | 	struct nat_entry_set *set, *tmp; | 
 | 	unsigned int found; | 
 | 	nid_t set_idx = 0; | 
 | 	LIST_HEAD(sets); | 
 | 	int err = 0; | 
 |  | 
 | 	/* during unmount, let's flush nat_bits before checking dirty_nat_cnt */ | 
 | 	if (enabled_nat_bits(sbi, cpc)) { | 
 | 		down_write(&nm_i->nat_tree_lock); | 
 | 		remove_nats_in_journal(sbi); | 
 | 		up_write(&nm_i->nat_tree_lock); | 
 | 	} | 
 |  | 
 | 	if (!nm_i->dirty_nat_cnt) | 
 | 		return 0; | 
 |  | 
 | 	down_write(&nm_i->nat_tree_lock); | 
 |  | 
 | 	/* | 
 | 	 * if there are no enough space in journal to store dirty nat | 
 | 	 * entries, remove all entries from journal and merge them | 
 | 	 * into nat entry set. | 
 | 	 */ | 
 | 	if (enabled_nat_bits(sbi, cpc) || | 
 | 		!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL)) | 
 | 		remove_nats_in_journal(sbi); | 
 |  | 
 | 	while ((found = __gang_lookup_nat_set(nm_i, | 
 | 					set_idx, SETVEC_SIZE, setvec))) { | 
 | 		unsigned idx; | 
 | 		set_idx = setvec[found - 1]->set + 1; | 
 | 		for (idx = 0; idx < found; idx++) | 
 | 			__adjust_nat_entry_set(setvec[idx], &sets, | 
 | 						MAX_NAT_JENTRIES(journal)); | 
 | 	} | 
 |  | 
 | 	/* flush dirty nats in nat entry set */ | 
 | 	list_for_each_entry_safe(set, tmp, &sets, set_list) { | 
 | 		err = __flush_nat_entry_set(sbi, set, cpc); | 
 | 		if (err) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	up_write(&nm_i->nat_tree_lock); | 
 | 	/* Allow dirty nats by node block allocation in write_begin */ | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int __get_nat_bitmaps(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE; | 
 | 	unsigned int i; | 
 | 	__u64 cp_ver = cur_cp_version(ckpt); | 
 | 	block_t nat_bits_addr; | 
 |  | 
 | 	if (!enabled_nat_bits(sbi, NULL)) | 
 | 		return 0; | 
 |  | 
 | 	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); | 
 | 	nm_i->nat_bits = f2fs_kzalloc(sbi, | 
 | 			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL); | 
 | 	if (!nm_i->nat_bits) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg - | 
 | 						nm_i->nat_bits_blocks; | 
 | 	for (i = 0; i < nm_i->nat_bits_blocks; i++) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = f2fs_get_meta_page(sbi, nat_bits_addr++); | 
 | 		if (IS_ERR(page)) | 
 | 			return PTR_ERR(page); | 
 |  | 
 | 		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS), | 
 | 					page_address(page), F2FS_BLKSIZE); | 
 | 		f2fs_put_page(page, 1); | 
 | 	} | 
 |  | 
 | 	cp_ver |= (cur_cp_crc(ckpt) << 32); | 
 | 	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) { | 
 | 		disable_nat_bits(sbi, true); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	nm_i->full_nat_bits = nm_i->nat_bits + 8; | 
 | 	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes; | 
 |  | 
 | 	f2fs_notice(sbi, "Found nat_bits in checkpoint"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	unsigned int i = 0; | 
 | 	nid_t nid, last_nid; | 
 |  | 
 | 	if (!enabled_nat_bits(sbi, NULL)) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < nm_i->nat_blocks; i++) { | 
 | 		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i); | 
 | 		if (i >= nm_i->nat_blocks) | 
 | 			break; | 
 |  | 
 | 		__set_bit_le(i, nm_i->nat_block_bitmap); | 
 |  | 
 | 		nid = i * NAT_ENTRY_PER_BLOCK; | 
 | 		last_nid = nid + NAT_ENTRY_PER_BLOCK; | 
 |  | 
 | 		spin_lock(&NM_I(sbi)->nid_list_lock); | 
 | 		for (; nid < last_nid; nid++) | 
 | 			update_free_nid_bitmap(sbi, nid, true, true); | 
 | 		spin_unlock(&NM_I(sbi)->nid_list_lock); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < nm_i->nat_blocks; i++) { | 
 | 		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i); | 
 | 		if (i >= nm_i->nat_blocks) | 
 | 			break; | 
 |  | 
 | 		__set_bit_le(i, nm_i->nat_block_bitmap); | 
 | 	} | 
 | } | 
 |  | 
 | static int init_node_manager(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi); | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	unsigned char *version_bitmap; | 
 | 	unsigned int nat_segs; | 
 | 	int err; | 
 |  | 
 | 	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr); | 
 |  | 
 | 	/* segment_count_nat includes pair segment so divide to 2. */ | 
 | 	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1; | 
 | 	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg); | 
 | 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks; | 
 |  | 
 | 	/* not used nids: 0, node, meta, (and root counted as valid node) */ | 
 | 	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count - | 
 | 						F2FS_RESERVED_NODE_NUM; | 
 | 	nm_i->nid_cnt[FREE_NID] = 0; | 
 | 	nm_i->nid_cnt[PREALLOC_NID] = 0; | 
 | 	nm_i->nat_cnt = 0; | 
 | 	nm_i->ram_thresh = DEF_RAM_THRESHOLD; | 
 | 	nm_i->ra_nid_pages = DEF_RA_NID_PAGES; | 
 | 	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD; | 
 |  | 
 | 	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC); | 
 | 	INIT_LIST_HEAD(&nm_i->free_nid_list); | 
 | 	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO); | 
 | 	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO); | 
 | 	INIT_LIST_HEAD(&nm_i->nat_entries); | 
 | 	spin_lock_init(&nm_i->nat_list_lock); | 
 |  | 
 | 	mutex_init(&nm_i->build_lock); | 
 | 	spin_lock_init(&nm_i->nid_list_lock); | 
 | 	init_rwsem(&nm_i->nat_tree_lock); | 
 |  | 
 | 	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid); | 
 | 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP); | 
 | 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP); | 
 | 	if (!version_bitmap) | 
 | 		return -EFAULT; | 
 |  | 
 | 	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size, | 
 | 					GFP_KERNEL); | 
 | 	if (!nm_i->nat_bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = __get_nat_bitmaps(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size, | 
 | 					GFP_KERNEL); | 
 | 	if (!nm_i->nat_bitmap_mir) | 
 | 		return -ENOMEM; | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int init_free_nid_cache(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	int i; | 
 |  | 
 | 	nm_i->free_nid_bitmap = | 
 | 		f2fs_kzalloc(sbi, array_size(sizeof(unsigned char *), | 
 | 					     nm_i->nat_blocks), | 
 | 			     GFP_KERNEL); | 
 | 	if (!nm_i->free_nid_bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	for (i = 0; i < nm_i->nat_blocks; i++) { | 
 | 		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi, | 
 | 			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL); | 
 | 		if (!nm_i->free_nid_bitmap[i]) | 
 | 			return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8, | 
 | 								GFP_KERNEL); | 
 | 	if (!nm_i->nat_block_bitmap) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	nm_i->free_nid_count = | 
 | 		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short), | 
 | 					      nm_i->nat_blocks), | 
 | 			      GFP_KERNEL); | 
 | 	if (!nm_i->free_nid_count) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int f2fs_build_node_manager(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info), | 
 | 							GFP_KERNEL); | 
 | 	if (!sbi->nm_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	err = init_node_manager(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	err = init_free_nid_cache(sbi); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	/* load free nid status from nat_bits table */ | 
 | 	load_free_nid_bitmap(sbi); | 
 |  | 
 | 	return f2fs_build_free_nids(sbi, true, true); | 
 | } | 
 |  | 
 | void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi) | 
 | { | 
 | 	struct f2fs_nm_info *nm_i = NM_I(sbi); | 
 | 	struct free_nid *i, *next_i; | 
 | 	struct nat_entry *natvec[NATVEC_SIZE]; | 
 | 	struct nat_entry_set *setvec[SETVEC_SIZE]; | 
 | 	nid_t nid = 0; | 
 | 	unsigned int found; | 
 |  | 
 | 	if (!nm_i) | 
 | 		return; | 
 |  | 
 | 	/* destroy free nid list */ | 
 | 	spin_lock(&nm_i->nid_list_lock); | 
 | 	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) { | 
 | 		__remove_free_nid(sbi, i, FREE_NID); | 
 | 		spin_unlock(&nm_i->nid_list_lock); | 
 | 		kmem_cache_free(free_nid_slab, i); | 
 | 		spin_lock(&nm_i->nid_list_lock); | 
 | 	} | 
 | 	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]); | 
 | 	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]); | 
 | 	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list)); | 
 | 	spin_unlock(&nm_i->nid_list_lock); | 
 |  | 
 | 	/* destroy nat cache */ | 
 | 	down_write(&nm_i->nat_tree_lock); | 
 | 	while ((found = __gang_lookup_nat_cache(nm_i, | 
 | 					nid, NATVEC_SIZE, natvec))) { | 
 | 		unsigned idx; | 
 |  | 
 | 		nid = nat_get_nid(natvec[found - 1]) + 1; | 
 | 		for (idx = 0; idx < found; idx++) { | 
 | 			spin_lock(&nm_i->nat_list_lock); | 
 | 			list_del(&natvec[idx]->list); | 
 | 			spin_unlock(&nm_i->nat_list_lock); | 
 |  | 
 | 			__del_from_nat_cache(nm_i, natvec[idx]); | 
 | 		} | 
 | 	} | 
 | 	f2fs_bug_on(sbi, nm_i->nat_cnt); | 
 |  | 
 | 	/* destroy nat set cache */ | 
 | 	nid = 0; | 
 | 	while ((found = __gang_lookup_nat_set(nm_i, | 
 | 					nid, SETVEC_SIZE, setvec))) { | 
 | 		unsigned idx; | 
 |  | 
 | 		nid = setvec[found - 1]->set + 1; | 
 | 		for (idx = 0; idx < found; idx++) { | 
 | 			/* entry_cnt is not zero, when cp_error was occurred */ | 
 | 			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list)); | 
 | 			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set); | 
 | 			kmem_cache_free(nat_entry_set_slab, setvec[idx]); | 
 | 		} | 
 | 	} | 
 | 	up_write(&nm_i->nat_tree_lock); | 
 |  | 
 | 	kvfree(nm_i->nat_block_bitmap); | 
 | 	if (nm_i->free_nid_bitmap) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < nm_i->nat_blocks; i++) | 
 | 			kvfree(nm_i->free_nid_bitmap[i]); | 
 | 		kvfree(nm_i->free_nid_bitmap); | 
 | 	} | 
 | 	kvfree(nm_i->free_nid_count); | 
 |  | 
 | 	kvfree(nm_i->nat_bitmap); | 
 | 	kvfree(nm_i->nat_bits); | 
 | #ifdef CONFIG_F2FS_CHECK_FS | 
 | 	kvfree(nm_i->nat_bitmap_mir); | 
 | #endif | 
 | 	sbi->nm_info = NULL; | 
 | 	kvfree(nm_i); | 
 | } | 
 |  | 
 | int __init f2fs_create_node_manager_caches(void) | 
 | { | 
 | 	nat_entry_slab = f2fs_kmem_cache_create("nat_entry", | 
 | 			sizeof(struct nat_entry)); | 
 | 	if (!nat_entry_slab) | 
 | 		goto fail; | 
 |  | 
 | 	free_nid_slab = f2fs_kmem_cache_create("free_nid", | 
 | 			sizeof(struct free_nid)); | 
 | 	if (!free_nid_slab) | 
 | 		goto destroy_nat_entry; | 
 |  | 
 | 	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set", | 
 | 			sizeof(struct nat_entry_set)); | 
 | 	if (!nat_entry_set_slab) | 
 | 		goto destroy_free_nid; | 
 |  | 
 | 	fsync_node_entry_slab = f2fs_kmem_cache_create("fsync_node_entry", | 
 | 			sizeof(struct fsync_node_entry)); | 
 | 	if (!fsync_node_entry_slab) | 
 | 		goto destroy_nat_entry_set; | 
 | 	return 0; | 
 |  | 
 | destroy_nat_entry_set: | 
 | 	kmem_cache_destroy(nat_entry_set_slab); | 
 | destroy_free_nid: | 
 | 	kmem_cache_destroy(free_nid_slab); | 
 | destroy_nat_entry: | 
 | 	kmem_cache_destroy(nat_entry_slab); | 
 | fail: | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | void f2fs_destroy_node_manager_caches(void) | 
 | { | 
 | 	kmem_cache_destroy(fsync_node_entry_slab); | 
 | 	kmem_cache_destroy(nat_entry_set_slab); | 
 | 	kmem_cache_destroy(free_nid_slab); | 
 | 	kmem_cache_destroy(nat_entry_slab); | 
 | } |