| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2012 Fusion-io  All rights reserved. | 
 |  * Copyright (C) 2012 Intel Corp. All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/raid/pq.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/list_sort.h> | 
 | #include <linux/raid/xor.h> | 
 | #include <linux/mm.h> | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "volumes.h" | 
 | #include "raid56.h" | 
 | #include "async-thread.h" | 
 |  | 
 | /* set when additional merges to this rbio are not allowed */ | 
 | #define RBIO_RMW_LOCKED_BIT	1 | 
 |  | 
 | /* | 
 |  * set when this rbio is sitting in the hash, but it is just a cache | 
 |  * of past RMW | 
 |  */ | 
 | #define RBIO_CACHE_BIT		2 | 
 |  | 
 | /* | 
 |  * set when it is safe to trust the stripe_pages for caching | 
 |  */ | 
 | #define RBIO_CACHE_READY_BIT	3 | 
 |  | 
 | #define RBIO_CACHE_SIZE 1024 | 
 |  | 
 | enum btrfs_rbio_ops { | 
 | 	BTRFS_RBIO_WRITE, | 
 | 	BTRFS_RBIO_READ_REBUILD, | 
 | 	BTRFS_RBIO_PARITY_SCRUB, | 
 | 	BTRFS_RBIO_REBUILD_MISSING, | 
 | }; | 
 |  | 
 | struct btrfs_raid_bio { | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_bio *bbio; | 
 |  | 
 | 	/* while we're doing rmw on a stripe | 
 | 	 * we put it into a hash table so we can | 
 | 	 * lock the stripe and merge more rbios | 
 | 	 * into it. | 
 | 	 */ | 
 | 	struct list_head hash_list; | 
 |  | 
 | 	/* | 
 | 	 * LRU list for the stripe cache | 
 | 	 */ | 
 | 	struct list_head stripe_cache; | 
 |  | 
 | 	/* | 
 | 	 * for scheduling work in the helper threads | 
 | 	 */ | 
 | 	struct btrfs_work work; | 
 |  | 
 | 	/* | 
 | 	 * bio list and bio_list_lock are used | 
 | 	 * to add more bios into the stripe | 
 | 	 * in hopes of avoiding the full rmw | 
 | 	 */ | 
 | 	struct bio_list bio_list; | 
 | 	spinlock_t bio_list_lock; | 
 |  | 
 | 	/* also protected by the bio_list_lock, the | 
 | 	 * plug list is used by the plugging code | 
 | 	 * to collect partial bios while plugged.  The | 
 | 	 * stripe locking code also uses it to hand off | 
 | 	 * the stripe lock to the next pending IO | 
 | 	 */ | 
 | 	struct list_head plug_list; | 
 |  | 
 | 	/* | 
 | 	 * flags that tell us if it is safe to | 
 | 	 * merge with this bio | 
 | 	 */ | 
 | 	unsigned long flags; | 
 |  | 
 | 	/* size of each individual stripe on disk */ | 
 | 	int stripe_len; | 
 |  | 
 | 	/* number of data stripes (no p/q) */ | 
 | 	int nr_data; | 
 |  | 
 | 	int real_stripes; | 
 |  | 
 | 	int stripe_npages; | 
 | 	/* | 
 | 	 * set if we're doing a parity rebuild | 
 | 	 * for a read from higher up, which is handled | 
 | 	 * differently from a parity rebuild as part of | 
 | 	 * rmw | 
 | 	 */ | 
 | 	enum btrfs_rbio_ops operation; | 
 |  | 
 | 	/* first bad stripe */ | 
 | 	int faila; | 
 |  | 
 | 	/* second bad stripe (for raid6 use) */ | 
 | 	int failb; | 
 |  | 
 | 	int scrubp; | 
 | 	/* | 
 | 	 * number of pages needed to represent the full | 
 | 	 * stripe | 
 | 	 */ | 
 | 	int nr_pages; | 
 |  | 
 | 	/* | 
 | 	 * size of all the bios in the bio_list.  This | 
 | 	 * helps us decide if the rbio maps to a full | 
 | 	 * stripe or not | 
 | 	 */ | 
 | 	int bio_list_bytes; | 
 |  | 
 | 	int generic_bio_cnt; | 
 |  | 
 | 	refcount_t refs; | 
 |  | 
 | 	atomic_t stripes_pending; | 
 |  | 
 | 	atomic_t error; | 
 | 	/* | 
 | 	 * these are two arrays of pointers.  We allocate the | 
 | 	 * rbio big enough to hold them both and setup their | 
 | 	 * locations when the rbio is allocated | 
 | 	 */ | 
 |  | 
 | 	/* pointers to pages that we allocated for | 
 | 	 * reading/writing stripes directly from the disk (including P/Q) | 
 | 	 */ | 
 | 	struct page **stripe_pages; | 
 |  | 
 | 	/* | 
 | 	 * pointers to the pages in the bio_list.  Stored | 
 | 	 * here for faster lookup | 
 | 	 */ | 
 | 	struct page **bio_pages; | 
 |  | 
 | 	/* | 
 | 	 * bitmap to record which horizontal stripe has data | 
 | 	 */ | 
 | 	unsigned long *dbitmap; | 
 |  | 
 | 	/* allocated with real_stripes-many pointers for finish_*() calls */ | 
 | 	void **finish_pointers; | 
 |  | 
 | 	/* allocated with stripe_npages-many bits for finish_*() calls */ | 
 | 	unsigned long *finish_pbitmap; | 
 | }; | 
 |  | 
 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); | 
 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio); | 
 | static void rmw_work(struct btrfs_work *work); | 
 | static void read_rebuild_work(struct btrfs_work *work); | 
 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); | 
 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); | 
 | static void __free_raid_bio(struct btrfs_raid_bio *rbio); | 
 | static void index_rbio_pages(struct btrfs_raid_bio *rbio); | 
 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); | 
 |  | 
 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, | 
 | 					 int need_check); | 
 | static void scrub_parity_work(struct btrfs_work *work); | 
 |  | 
 | static void start_async_work(struct btrfs_raid_bio *rbio, btrfs_func_t work_func) | 
 | { | 
 | 	btrfs_init_work(&rbio->work, btrfs_rmw_helper, work_func, NULL, NULL); | 
 | 	btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); | 
 | } | 
 |  | 
 | /* | 
 |  * the stripe hash table is used for locking, and to collect | 
 |  * bios in hopes of making a full stripe | 
 |  */ | 
 | int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_stripe_hash_table *table; | 
 | 	struct btrfs_stripe_hash_table *x; | 
 | 	struct btrfs_stripe_hash *cur; | 
 | 	struct btrfs_stripe_hash *h; | 
 | 	int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; | 
 | 	int i; | 
 | 	int table_size; | 
 |  | 
 | 	if (info->stripe_hash_table) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * The table is large, starting with order 4 and can go as high as | 
 | 	 * order 7 in case lock debugging is turned on. | 
 | 	 * | 
 | 	 * Try harder to allocate and fallback to vmalloc to lower the chance | 
 | 	 * of a failing mount. | 
 | 	 */ | 
 | 	table_size = sizeof(*table) + sizeof(*h) * num_entries; | 
 | 	table = kvzalloc(table_size, GFP_KERNEL); | 
 | 	if (!table) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	spin_lock_init(&table->cache_lock); | 
 | 	INIT_LIST_HEAD(&table->stripe_cache); | 
 |  | 
 | 	h = table->table; | 
 |  | 
 | 	for (i = 0; i < num_entries; i++) { | 
 | 		cur = h + i; | 
 | 		INIT_LIST_HEAD(&cur->hash_list); | 
 | 		spin_lock_init(&cur->lock); | 
 | 	} | 
 |  | 
 | 	x = cmpxchg(&info->stripe_hash_table, NULL, table); | 
 | 	if (x) | 
 | 		kvfree(x); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * caching an rbio means to copy anything from the | 
 |  * bio_pages array into the stripe_pages array.  We | 
 |  * use the page uptodate bit in the stripe cache array | 
 |  * to indicate if it has valid data | 
 |  * | 
 |  * once the caching is done, we set the cache ready | 
 |  * bit. | 
 |  */ | 
 | static void cache_rbio_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int i; | 
 | 	char *s; | 
 | 	char *d; | 
 | 	int ret; | 
 |  | 
 | 	ret = alloc_rbio_pages(rbio); | 
 | 	if (ret) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < rbio->nr_pages; i++) { | 
 | 		if (!rbio->bio_pages[i]) | 
 | 			continue; | 
 |  | 
 | 		s = kmap(rbio->bio_pages[i]); | 
 | 		d = kmap(rbio->stripe_pages[i]); | 
 |  | 
 | 		copy_page(d, s); | 
 |  | 
 | 		kunmap(rbio->bio_pages[i]); | 
 | 		kunmap(rbio->stripe_pages[i]); | 
 | 		SetPageUptodate(rbio->stripe_pages[i]); | 
 | 	} | 
 | 	set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
 | } | 
 |  | 
 | /* | 
 |  * we hash on the first logical address of the stripe | 
 |  */ | 
 | static int rbio_bucket(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	u64 num = rbio->bbio->raid_map[0]; | 
 |  | 
 | 	/* | 
 | 	 * we shift down quite a bit.  We're using byte | 
 | 	 * addressing, and most of the lower bits are zeros. | 
 | 	 * This tends to upset hash_64, and it consistently | 
 | 	 * returns just one or two different values. | 
 | 	 * | 
 | 	 * shifting off the lower bits fixes things. | 
 | 	 */ | 
 | 	return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); | 
 | } | 
 |  | 
 | /* | 
 |  * stealing an rbio means taking all the uptodate pages from the stripe | 
 |  * array in the source rbio and putting them into the destination rbio | 
 |  */ | 
 | static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) | 
 | { | 
 | 	int i; | 
 | 	struct page *s; | 
 | 	struct page *d; | 
 |  | 
 | 	if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < dest->nr_pages; i++) { | 
 | 		s = src->stripe_pages[i]; | 
 | 		if (!s || !PageUptodate(s)) { | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		d = dest->stripe_pages[i]; | 
 | 		if (d) | 
 | 			__free_page(d); | 
 |  | 
 | 		dest->stripe_pages[i] = s; | 
 | 		src->stripe_pages[i] = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * merging means we take the bio_list from the victim and | 
 |  * splice it into the destination.  The victim should | 
 |  * be discarded afterwards. | 
 |  * | 
 |  * must be called with dest->rbio_list_lock held | 
 |  */ | 
 | static void merge_rbio(struct btrfs_raid_bio *dest, | 
 | 		       struct btrfs_raid_bio *victim) | 
 | { | 
 | 	bio_list_merge(&dest->bio_list, &victim->bio_list); | 
 | 	dest->bio_list_bytes += victim->bio_list_bytes; | 
 | 	dest->generic_bio_cnt += victim->generic_bio_cnt; | 
 | 	bio_list_init(&victim->bio_list); | 
 | } | 
 |  | 
 | /* | 
 |  * used to prune items that are in the cache.  The caller | 
 |  * must hold the hash table lock. | 
 |  */ | 
 | static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int bucket = rbio_bucket(rbio); | 
 | 	struct btrfs_stripe_hash_table *table; | 
 | 	struct btrfs_stripe_hash *h; | 
 | 	int freeit = 0; | 
 |  | 
 | 	/* | 
 | 	 * check the bit again under the hash table lock. | 
 | 	 */ | 
 | 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
 | 		return; | 
 |  | 
 | 	table = rbio->fs_info->stripe_hash_table; | 
 | 	h = table->table + bucket; | 
 |  | 
 | 	/* hold the lock for the bucket because we may be | 
 | 	 * removing it from the hash table | 
 | 	 */ | 
 | 	spin_lock(&h->lock); | 
 |  | 
 | 	/* | 
 | 	 * hold the lock for the bio list because we need | 
 | 	 * to make sure the bio list is empty | 
 | 	 */ | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 |  | 
 | 	if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
 | 		list_del_init(&rbio->stripe_cache); | 
 | 		table->cache_size -= 1; | 
 | 		freeit = 1; | 
 |  | 
 | 		/* if the bio list isn't empty, this rbio is | 
 | 		 * still involved in an IO.  We take it out | 
 | 		 * of the cache list, and drop the ref that | 
 | 		 * was held for the list. | 
 | 		 * | 
 | 		 * If the bio_list was empty, we also remove | 
 | 		 * the rbio from the hash_table, and drop | 
 | 		 * the corresponding ref | 
 | 		 */ | 
 | 		if (bio_list_empty(&rbio->bio_list)) { | 
 | 			if (!list_empty(&rbio->hash_list)) { | 
 | 				list_del_init(&rbio->hash_list); | 
 | 				refcount_dec(&rbio->refs); | 
 | 				BUG_ON(!list_empty(&rbio->plug_list)); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 | 	spin_unlock(&h->lock); | 
 |  | 
 | 	if (freeit) | 
 | 		__free_raid_bio(rbio); | 
 | } | 
 |  | 
 | /* | 
 |  * prune a given rbio from the cache | 
 |  */ | 
 | static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct btrfs_stripe_hash_table *table; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
 | 		return; | 
 |  | 
 | 	table = rbio->fs_info->stripe_hash_table; | 
 |  | 
 | 	spin_lock_irqsave(&table->cache_lock, flags); | 
 | 	__remove_rbio_from_cache(rbio); | 
 | 	spin_unlock_irqrestore(&table->cache_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * remove everything in the cache | 
 |  */ | 
 | static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) | 
 | { | 
 | 	struct btrfs_stripe_hash_table *table; | 
 | 	unsigned long flags; | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	table = info->stripe_hash_table; | 
 |  | 
 | 	spin_lock_irqsave(&table->cache_lock, flags); | 
 | 	while (!list_empty(&table->stripe_cache)) { | 
 | 		rbio = list_entry(table->stripe_cache.next, | 
 | 				  struct btrfs_raid_bio, | 
 | 				  stripe_cache); | 
 | 		__remove_rbio_from_cache(rbio); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&table->cache_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * remove all cached entries and free the hash table | 
 |  * used by unmount | 
 |  */ | 
 | void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) | 
 | { | 
 | 	if (!info->stripe_hash_table) | 
 | 		return; | 
 | 	btrfs_clear_rbio_cache(info); | 
 | 	kvfree(info->stripe_hash_table); | 
 | 	info->stripe_hash_table = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * insert an rbio into the stripe cache.  It | 
 |  * must have already been prepared by calling | 
 |  * cache_rbio_pages | 
 |  * | 
 |  * If this rbio was already cached, it gets | 
 |  * moved to the front of the lru. | 
 |  * | 
 |  * If the size of the rbio cache is too big, we | 
 |  * prune an item. | 
 |  */ | 
 | static void cache_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct btrfs_stripe_hash_table *table; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) | 
 | 		return; | 
 |  | 
 | 	table = rbio->fs_info->stripe_hash_table; | 
 |  | 
 | 	spin_lock_irqsave(&table->cache_lock, flags); | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 |  | 
 | 	/* bump our ref if we were not in the list before */ | 
 | 	if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) | 
 | 		refcount_inc(&rbio->refs); | 
 |  | 
 | 	if (!list_empty(&rbio->stripe_cache)){ | 
 | 		list_move(&rbio->stripe_cache, &table->stripe_cache); | 
 | 	} else { | 
 | 		list_add(&rbio->stripe_cache, &table->stripe_cache); | 
 | 		table->cache_size += 1; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 |  | 
 | 	if (table->cache_size > RBIO_CACHE_SIZE) { | 
 | 		struct btrfs_raid_bio *found; | 
 |  | 
 | 		found = list_entry(table->stripe_cache.prev, | 
 | 				  struct btrfs_raid_bio, | 
 | 				  stripe_cache); | 
 |  | 
 | 		if (found != rbio) | 
 | 			__remove_rbio_from_cache(found); | 
 | 	} | 
 |  | 
 | 	spin_unlock_irqrestore(&table->cache_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to run the xor_blocks api.  It is only | 
 |  * able to do MAX_XOR_BLOCKS at a time, so we need to | 
 |  * loop through. | 
 |  */ | 
 | static void run_xor(void **pages, int src_cnt, ssize_t len) | 
 | { | 
 | 	int src_off = 0; | 
 | 	int xor_src_cnt = 0; | 
 | 	void *dest = pages[src_cnt]; | 
 |  | 
 | 	while(src_cnt > 0) { | 
 | 		xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); | 
 | 		xor_blocks(xor_src_cnt, len, dest, pages + src_off); | 
 |  | 
 | 		src_cnt -= xor_src_cnt; | 
 | 		src_off += xor_src_cnt; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if the bio list inside this rbio covers an entire stripe (no | 
 |  * rmw required). | 
 |  */ | 
 | static int rbio_is_full(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long size = rbio->bio_list_bytes; | 
 | 	int ret = 1; | 
 |  | 
 | 	spin_lock_irqsave(&rbio->bio_list_lock, flags); | 
 | 	if (size != rbio->nr_data * rbio->stripe_len) | 
 | 		ret = 0; | 
 | 	BUG_ON(size > rbio->nr_data * rbio->stripe_len); | 
 | 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * returns 1 if it is safe to merge two rbios together. | 
 |  * The merging is safe if the two rbios correspond to | 
 |  * the same stripe and if they are both going in the same | 
 |  * direction (read vs write), and if neither one is | 
 |  * locked for final IO | 
 |  * | 
 |  * The caller is responsible for locking such that | 
 |  * rmw_locked is safe to test | 
 |  */ | 
 | static int rbio_can_merge(struct btrfs_raid_bio *last, | 
 | 			  struct btrfs_raid_bio *cur) | 
 | { | 
 | 	if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || | 
 | 	    test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * we can't merge with cached rbios, since the | 
 | 	 * idea is that when we merge the destination | 
 | 	 * rbio is going to run our IO for us.  We can | 
 | 	 * steal from cached rbios though, other functions | 
 | 	 * handle that. | 
 | 	 */ | 
 | 	if (test_bit(RBIO_CACHE_BIT, &last->flags) || | 
 | 	    test_bit(RBIO_CACHE_BIT, &cur->flags)) | 
 | 		return 0; | 
 |  | 
 | 	if (last->bbio->raid_map[0] != | 
 | 	    cur->bbio->raid_map[0]) | 
 | 		return 0; | 
 |  | 
 | 	/* we can't merge with different operations */ | 
 | 	if (last->operation != cur->operation) | 
 | 		return 0; | 
 | 	/* | 
 | 	 * We've need read the full stripe from the drive. | 
 | 	 * check and repair the parity and write the new results. | 
 | 	 * | 
 | 	 * We're not allowed to add any new bios to the | 
 | 	 * bio list here, anyone else that wants to | 
 | 	 * change this stripe needs to do their own rmw. | 
 | 	 */ | 
 | 	if (last->operation == BTRFS_RBIO_PARITY_SCRUB) | 
 | 		return 0; | 
 |  | 
 | 	if (last->operation == BTRFS_RBIO_REBUILD_MISSING) | 
 | 		return 0; | 
 |  | 
 | 	if (last->operation == BTRFS_RBIO_READ_REBUILD) { | 
 | 		int fa = last->faila; | 
 | 		int fb = last->failb; | 
 | 		int cur_fa = cur->faila; | 
 | 		int cur_fb = cur->failb; | 
 |  | 
 | 		if (last->faila >= last->failb) { | 
 | 			fa = last->failb; | 
 | 			fb = last->faila; | 
 | 		} | 
 |  | 
 | 		if (cur->faila >= cur->failb) { | 
 | 			cur_fa = cur->failb; | 
 | 			cur_fb = cur->faila; | 
 | 		} | 
 |  | 
 | 		if (fa != cur_fa || fb != cur_fb) | 
 | 			return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, | 
 | 				  int index) | 
 | { | 
 | 	return stripe * rbio->stripe_npages + index; | 
 | } | 
 |  | 
 | /* | 
 |  * these are just the pages from the rbio array, not from anything | 
 |  * the FS sent down to us | 
 |  */ | 
 | static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, | 
 | 				     int index) | 
 | { | 
 | 	return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to index into the pstripe | 
 |  */ | 
 | static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) | 
 | { | 
 | 	return rbio_stripe_page(rbio, rbio->nr_data, index); | 
 | } | 
 |  | 
 | /* | 
 |  * helper to index into the qstripe, returns null | 
 |  * if there is no qstripe | 
 |  */ | 
 | static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) | 
 | { | 
 | 	if (rbio->nr_data + 1 == rbio->real_stripes) | 
 | 		return NULL; | 
 | 	return rbio_stripe_page(rbio, rbio->nr_data + 1, index); | 
 | } | 
 |  | 
 | /* | 
 |  * The first stripe in the table for a logical address | 
 |  * has the lock.  rbios are added in one of three ways: | 
 |  * | 
 |  * 1) Nobody has the stripe locked yet.  The rbio is given | 
 |  * the lock and 0 is returned.  The caller must start the IO | 
 |  * themselves. | 
 |  * | 
 |  * 2) Someone has the stripe locked, but we're able to merge | 
 |  * with the lock owner.  The rbio is freed and the IO will | 
 |  * start automatically along with the existing rbio.  1 is returned. | 
 |  * | 
 |  * 3) Someone has the stripe locked, but we're not able to merge. | 
 |  * The rbio is added to the lock owner's plug list, or merged into | 
 |  * an rbio already on the plug list.  When the lock owner unlocks, | 
 |  * the next rbio on the list is run and the IO is started automatically. | 
 |  * 1 is returned | 
 |  * | 
 |  * If we return 0, the caller still owns the rbio and must continue with | 
 |  * IO submission.  If we return 1, the caller must assume the rbio has | 
 |  * already been freed. | 
 |  */ | 
 | static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int bucket = rbio_bucket(rbio); | 
 | 	struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; | 
 | 	struct btrfs_raid_bio *cur; | 
 | 	struct btrfs_raid_bio *pending; | 
 | 	unsigned long flags; | 
 | 	struct btrfs_raid_bio *freeit = NULL; | 
 | 	struct btrfs_raid_bio *cache_drop = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	list_for_each_entry(cur, &h->hash_list, hash_list) { | 
 | 		if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { | 
 | 			spin_lock(&cur->bio_list_lock); | 
 |  | 
 | 			/* can we steal this cached rbio's pages? */ | 
 | 			if (bio_list_empty(&cur->bio_list) && | 
 | 			    list_empty(&cur->plug_list) && | 
 | 			    test_bit(RBIO_CACHE_BIT, &cur->flags) && | 
 | 			    !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { | 
 | 				list_del_init(&cur->hash_list); | 
 | 				refcount_dec(&cur->refs); | 
 |  | 
 | 				steal_rbio(cur, rbio); | 
 | 				cache_drop = cur; | 
 | 				spin_unlock(&cur->bio_list_lock); | 
 |  | 
 | 				goto lockit; | 
 | 			} | 
 |  | 
 | 			/* can we merge into the lock owner? */ | 
 | 			if (rbio_can_merge(cur, rbio)) { | 
 | 				merge_rbio(cur, rbio); | 
 | 				spin_unlock(&cur->bio_list_lock); | 
 | 				freeit = rbio; | 
 | 				ret = 1; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 |  | 
 | 			/* | 
 | 			 * we couldn't merge with the running | 
 | 			 * rbio, see if we can merge with the | 
 | 			 * pending ones.  We don't have to | 
 | 			 * check for rmw_locked because there | 
 | 			 * is no way they are inside finish_rmw | 
 | 			 * right now | 
 | 			 */ | 
 | 			list_for_each_entry(pending, &cur->plug_list, | 
 | 					    plug_list) { | 
 | 				if (rbio_can_merge(pending, rbio)) { | 
 | 					merge_rbio(pending, rbio); | 
 | 					spin_unlock(&cur->bio_list_lock); | 
 | 					freeit = rbio; | 
 | 					ret = 1; | 
 | 					goto out; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* no merging, put us on the tail of the plug list, | 
 | 			 * our rbio will be started with the currently | 
 | 			 * running rbio unlocks | 
 | 			 */ | 
 | 			list_add_tail(&rbio->plug_list, &cur->plug_list); | 
 | 			spin_unlock(&cur->bio_list_lock); | 
 | 			ret = 1; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | lockit: | 
 | 	refcount_inc(&rbio->refs); | 
 | 	list_add(&rbio->hash_list, &h->hash_list); | 
 | out: | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 | 	if (cache_drop) | 
 | 		remove_rbio_from_cache(cache_drop); | 
 | 	if (freeit) | 
 | 		__free_raid_bio(freeit); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * called as rmw or parity rebuild is completed.  If the plug list has more | 
 |  * rbios waiting for this stripe, the next one on the list will be started | 
 |  */ | 
 | static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int bucket; | 
 | 	struct btrfs_stripe_hash *h; | 
 | 	unsigned long flags; | 
 | 	int keep_cache = 0; | 
 |  | 
 | 	bucket = rbio_bucket(rbio); | 
 | 	h = rbio->fs_info->stripe_hash_table->table + bucket; | 
 |  | 
 | 	if (list_empty(&rbio->plug_list)) | 
 | 		cache_rbio(rbio); | 
 |  | 
 | 	spin_lock_irqsave(&h->lock, flags); | 
 | 	spin_lock(&rbio->bio_list_lock); | 
 |  | 
 | 	if (!list_empty(&rbio->hash_list)) { | 
 | 		/* | 
 | 		 * if we're still cached and there is no other IO | 
 | 		 * to perform, just leave this rbio here for others | 
 | 		 * to steal from later | 
 | 		 */ | 
 | 		if (list_empty(&rbio->plug_list) && | 
 | 		    test_bit(RBIO_CACHE_BIT, &rbio->flags)) { | 
 | 			keep_cache = 1; | 
 | 			clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
 | 			BUG_ON(!bio_list_empty(&rbio->bio_list)); | 
 | 			goto done; | 
 | 		} | 
 |  | 
 | 		list_del_init(&rbio->hash_list); | 
 | 		refcount_dec(&rbio->refs); | 
 |  | 
 | 		/* | 
 | 		 * we use the plug list to hold all the rbios | 
 | 		 * waiting for the chance to lock this stripe. | 
 | 		 * hand the lock over to one of them. | 
 | 		 */ | 
 | 		if (!list_empty(&rbio->plug_list)) { | 
 | 			struct btrfs_raid_bio *next; | 
 | 			struct list_head *head = rbio->plug_list.next; | 
 |  | 
 | 			next = list_entry(head, struct btrfs_raid_bio, | 
 | 					  plug_list); | 
 |  | 
 | 			list_del_init(&rbio->plug_list); | 
 |  | 
 | 			list_add(&next->hash_list, &h->hash_list); | 
 | 			refcount_inc(&next->refs); | 
 | 			spin_unlock(&rbio->bio_list_lock); | 
 | 			spin_unlock_irqrestore(&h->lock, flags); | 
 |  | 
 | 			if (next->operation == BTRFS_RBIO_READ_REBUILD) | 
 | 				start_async_work(next, read_rebuild_work); | 
 | 			else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
 | 				steal_rbio(rbio, next); | 
 | 				start_async_work(next, read_rebuild_work); | 
 | 			} else if (next->operation == BTRFS_RBIO_WRITE) { | 
 | 				steal_rbio(rbio, next); | 
 | 				start_async_work(next, rmw_work); | 
 | 			} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { | 
 | 				steal_rbio(rbio, next); | 
 | 				start_async_work(next, scrub_parity_work); | 
 | 			} | 
 |  | 
 | 			goto done_nolock; | 
 | 		} | 
 | 	} | 
 | done: | 
 | 	spin_unlock(&rbio->bio_list_lock); | 
 | 	spin_unlock_irqrestore(&h->lock, flags); | 
 |  | 
 | done_nolock: | 
 | 	if (!keep_cache) | 
 | 		remove_rbio_from_cache(rbio); | 
 | } | 
 |  | 
 | static void __free_raid_bio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!refcount_dec_and_test(&rbio->refs)) | 
 | 		return; | 
 |  | 
 | 	WARN_ON(!list_empty(&rbio->stripe_cache)); | 
 | 	WARN_ON(!list_empty(&rbio->hash_list)); | 
 | 	WARN_ON(!bio_list_empty(&rbio->bio_list)); | 
 |  | 
 | 	for (i = 0; i < rbio->nr_pages; i++) { | 
 | 		if (rbio->stripe_pages[i]) { | 
 | 			__free_page(rbio->stripe_pages[i]); | 
 | 			rbio->stripe_pages[i] = NULL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_put_bbio(rbio->bbio); | 
 | 	kfree(rbio); | 
 | } | 
 |  | 
 | static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) | 
 | { | 
 | 	struct bio *next; | 
 |  | 
 | 	while (cur) { | 
 | 		next = cur->bi_next; | 
 | 		cur->bi_next = NULL; | 
 | 		cur->bi_status = err; | 
 | 		bio_endio(cur); | 
 | 		cur = next; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * this frees the rbio and runs through all the bios in the | 
 |  * bio_list and calls end_io on them | 
 |  */ | 
 | static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) | 
 | { | 
 | 	struct bio *cur = bio_list_get(&rbio->bio_list); | 
 | 	struct bio *extra; | 
 |  | 
 | 	if (rbio->generic_bio_cnt) | 
 | 		btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); | 
 |  | 
 | 	/* | 
 | 	 * At this moment, rbio->bio_list is empty, however since rbio does not | 
 | 	 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the | 
 | 	 * hash list, rbio may be merged with others so that rbio->bio_list | 
 | 	 * becomes non-empty. | 
 | 	 * Once unlock_stripe() is done, rbio->bio_list will not be updated any | 
 | 	 * more and we can call bio_endio() on all queued bios. | 
 | 	 */ | 
 | 	unlock_stripe(rbio); | 
 | 	extra = bio_list_get(&rbio->bio_list); | 
 | 	__free_raid_bio(rbio); | 
 |  | 
 | 	rbio_endio_bio_list(cur, err); | 
 | 	if (extra) | 
 | 		rbio_endio_bio_list(extra, err); | 
 | } | 
 |  | 
 | /* | 
 |  * end io function used by finish_rmw.  When we finally | 
 |  * get here, we've written a full stripe | 
 |  */ | 
 | static void raid_write_end_io(struct bio *bio) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio = bio->bi_private; | 
 | 	blk_status_t err = bio->bi_status; | 
 | 	int max_errors; | 
 |  | 
 | 	if (err) | 
 | 		fail_bio_stripe(rbio, bio); | 
 |  | 
 | 	bio_put(bio); | 
 |  | 
 | 	if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
 | 		return; | 
 |  | 
 | 	err = BLK_STS_OK; | 
 |  | 
 | 	/* OK, we have read all the stripes we need to. */ | 
 | 	max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? | 
 | 		     0 : rbio->bbio->max_errors; | 
 | 	if (atomic_read(&rbio->error) > max_errors) | 
 | 		err = BLK_STS_IOERR; | 
 |  | 
 | 	rbio_orig_end_io(rbio, err); | 
 | } | 
 |  | 
 | /* | 
 |  * the read/modify/write code wants to use the original bio for | 
 |  * any pages it included, and then use the rbio for everything | 
 |  * else.  This function decides if a given index (stripe number) | 
 |  * and page number in that stripe fall inside the original bio | 
 |  * or the rbio. | 
 |  * | 
 |  * if you set bio_list_only, you'll get a NULL back for any ranges | 
 |  * that are outside the bio_list | 
 |  * | 
 |  * This doesn't take any refs on anything, you get a bare page pointer | 
 |  * and the caller must bump refs as required. | 
 |  * | 
 |  * You must call index_rbio_pages once before you can trust | 
 |  * the answers from this function. | 
 |  */ | 
 | static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, | 
 | 				 int index, int pagenr, int bio_list_only) | 
 | { | 
 | 	int chunk_page; | 
 | 	struct page *p = NULL; | 
 |  | 
 | 	chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; | 
 |  | 
 | 	spin_lock_irq(&rbio->bio_list_lock); | 
 | 	p = rbio->bio_pages[chunk_page]; | 
 | 	spin_unlock_irq(&rbio->bio_list_lock); | 
 |  | 
 | 	if (p || bio_list_only) | 
 | 		return p; | 
 |  | 
 | 	return rbio->stripe_pages[chunk_page]; | 
 | } | 
 |  | 
 | /* | 
 |  * number of pages we need for the entire stripe across all the | 
 |  * drives | 
 |  */ | 
 | static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) | 
 | { | 
 | 	return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; | 
 | } | 
 |  | 
 | /* | 
 |  * allocation and initial setup for the btrfs_raid_bio.  Not | 
 |  * this does not allocate any pages for rbio->pages. | 
 |  */ | 
 | static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, | 
 | 					 struct btrfs_bio *bbio, | 
 | 					 u64 stripe_len) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 | 	int nr_data = 0; | 
 | 	int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; | 
 | 	int num_pages = rbio_nr_pages(stripe_len, real_stripes); | 
 | 	int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); | 
 | 	void *p; | 
 |  | 
 | 	rbio = kzalloc(sizeof(*rbio) + | 
 | 		       sizeof(*rbio->stripe_pages) * num_pages + | 
 | 		       sizeof(*rbio->bio_pages) * num_pages + | 
 | 		       sizeof(*rbio->finish_pointers) * real_stripes + | 
 | 		       sizeof(*rbio->dbitmap) * BITS_TO_LONGS(stripe_npages) + | 
 | 		       sizeof(*rbio->finish_pbitmap) * | 
 | 				BITS_TO_LONGS(stripe_npages), | 
 | 		       GFP_NOFS); | 
 | 	if (!rbio) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	bio_list_init(&rbio->bio_list); | 
 | 	INIT_LIST_HEAD(&rbio->plug_list); | 
 | 	spin_lock_init(&rbio->bio_list_lock); | 
 | 	INIT_LIST_HEAD(&rbio->stripe_cache); | 
 | 	INIT_LIST_HEAD(&rbio->hash_list); | 
 | 	rbio->bbio = bbio; | 
 | 	rbio->fs_info = fs_info; | 
 | 	rbio->stripe_len = stripe_len; | 
 | 	rbio->nr_pages = num_pages; | 
 | 	rbio->real_stripes = real_stripes; | 
 | 	rbio->stripe_npages = stripe_npages; | 
 | 	rbio->faila = -1; | 
 | 	rbio->failb = -1; | 
 | 	refcount_set(&rbio->refs, 1); | 
 | 	atomic_set(&rbio->error, 0); | 
 | 	atomic_set(&rbio->stripes_pending, 0); | 
 |  | 
 | 	/* | 
 | 	 * the stripe_pages, bio_pages, etc arrays point to the extra | 
 | 	 * memory we allocated past the end of the rbio | 
 | 	 */ | 
 | 	p = rbio + 1; | 
 | #define CONSUME_ALLOC(ptr, count)	do {				\ | 
 | 		ptr = p;						\ | 
 | 		p = (unsigned char *)p + sizeof(*(ptr)) * (count);	\ | 
 | 	} while (0) | 
 | 	CONSUME_ALLOC(rbio->stripe_pages, num_pages); | 
 | 	CONSUME_ALLOC(rbio->bio_pages, num_pages); | 
 | 	CONSUME_ALLOC(rbio->finish_pointers, real_stripes); | 
 | 	CONSUME_ALLOC(rbio->dbitmap, BITS_TO_LONGS(stripe_npages)); | 
 | 	CONSUME_ALLOC(rbio->finish_pbitmap, BITS_TO_LONGS(stripe_npages)); | 
 | #undef  CONSUME_ALLOC | 
 |  | 
 | 	if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) | 
 | 		nr_data = real_stripes - 1; | 
 | 	else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) | 
 | 		nr_data = real_stripes - 2; | 
 | 	else | 
 | 		BUG(); | 
 |  | 
 | 	rbio->nr_data = nr_data; | 
 | 	return rbio; | 
 | } | 
 |  | 
 | /* allocate pages for all the stripes in the bio, including parity */ | 
 | static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int i; | 
 | 	struct page *page; | 
 |  | 
 | 	for (i = 0; i < rbio->nr_pages; i++) { | 
 | 		if (rbio->stripe_pages[i]) | 
 | 			continue; | 
 | 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
 | 		if (!page) | 
 | 			return -ENOMEM; | 
 | 		rbio->stripe_pages[i] = page; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* only allocate pages for p/q stripes */ | 
 | static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int i; | 
 | 	struct page *page; | 
 |  | 
 | 	i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); | 
 |  | 
 | 	for (; i < rbio->nr_pages; i++) { | 
 | 		if (rbio->stripe_pages[i]) | 
 | 			continue; | 
 | 		page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
 | 		if (!page) | 
 | 			return -ENOMEM; | 
 | 		rbio->stripe_pages[i] = page; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * add a single page from a specific stripe into our list of bios for IO | 
 |  * this will try to merge into existing bios if possible, and returns | 
 |  * zero if all went well. | 
 |  */ | 
 | static int rbio_add_io_page(struct btrfs_raid_bio *rbio, | 
 | 			    struct bio_list *bio_list, | 
 | 			    struct page *page, | 
 | 			    int stripe_nr, | 
 | 			    unsigned long page_index, | 
 | 			    unsigned long bio_max_len) | 
 | { | 
 | 	struct bio *last = bio_list->tail; | 
 | 	u64 last_end = 0; | 
 | 	int ret; | 
 | 	struct bio *bio; | 
 | 	struct btrfs_bio_stripe *stripe; | 
 | 	u64 disk_start; | 
 |  | 
 | 	stripe = &rbio->bbio->stripes[stripe_nr]; | 
 | 	disk_start = stripe->physical + (page_index << PAGE_SHIFT); | 
 |  | 
 | 	/* if the device is missing, just fail this stripe */ | 
 | 	if (!stripe->dev->bdev) | 
 | 		return fail_rbio_index(rbio, stripe_nr); | 
 |  | 
 | 	/* see if we can add this page onto our existing bio */ | 
 | 	if (last) { | 
 | 		last_end = (u64)last->bi_iter.bi_sector << 9; | 
 | 		last_end += last->bi_iter.bi_size; | 
 |  | 
 | 		/* | 
 | 		 * we can't merge these if they are from different | 
 | 		 * devices or if they are not contiguous | 
 | 		 */ | 
 | 		if (last_end == disk_start && stripe->dev->bdev && | 
 | 		    !last->bi_status && | 
 | 		    last->bi_disk == stripe->dev->bdev->bd_disk && | 
 | 		    last->bi_partno == stripe->dev->bdev->bd_partno) { | 
 | 			ret = bio_add_page(last, page, PAGE_SIZE, 0); | 
 | 			if (ret == PAGE_SIZE) | 
 | 				return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* put a new bio on the list */ | 
 | 	bio = btrfs_io_bio_alloc(bio_max_len >> PAGE_SHIFT ?: 1); | 
 | 	bio->bi_iter.bi_size = 0; | 
 | 	bio_set_dev(bio, stripe->dev->bdev); | 
 | 	bio->bi_iter.bi_sector = disk_start >> 9; | 
 |  | 
 | 	bio_add_page(bio, page, PAGE_SIZE, 0); | 
 | 	bio_list_add(bio_list, bio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * while we're doing the read/modify/write cycle, we could | 
 |  * have errors in reading pages off the disk.  This checks | 
 |  * for errors and if we're not able to read the page it'll | 
 |  * trigger parity reconstruction.  The rmw will be finished | 
 |  * after we've reconstructed the failed stripes | 
 |  */ | 
 | static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	if (rbio->faila >= 0 || rbio->failb >= 0) { | 
 | 		BUG_ON(rbio->faila == rbio->real_stripes - 1); | 
 | 		__raid56_parity_recover(rbio); | 
 | 	} else { | 
 | 		finish_rmw(rbio); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * helper function to walk our bio list and populate the bio_pages array with | 
 |  * the result.  This seems expensive, but it is faster than constantly | 
 |  * searching through the bio list as we setup the IO in finish_rmw or stripe | 
 |  * reconstruction. | 
 |  * | 
 |  * This must be called before you trust the answers from page_in_rbio | 
 |  */ | 
 | static void index_rbio_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct bio *bio; | 
 | 	u64 start; | 
 | 	unsigned long stripe_offset; | 
 | 	unsigned long page_index; | 
 |  | 
 | 	spin_lock_irq(&rbio->bio_list_lock); | 
 | 	bio_list_for_each(bio, &rbio->bio_list) { | 
 | 		struct bio_vec bvec; | 
 | 		struct bvec_iter iter; | 
 | 		int i = 0; | 
 |  | 
 | 		start = (u64)bio->bi_iter.bi_sector << 9; | 
 | 		stripe_offset = start - rbio->bbio->raid_map[0]; | 
 | 		page_index = stripe_offset >> PAGE_SHIFT; | 
 |  | 
 | 		if (bio_flagged(bio, BIO_CLONED)) | 
 | 			bio->bi_iter = btrfs_io_bio(bio)->iter; | 
 |  | 
 | 		bio_for_each_segment(bvec, bio, iter) { | 
 | 			rbio->bio_pages[page_index + i] = bvec.bv_page; | 
 | 			i++; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock_irq(&rbio->bio_list_lock); | 
 | } | 
 |  | 
 | /* | 
 |  * this is called from one of two situations.  We either | 
 |  * have a full stripe from the higher layers, or we've read all | 
 |  * the missing bits off disk. | 
 |  * | 
 |  * This will calculate the parity and then send down any | 
 |  * changed blocks. | 
 |  */ | 
 | static noinline void finish_rmw(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	struct btrfs_bio *bbio = rbio->bbio; | 
 | 	void **pointers = rbio->finish_pointers; | 
 | 	int nr_data = rbio->nr_data; | 
 | 	int stripe; | 
 | 	int pagenr; | 
 | 	int p_stripe = -1; | 
 | 	int q_stripe = -1; | 
 | 	struct bio_list bio_list; | 
 | 	struct bio *bio; | 
 | 	int ret; | 
 |  | 
 | 	bio_list_init(&bio_list); | 
 |  | 
 | 	if (rbio->real_stripes - rbio->nr_data == 1) { | 
 | 		p_stripe = rbio->real_stripes - 1; | 
 | 	} else if (rbio->real_stripes - rbio->nr_data == 2) { | 
 | 		p_stripe = rbio->real_stripes - 2; | 
 | 		q_stripe = rbio->real_stripes - 1; | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	/* at this point we either have a full stripe, | 
 | 	 * or we've read the full stripe from the drive. | 
 | 	 * recalculate the parity and write the new results. | 
 | 	 * | 
 | 	 * We're not allowed to add any new bios to the | 
 | 	 * bio list here, anyone else that wants to | 
 | 	 * change this stripe needs to do their own rmw. | 
 | 	 */ | 
 | 	spin_lock_irq(&rbio->bio_list_lock); | 
 | 	set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
 | 	spin_unlock_irq(&rbio->bio_list_lock); | 
 |  | 
 | 	atomic_set(&rbio->error, 0); | 
 |  | 
 | 	/* | 
 | 	 * now that we've set rmw_locked, run through the | 
 | 	 * bio list one last time and map the page pointers | 
 | 	 * | 
 | 	 * We don't cache full rbios because we're assuming | 
 | 	 * the higher layers are unlikely to use this area of | 
 | 	 * the disk again soon.  If they do use it again, | 
 | 	 * hopefully they will send another full bio. | 
 | 	 */ | 
 | 	index_rbio_pages(rbio); | 
 | 	if (!rbio_is_full(rbio)) | 
 | 		cache_rbio_pages(rbio); | 
 | 	else | 
 | 		clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
 |  | 
 | 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
 | 		struct page *p; | 
 | 		/* first collect one page from each data stripe */ | 
 | 		for (stripe = 0; stripe < nr_data; stripe++) { | 
 | 			p = page_in_rbio(rbio, stripe, pagenr, 0); | 
 | 			pointers[stripe] = kmap(p); | 
 | 		} | 
 |  | 
 | 		/* then add the parity stripe */ | 
 | 		p = rbio_pstripe_page(rbio, pagenr); | 
 | 		SetPageUptodate(p); | 
 | 		pointers[stripe++] = kmap(p); | 
 |  | 
 | 		if (q_stripe != -1) { | 
 |  | 
 | 			/* | 
 | 			 * raid6, add the qstripe and call the | 
 | 			 * library function to fill in our p/q | 
 | 			 */ | 
 | 			p = rbio_qstripe_page(rbio, pagenr); | 
 | 			SetPageUptodate(p); | 
 | 			pointers[stripe++] = kmap(p); | 
 |  | 
 | 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, | 
 | 						pointers); | 
 | 		} else { | 
 | 			/* raid5 */ | 
 | 			copy_page(pointers[nr_data], pointers[0]); | 
 | 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); | 
 | 		} | 
 |  | 
 |  | 
 | 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) | 
 | 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * time to start writing.  Make bios for everything from the | 
 | 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore | 
 | 	 * everything else. | 
 | 	 */ | 
 | 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
 | 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
 | 			struct page *page; | 
 | 			if (stripe < rbio->nr_data) { | 
 | 				page = page_in_rbio(rbio, stripe, pagenr, 1); | 
 | 				if (!page) | 
 | 					continue; | 
 | 			} else { | 
 | 			       page = rbio_stripe_page(rbio, stripe, pagenr); | 
 | 			} | 
 |  | 
 | 			ret = rbio_add_io_page(rbio, &bio_list, | 
 | 				       page, stripe, pagenr, rbio->stripe_len); | 
 | 			if (ret) | 
 | 				goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (likely(!bbio->num_tgtdevs)) | 
 | 		goto write_data; | 
 |  | 
 | 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
 | 		if (!bbio->tgtdev_map[stripe]) | 
 | 			continue; | 
 |  | 
 | 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
 | 			struct page *page; | 
 | 			if (stripe < rbio->nr_data) { | 
 | 				page = page_in_rbio(rbio, stripe, pagenr, 1); | 
 | 				if (!page) | 
 | 					continue; | 
 | 			} else { | 
 | 			       page = rbio_stripe_page(rbio, stripe, pagenr); | 
 | 			} | 
 |  | 
 | 			ret = rbio_add_io_page(rbio, &bio_list, page, | 
 | 					       rbio->bbio->tgtdev_map[stripe], | 
 | 					       pagenr, rbio->stripe_len); | 
 | 			if (ret) | 
 | 				goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | write_data: | 
 | 	atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); | 
 | 	BUG_ON(atomic_read(&rbio->stripes_pending) == 0); | 
 |  | 
 | 	while (1) { | 
 | 		bio = bio_list_pop(&bio_list); | 
 | 		if (!bio) | 
 | 			break; | 
 |  | 
 | 		bio->bi_private = rbio; | 
 | 		bio->bi_end_io = raid_write_end_io; | 
 | 		bio->bi_opf = REQ_OP_WRITE; | 
 |  | 
 | 		submit_bio(bio); | 
 | 	} | 
 | 	return; | 
 |  | 
 | cleanup: | 
 | 	rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bio_list))) | 
 | 		bio_put(bio); | 
 | } | 
 |  | 
 | /* | 
 |  * helper to find the stripe number for a given bio.  Used to figure out which | 
 |  * stripe has failed.  This expects the bio to correspond to a physical disk, | 
 |  * so it looks up based on physical sector numbers. | 
 |  */ | 
 | static int find_bio_stripe(struct btrfs_raid_bio *rbio, | 
 | 			   struct bio *bio) | 
 | { | 
 | 	u64 physical = bio->bi_iter.bi_sector; | 
 | 	u64 stripe_start; | 
 | 	int i; | 
 | 	struct btrfs_bio_stripe *stripe; | 
 |  | 
 | 	physical <<= 9; | 
 |  | 
 | 	for (i = 0; i < rbio->bbio->num_stripes; i++) { | 
 | 		stripe = &rbio->bbio->stripes[i]; | 
 | 		stripe_start = stripe->physical; | 
 | 		if (physical >= stripe_start && | 
 | 		    physical < stripe_start + rbio->stripe_len && | 
 | 		    stripe->dev->bdev && | 
 | 		    bio->bi_disk == stripe->dev->bdev->bd_disk && | 
 | 		    bio->bi_partno == stripe->dev->bdev->bd_partno) { | 
 | 			return i; | 
 | 		} | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to find the stripe number for a given | 
 |  * bio (before mapping).  Used to figure out which stripe has | 
 |  * failed.  This looks up based on logical block numbers. | 
 |  */ | 
 | static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, | 
 | 				   struct bio *bio) | 
 | { | 
 | 	u64 logical = bio->bi_iter.bi_sector; | 
 | 	u64 stripe_start; | 
 | 	int i; | 
 |  | 
 | 	logical <<= 9; | 
 |  | 
 | 	for (i = 0; i < rbio->nr_data; i++) { | 
 | 		stripe_start = rbio->bbio->raid_map[i]; | 
 | 		if (logical >= stripe_start && | 
 | 		    logical < stripe_start + rbio->stripe_len) { | 
 | 			return i; | 
 | 		} | 
 | 	} | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * returns -EIO if we had too many failures | 
 |  */ | 
 | static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int ret = 0; | 
 |  | 
 | 	spin_lock_irqsave(&rbio->bio_list_lock, flags); | 
 |  | 
 | 	/* we already know this stripe is bad, move on */ | 
 | 	if (rbio->faila == failed || rbio->failb == failed) | 
 | 		goto out; | 
 |  | 
 | 	if (rbio->faila == -1) { | 
 | 		/* first failure on this rbio */ | 
 | 		rbio->faila = failed; | 
 | 		atomic_inc(&rbio->error); | 
 | 	} else if (rbio->failb == -1) { | 
 | 		/* second failure on this rbio */ | 
 | 		rbio->failb = failed; | 
 | 		atomic_inc(&rbio->error); | 
 | 	} else { | 
 | 		ret = -EIO; | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irqrestore(&rbio->bio_list_lock, flags); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * helper to fail a stripe based on a physical disk | 
 |  * bio. | 
 |  */ | 
 | static int fail_bio_stripe(struct btrfs_raid_bio *rbio, | 
 | 			   struct bio *bio) | 
 | { | 
 | 	int failed = find_bio_stripe(rbio, bio); | 
 |  | 
 | 	if (failed < 0) | 
 | 		return -EIO; | 
 |  | 
 | 	return fail_rbio_index(rbio, failed); | 
 | } | 
 |  | 
 | /* | 
 |  * this sets each page in the bio uptodate.  It should only be used on private | 
 |  * rbio pages, nothing that comes in from the higher layers | 
 |  */ | 
 | static void set_bio_pages_uptodate(struct bio *bio) | 
 | { | 
 | 	struct bio_vec *bvec; | 
 | 	int i; | 
 |  | 
 | 	ASSERT(!bio_flagged(bio, BIO_CLONED)); | 
 |  | 
 | 	bio_for_each_segment_all(bvec, bio, i) | 
 | 		SetPageUptodate(bvec->bv_page); | 
 | } | 
 |  | 
 | /* | 
 |  * end io for the read phase of the rmw cycle.  All the bios here are physical | 
 |  * stripe bios we've read from the disk so we can recalculate the parity of the | 
 |  * stripe. | 
 |  * | 
 |  * This will usually kick off finish_rmw once all the bios are read in, but it | 
 |  * may trigger parity reconstruction if we had any errors along the way | 
 |  */ | 
 | static void raid_rmw_end_io(struct bio *bio) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio = bio->bi_private; | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		fail_bio_stripe(rbio, bio); | 
 | 	else | 
 | 		set_bio_pages_uptodate(bio); | 
 |  | 
 | 	bio_put(bio); | 
 |  | 
 | 	if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
 | 		return; | 
 |  | 
 | 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | 
 | 		goto cleanup; | 
 |  | 
 | 	/* | 
 | 	 * this will normally call finish_rmw to start our write | 
 | 	 * but if there are any failed stripes we'll reconstruct | 
 | 	 * from parity first | 
 | 	 */ | 
 | 	validate_rbio_for_rmw(rbio); | 
 | 	return; | 
 |  | 
 | cleanup: | 
 |  | 
 | 	rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
 | } | 
 |  | 
 | /* | 
 |  * the stripe must be locked by the caller.  It will | 
 |  * unlock after all the writes are done | 
 |  */ | 
 | static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int bios_to_read = 0; | 
 | 	struct bio_list bio_list; | 
 | 	int ret; | 
 | 	int pagenr; | 
 | 	int stripe; | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio_list_init(&bio_list); | 
 |  | 
 | 	ret = alloc_rbio_pages(rbio); | 
 | 	if (ret) | 
 | 		goto cleanup; | 
 |  | 
 | 	index_rbio_pages(rbio); | 
 |  | 
 | 	atomic_set(&rbio->error, 0); | 
 | 	/* | 
 | 	 * build a list of bios to read all the missing parts of this | 
 | 	 * stripe | 
 | 	 */ | 
 | 	for (stripe = 0; stripe < rbio->nr_data; stripe++) { | 
 | 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
 | 			struct page *page; | 
 | 			/* | 
 | 			 * we want to find all the pages missing from | 
 | 			 * the rbio and read them from the disk.  If | 
 | 			 * page_in_rbio finds a page in the bio list | 
 | 			 * we don't need to read it off the stripe. | 
 | 			 */ | 
 | 			page = page_in_rbio(rbio, stripe, pagenr, 1); | 
 | 			if (page) | 
 | 				continue; | 
 |  | 
 | 			page = rbio_stripe_page(rbio, stripe, pagenr); | 
 | 			/* | 
 | 			 * the bio cache may have handed us an uptodate | 
 | 			 * page.  If so, be happy and use it | 
 | 			 */ | 
 | 			if (PageUptodate(page)) | 
 | 				continue; | 
 |  | 
 | 			ret = rbio_add_io_page(rbio, &bio_list, page, | 
 | 				       stripe, pagenr, rbio->stripe_len); | 
 | 			if (ret) | 
 | 				goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bios_to_read = bio_list_size(&bio_list); | 
 | 	if (!bios_to_read) { | 
 | 		/* | 
 | 		 * this can happen if others have merged with | 
 | 		 * us, it means there is nothing left to read. | 
 | 		 * But if there are missing devices it may not be | 
 | 		 * safe to do the full stripe write yet. | 
 | 		 */ | 
 | 		goto finish; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the bbio may be freed once we submit the last bio.  Make sure | 
 | 	 * not to touch it after that | 
 | 	 */ | 
 | 	atomic_set(&rbio->stripes_pending, bios_to_read); | 
 | 	while (1) { | 
 | 		bio = bio_list_pop(&bio_list); | 
 | 		if (!bio) | 
 | 			break; | 
 |  | 
 | 		bio->bi_private = rbio; | 
 | 		bio->bi_end_io = raid_rmw_end_io; | 
 | 		bio->bi_opf = REQ_OP_READ; | 
 |  | 
 | 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); | 
 |  | 
 | 		submit_bio(bio); | 
 | 	} | 
 | 	/* the actual write will happen once the reads are done */ | 
 | 	return 0; | 
 |  | 
 | cleanup: | 
 | 	rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bio_list))) | 
 | 		bio_put(bio); | 
 |  | 
 | 	return -EIO; | 
 |  | 
 | finish: | 
 | 	validate_rbio_for_rmw(rbio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * if the upper layers pass in a full stripe, we thank them by only allocating | 
 |  * enough pages to hold the parity, and sending it all down quickly. | 
 |  */ | 
 | static int full_stripe_write(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = alloc_rbio_parity_pages(rbio); | 
 | 	if (ret) { | 
 | 		__free_raid_bio(rbio); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	ret = lock_stripe_add(rbio); | 
 | 	if (ret == 0) | 
 | 		finish_rmw(rbio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * partial stripe writes get handed over to async helpers. | 
 |  * We're really hoping to merge a few more writes into this | 
 |  * rbio before calculating new parity | 
 |  */ | 
 | static int partial_stripe_write(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = lock_stripe_add(rbio); | 
 | 	if (ret == 0) | 
 | 		start_async_work(rbio, rmw_work); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * sometimes while we were reading from the drive to | 
 |  * recalculate parity, enough new bios come into create | 
 |  * a full stripe.  So we do a check here to see if we can | 
 |  * go directly to finish_rmw | 
 |  */ | 
 | static int __raid56_parity_write(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	/* head off into rmw land if we don't have a full stripe */ | 
 | 	if (!rbio_is_full(rbio)) | 
 | 		return partial_stripe_write(rbio); | 
 | 	return full_stripe_write(rbio); | 
 | } | 
 |  | 
 | /* | 
 |  * We use plugging call backs to collect full stripes. | 
 |  * Any time we get a partial stripe write while plugged | 
 |  * we collect it into a list.  When the unplug comes down, | 
 |  * we sort the list by logical block number and merge | 
 |  * everything we can into the same rbios | 
 |  */ | 
 | struct btrfs_plug_cb { | 
 | 	struct blk_plug_cb cb; | 
 | 	struct btrfs_fs_info *info; | 
 | 	struct list_head rbio_list; | 
 | 	struct btrfs_work work; | 
 | }; | 
 |  | 
 | /* | 
 |  * rbios on the plug list are sorted for easier merging. | 
 |  */ | 
 | static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) | 
 | { | 
 | 	struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, | 
 | 						 plug_list); | 
 | 	struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, | 
 | 						 plug_list); | 
 | 	u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; | 
 | 	u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; | 
 |  | 
 | 	if (a_sector < b_sector) | 
 | 		return -1; | 
 | 	if (a_sector > b_sector) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void run_plug(struct btrfs_plug_cb *plug) | 
 | { | 
 | 	struct btrfs_raid_bio *cur; | 
 | 	struct btrfs_raid_bio *last = NULL; | 
 |  | 
 | 	/* | 
 | 	 * sort our plug list then try to merge | 
 | 	 * everything we can in hopes of creating full | 
 | 	 * stripes. | 
 | 	 */ | 
 | 	list_sort(NULL, &plug->rbio_list, plug_cmp); | 
 | 	while (!list_empty(&plug->rbio_list)) { | 
 | 		cur = list_entry(plug->rbio_list.next, | 
 | 				 struct btrfs_raid_bio, plug_list); | 
 | 		list_del_init(&cur->plug_list); | 
 |  | 
 | 		if (rbio_is_full(cur)) { | 
 | 			int ret; | 
 |  | 
 | 			/* we have a full stripe, send it down */ | 
 | 			ret = full_stripe_write(cur); | 
 | 			BUG_ON(ret); | 
 | 			continue; | 
 | 		} | 
 | 		if (last) { | 
 | 			if (rbio_can_merge(last, cur)) { | 
 | 				merge_rbio(last, cur); | 
 | 				__free_raid_bio(cur); | 
 | 				continue; | 
 |  | 
 | 			} | 
 | 			__raid56_parity_write(last); | 
 | 		} | 
 | 		last = cur; | 
 | 	} | 
 | 	if (last) { | 
 | 		__raid56_parity_write(last); | 
 | 	} | 
 | 	kfree(plug); | 
 | } | 
 |  | 
 | /* | 
 |  * if the unplug comes from schedule, we have to push the | 
 |  * work off to a helper thread | 
 |  */ | 
 | static void unplug_work(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_plug_cb *plug; | 
 | 	plug = container_of(work, struct btrfs_plug_cb, work); | 
 | 	run_plug(plug); | 
 | } | 
 |  | 
 | static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) | 
 | { | 
 | 	struct btrfs_plug_cb *plug; | 
 | 	plug = container_of(cb, struct btrfs_plug_cb, cb); | 
 |  | 
 | 	if (from_schedule) { | 
 | 		btrfs_init_work(&plug->work, btrfs_rmw_helper, | 
 | 				unplug_work, NULL, NULL); | 
 | 		btrfs_queue_work(plug->info->rmw_workers, | 
 | 				 &plug->work); | 
 | 		return; | 
 | 	} | 
 | 	run_plug(plug); | 
 | } | 
 |  | 
 | /* | 
 |  * our main entry point for writes from the rest of the FS. | 
 |  */ | 
 | int raid56_parity_write(struct btrfs_fs_info *fs_info, struct bio *bio, | 
 | 			struct btrfs_bio *bbio, u64 stripe_len) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 | 	struct btrfs_plug_cb *plug = NULL; | 
 | 	struct blk_plug_cb *cb; | 
 | 	int ret; | 
 |  | 
 | 	rbio = alloc_rbio(fs_info, bbio, stripe_len); | 
 | 	if (IS_ERR(rbio)) { | 
 | 		btrfs_put_bbio(bbio); | 
 | 		return PTR_ERR(rbio); | 
 | 	} | 
 | 	bio_list_add(&rbio->bio_list, bio); | 
 | 	rbio->bio_list_bytes = bio->bi_iter.bi_size; | 
 | 	rbio->operation = BTRFS_RBIO_WRITE; | 
 |  | 
 | 	btrfs_bio_counter_inc_noblocked(fs_info); | 
 | 	rbio->generic_bio_cnt = 1; | 
 |  | 
 | 	/* | 
 | 	 * don't plug on full rbios, just get them out the door | 
 | 	 * as quickly as we can | 
 | 	 */ | 
 | 	if (rbio_is_full(rbio)) { | 
 | 		ret = full_stripe_write(rbio); | 
 | 		if (ret) | 
 | 			btrfs_bio_counter_dec(fs_info); | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	cb = blk_check_plugged(btrfs_raid_unplug, fs_info, sizeof(*plug)); | 
 | 	if (cb) { | 
 | 		plug = container_of(cb, struct btrfs_plug_cb, cb); | 
 | 		if (!plug->info) { | 
 | 			plug->info = fs_info; | 
 | 			INIT_LIST_HEAD(&plug->rbio_list); | 
 | 		} | 
 | 		list_add_tail(&rbio->plug_list, &plug->rbio_list); | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		ret = __raid56_parity_write(rbio); | 
 | 		if (ret) | 
 | 			btrfs_bio_counter_dec(fs_info); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * all parity reconstruction happens here.  We've read in everything | 
 |  * we can find from the drives and this does the heavy lifting of | 
 |  * sorting the good from the bad. | 
 |  */ | 
 | static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int pagenr, stripe; | 
 | 	void **pointers; | 
 | 	int faila = -1, failb = -1; | 
 | 	struct page *page; | 
 | 	blk_status_t err; | 
 | 	int i; | 
 |  | 
 | 	pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); | 
 | 	if (!pointers) { | 
 | 		err = BLK_STS_RESOURCE; | 
 | 		goto cleanup_io; | 
 | 	} | 
 |  | 
 | 	faila = rbio->faila; | 
 | 	failb = rbio->failb; | 
 |  | 
 | 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
 | 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
 | 		spin_lock_irq(&rbio->bio_list_lock); | 
 | 		set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); | 
 | 		spin_unlock_irq(&rbio->bio_list_lock); | 
 | 	} | 
 |  | 
 | 	index_rbio_pages(rbio); | 
 |  | 
 | 	for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
 | 		/* | 
 | 		 * Now we just use bitmap to mark the horizontal stripes in | 
 | 		 * which we have data when doing parity scrub. | 
 | 		 */ | 
 | 		if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && | 
 | 		    !test_bit(pagenr, rbio->dbitmap)) | 
 | 			continue; | 
 |  | 
 | 		/* setup our array of pointers with pages | 
 | 		 * from each stripe | 
 | 		 */ | 
 | 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
 | 			/* | 
 | 			 * if we're rebuilding a read, we have to use | 
 | 			 * pages from the bio list | 
 | 			 */ | 
 | 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
 | 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | 
 | 			    (stripe == faila || stripe == failb)) { | 
 | 				page = page_in_rbio(rbio, stripe, pagenr, 0); | 
 | 			} else { | 
 | 				page = rbio_stripe_page(rbio, stripe, pagenr); | 
 | 			} | 
 | 			pointers[stripe] = kmap(page); | 
 | 		} | 
 |  | 
 | 		/* all raid6 handling here */ | 
 | 		if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { | 
 | 			/* | 
 | 			 * single failure, rebuild from parity raid5 | 
 | 			 * style | 
 | 			 */ | 
 | 			if (failb < 0) { | 
 | 				if (faila == rbio->nr_data) { | 
 | 					/* | 
 | 					 * Just the P stripe has failed, without | 
 | 					 * a bad data or Q stripe. | 
 | 					 * TODO, we should redo the xor here. | 
 | 					 */ | 
 | 					err = BLK_STS_IOERR; | 
 | 					goto cleanup; | 
 | 				} | 
 | 				/* | 
 | 				 * a single failure in raid6 is rebuilt | 
 | 				 * in the pstripe code below | 
 | 				 */ | 
 | 				goto pstripe; | 
 | 			} | 
 |  | 
 | 			/* make sure our ps and qs are in order */ | 
 | 			if (faila > failb) { | 
 | 				int tmp = failb; | 
 | 				failb = faila; | 
 | 				faila = tmp; | 
 | 			} | 
 |  | 
 | 			/* if the q stripe is failed, do a pstripe reconstruction | 
 | 			 * from the xors. | 
 | 			 * If both the q stripe and the P stripe are failed, we're | 
 | 			 * here due to a crc mismatch and we can't give them the | 
 | 			 * data they want | 
 | 			 */ | 
 | 			if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { | 
 | 				if (rbio->bbio->raid_map[faila] == | 
 | 				    RAID5_P_STRIPE) { | 
 | 					err = BLK_STS_IOERR; | 
 | 					goto cleanup; | 
 | 				} | 
 | 				/* | 
 | 				 * otherwise we have one bad data stripe and | 
 | 				 * a good P stripe.  raid5! | 
 | 				 */ | 
 | 				goto pstripe; | 
 | 			} | 
 |  | 
 | 			if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { | 
 | 				raid6_datap_recov(rbio->real_stripes, | 
 | 						  PAGE_SIZE, faila, pointers); | 
 | 			} else { | 
 | 				raid6_2data_recov(rbio->real_stripes, | 
 | 						  PAGE_SIZE, faila, failb, | 
 | 						  pointers); | 
 | 			} | 
 | 		} else { | 
 | 			void *p; | 
 |  | 
 | 			/* rebuild from P stripe here (raid5 or raid6) */ | 
 | 			BUG_ON(failb != -1); | 
 | pstripe: | 
 | 			/* Copy parity block into failed block to start with */ | 
 | 			copy_page(pointers[faila], pointers[rbio->nr_data]); | 
 |  | 
 | 			/* rearrange the pointer array */ | 
 | 			p = pointers[faila]; | 
 | 			for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) | 
 | 				pointers[stripe] = pointers[stripe + 1]; | 
 | 			pointers[rbio->nr_data - 1] = p; | 
 |  | 
 | 			/* xor in the rest */ | 
 | 			run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); | 
 | 		} | 
 | 		/* if we're doing this rebuild as part of an rmw, go through | 
 | 		 * and set all of our private rbio pages in the | 
 | 		 * failed stripes as uptodate.  This way finish_rmw will | 
 | 		 * know they can be trusted.  If this was a read reconstruction, | 
 | 		 * other endio functions will fiddle the uptodate bits | 
 | 		 */ | 
 | 		if (rbio->operation == BTRFS_RBIO_WRITE) { | 
 | 			for (i = 0;  i < rbio->stripe_npages; i++) { | 
 | 				if (faila != -1) { | 
 | 					page = rbio_stripe_page(rbio, faila, i); | 
 | 					SetPageUptodate(page); | 
 | 				} | 
 | 				if (failb != -1) { | 
 | 					page = rbio_stripe_page(rbio, failb, i); | 
 | 					SetPageUptodate(page); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
 | 			/* | 
 | 			 * if we're rebuilding a read, we have to use | 
 | 			 * pages from the bio list | 
 | 			 */ | 
 | 			if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
 | 			     rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && | 
 | 			    (stripe == faila || stripe == failb)) { | 
 | 				page = page_in_rbio(rbio, stripe, pagenr, 0); | 
 | 			} else { | 
 | 				page = rbio_stripe_page(rbio, stripe, pagenr); | 
 | 			} | 
 | 			kunmap(page); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = BLK_STS_OK; | 
 | cleanup: | 
 | 	kfree(pointers); | 
 |  | 
 | cleanup_io: | 
 | 	/* | 
 | 	 * Similar to READ_REBUILD, REBUILD_MISSING at this point also has a | 
 | 	 * valid rbio which is consistent with ondisk content, thus such a | 
 | 	 * valid rbio can be cached to avoid further disk reads. | 
 | 	 */ | 
 | 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
 | 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { | 
 | 		/* | 
 | 		 * - In case of two failures, where rbio->failb != -1: | 
 | 		 * | 
 | 		 *   Do not cache this rbio since the above read reconstruction | 
 | 		 *   (raid6_datap_recov() or raid6_2data_recov()) may have | 
 | 		 *   changed some content of stripes which are not identical to | 
 | 		 *   on-disk content any more, otherwise, a later write/recover | 
 | 		 *   may steal stripe_pages from this rbio and end up with | 
 | 		 *   corruptions or rebuild failures. | 
 | 		 * | 
 | 		 * - In case of single failure, where rbio->failb == -1: | 
 | 		 * | 
 | 		 *   Cache this rbio iff the above read reconstruction is | 
 | 		 *   excuted without problems. | 
 | 		 */ | 
 | 		if (err == BLK_STS_OK && rbio->failb < 0) | 
 | 			cache_rbio_pages(rbio); | 
 | 		else | 
 | 			clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
 |  | 
 | 		rbio_orig_end_io(rbio, err); | 
 | 	} else if (err == BLK_STS_OK) { | 
 | 		rbio->faila = -1; | 
 | 		rbio->failb = -1; | 
 |  | 
 | 		if (rbio->operation == BTRFS_RBIO_WRITE) | 
 | 			finish_rmw(rbio); | 
 | 		else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) | 
 | 			finish_parity_scrub(rbio, 0); | 
 | 		else | 
 | 			BUG(); | 
 | 	} else { | 
 | 		rbio_orig_end_io(rbio, err); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This is called only for stripes we've read from disk to | 
 |  * reconstruct the parity. | 
 |  */ | 
 | static void raid_recover_end_io(struct bio *bio) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio = bio->bi_private; | 
 |  | 
 | 	/* | 
 | 	 * we only read stripe pages off the disk, set them | 
 | 	 * up to date if there were no errors | 
 | 	 */ | 
 | 	if (bio->bi_status) | 
 | 		fail_bio_stripe(rbio, bio); | 
 | 	else | 
 | 		set_bio_pages_uptodate(bio); | 
 | 	bio_put(bio); | 
 |  | 
 | 	if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
 | 		return; | 
 |  | 
 | 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | 
 | 		rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
 | 	else | 
 | 		__raid_recover_end_io(rbio); | 
 | } | 
 |  | 
 | /* | 
 |  * reads everything we need off the disk to reconstruct | 
 |  * the parity. endio handlers trigger final reconstruction | 
 |  * when the IO is done. | 
 |  * | 
 |  * This is used both for reads from the higher layers and for | 
 |  * parity construction required to finish a rmw cycle. | 
 |  */ | 
 | static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int bios_to_read = 0; | 
 | 	struct bio_list bio_list; | 
 | 	int ret; | 
 | 	int pagenr; | 
 | 	int stripe; | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio_list_init(&bio_list); | 
 |  | 
 | 	ret = alloc_rbio_pages(rbio); | 
 | 	if (ret) | 
 | 		goto cleanup; | 
 |  | 
 | 	atomic_set(&rbio->error, 0); | 
 |  | 
 | 	/* | 
 | 	 * read everything that hasn't failed.  Thanks to the | 
 | 	 * stripe cache, it is possible that some or all of these | 
 | 	 * pages are going to be uptodate. | 
 | 	 */ | 
 | 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
 | 		if (rbio->faila == stripe || rbio->failb == stripe) { | 
 | 			atomic_inc(&rbio->error); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { | 
 | 			struct page *p; | 
 |  | 
 | 			/* | 
 | 			 * the rmw code may have already read this | 
 | 			 * page in | 
 | 			 */ | 
 | 			p = rbio_stripe_page(rbio, stripe, pagenr); | 
 | 			if (PageUptodate(p)) | 
 | 				continue; | 
 |  | 
 | 			ret = rbio_add_io_page(rbio, &bio_list, | 
 | 				       rbio_stripe_page(rbio, stripe, pagenr), | 
 | 				       stripe, pagenr, rbio->stripe_len); | 
 | 			if (ret < 0) | 
 | 				goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bios_to_read = bio_list_size(&bio_list); | 
 | 	if (!bios_to_read) { | 
 | 		/* | 
 | 		 * we might have no bios to read just because the pages | 
 | 		 * were up to date, or we might have no bios to read because | 
 | 		 * the devices were gone. | 
 | 		 */ | 
 | 		if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { | 
 | 			__raid_recover_end_io(rbio); | 
 | 			goto out; | 
 | 		} else { | 
 | 			goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the bbio may be freed once we submit the last bio.  Make sure | 
 | 	 * not to touch it after that | 
 | 	 */ | 
 | 	atomic_set(&rbio->stripes_pending, bios_to_read); | 
 | 	while (1) { | 
 | 		bio = bio_list_pop(&bio_list); | 
 | 		if (!bio) | 
 | 			break; | 
 |  | 
 | 		bio->bi_private = rbio; | 
 | 		bio->bi_end_io = raid_recover_end_io; | 
 | 		bio->bi_opf = REQ_OP_READ; | 
 |  | 
 | 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); | 
 |  | 
 | 		submit_bio(bio); | 
 | 	} | 
 | out: | 
 | 	return 0; | 
 |  | 
 | cleanup: | 
 | 	if (rbio->operation == BTRFS_RBIO_READ_REBUILD || | 
 | 	    rbio->operation == BTRFS_RBIO_REBUILD_MISSING) | 
 | 		rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bio_list))) | 
 | 		bio_put(bio); | 
 |  | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | /* | 
 |  * the main entry point for reads from the higher layers.  This | 
 |  * is really only called when the normal read path had a failure, | 
 |  * so we assume the bio they send down corresponds to a failed part | 
 |  * of the drive. | 
 |  */ | 
 | int raid56_parity_recover(struct btrfs_fs_info *fs_info, struct bio *bio, | 
 | 			  struct btrfs_bio *bbio, u64 stripe_len, | 
 | 			  int mirror_num, int generic_io) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 | 	int ret; | 
 |  | 
 | 	if (generic_io) { | 
 | 		ASSERT(bbio->mirror_num == mirror_num); | 
 | 		btrfs_io_bio(bio)->mirror_num = mirror_num; | 
 | 	} | 
 |  | 
 | 	rbio = alloc_rbio(fs_info, bbio, stripe_len); | 
 | 	if (IS_ERR(rbio)) { | 
 | 		if (generic_io) | 
 | 			btrfs_put_bbio(bbio); | 
 | 		return PTR_ERR(rbio); | 
 | 	} | 
 |  | 
 | 	rbio->operation = BTRFS_RBIO_READ_REBUILD; | 
 | 	bio_list_add(&rbio->bio_list, bio); | 
 | 	rbio->bio_list_bytes = bio->bi_iter.bi_size; | 
 |  | 
 | 	rbio->faila = find_logical_bio_stripe(rbio, bio); | 
 | 	if (rbio->faila == -1) { | 
 | 		btrfs_warn(fs_info, | 
 | 	"%s could not find the bad stripe in raid56 so that we cannot recover any more (bio has logical %llu len %llu, bbio has map_type %llu)", | 
 | 			   __func__, (u64)bio->bi_iter.bi_sector << 9, | 
 | 			   (u64)bio->bi_iter.bi_size, bbio->map_type); | 
 | 		if (generic_io) | 
 | 			btrfs_put_bbio(bbio); | 
 | 		kfree(rbio); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	if (generic_io) { | 
 | 		btrfs_bio_counter_inc_noblocked(fs_info); | 
 | 		rbio->generic_bio_cnt = 1; | 
 | 	} else { | 
 | 		btrfs_get_bbio(bbio); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Loop retry: | 
 | 	 * for 'mirror == 2', reconstruct from all other stripes. | 
 | 	 * for 'mirror_num > 2', select a stripe to fail on every retry. | 
 | 	 */ | 
 | 	if (mirror_num > 2) { | 
 | 		/* | 
 | 		 * 'mirror == 3' is to fail the p stripe and | 
 | 		 * reconstruct from the q stripe.  'mirror > 3' is to | 
 | 		 * fail a data stripe and reconstruct from p+q stripe. | 
 | 		 */ | 
 | 		rbio->failb = rbio->real_stripes - (mirror_num - 1); | 
 | 		ASSERT(rbio->failb > 0); | 
 | 		if (rbio->failb <= rbio->faila) | 
 | 			rbio->failb--; | 
 | 	} | 
 |  | 
 | 	ret = lock_stripe_add(rbio); | 
 |  | 
 | 	/* | 
 | 	 * __raid56_parity_recover will end the bio with | 
 | 	 * any errors it hits.  We don't want to return | 
 | 	 * its error value up the stack because our caller | 
 | 	 * will end up calling bio_endio with any nonzero | 
 | 	 * return | 
 | 	 */ | 
 | 	if (ret == 0) | 
 | 		__raid56_parity_recover(rbio); | 
 | 	/* | 
 | 	 * our rbio has been added to the list of | 
 | 	 * rbios that will be handled after the | 
 | 	 * currently lock owner is done | 
 | 	 */ | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | static void rmw_work(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	rbio = container_of(work, struct btrfs_raid_bio, work); | 
 | 	raid56_rmw_stripe(rbio); | 
 | } | 
 |  | 
 | static void read_rebuild_work(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	rbio = container_of(work, struct btrfs_raid_bio, work); | 
 | 	__raid56_parity_recover(rbio); | 
 | } | 
 |  | 
 | /* | 
 |  * The following code is used to scrub/replace the parity stripe | 
 |  * | 
 |  * Caller must have already increased bio_counter for getting @bbio. | 
 |  * | 
 |  * Note: We need make sure all the pages that add into the scrub/replace | 
 |  * raid bio are correct and not be changed during the scrub/replace. That | 
 |  * is those pages just hold metadata or file data with checksum. | 
 |  */ | 
 |  | 
 | struct btrfs_raid_bio * | 
 | raid56_parity_alloc_scrub_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, | 
 | 			       struct btrfs_bio *bbio, u64 stripe_len, | 
 | 			       struct btrfs_device *scrub_dev, | 
 | 			       unsigned long *dbitmap, int stripe_nsectors) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 | 	int i; | 
 |  | 
 | 	rbio = alloc_rbio(fs_info, bbio, stripe_len); | 
 | 	if (IS_ERR(rbio)) | 
 | 		return NULL; | 
 | 	bio_list_add(&rbio->bio_list, bio); | 
 | 	/* | 
 | 	 * This is a special bio which is used to hold the completion handler | 
 | 	 * and make the scrub rbio is similar to the other types | 
 | 	 */ | 
 | 	ASSERT(!bio->bi_iter.bi_size); | 
 | 	rbio->operation = BTRFS_RBIO_PARITY_SCRUB; | 
 |  | 
 | 	/* | 
 | 	 * After mapping bbio with BTRFS_MAP_WRITE, parities have been sorted | 
 | 	 * to the end position, so this search can start from the first parity | 
 | 	 * stripe. | 
 | 	 */ | 
 | 	for (i = rbio->nr_data; i < rbio->real_stripes; i++) { | 
 | 		if (bbio->stripes[i].dev == scrub_dev) { | 
 | 			rbio->scrubp = i; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	ASSERT(i < rbio->real_stripes); | 
 |  | 
 | 	/* Now we just support the sectorsize equals to page size */ | 
 | 	ASSERT(fs_info->sectorsize == PAGE_SIZE); | 
 | 	ASSERT(rbio->stripe_npages == stripe_nsectors); | 
 | 	bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); | 
 |  | 
 | 	/* | 
 | 	 * We have already increased bio_counter when getting bbio, record it | 
 | 	 * so we can free it at rbio_orig_end_io(). | 
 | 	 */ | 
 | 	rbio->generic_bio_cnt = 1; | 
 |  | 
 | 	return rbio; | 
 | } | 
 |  | 
 | /* Used for both parity scrub and missing. */ | 
 | void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, | 
 | 			    u64 logical) | 
 | { | 
 | 	int stripe_offset; | 
 | 	int index; | 
 |  | 
 | 	ASSERT(logical >= rbio->bbio->raid_map[0]); | 
 | 	ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + | 
 | 				rbio->stripe_len * rbio->nr_data); | 
 | 	stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); | 
 | 	index = stripe_offset >> PAGE_SHIFT; | 
 | 	rbio->bio_pages[index] = page; | 
 | } | 
 |  | 
 | /* | 
 |  * We just scrub the parity that we have correct data on the same horizontal, | 
 |  * so we needn't allocate all pages for all the stripes. | 
 |  */ | 
 | static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int i; | 
 | 	int bit; | 
 | 	int index; | 
 | 	struct page *page; | 
 |  | 
 | 	for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { | 
 | 		for (i = 0; i < rbio->real_stripes; i++) { | 
 | 			index = i * rbio->stripe_npages + bit; | 
 | 			if (rbio->stripe_pages[index]) | 
 | 				continue; | 
 |  | 
 | 			page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
 | 			if (!page) | 
 | 				return -ENOMEM; | 
 | 			rbio->stripe_pages[index] = page; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, | 
 | 					 int need_check) | 
 | { | 
 | 	struct btrfs_bio *bbio = rbio->bbio; | 
 | 	void **pointers = rbio->finish_pointers; | 
 | 	unsigned long *pbitmap = rbio->finish_pbitmap; | 
 | 	int nr_data = rbio->nr_data; | 
 | 	int stripe; | 
 | 	int pagenr; | 
 | 	int p_stripe = -1; | 
 | 	int q_stripe = -1; | 
 | 	struct page *p_page = NULL; | 
 | 	struct page *q_page = NULL; | 
 | 	struct bio_list bio_list; | 
 | 	struct bio *bio; | 
 | 	int is_replace = 0; | 
 | 	int ret; | 
 |  | 
 | 	bio_list_init(&bio_list); | 
 |  | 
 | 	if (rbio->real_stripes - rbio->nr_data == 1) { | 
 | 		p_stripe = rbio->real_stripes - 1; | 
 | 	} else if (rbio->real_stripes - rbio->nr_data == 2) { | 
 | 		p_stripe = rbio->real_stripes - 2; | 
 | 		q_stripe = rbio->real_stripes - 1; | 
 | 	} else { | 
 | 		BUG(); | 
 | 	} | 
 |  | 
 | 	if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { | 
 | 		is_replace = 1; | 
 | 		bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Because the higher layers(scrubber) are unlikely to | 
 | 	 * use this area of the disk again soon, so don't cache | 
 | 	 * it. | 
 | 	 */ | 
 | 	clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); | 
 |  | 
 | 	if (!need_check) | 
 | 		goto writeback; | 
 |  | 
 | 	p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
 | 	if (!p_page) | 
 | 		goto cleanup; | 
 | 	SetPageUptodate(p_page); | 
 |  | 
 | 	if (q_stripe != -1) { | 
 | 		q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); | 
 | 		if (!q_page) { | 
 | 			__free_page(p_page); | 
 | 			goto cleanup; | 
 | 		} | 
 | 		SetPageUptodate(q_page); | 
 | 	} | 
 |  | 
 | 	atomic_set(&rbio->error, 0); | 
 |  | 
 | 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | 
 | 		struct page *p; | 
 | 		void *parity; | 
 | 		/* first collect one page from each data stripe */ | 
 | 		for (stripe = 0; stripe < nr_data; stripe++) { | 
 | 			p = page_in_rbio(rbio, stripe, pagenr, 0); | 
 | 			pointers[stripe] = kmap(p); | 
 | 		} | 
 |  | 
 | 		/* then add the parity stripe */ | 
 | 		pointers[stripe++] = kmap(p_page); | 
 |  | 
 | 		if (q_stripe != -1) { | 
 |  | 
 | 			/* | 
 | 			 * raid6, add the qstripe and call the | 
 | 			 * library function to fill in our p/q | 
 | 			 */ | 
 | 			pointers[stripe++] = kmap(q_page); | 
 |  | 
 | 			raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, | 
 | 						pointers); | 
 | 		} else { | 
 | 			/* raid5 */ | 
 | 			copy_page(pointers[nr_data], pointers[0]); | 
 | 			run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); | 
 | 		} | 
 |  | 
 | 		/* Check scrubbing parity and repair it */ | 
 | 		p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | 
 | 		parity = kmap(p); | 
 | 		if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) | 
 | 			copy_page(parity, pointers[rbio->scrubp]); | 
 | 		else | 
 | 			/* Parity is right, needn't writeback */ | 
 | 			bitmap_clear(rbio->dbitmap, pagenr, 1); | 
 | 		kunmap(p); | 
 |  | 
 | 		for (stripe = 0; stripe < nr_data; stripe++) | 
 | 			kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); | 
 | 		kunmap(p_page); | 
 | 	} | 
 |  | 
 | 	__free_page(p_page); | 
 | 	if (q_page) | 
 | 		__free_page(q_page); | 
 |  | 
 | writeback: | 
 | 	/* | 
 | 	 * time to start writing.  Make bios for everything from the | 
 | 	 * higher layers (the bio_list in our rbio) and our p/q.  Ignore | 
 | 	 * everything else. | 
 | 	 */ | 
 | 	for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | 
 | 		ret = rbio_add_io_page(rbio, &bio_list, | 
 | 			       page, rbio->scrubp, pagenr, rbio->stripe_len); | 
 | 		if (ret) | 
 | 			goto cleanup; | 
 | 	} | 
 |  | 
 | 	if (!is_replace) | 
 | 		goto submit_write; | 
 |  | 
 | 	for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { | 
 | 		struct page *page; | 
 |  | 
 | 		page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); | 
 | 		ret = rbio_add_io_page(rbio, &bio_list, page, | 
 | 				       bbio->tgtdev_map[rbio->scrubp], | 
 | 				       pagenr, rbio->stripe_len); | 
 | 		if (ret) | 
 | 			goto cleanup; | 
 | 	} | 
 |  | 
 | submit_write: | 
 | 	nr_data = bio_list_size(&bio_list); | 
 | 	if (!nr_data) { | 
 | 		/* Every parity is right */ | 
 | 		rbio_orig_end_io(rbio, BLK_STS_OK); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	atomic_set(&rbio->stripes_pending, nr_data); | 
 |  | 
 | 	while (1) { | 
 | 		bio = bio_list_pop(&bio_list); | 
 | 		if (!bio) | 
 | 			break; | 
 |  | 
 | 		bio->bi_private = rbio; | 
 | 		bio->bi_end_io = raid_write_end_io; | 
 | 		bio->bi_opf = REQ_OP_WRITE; | 
 |  | 
 | 		submit_bio(bio); | 
 | 	} | 
 | 	return; | 
 |  | 
 | cleanup: | 
 | 	rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bio_list))) | 
 | 		bio_put(bio); | 
 | } | 
 |  | 
 | static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) | 
 | { | 
 | 	if (stripe >= 0 && stripe < rbio->nr_data) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * While we're doing the parity check and repair, we could have errors | 
 |  * in reading pages off the disk.  This checks for errors and if we're | 
 |  * not able to read the page it'll trigger parity reconstruction.  The | 
 |  * parity scrub will be finished after we've reconstructed the failed | 
 |  * stripes | 
 |  */ | 
 | static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	if (atomic_read(&rbio->error) > rbio->bbio->max_errors) | 
 | 		goto cleanup; | 
 |  | 
 | 	if (rbio->faila >= 0 || rbio->failb >= 0) { | 
 | 		int dfail = 0, failp = -1; | 
 |  | 
 | 		if (is_data_stripe(rbio, rbio->faila)) | 
 | 			dfail++; | 
 | 		else if (is_parity_stripe(rbio->faila)) | 
 | 			failp = rbio->faila; | 
 |  | 
 | 		if (is_data_stripe(rbio, rbio->failb)) | 
 | 			dfail++; | 
 | 		else if (is_parity_stripe(rbio->failb)) | 
 | 			failp = rbio->failb; | 
 |  | 
 | 		/* | 
 | 		 * Because we can not use a scrubbing parity to repair | 
 | 		 * the data, so the capability of the repair is declined. | 
 | 		 * (In the case of RAID5, we can not repair anything) | 
 | 		 */ | 
 | 		if (dfail > rbio->bbio->max_errors - 1) | 
 | 			goto cleanup; | 
 |  | 
 | 		/* | 
 | 		 * If all data is good, only parity is correctly, just | 
 | 		 * repair the parity. | 
 | 		 */ | 
 | 		if (dfail == 0) { | 
 | 			finish_parity_scrub(rbio, 0); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Here means we got one corrupted data stripe and one | 
 | 		 * corrupted parity on RAID6, if the corrupted parity | 
 | 		 * is scrubbing parity, luckily, use the other one to repair | 
 | 		 * the data, or we can not repair the data stripe. | 
 | 		 */ | 
 | 		if (failp != rbio->scrubp) | 
 | 			goto cleanup; | 
 |  | 
 | 		__raid_recover_end_io(rbio); | 
 | 	} else { | 
 | 		finish_parity_scrub(rbio, 1); | 
 | 	} | 
 | 	return; | 
 |  | 
 | cleanup: | 
 | 	rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
 | } | 
 |  | 
 | /* | 
 |  * end io for the read phase of the rmw cycle.  All the bios here are physical | 
 |  * stripe bios we've read from the disk so we can recalculate the parity of the | 
 |  * stripe. | 
 |  * | 
 |  * This will usually kick off finish_rmw once all the bios are read in, but it | 
 |  * may trigger parity reconstruction if we had any errors along the way | 
 |  */ | 
 | static void raid56_parity_scrub_end_io(struct bio *bio) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio = bio->bi_private; | 
 |  | 
 | 	if (bio->bi_status) | 
 | 		fail_bio_stripe(rbio, bio); | 
 | 	else | 
 | 		set_bio_pages_uptodate(bio); | 
 |  | 
 | 	bio_put(bio); | 
 |  | 
 | 	if (!atomic_dec_and_test(&rbio->stripes_pending)) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * this will normally call finish_rmw to start our write | 
 | 	 * but if there are any failed stripes we'll reconstruct | 
 | 	 * from parity first | 
 | 	 */ | 
 | 	validate_rbio_for_parity_scrub(rbio); | 
 | } | 
 |  | 
 | static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	int bios_to_read = 0; | 
 | 	struct bio_list bio_list; | 
 | 	int ret; | 
 | 	int pagenr; | 
 | 	int stripe; | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio_list_init(&bio_list); | 
 |  | 
 | 	ret = alloc_rbio_essential_pages(rbio); | 
 | 	if (ret) | 
 | 		goto cleanup; | 
 |  | 
 | 	atomic_set(&rbio->error, 0); | 
 | 	/* | 
 | 	 * build a list of bios to read all the missing parts of this | 
 | 	 * stripe | 
 | 	 */ | 
 | 	for (stripe = 0; stripe < rbio->real_stripes; stripe++) { | 
 | 		for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { | 
 | 			struct page *page; | 
 | 			/* | 
 | 			 * we want to find all the pages missing from | 
 | 			 * the rbio and read them from the disk.  If | 
 | 			 * page_in_rbio finds a page in the bio list | 
 | 			 * we don't need to read it off the stripe. | 
 | 			 */ | 
 | 			page = page_in_rbio(rbio, stripe, pagenr, 1); | 
 | 			if (page) | 
 | 				continue; | 
 |  | 
 | 			page = rbio_stripe_page(rbio, stripe, pagenr); | 
 | 			/* | 
 | 			 * the bio cache may have handed us an uptodate | 
 | 			 * page.  If so, be happy and use it | 
 | 			 */ | 
 | 			if (PageUptodate(page)) | 
 | 				continue; | 
 |  | 
 | 			ret = rbio_add_io_page(rbio, &bio_list, page, | 
 | 				       stripe, pagenr, rbio->stripe_len); | 
 | 			if (ret) | 
 | 				goto cleanup; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bios_to_read = bio_list_size(&bio_list); | 
 | 	if (!bios_to_read) { | 
 | 		/* | 
 | 		 * this can happen if others have merged with | 
 | 		 * us, it means there is nothing left to read. | 
 | 		 * But if there are missing devices it may not be | 
 | 		 * safe to do the full stripe write yet. | 
 | 		 */ | 
 | 		goto finish; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the bbio may be freed once we submit the last bio.  Make sure | 
 | 	 * not to touch it after that | 
 | 	 */ | 
 | 	atomic_set(&rbio->stripes_pending, bios_to_read); | 
 | 	while (1) { | 
 | 		bio = bio_list_pop(&bio_list); | 
 | 		if (!bio) | 
 | 			break; | 
 |  | 
 | 		bio->bi_private = rbio; | 
 | 		bio->bi_end_io = raid56_parity_scrub_end_io; | 
 | 		bio->bi_opf = REQ_OP_READ; | 
 |  | 
 | 		btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); | 
 |  | 
 | 		submit_bio(bio); | 
 | 	} | 
 | 	/* the actual write will happen once the reads are done */ | 
 | 	return; | 
 |  | 
 | cleanup: | 
 | 	rbio_orig_end_io(rbio, BLK_STS_IOERR); | 
 |  | 
 | 	while ((bio = bio_list_pop(&bio_list))) | 
 | 		bio_put(bio); | 
 |  | 
 | 	return; | 
 |  | 
 | finish: | 
 | 	validate_rbio_for_parity_scrub(rbio); | 
 | } | 
 |  | 
 | static void scrub_parity_work(struct btrfs_work *work) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	rbio = container_of(work, struct btrfs_raid_bio, work); | 
 | 	raid56_parity_scrub_stripe(rbio); | 
 | } | 
 |  | 
 | void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	if (!lock_stripe_add(rbio)) | 
 | 		start_async_work(rbio, scrub_parity_work); | 
 | } | 
 |  | 
 | /* The following code is used for dev replace of a missing RAID 5/6 device. */ | 
 |  | 
 | struct btrfs_raid_bio * | 
 | raid56_alloc_missing_rbio(struct btrfs_fs_info *fs_info, struct bio *bio, | 
 | 			  struct btrfs_bio *bbio, u64 length) | 
 | { | 
 | 	struct btrfs_raid_bio *rbio; | 
 |  | 
 | 	rbio = alloc_rbio(fs_info, bbio, length); | 
 | 	if (IS_ERR(rbio)) | 
 | 		return NULL; | 
 |  | 
 | 	rbio->operation = BTRFS_RBIO_REBUILD_MISSING; | 
 | 	bio_list_add(&rbio->bio_list, bio); | 
 | 	/* | 
 | 	 * This is a special bio which is used to hold the completion handler | 
 | 	 * and make the scrub rbio is similar to the other types | 
 | 	 */ | 
 | 	ASSERT(!bio->bi_iter.bi_size); | 
 |  | 
 | 	rbio->faila = find_logical_bio_stripe(rbio, bio); | 
 | 	if (rbio->faila == -1) { | 
 | 		BUG(); | 
 | 		kfree(rbio); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When we get bbio, we have already increased bio_counter, record it | 
 | 	 * so we can free it at rbio_orig_end_io() | 
 | 	 */ | 
 | 	rbio->generic_bio_cnt = 1; | 
 |  | 
 | 	return rbio; | 
 | } | 
 |  | 
 | void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) | 
 | { | 
 | 	if (!lock_stripe_add(rbio)) | 
 | 		start_async_work(rbio, read_rebuild_work); | 
 | } |