| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (C) 2007 Oracle.  All rights reserved. | 
 |  */ | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include <linux/module.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/time.h> | 
 | #include <linux/init.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/string.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/writeback.h> | 
 | #include <linux/statfs.h> | 
 | #include <linux/compat.h> | 
 | #include <linux/parser.h> | 
 | #include <linux/ctype.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/miscdevice.h> | 
 | #include <linux/magic.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/cleancache.h> | 
 | #include <linux/ratelimit.h> | 
 | #include <linux/crc32c.h> | 
 | #include <linux/btrfs.h> | 
 | #include "delayed-inode.h" | 
 | #include "ctree.h" | 
 | #include "disk-io.h" | 
 | #include "transaction.h" | 
 | #include "btrfs_inode.h" | 
 | #include "print-tree.h" | 
 | #include "props.h" | 
 | #include "xattr.h" | 
 | #include "volumes.h" | 
 | #include "export.h" | 
 | #include "compression.h" | 
 | #include "rcu-string.h" | 
 | #include "dev-replace.h" | 
 | #include "free-space-cache.h" | 
 | #include "backref.h" | 
 | #include "tests/btrfs-tests.h" | 
 |  | 
 | #include "qgroup.h" | 
 | #define CREATE_TRACE_POINTS | 
 | #include <trace/events/btrfs.h> | 
 |  | 
 | static const struct super_operations btrfs_super_ops; | 
 |  | 
 | /* | 
 |  * Types for mounting the default subvolume and a subvolume explicitly | 
 |  * requested by subvol=/path. That way the callchain is straightforward and we | 
 |  * don't have to play tricks with the mount options and recursive calls to | 
 |  * btrfs_mount. | 
 |  * | 
 |  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. | 
 |  */ | 
 | static struct file_system_type btrfs_fs_type; | 
 | static struct file_system_type btrfs_root_fs_type; | 
 |  | 
 | static int btrfs_remount(struct super_block *sb, int *flags, char *data); | 
 |  | 
 | const char *btrfs_decode_error(int errno) | 
 | { | 
 | 	char *errstr = "unknown"; | 
 |  | 
 | 	switch (errno) { | 
 | 	case -EIO: | 
 | 		errstr = "IO failure"; | 
 | 		break; | 
 | 	case -ENOMEM: | 
 | 		errstr = "Out of memory"; | 
 | 		break; | 
 | 	case -EROFS: | 
 | 		errstr = "Readonly filesystem"; | 
 | 		break; | 
 | 	case -EEXIST: | 
 | 		errstr = "Object already exists"; | 
 | 		break; | 
 | 	case -ENOSPC: | 
 | 		errstr = "No space left"; | 
 | 		break; | 
 | 	case -ENOENT: | 
 | 		errstr = "No such entry"; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return errstr; | 
 | } | 
 |  | 
 | /* | 
 |  * __btrfs_handle_fs_error decodes expected errors from the caller and | 
 |  * invokes the approciate error response. | 
 |  */ | 
 | __cold | 
 | void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, | 
 | 		       unsigned int line, int errno, const char *fmt, ...) | 
 | { | 
 | 	struct super_block *sb = fs_info->sb; | 
 | #ifdef CONFIG_PRINTK | 
 | 	const char *errstr; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Special case: if the error is EROFS, and we're already | 
 | 	 * under SB_RDONLY, then it is safe here. | 
 | 	 */ | 
 | 	if (errno == -EROFS && sb_rdonly(sb)) | 
 |   		return; | 
 |  | 
 | #ifdef CONFIG_PRINTK | 
 | 	errstr = btrfs_decode_error(errno); | 
 | 	if (fmt) { | 
 | 		struct va_format vaf; | 
 | 		va_list args; | 
 |  | 
 | 		va_start(args, fmt); | 
 | 		vaf.fmt = fmt; | 
 | 		vaf.va = &args; | 
 |  | 
 | 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", | 
 | 			sb->s_id, function, line, errno, errstr, &vaf); | 
 | 		va_end(args); | 
 | 	} else { | 
 | 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", | 
 | 			sb->s_id, function, line, errno, errstr); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Today we only save the error info to memory.  Long term we'll | 
 | 	 * also send it down to the disk | 
 | 	 */ | 
 | 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); | 
 |  | 
 | 	/* Don't go through full error handling during mount */ | 
 | 	if (!(sb->s_flags & SB_BORN)) | 
 | 		return; | 
 |  | 
 | 	if (sb_rdonly(sb)) | 
 | 		return; | 
 |  | 
 | 	/* btrfs handle error by forcing the filesystem readonly */ | 
 | 	sb->s_flags |= SB_RDONLY; | 
 | 	btrfs_info(fs_info, "forced readonly"); | 
 | 	/* | 
 | 	 * Note that a running device replace operation is not canceled here | 
 | 	 * although there is no way to update the progress. It would add the | 
 | 	 * risk of a deadlock, therefore the canceling is omitted. The only | 
 | 	 * penalty is that some I/O remains active until the procedure | 
 | 	 * completes. The next time when the filesystem is mounted writeable | 
 | 	 * again, the device replace operation continues. | 
 | 	 */ | 
 | } | 
 |  | 
 | #ifdef CONFIG_PRINTK | 
 | static const char * const logtypes[] = { | 
 | 	"emergency", | 
 | 	"alert", | 
 | 	"critical", | 
 | 	"error", | 
 | 	"warning", | 
 | 	"notice", | 
 | 	"info", | 
 | 	"debug", | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Use one ratelimit state per log level so that a flood of less important | 
 |  * messages doesn't cause more important ones to be dropped. | 
 |  */ | 
 | static struct ratelimit_state printk_limits[] = { | 
 | 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), | 
 | 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), | 
 | 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), | 
 | 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), | 
 | 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), | 
 | 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), | 
 | 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), | 
 | 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), | 
 | }; | 
 |  | 
 | void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) | 
 | { | 
 | 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; | 
 | 	struct va_format vaf; | 
 | 	va_list args; | 
 | 	int kern_level; | 
 | 	const char *type = logtypes[4]; | 
 | 	struct ratelimit_state *ratelimit = &printk_limits[4]; | 
 |  | 
 | 	va_start(args, fmt); | 
 |  | 
 | 	while ((kern_level = printk_get_level(fmt)) != 0) { | 
 | 		size_t size = printk_skip_level(fmt) - fmt; | 
 |  | 
 | 		if (kern_level >= '0' && kern_level <= '7') { | 
 | 			memcpy(lvl, fmt,  size); | 
 | 			lvl[size] = '\0'; | 
 | 			type = logtypes[kern_level - '0']; | 
 | 			ratelimit = &printk_limits[kern_level - '0']; | 
 | 		} | 
 | 		fmt += size; | 
 | 	} | 
 |  | 
 | 	vaf.fmt = fmt; | 
 | 	vaf.va = &args; | 
 |  | 
 | 	if (__ratelimit(ratelimit)) | 
 | 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, | 
 | 			fs_info ? fs_info->sb->s_id : "<unknown>", &vaf); | 
 |  | 
 | 	va_end(args); | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * We only mark the transaction aborted and then set the file system read-only. | 
 |  * This will prevent new transactions from starting or trying to join this | 
 |  * one. | 
 |  * | 
 |  * This means that error recovery at the call site is limited to freeing | 
 |  * any local memory allocations and passing the error code up without | 
 |  * further cleanup. The transaction should complete as it normally would | 
 |  * in the call path but will return -EIO. | 
 |  * | 
 |  * We'll complete the cleanup in btrfs_end_transaction and | 
 |  * btrfs_commit_transaction. | 
 |  */ | 
 | __cold | 
 | void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, | 
 | 			       const char *function, | 
 | 			       unsigned int line, int errno) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = trans->fs_info; | 
 |  | 
 | 	trans->aborted = errno; | 
 | 	/* Nothing used. The other threads that have joined this | 
 | 	 * transaction may be able to continue. */ | 
 | 	if (!trans->dirty && list_empty(&trans->new_bgs)) { | 
 | 		const char *errstr; | 
 |  | 
 | 		errstr = btrfs_decode_error(errno); | 
 | 		btrfs_warn(fs_info, | 
 | 		           "%s:%d: Aborting unused transaction(%s).", | 
 | 		           function, line, errstr); | 
 | 		return; | 
 | 	} | 
 | 	WRITE_ONCE(trans->transaction->aborted, errno); | 
 | 	/* Wake up anybody who may be waiting on this transaction */ | 
 | 	wake_up(&fs_info->transaction_wait); | 
 | 	wake_up(&fs_info->transaction_blocked_wait); | 
 | 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL); | 
 | } | 
 | /* | 
 |  * __btrfs_panic decodes unexpected, fatal errors from the caller, | 
 |  * issues an alert, and either panics or BUGs, depending on mount options. | 
 |  */ | 
 | __cold | 
 | void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, | 
 | 		   unsigned int line, int errno, const char *fmt, ...) | 
 | { | 
 | 	char *s_id = "<unknown>"; | 
 | 	const char *errstr; | 
 | 	struct va_format vaf = { .fmt = fmt }; | 
 | 	va_list args; | 
 |  | 
 | 	if (fs_info) | 
 | 		s_id = fs_info->sb->s_id; | 
 |  | 
 | 	va_start(args, fmt); | 
 | 	vaf.va = &args; | 
 |  | 
 | 	errstr = btrfs_decode_error(errno); | 
 | 	if (fs_info && (btrfs_test_opt(fs_info, PANIC_ON_FATAL_ERROR))) | 
 | 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", | 
 | 			s_id, function, line, &vaf, errno, errstr); | 
 |  | 
 | 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", | 
 | 		   function, line, &vaf, errno, errstr); | 
 | 	va_end(args); | 
 | 	/* Caller calls BUG() */ | 
 | } | 
 |  | 
 | static void btrfs_put_super(struct super_block *sb) | 
 | { | 
 | 	close_ctree(btrfs_sb(sb)); | 
 | } | 
 |  | 
 | enum { | 
 | 	Opt_acl, Opt_noacl, | 
 | 	Opt_clear_cache, | 
 | 	Opt_commit_interval, | 
 | 	Opt_compress, | 
 | 	Opt_compress_force, | 
 | 	Opt_compress_force_type, | 
 | 	Opt_compress_type, | 
 | 	Opt_degraded, | 
 | 	Opt_device, | 
 | 	Opt_fatal_errors, | 
 | 	Opt_flushoncommit, Opt_noflushoncommit, | 
 | 	Opt_inode_cache, Opt_noinode_cache, | 
 | 	Opt_max_inline, | 
 | 	Opt_barrier, Opt_nobarrier, | 
 | 	Opt_datacow, Opt_nodatacow, | 
 | 	Opt_datasum, Opt_nodatasum, | 
 | 	Opt_defrag, Opt_nodefrag, | 
 | 	Opt_discard, Opt_nodiscard, | 
 | 	Opt_nologreplay, | 
 | 	Opt_norecovery, | 
 | 	Opt_ratio, | 
 | 	Opt_rescan_uuid_tree, | 
 | 	Opt_skip_balance, | 
 | 	Opt_space_cache, Opt_no_space_cache, | 
 | 	Opt_space_cache_version, | 
 | 	Opt_ssd, Opt_nossd, | 
 | 	Opt_ssd_spread, Opt_nossd_spread, | 
 | 	Opt_subvol, | 
 | 	Opt_subvol_empty, | 
 | 	Opt_subvolid, | 
 | 	Opt_thread_pool, | 
 | 	Opt_treelog, Opt_notreelog, | 
 | 	Opt_usebackuproot, | 
 | 	Opt_user_subvol_rm_allowed, | 
 |  | 
 | 	/* Deprecated options */ | 
 | 	Opt_alloc_start, | 
 | 	Opt_recovery, | 
 | 	Opt_subvolrootid, | 
 |  | 
 | 	/* Debugging options */ | 
 | 	Opt_check_integrity, | 
 | 	Opt_check_integrity_including_extent_data, | 
 | 	Opt_check_integrity_print_mask, | 
 | 	Opt_enospc_debug, Opt_noenospc_debug, | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, | 
 | #endif | 
 | #ifdef CONFIG_BTRFS_FS_REF_VERIFY | 
 | 	Opt_ref_verify, | 
 | #endif | 
 | 	Opt_err, | 
 | }; | 
 |  | 
 | static const match_table_t tokens = { | 
 | 	{Opt_acl, "acl"}, | 
 | 	{Opt_noacl, "noacl"}, | 
 | 	{Opt_clear_cache, "clear_cache"}, | 
 | 	{Opt_commit_interval, "commit=%u"}, | 
 | 	{Opt_compress, "compress"}, | 
 | 	{Opt_compress_type, "compress=%s"}, | 
 | 	{Opt_compress_force, "compress-force"}, | 
 | 	{Opt_compress_force_type, "compress-force=%s"}, | 
 | 	{Opt_degraded, "degraded"}, | 
 | 	{Opt_device, "device=%s"}, | 
 | 	{Opt_fatal_errors, "fatal_errors=%s"}, | 
 | 	{Opt_flushoncommit, "flushoncommit"}, | 
 | 	{Opt_noflushoncommit, "noflushoncommit"}, | 
 | 	{Opt_inode_cache, "inode_cache"}, | 
 | 	{Opt_noinode_cache, "noinode_cache"}, | 
 | 	{Opt_max_inline, "max_inline=%s"}, | 
 | 	{Opt_barrier, "barrier"}, | 
 | 	{Opt_nobarrier, "nobarrier"}, | 
 | 	{Opt_datacow, "datacow"}, | 
 | 	{Opt_nodatacow, "nodatacow"}, | 
 | 	{Opt_datasum, "datasum"}, | 
 | 	{Opt_nodatasum, "nodatasum"}, | 
 | 	{Opt_defrag, "autodefrag"}, | 
 | 	{Opt_nodefrag, "noautodefrag"}, | 
 | 	{Opt_discard, "discard"}, | 
 | 	{Opt_nodiscard, "nodiscard"}, | 
 | 	{Opt_nologreplay, "nologreplay"}, | 
 | 	{Opt_norecovery, "norecovery"}, | 
 | 	{Opt_ratio, "metadata_ratio=%u"}, | 
 | 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"}, | 
 | 	{Opt_skip_balance, "skip_balance"}, | 
 | 	{Opt_space_cache, "space_cache"}, | 
 | 	{Opt_no_space_cache, "nospace_cache"}, | 
 | 	{Opt_space_cache_version, "space_cache=%s"}, | 
 | 	{Opt_ssd, "ssd"}, | 
 | 	{Opt_nossd, "nossd"}, | 
 | 	{Opt_ssd_spread, "ssd_spread"}, | 
 | 	{Opt_nossd_spread, "nossd_spread"}, | 
 | 	{Opt_subvol, "subvol=%s"}, | 
 | 	{Opt_subvol_empty, "subvol="}, | 
 | 	{Opt_subvolid, "subvolid=%s"}, | 
 | 	{Opt_thread_pool, "thread_pool=%u"}, | 
 | 	{Opt_treelog, "treelog"}, | 
 | 	{Opt_notreelog, "notreelog"}, | 
 | 	{Opt_usebackuproot, "usebackuproot"}, | 
 | 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, | 
 |  | 
 | 	/* Deprecated options */ | 
 | 	{Opt_alloc_start, "alloc_start=%s"}, | 
 | 	{Opt_recovery, "recovery"}, | 
 | 	{Opt_subvolrootid, "subvolrootid=%d"}, | 
 |  | 
 | 	/* Debugging options */ | 
 | 	{Opt_check_integrity, "check_int"}, | 
 | 	{Opt_check_integrity_including_extent_data, "check_int_data"}, | 
 | 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, | 
 | 	{Opt_enospc_debug, "enospc_debug"}, | 
 | 	{Opt_noenospc_debug, "noenospc_debug"}, | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	{Opt_fragment_data, "fragment=data"}, | 
 | 	{Opt_fragment_metadata, "fragment=metadata"}, | 
 | 	{Opt_fragment_all, "fragment=all"}, | 
 | #endif | 
 | #ifdef CONFIG_BTRFS_FS_REF_VERIFY | 
 | 	{Opt_ref_verify, "ref_verify"}, | 
 | #endif | 
 | 	{Opt_err, NULL}, | 
 | }; | 
 |  | 
 | /* | 
 |  * Regular mount options parser.  Everything that is needed only when | 
 |  * reading in a new superblock is parsed here. | 
 |  * XXX JDM: This needs to be cleaned up for remount. | 
 |  */ | 
 | int btrfs_parse_options(struct btrfs_fs_info *info, char *options, | 
 | 			unsigned long new_flags) | 
 | { | 
 | 	substring_t args[MAX_OPT_ARGS]; | 
 | 	char *p, *num; | 
 | 	u64 cache_gen; | 
 | 	int intarg; | 
 | 	int ret = 0; | 
 | 	char *compress_type; | 
 | 	bool compress_force = false; | 
 | 	enum btrfs_compression_type saved_compress_type; | 
 | 	bool saved_compress_force; | 
 | 	int no_compress = 0; | 
 |  | 
 | 	cache_gen = btrfs_super_cache_generation(info->super_copy); | 
 | 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) | 
 | 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); | 
 | 	else if (cache_gen) | 
 | 		btrfs_set_opt(info->mount_opt, SPACE_CACHE); | 
 |  | 
 | 	/* | 
 | 	 * Even the options are empty, we still need to do extra check | 
 | 	 * against new flags | 
 | 	 */ | 
 | 	if (!options) | 
 | 		goto check; | 
 |  | 
 | 	while ((p = strsep(&options, ",")) != NULL) { | 
 | 		int token; | 
 | 		if (!*p) | 
 | 			continue; | 
 |  | 
 | 		token = match_token(p, tokens, args); | 
 | 		switch (token) { | 
 | 		case Opt_degraded: | 
 | 			btrfs_info(info, "allowing degraded mounts"); | 
 | 			btrfs_set_opt(info->mount_opt, DEGRADED); | 
 | 			break; | 
 | 		case Opt_subvol: | 
 | 		case Opt_subvol_empty: | 
 | 		case Opt_subvolid: | 
 | 		case Opt_subvolrootid: | 
 | 		case Opt_device: | 
 | 			/* | 
 | 			 * These are parsed by btrfs_parse_subvol_options or | 
 | 			 * btrfs_parse_device_options and can be ignored here. | 
 | 			 */ | 
 | 			break; | 
 | 		case Opt_nodatasum: | 
 | 			btrfs_set_and_info(info, NODATASUM, | 
 | 					   "setting nodatasum"); | 
 | 			break; | 
 | 		case Opt_datasum: | 
 | 			if (btrfs_test_opt(info, NODATASUM)) { | 
 | 				if (btrfs_test_opt(info, NODATACOW)) | 
 | 					btrfs_info(info, | 
 | 						   "setting datasum, datacow enabled"); | 
 | 				else | 
 | 					btrfs_info(info, "setting datasum"); | 
 | 			} | 
 | 			btrfs_clear_opt(info->mount_opt, NODATACOW); | 
 | 			btrfs_clear_opt(info->mount_opt, NODATASUM); | 
 | 			break; | 
 | 		case Opt_nodatacow: | 
 | 			if (!btrfs_test_opt(info, NODATACOW)) { | 
 | 				if (!btrfs_test_opt(info, COMPRESS) || | 
 | 				    !btrfs_test_opt(info, FORCE_COMPRESS)) { | 
 | 					btrfs_info(info, | 
 | 						   "setting nodatacow, compression disabled"); | 
 | 				} else { | 
 | 					btrfs_info(info, "setting nodatacow"); | 
 | 				} | 
 | 			} | 
 | 			btrfs_clear_opt(info->mount_opt, COMPRESS); | 
 | 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); | 
 | 			btrfs_set_opt(info->mount_opt, NODATACOW); | 
 | 			btrfs_set_opt(info->mount_opt, NODATASUM); | 
 | 			break; | 
 | 		case Opt_datacow: | 
 | 			btrfs_clear_and_info(info, NODATACOW, | 
 | 					     "setting datacow"); | 
 | 			break; | 
 | 		case Opt_compress_force: | 
 | 		case Opt_compress_force_type: | 
 | 			compress_force = true; | 
 | 			/* Fallthrough */ | 
 | 		case Opt_compress: | 
 | 		case Opt_compress_type: | 
 | 			saved_compress_type = btrfs_test_opt(info, | 
 | 							     COMPRESS) ? | 
 | 				info->compress_type : BTRFS_COMPRESS_NONE; | 
 | 			saved_compress_force = | 
 | 				btrfs_test_opt(info, FORCE_COMPRESS); | 
 | 			if (token == Opt_compress || | 
 | 			    token == Opt_compress_force || | 
 | 			    strncmp(args[0].from, "zlib", 4) == 0) { | 
 | 				compress_type = "zlib"; | 
 |  | 
 | 				info->compress_type = BTRFS_COMPRESS_ZLIB; | 
 | 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; | 
 | 				/* | 
 | 				 * args[0] contains uninitialized data since | 
 | 				 * for these tokens we don't expect any | 
 | 				 * parameter. | 
 | 				 */ | 
 | 				if (token != Opt_compress && | 
 | 				    token != Opt_compress_force) | 
 | 					info->compress_level = | 
 | 					  btrfs_compress_str2level(args[0].from); | 
 | 				btrfs_set_opt(info->mount_opt, COMPRESS); | 
 | 				btrfs_clear_opt(info->mount_opt, NODATACOW); | 
 | 				btrfs_clear_opt(info->mount_opt, NODATASUM); | 
 | 				no_compress = 0; | 
 | 			} else if (strncmp(args[0].from, "lzo", 3) == 0) { | 
 | 				compress_type = "lzo"; | 
 | 				info->compress_type = BTRFS_COMPRESS_LZO; | 
 | 				btrfs_set_opt(info->mount_opt, COMPRESS); | 
 | 				btrfs_clear_opt(info->mount_opt, NODATACOW); | 
 | 				btrfs_clear_opt(info->mount_opt, NODATASUM); | 
 | 				btrfs_set_fs_incompat(info, COMPRESS_LZO); | 
 | 				no_compress = 0; | 
 | 			} else if (strcmp(args[0].from, "zstd") == 0) { | 
 | 				compress_type = "zstd"; | 
 | 				info->compress_type = BTRFS_COMPRESS_ZSTD; | 
 | 				btrfs_set_opt(info->mount_opt, COMPRESS); | 
 | 				btrfs_clear_opt(info->mount_opt, NODATACOW); | 
 | 				btrfs_clear_opt(info->mount_opt, NODATASUM); | 
 | 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD); | 
 | 				no_compress = 0; | 
 | 			} else if (strncmp(args[0].from, "no", 2) == 0) { | 
 | 				compress_type = "no"; | 
 | 				btrfs_clear_opt(info->mount_opt, COMPRESS); | 
 | 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); | 
 | 				compress_force = false; | 
 | 				no_compress++; | 
 | 			} else { | 
 | 				ret = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (compress_force) { | 
 | 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); | 
 | 			} else { | 
 | 				/* | 
 | 				 * If we remount from compress-force=xxx to | 
 | 				 * compress=xxx, we need clear FORCE_COMPRESS | 
 | 				 * flag, otherwise, there is no way for users | 
 | 				 * to disable forcible compression separately. | 
 | 				 */ | 
 | 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); | 
 | 			} | 
 | 			if ((btrfs_test_opt(info, COMPRESS) && | 
 | 			     (info->compress_type != saved_compress_type || | 
 | 			      compress_force != saved_compress_force)) || | 
 | 			    (!btrfs_test_opt(info, COMPRESS) && | 
 | 			     no_compress == 1)) { | 
 | 				btrfs_info(info, "%s %s compression, level %d", | 
 | 					   (compress_force) ? "force" : "use", | 
 | 					   compress_type, info->compress_level); | 
 | 			} | 
 | 			compress_force = false; | 
 | 			break; | 
 | 		case Opt_ssd: | 
 | 			btrfs_set_and_info(info, SSD, | 
 | 					   "enabling ssd optimizations"); | 
 | 			btrfs_clear_opt(info->mount_opt, NOSSD); | 
 | 			break; | 
 | 		case Opt_ssd_spread: | 
 | 			btrfs_set_and_info(info, SSD, | 
 | 					   "enabling ssd optimizations"); | 
 | 			btrfs_set_and_info(info, SSD_SPREAD, | 
 | 					   "using spread ssd allocation scheme"); | 
 | 			btrfs_clear_opt(info->mount_opt, NOSSD); | 
 | 			break; | 
 | 		case Opt_nossd: | 
 | 			btrfs_set_opt(info->mount_opt, NOSSD); | 
 | 			btrfs_clear_and_info(info, SSD, | 
 | 					     "not using ssd optimizations"); | 
 | 			/* Fallthrough */ | 
 | 		case Opt_nossd_spread: | 
 | 			btrfs_clear_and_info(info, SSD_SPREAD, | 
 | 					     "not using spread ssd allocation scheme"); | 
 | 			break; | 
 | 		case Opt_barrier: | 
 | 			btrfs_clear_and_info(info, NOBARRIER, | 
 | 					     "turning on barriers"); | 
 | 			break; | 
 | 		case Opt_nobarrier: | 
 | 			btrfs_set_and_info(info, NOBARRIER, | 
 | 					   "turning off barriers"); | 
 | 			break; | 
 | 		case Opt_thread_pool: | 
 | 			ret = match_int(&args[0], &intarg); | 
 | 			if (ret) { | 
 | 				goto out; | 
 | 			} else if (intarg == 0) { | 
 | 				ret = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 | 			info->thread_pool_size = intarg; | 
 | 			break; | 
 | 		case Opt_max_inline: | 
 | 			num = match_strdup(&args[0]); | 
 | 			if (num) { | 
 | 				info->max_inline = memparse(num, NULL); | 
 | 				kfree(num); | 
 |  | 
 | 				if (info->max_inline) { | 
 | 					info->max_inline = min_t(u64, | 
 | 						info->max_inline, | 
 | 						info->sectorsize); | 
 | 				} | 
 | 				btrfs_info(info, "max_inline at %llu", | 
 | 					   info->max_inline); | 
 | 			} else { | 
 | 				ret = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			break; | 
 | 		case Opt_alloc_start: | 
 | 			btrfs_info(info, | 
 | 				"option alloc_start is obsolete, ignored"); | 
 | 			break; | 
 | 		case Opt_acl: | 
 | #ifdef CONFIG_BTRFS_FS_POSIX_ACL | 
 | 			info->sb->s_flags |= SB_POSIXACL; | 
 | 			break; | 
 | #else | 
 | 			btrfs_err(info, "support for ACL not compiled in!"); | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | #endif | 
 | 		case Opt_noacl: | 
 | 			info->sb->s_flags &= ~SB_POSIXACL; | 
 | 			break; | 
 | 		case Opt_notreelog: | 
 | 			btrfs_set_and_info(info, NOTREELOG, | 
 | 					   "disabling tree log"); | 
 | 			break; | 
 | 		case Opt_treelog: | 
 | 			btrfs_clear_and_info(info, NOTREELOG, | 
 | 					     "enabling tree log"); | 
 | 			break; | 
 | 		case Opt_norecovery: | 
 | 		case Opt_nologreplay: | 
 | 			btrfs_set_and_info(info, NOLOGREPLAY, | 
 | 					   "disabling log replay at mount time"); | 
 | 			break; | 
 | 		case Opt_flushoncommit: | 
 | 			btrfs_set_and_info(info, FLUSHONCOMMIT, | 
 | 					   "turning on flush-on-commit"); | 
 | 			break; | 
 | 		case Opt_noflushoncommit: | 
 | 			btrfs_clear_and_info(info, FLUSHONCOMMIT, | 
 | 					     "turning off flush-on-commit"); | 
 | 			break; | 
 | 		case Opt_ratio: | 
 | 			ret = match_int(&args[0], &intarg); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			info->metadata_ratio = intarg; | 
 | 			btrfs_info(info, "metadata ratio %u", | 
 | 				   info->metadata_ratio); | 
 | 			break; | 
 | 		case Opt_discard: | 
 | 			btrfs_set_and_info(info, DISCARD, | 
 | 					   "turning on discard"); | 
 | 			break; | 
 | 		case Opt_nodiscard: | 
 | 			btrfs_clear_and_info(info, DISCARD, | 
 | 					     "turning off discard"); | 
 | 			break; | 
 | 		case Opt_space_cache: | 
 | 		case Opt_space_cache_version: | 
 | 			if (token == Opt_space_cache || | 
 | 			    strcmp(args[0].from, "v1") == 0) { | 
 | 				btrfs_clear_opt(info->mount_opt, | 
 | 						FREE_SPACE_TREE); | 
 | 				btrfs_set_and_info(info, SPACE_CACHE, | 
 | 					   "enabling disk space caching"); | 
 | 			} else if (strcmp(args[0].from, "v2") == 0) { | 
 | 				btrfs_clear_opt(info->mount_opt, | 
 | 						SPACE_CACHE); | 
 | 				btrfs_set_and_info(info, FREE_SPACE_TREE, | 
 | 						   "enabling free space tree"); | 
 | 			} else { | 
 | 				ret = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 | 			break; | 
 | 		case Opt_rescan_uuid_tree: | 
 | 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); | 
 | 			break; | 
 | 		case Opt_no_space_cache: | 
 | 			if (btrfs_test_opt(info, SPACE_CACHE)) { | 
 | 				btrfs_clear_and_info(info, SPACE_CACHE, | 
 | 					     "disabling disk space caching"); | 
 | 			} | 
 | 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) { | 
 | 				btrfs_clear_and_info(info, FREE_SPACE_TREE, | 
 | 					     "disabling free space tree"); | 
 | 			} | 
 | 			break; | 
 | 		case Opt_inode_cache: | 
 | 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE, | 
 | 					   "enabling inode map caching"); | 
 | 			break; | 
 | 		case Opt_noinode_cache: | 
 | 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, | 
 | 					     "disabling inode map caching"); | 
 | 			break; | 
 | 		case Opt_clear_cache: | 
 | 			btrfs_set_and_info(info, CLEAR_CACHE, | 
 | 					   "force clearing of disk cache"); | 
 | 			break; | 
 | 		case Opt_user_subvol_rm_allowed: | 
 | 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); | 
 | 			break; | 
 | 		case Opt_enospc_debug: | 
 | 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); | 
 | 			break; | 
 | 		case Opt_noenospc_debug: | 
 | 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); | 
 | 			break; | 
 | 		case Opt_defrag: | 
 | 			btrfs_set_and_info(info, AUTO_DEFRAG, | 
 | 					   "enabling auto defrag"); | 
 | 			break; | 
 | 		case Opt_nodefrag: | 
 | 			btrfs_clear_and_info(info, AUTO_DEFRAG, | 
 | 					     "disabling auto defrag"); | 
 | 			break; | 
 | 		case Opt_recovery: | 
 | 			btrfs_warn(info, | 
 | 				   "'recovery' is deprecated, use 'usebackuproot' instead"); | 
 | 			/* fall through */ | 
 | 		case Opt_usebackuproot: | 
 | 			btrfs_info(info, | 
 | 				   "trying to use backup root at mount time"); | 
 | 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT); | 
 | 			break; | 
 | 		case Opt_skip_balance: | 
 | 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE); | 
 | 			break; | 
 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
 | 		case Opt_check_integrity_including_extent_data: | 
 | 			btrfs_info(info, | 
 | 				   "enabling check integrity including extent data"); | 
 | 			btrfs_set_opt(info->mount_opt, | 
 | 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); | 
 | 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); | 
 | 			break; | 
 | 		case Opt_check_integrity: | 
 | 			btrfs_info(info, "enabling check integrity"); | 
 | 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); | 
 | 			break; | 
 | 		case Opt_check_integrity_print_mask: | 
 | 			ret = match_int(&args[0], &intarg); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			info->check_integrity_print_mask = intarg; | 
 | 			btrfs_info(info, "check_integrity_print_mask 0x%x", | 
 | 				   info->check_integrity_print_mask); | 
 | 			break; | 
 | #else | 
 | 		case Opt_check_integrity_including_extent_data: | 
 | 		case Opt_check_integrity: | 
 | 		case Opt_check_integrity_print_mask: | 
 | 			btrfs_err(info, | 
 | 				  "support for check_integrity* not compiled in!"); | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | #endif | 
 | 		case Opt_fatal_errors: | 
 | 			if (strcmp(args[0].from, "panic") == 0) | 
 | 				btrfs_set_opt(info->mount_opt, | 
 | 					      PANIC_ON_FATAL_ERROR); | 
 | 			else if (strcmp(args[0].from, "bug") == 0) | 
 | 				btrfs_clear_opt(info->mount_opt, | 
 | 					      PANIC_ON_FATAL_ERROR); | 
 | 			else { | 
 | 				ret = -EINVAL; | 
 | 				goto out; | 
 | 			} | 
 | 			break; | 
 | 		case Opt_commit_interval: | 
 | 			intarg = 0; | 
 | 			ret = match_int(&args[0], &intarg); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 			if (intarg == 0) { | 
 | 				btrfs_info(info, | 
 | 					   "using default commit interval %us", | 
 | 					   BTRFS_DEFAULT_COMMIT_INTERVAL); | 
 | 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; | 
 | 			} else if (intarg > 300) { | 
 | 				btrfs_warn(info, "excessive commit interval %d", | 
 | 					   intarg); | 
 | 			} | 
 | 			info->commit_interval = intarg; | 
 | 			break; | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 		case Opt_fragment_all: | 
 | 			btrfs_info(info, "fragmenting all space"); | 
 | 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); | 
 | 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); | 
 | 			break; | 
 | 		case Opt_fragment_metadata: | 
 | 			btrfs_info(info, "fragmenting metadata"); | 
 | 			btrfs_set_opt(info->mount_opt, | 
 | 				      FRAGMENT_METADATA); | 
 | 			break; | 
 | 		case Opt_fragment_data: | 
 | 			btrfs_info(info, "fragmenting data"); | 
 | 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); | 
 | 			break; | 
 | #endif | 
 | #ifdef CONFIG_BTRFS_FS_REF_VERIFY | 
 | 		case Opt_ref_verify: | 
 | 			btrfs_info(info, "doing ref verification"); | 
 | 			btrfs_set_opt(info->mount_opt, REF_VERIFY); | 
 | 			break; | 
 | #endif | 
 | 		case Opt_err: | 
 | 			btrfs_info(info, "unrecognized mount option '%s'", p); | 
 | 			ret = -EINVAL; | 
 | 			goto out; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | check: | 
 | 	/* | 
 | 	 * Extra check for current option against current flag | 
 | 	 */ | 
 | 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & SB_RDONLY)) { | 
 | 		btrfs_err(info, | 
 | 			  "nologreplay must be used with ro mount option"); | 
 | 		ret = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && | 
 | 	    !btrfs_test_opt(info, FREE_SPACE_TREE) && | 
 | 	    !btrfs_test_opt(info, CLEAR_CACHE)) { | 
 | 		btrfs_err(info, "cannot disable free space tree"); | 
 | 		ret = -EINVAL; | 
 |  | 
 | 	} | 
 | 	if (!ret && btrfs_test_opt(info, SPACE_CACHE)) | 
 | 		btrfs_info(info, "disk space caching is enabled"); | 
 | 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) | 
 | 		btrfs_info(info, "using free space tree"); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Parse mount options that are required early in the mount process. | 
 |  * | 
 |  * All other options will be parsed on much later in the mount process and | 
 |  * only when we need to allocate a new super block. | 
 |  */ | 
 | static int btrfs_parse_device_options(const char *options, fmode_t flags, | 
 | 				      void *holder) | 
 | { | 
 | 	substring_t args[MAX_OPT_ARGS]; | 
 | 	char *device_name, *opts, *orig, *p; | 
 | 	struct btrfs_device *device = NULL; | 
 | 	int error = 0; | 
 |  | 
 | 	lockdep_assert_held(&uuid_mutex); | 
 |  | 
 | 	if (!options) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * strsep changes the string, duplicate it because btrfs_parse_options | 
 | 	 * gets called later | 
 | 	 */ | 
 | 	opts = kstrdup(options, GFP_KERNEL); | 
 | 	if (!opts) | 
 | 		return -ENOMEM; | 
 | 	orig = opts; | 
 |  | 
 | 	while ((p = strsep(&opts, ",")) != NULL) { | 
 | 		int token; | 
 |  | 
 | 		if (!*p) | 
 | 			continue; | 
 |  | 
 | 		token = match_token(p, tokens, args); | 
 | 		if (token == Opt_device) { | 
 | 			device_name = match_strdup(&args[0]); | 
 | 			if (!device_name) { | 
 | 				error = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			device = btrfs_scan_one_device(device_name, flags, | 
 | 					holder); | 
 | 			kfree(device_name); | 
 | 			if (IS_ERR(device)) { | 
 | 				error = PTR_ERR(device); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(orig); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Parse mount options that are related to subvolume id | 
 |  * | 
 |  * The value is later passed to mount_subvol() | 
 |  */ | 
 | static int btrfs_parse_subvol_options(const char *options, char **subvol_name, | 
 | 		u64 *subvol_objectid) | 
 | { | 
 | 	substring_t args[MAX_OPT_ARGS]; | 
 | 	char *opts, *orig, *p; | 
 | 	int error = 0; | 
 | 	u64 subvolid; | 
 |  | 
 | 	if (!options) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * strsep changes the string, duplicate it because | 
 | 	 * btrfs_parse_device_options gets called later | 
 | 	 */ | 
 | 	opts = kstrdup(options, GFP_KERNEL); | 
 | 	if (!opts) | 
 | 		return -ENOMEM; | 
 | 	orig = opts; | 
 |  | 
 | 	while ((p = strsep(&opts, ",")) != NULL) { | 
 | 		int token; | 
 | 		if (!*p) | 
 | 			continue; | 
 |  | 
 | 		token = match_token(p, tokens, args); | 
 | 		switch (token) { | 
 | 		case Opt_subvol: | 
 | 			kfree(*subvol_name); | 
 | 			*subvol_name = match_strdup(&args[0]); | 
 | 			if (!*subvol_name) { | 
 | 				error = -ENOMEM; | 
 | 				goto out; | 
 | 			} | 
 | 			break; | 
 | 		case Opt_subvolid: | 
 | 			error = match_u64(&args[0], &subvolid); | 
 | 			if (error) | 
 | 				goto out; | 
 |  | 
 | 			/* we want the original fs_tree */ | 
 | 			if (subvolid == 0) | 
 | 				subvolid = BTRFS_FS_TREE_OBJECTID; | 
 |  | 
 | 			*subvol_objectid = subvolid; | 
 | 			break; | 
 | 		case Opt_subvolrootid: | 
 | 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	kfree(orig); | 
 | 	return error; | 
 | } | 
 |  | 
 | static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, | 
 | 					   u64 subvol_objectid) | 
 | { | 
 | 	struct btrfs_root *root = fs_info->tree_root; | 
 | 	struct btrfs_root *fs_root; | 
 | 	struct btrfs_root_ref *root_ref; | 
 | 	struct btrfs_inode_ref *inode_ref; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_path *path = NULL; | 
 | 	char *name = NULL, *ptr; | 
 | 	u64 dirid; | 
 | 	int len; | 
 | 	int ret; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		ret = -ENOMEM; | 
 | 		goto err; | 
 | 	} | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	name = kmalloc(PATH_MAX, GFP_KERNEL); | 
 | 	if (!name) { | 
 | 		ret = -ENOMEM; | 
 | 		goto err; | 
 | 	} | 
 | 	ptr = name + PATH_MAX - 1; | 
 | 	ptr[0] = '\0'; | 
 |  | 
 | 	/* | 
 | 	 * Walk up the subvolume trees in the tree of tree roots by root | 
 | 	 * backrefs until we hit the top-level subvolume. | 
 | 	 */ | 
 | 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { | 
 | 		key.objectid = subvol_objectid; | 
 | 		key.type = BTRFS_ROOT_BACKREF_KEY; | 
 | 		key.offset = (u64)-1; | 
 |  | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) { | 
 | 			goto err; | 
 | 		} else if (ret > 0) { | 
 | 			ret = btrfs_previous_item(root, path, subvol_objectid, | 
 | 						  BTRFS_ROOT_BACKREF_KEY); | 
 | 			if (ret < 0) { | 
 | 				goto err; | 
 | 			} else if (ret > 0) { | 
 | 				ret = -ENOENT; | 
 | 				goto err; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 		subvol_objectid = key.offset; | 
 |  | 
 | 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], | 
 | 					  struct btrfs_root_ref); | 
 | 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref); | 
 | 		ptr -= len + 1; | 
 | 		if (ptr < name) { | 
 | 			ret = -ENAMETOOLONG; | 
 | 			goto err; | 
 | 		} | 
 | 		read_extent_buffer(path->nodes[0], ptr + 1, | 
 | 				   (unsigned long)(root_ref + 1), len); | 
 | 		ptr[0] = '/'; | 
 | 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); | 
 | 		btrfs_release_path(path); | 
 |  | 
 | 		key.objectid = subvol_objectid; | 
 | 		key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 		key.offset = (u64)-1; | 
 | 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key); | 
 | 		if (IS_ERR(fs_root)) { | 
 | 			ret = PTR_ERR(fs_root); | 
 | 			goto err; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Walk up the filesystem tree by inode refs until we hit the | 
 | 		 * root directory. | 
 | 		 */ | 
 | 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) { | 
 | 			key.objectid = dirid; | 
 | 			key.type = BTRFS_INODE_REF_KEY; | 
 | 			key.offset = (u64)-1; | 
 |  | 
 | 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); | 
 | 			if (ret < 0) { | 
 | 				goto err; | 
 | 			} else if (ret > 0) { | 
 | 				ret = btrfs_previous_item(fs_root, path, dirid, | 
 | 							  BTRFS_INODE_REF_KEY); | 
 | 				if (ret < 0) { | 
 | 					goto err; | 
 | 				} else if (ret > 0) { | 
 | 					ret = -ENOENT; | 
 | 					goto err; | 
 | 				} | 
 | 			} | 
 |  | 
 | 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); | 
 | 			dirid = key.offset; | 
 |  | 
 | 			inode_ref = btrfs_item_ptr(path->nodes[0], | 
 | 						   path->slots[0], | 
 | 						   struct btrfs_inode_ref); | 
 | 			len = btrfs_inode_ref_name_len(path->nodes[0], | 
 | 						       inode_ref); | 
 | 			ptr -= len + 1; | 
 | 			if (ptr < name) { | 
 | 				ret = -ENAMETOOLONG; | 
 | 				goto err; | 
 | 			} | 
 | 			read_extent_buffer(path->nodes[0], ptr + 1, | 
 | 					   (unsigned long)(inode_ref + 1), len); | 
 | 			ptr[0] = '/'; | 
 | 			btrfs_release_path(path); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	if (ptr == name + PATH_MAX - 1) { | 
 | 		name[0] = '/'; | 
 | 		name[1] = '\0'; | 
 | 	} else { | 
 | 		memmove(name, ptr, name + PATH_MAX - ptr); | 
 | 	} | 
 | 	return name; | 
 |  | 
 | err: | 
 | 	btrfs_free_path(path); | 
 | 	kfree(name); | 
 | 	return ERR_PTR(ret); | 
 | } | 
 |  | 
 | static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) | 
 | { | 
 | 	struct btrfs_root *root = fs_info->tree_root; | 
 | 	struct btrfs_dir_item *di; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key location; | 
 | 	u64 dir_id; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 | 	path->leave_spinning = 1; | 
 |  | 
 | 	/* | 
 | 	 * Find the "default" dir item which points to the root item that we | 
 | 	 * will mount by default if we haven't been given a specific subvolume | 
 | 	 * to mount. | 
 | 	 */ | 
 | 	dir_id = btrfs_super_root_dir(fs_info->super_copy); | 
 | 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); | 
 | 	if (IS_ERR(di)) { | 
 | 		btrfs_free_path(path); | 
 | 		return PTR_ERR(di); | 
 | 	} | 
 | 	if (!di) { | 
 | 		/* | 
 | 		 * Ok the default dir item isn't there.  This is weird since | 
 | 		 * it's always been there, but don't freak out, just try and | 
 | 		 * mount the top-level subvolume. | 
 | 		 */ | 
 | 		btrfs_free_path(path); | 
 | 		*objectid = BTRFS_FS_TREE_OBJECTID; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); | 
 | 	btrfs_free_path(path); | 
 | 	*objectid = location.objectid; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_fill_super(struct super_block *sb, | 
 | 			    struct btrfs_fs_devices *fs_devices, | 
 | 			    void *data) | 
 | { | 
 | 	struct inode *inode; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
 | 	struct btrfs_key key; | 
 | 	int err; | 
 |  | 
 | 	sb->s_maxbytes = MAX_LFS_FILESIZE; | 
 | 	sb->s_magic = BTRFS_SUPER_MAGIC; | 
 | 	sb->s_op = &btrfs_super_ops; | 
 | 	sb->s_d_op = &btrfs_dentry_operations; | 
 | 	sb->s_export_op = &btrfs_export_ops; | 
 | 	sb->s_xattr = btrfs_xattr_handlers; | 
 | 	sb->s_time_gran = 1; | 
 | #ifdef CONFIG_BTRFS_FS_POSIX_ACL | 
 | 	sb->s_flags |= SB_POSIXACL; | 
 | #endif | 
 | 	sb->s_flags |= SB_I_VERSION; | 
 | 	sb->s_iflags |= SB_I_CGROUPWB; | 
 |  | 
 | 	err = super_setup_bdi(sb); | 
 | 	if (err) { | 
 | 		btrfs_err(fs_info, "super_setup_bdi failed"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	err = open_ctree(sb, fs_devices, (char *)data); | 
 | 	if (err) { | 
 | 		btrfs_err(fs_info, "open_ctree failed"); | 
 | 		return err; | 
 | 	} | 
 |  | 
 | 	key.objectid = BTRFS_FIRST_FREE_OBJECTID; | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.offset = 0; | 
 | 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); | 
 | 	if (IS_ERR(inode)) { | 
 | 		err = PTR_ERR(inode); | 
 | 		goto fail_close; | 
 | 	} | 
 |  | 
 | 	sb->s_root = d_make_root(inode); | 
 | 	if (!sb->s_root) { | 
 | 		err = -ENOMEM; | 
 | 		goto fail_close; | 
 | 	} | 
 |  | 
 | 	cleancache_init_fs(sb); | 
 | 	sb->s_flags |= SB_ACTIVE; | 
 | 	return 0; | 
 |  | 
 | fail_close: | 
 | 	close_ctree(fs_info); | 
 | 	return err; | 
 | } | 
 |  | 
 | int btrfs_sync_fs(struct super_block *sb, int wait) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
 | 	struct btrfs_root *root = fs_info->tree_root; | 
 |  | 
 | 	trace_btrfs_sync_fs(fs_info, wait); | 
 |  | 
 | 	if (!wait) { | 
 | 		filemap_flush(fs_info->btree_inode->i_mapping); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); | 
 |  | 
 | 	trans = btrfs_attach_transaction_barrier(root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		/* no transaction, don't bother */ | 
 | 		if (PTR_ERR(trans) == -ENOENT) { | 
 | 			/* | 
 | 			 * Exit unless we have some pending changes | 
 | 			 * that need to go through commit | 
 | 			 */ | 
 | 			if (fs_info->pending_changes == 0) | 
 | 				return 0; | 
 | 			/* | 
 | 			 * A non-blocking test if the fs is frozen. We must not | 
 | 			 * start a new transaction here otherwise a deadlock | 
 | 			 * happens. The pending operations are delayed to the | 
 | 			 * next commit after thawing. | 
 | 			 */ | 
 | 			if (sb_start_write_trylock(sb)) | 
 | 				sb_end_write(sb); | 
 | 			else | 
 | 				return 0; | 
 | 			trans = btrfs_start_transaction(root, 0); | 
 | 		} | 
 | 		if (IS_ERR(trans)) | 
 | 			return PTR_ERR(trans); | 
 | 	} | 
 | 	return btrfs_commit_transaction(trans); | 
 | } | 
 |  | 
 | static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) | 
 | { | 
 | 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); | 
 | 	const char *compress_type; | 
 |  | 
 | 	if (btrfs_test_opt(info, DEGRADED)) | 
 | 		seq_puts(seq, ",degraded"); | 
 | 	if (btrfs_test_opt(info, NODATASUM)) | 
 | 		seq_puts(seq, ",nodatasum"); | 
 | 	if (btrfs_test_opt(info, NODATACOW)) | 
 | 		seq_puts(seq, ",nodatacow"); | 
 | 	if (btrfs_test_opt(info, NOBARRIER)) | 
 | 		seq_puts(seq, ",nobarrier"); | 
 | 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) | 
 | 		seq_printf(seq, ",max_inline=%llu", info->max_inline); | 
 | 	if (info->thread_pool_size !=  min_t(unsigned long, | 
 | 					     num_online_cpus() + 2, 8)) | 
 | 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); | 
 | 	if (btrfs_test_opt(info, COMPRESS)) { | 
 | 		compress_type = btrfs_compress_type2str(info->compress_type); | 
 | 		if (btrfs_test_opt(info, FORCE_COMPRESS)) | 
 | 			seq_printf(seq, ",compress-force=%s", compress_type); | 
 | 		else | 
 | 			seq_printf(seq, ",compress=%s", compress_type); | 
 | 		if (info->compress_level) | 
 | 			seq_printf(seq, ":%d", info->compress_level); | 
 | 	} | 
 | 	if (btrfs_test_opt(info, NOSSD)) | 
 | 		seq_puts(seq, ",nossd"); | 
 | 	if (btrfs_test_opt(info, SSD_SPREAD)) | 
 | 		seq_puts(seq, ",ssd_spread"); | 
 | 	else if (btrfs_test_opt(info, SSD)) | 
 | 		seq_puts(seq, ",ssd"); | 
 | 	if (btrfs_test_opt(info, NOTREELOG)) | 
 | 		seq_puts(seq, ",notreelog"); | 
 | 	if (btrfs_test_opt(info, NOLOGREPLAY)) | 
 | 		seq_puts(seq, ",nologreplay"); | 
 | 	if (btrfs_test_opt(info, FLUSHONCOMMIT)) | 
 | 		seq_puts(seq, ",flushoncommit"); | 
 | 	if (btrfs_test_opt(info, DISCARD)) | 
 | 		seq_puts(seq, ",discard"); | 
 | 	if (!(info->sb->s_flags & SB_POSIXACL)) | 
 | 		seq_puts(seq, ",noacl"); | 
 | 	if (btrfs_test_opt(info, SPACE_CACHE)) | 
 | 		seq_puts(seq, ",space_cache"); | 
 | 	else if (btrfs_test_opt(info, FREE_SPACE_TREE)) | 
 | 		seq_puts(seq, ",space_cache=v2"); | 
 | 	else | 
 | 		seq_puts(seq, ",nospace_cache"); | 
 | 	if (btrfs_test_opt(info, RESCAN_UUID_TREE)) | 
 | 		seq_puts(seq, ",rescan_uuid_tree"); | 
 | 	if (btrfs_test_opt(info, CLEAR_CACHE)) | 
 | 		seq_puts(seq, ",clear_cache"); | 
 | 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) | 
 | 		seq_puts(seq, ",user_subvol_rm_allowed"); | 
 | 	if (btrfs_test_opt(info, ENOSPC_DEBUG)) | 
 | 		seq_puts(seq, ",enospc_debug"); | 
 | 	if (btrfs_test_opt(info, AUTO_DEFRAG)) | 
 | 		seq_puts(seq, ",autodefrag"); | 
 | 	if (btrfs_test_opt(info, INODE_MAP_CACHE)) | 
 | 		seq_puts(seq, ",inode_cache"); | 
 | 	if (btrfs_test_opt(info, SKIP_BALANCE)) | 
 | 		seq_puts(seq, ",skip_balance"); | 
 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
 | 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) | 
 | 		seq_puts(seq, ",check_int_data"); | 
 | 	else if (btrfs_test_opt(info, CHECK_INTEGRITY)) | 
 | 		seq_puts(seq, ",check_int"); | 
 | 	if (info->check_integrity_print_mask) | 
 | 		seq_printf(seq, ",check_int_print_mask=%d", | 
 | 				info->check_integrity_print_mask); | 
 | #endif | 
 | 	if (info->metadata_ratio) | 
 | 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); | 
 | 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) | 
 | 		seq_puts(seq, ",fatal_errors=panic"); | 
 | 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) | 
 | 		seq_printf(seq, ",commit=%u", info->commit_interval); | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 	if (btrfs_test_opt(info, FRAGMENT_DATA)) | 
 | 		seq_puts(seq, ",fragment=data"); | 
 | 	if (btrfs_test_opt(info, FRAGMENT_METADATA)) | 
 | 		seq_puts(seq, ",fragment=metadata"); | 
 | #endif | 
 | 	if (btrfs_test_opt(info, REF_VERIFY)) | 
 | 		seq_puts(seq, ",ref_verify"); | 
 | 	seq_printf(seq, ",subvolid=%llu", | 
 | 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid); | 
 | 	seq_puts(seq, ",subvol="); | 
 | 	seq_dentry(seq, dentry, " \t\n\\"); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_test_super(struct super_block *s, void *data) | 
 | { | 
 | 	struct btrfs_fs_info *p = data; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(s); | 
 |  | 
 | 	return fs_info->fs_devices == p->fs_devices; | 
 | } | 
 |  | 
 | static int btrfs_set_super(struct super_block *s, void *data) | 
 | { | 
 | 	int err = set_anon_super(s, data); | 
 | 	if (!err) | 
 | 		s->s_fs_info = data; | 
 | 	return err; | 
 | } | 
 |  | 
 | /* | 
 |  * subvolumes are identified by ino 256 | 
 |  */ | 
 | static inline int is_subvolume_inode(struct inode *inode) | 
 | { | 
 | 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, | 
 | 				   const char *device_name, struct vfsmount *mnt) | 
 | { | 
 | 	struct dentry *root; | 
 | 	int ret; | 
 |  | 
 | 	if (!subvol_name) { | 
 | 		if (!subvol_objectid) { | 
 | 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), | 
 | 							  &subvol_objectid); | 
 | 			if (ret) { | 
 | 				root = ERR_PTR(ret); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), | 
 | 							    subvol_objectid); | 
 | 		if (IS_ERR(subvol_name)) { | 
 | 			root = ERR_CAST(subvol_name); | 
 | 			subvol_name = NULL; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 	} | 
 |  | 
 | 	root = mount_subtree(mnt, subvol_name); | 
 | 	/* mount_subtree() drops our reference on the vfsmount. */ | 
 | 	mnt = NULL; | 
 |  | 
 | 	if (!IS_ERR(root)) { | 
 | 		struct super_block *s = root->d_sb; | 
 | 		struct btrfs_fs_info *fs_info = btrfs_sb(s); | 
 | 		struct inode *root_inode = d_inode(root); | 
 | 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; | 
 |  | 
 | 		ret = 0; | 
 | 		if (!is_subvolume_inode(root_inode)) { | 
 | 			btrfs_err(fs_info, "'%s' is not a valid subvolume", | 
 | 			       subvol_name); | 
 | 			ret = -EINVAL; | 
 | 		} | 
 | 		if (subvol_objectid && root_objectid != subvol_objectid) { | 
 | 			/* | 
 | 			 * This will also catch a race condition where a | 
 | 			 * subvolume which was passed by ID is renamed and | 
 | 			 * another subvolume is renamed over the old location. | 
 | 			 */ | 
 | 			btrfs_err(fs_info, | 
 | 				  "subvol '%s' does not match subvolid %llu", | 
 | 				  subvol_name, subvol_objectid); | 
 | 			ret = -EINVAL; | 
 | 		} | 
 | 		if (ret) { | 
 | 			dput(root); | 
 | 			root = ERR_PTR(ret); | 
 | 			deactivate_locked_super(s); | 
 | 		} | 
 | 	} | 
 |  | 
 | out: | 
 | 	mntput(mnt); | 
 | 	kfree(subvol_name); | 
 | 	return root; | 
 | } | 
 |  | 
 | static int parse_security_options(char *orig_opts, | 
 | 				  struct security_mnt_opts *sec_opts) | 
 | { | 
 | 	char *secdata = NULL; | 
 | 	int ret = 0; | 
 |  | 
 | 	secdata = alloc_secdata(); | 
 | 	if (!secdata) | 
 | 		return -ENOMEM; | 
 | 	ret = security_sb_copy_data(orig_opts, secdata); | 
 | 	if (ret) { | 
 | 		free_secdata(secdata); | 
 | 		return ret; | 
 | 	} | 
 | 	ret = security_sb_parse_opts_str(secdata, sec_opts); | 
 | 	free_secdata(secdata); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int setup_security_options(struct btrfs_fs_info *fs_info, | 
 | 				  struct super_block *sb, | 
 | 				  struct security_mnt_opts *sec_opts) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts | 
 | 	 * is valid. | 
 | 	 */ | 
 | 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | #ifdef CONFIG_SECURITY | 
 | 	if (!fs_info->security_opts.num_mnt_opts) { | 
 | 		/* first time security setup, copy sec_opts to fs_info */ | 
 | 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Since SELinux (the only one supporting security_mnt_opts) | 
 | 		 * does NOT support changing context during remount/mount of | 
 | 		 * the same sb, this must be the same or part of the same | 
 | 		 * security options, just free it. | 
 | 		 */ | 
 | 		security_free_mnt_opts(sec_opts); | 
 | 	} | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Find a superblock for the given device / mount point. | 
 |  * | 
 |  * Note: This is based on mount_bdev from fs/super.c with a few additions | 
 |  *       for multiple device setup.  Make sure to keep it in sync. | 
 |  */ | 
 | static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, | 
 | 		int flags, const char *device_name, void *data) | 
 | { | 
 | 	struct block_device *bdev = NULL; | 
 | 	struct super_block *s; | 
 | 	struct btrfs_device *device = NULL; | 
 | 	struct btrfs_fs_devices *fs_devices = NULL; | 
 | 	struct btrfs_fs_info *fs_info = NULL; | 
 | 	struct security_mnt_opts new_sec_opts; | 
 | 	fmode_t mode = FMODE_READ; | 
 | 	int error = 0; | 
 |  | 
 | 	if (!(flags & SB_RDONLY)) | 
 | 		mode |= FMODE_WRITE; | 
 |  | 
 | 	security_init_mnt_opts(&new_sec_opts); | 
 | 	if (data) { | 
 | 		error = parse_security_options(data, &new_sec_opts); | 
 | 		if (error) | 
 | 			return ERR_PTR(error); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Setup a dummy root and fs_info for test/set super.  This is because | 
 | 	 * we don't actually fill this stuff out until open_ctree, but we need | 
 | 	 * it for searching for existing supers, so this lets us do that and | 
 | 	 * then open_ctree will properly initialize everything later. | 
 | 	 */ | 
 | 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); | 
 | 	if (!fs_info) { | 
 | 		error = -ENOMEM; | 
 | 		goto error_sec_opts; | 
 | 	} | 
 |  | 
 | 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); | 
 | 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); | 
 | 	security_init_mnt_opts(&fs_info->security_opts); | 
 | 	if (!fs_info->super_copy || !fs_info->super_for_commit) { | 
 | 		error = -ENOMEM; | 
 | 		goto error_fs_info; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&uuid_mutex); | 
 | 	error = btrfs_parse_device_options(data, mode, fs_type); | 
 | 	if (error) { | 
 | 		mutex_unlock(&uuid_mutex); | 
 | 		goto error_fs_info; | 
 | 	} | 
 |  | 
 | 	device = btrfs_scan_one_device(device_name, mode, fs_type); | 
 | 	if (IS_ERR(device)) { | 
 | 		mutex_unlock(&uuid_mutex); | 
 | 		error = PTR_ERR(device); | 
 | 		goto error_fs_info; | 
 | 	} | 
 |  | 
 | 	fs_devices = device->fs_devices; | 
 | 	fs_info->fs_devices = fs_devices; | 
 |  | 
 | 	error = btrfs_open_devices(fs_devices, mode, fs_type); | 
 | 	mutex_unlock(&uuid_mutex); | 
 | 	if (error) | 
 | 		goto error_fs_info; | 
 |  | 
 | 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { | 
 | 		error = -EACCES; | 
 | 		goto error_close_devices; | 
 | 	} | 
 |  | 
 | 	bdev = fs_devices->latest_bdev; | 
 | 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, | 
 | 		 fs_info); | 
 | 	if (IS_ERR(s)) { | 
 | 		error = PTR_ERR(s); | 
 | 		goto error_close_devices; | 
 | 	} | 
 |  | 
 | 	if (s->s_root) { | 
 | 		btrfs_close_devices(fs_devices); | 
 | 		free_fs_info(fs_info); | 
 | 		if ((flags ^ s->s_flags) & SB_RDONLY) | 
 | 			error = -EBUSY; | 
 | 	} else { | 
 | 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); | 
 | 		btrfs_sb(s)->bdev_holder = fs_type; | 
 | 		error = btrfs_fill_super(s, fs_devices, data); | 
 | 	} | 
 | 	if (error) { | 
 | 		deactivate_locked_super(s); | 
 | 		goto error_sec_opts; | 
 | 	} | 
 |  | 
 | 	fs_info = btrfs_sb(s); | 
 | 	error = setup_security_options(fs_info, s, &new_sec_opts); | 
 | 	if (error) { | 
 | 		deactivate_locked_super(s); | 
 | 		goto error_sec_opts; | 
 | 	} | 
 |  | 
 | 	return dget(s->s_root); | 
 |  | 
 | error_close_devices: | 
 | 	btrfs_close_devices(fs_devices); | 
 | error_fs_info: | 
 | 	free_fs_info(fs_info); | 
 | error_sec_opts: | 
 | 	security_free_mnt_opts(&new_sec_opts); | 
 | 	return ERR_PTR(error); | 
 | } | 
 |  | 
 | /* | 
 |  * Mount function which is called by VFS layer. | 
 |  * | 
 |  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() | 
 |  * which needs vfsmount* of device's root (/).  This means device's root has to | 
 |  * be mounted internally in any case. | 
 |  * | 
 |  * Operation flow: | 
 |  *   1. Parse subvol id related options for later use in mount_subvol(). | 
 |  * | 
 |  *   2. Mount device's root (/) by calling vfs_kern_mount(). | 
 |  * | 
 |  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the | 
 |  *      first place. In order to avoid calling btrfs_mount() again, we use | 
 |  *      different file_system_type which is not registered to VFS by | 
 |  *      register_filesystem() (btrfs_root_fs_type). As a result, | 
 |  *      btrfs_mount_root() is called. The return value will be used by | 
 |  *      mount_subtree() in mount_subvol(). | 
 |  * | 
 |  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is | 
 |  *      "btrfs subvolume set-default", mount_subvol() is called always. | 
 |  */ | 
 | static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, | 
 | 		const char *device_name, void *data) | 
 | { | 
 | 	struct vfsmount *mnt_root; | 
 | 	struct dentry *root; | 
 | 	fmode_t mode = FMODE_READ; | 
 | 	char *subvol_name = NULL; | 
 | 	u64 subvol_objectid = 0; | 
 | 	int error = 0; | 
 |  | 
 | 	if (!(flags & SB_RDONLY)) | 
 | 		mode |= FMODE_WRITE; | 
 |  | 
 | 	error = btrfs_parse_subvol_options(data, &subvol_name, | 
 | 					&subvol_objectid); | 
 | 	if (error) { | 
 | 		kfree(subvol_name); | 
 | 		return ERR_PTR(error); | 
 | 	} | 
 |  | 
 | 	/* mount device's root (/) */ | 
 | 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); | 
 | 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { | 
 | 		if (flags & SB_RDONLY) { | 
 | 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type, | 
 | 				flags & ~SB_RDONLY, device_name, data); | 
 | 		} else { | 
 | 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type, | 
 | 				flags | SB_RDONLY, device_name, data); | 
 | 			if (IS_ERR(mnt_root)) { | 
 | 				root = ERR_CAST(mnt_root); | 
 | 				kfree(subvol_name); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			down_write(&mnt_root->mnt_sb->s_umount); | 
 | 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); | 
 | 			up_write(&mnt_root->mnt_sb->s_umount); | 
 | 			if (error < 0) { | 
 | 				root = ERR_PTR(error); | 
 | 				mntput(mnt_root); | 
 | 				kfree(subvol_name); | 
 | 				goto out; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	if (IS_ERR(mnt_root)) { | 
 | 		root = ERR_CAST(mnt_root); | 
 | 		kfree(subvol_name); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* mount_subvol() will free subvol_name and mnt_root */ | 
 | 	root = mount_subvol(subvol_name, subvol_objectid, device_name, mnt_root); | 
 |  | 
 | out: | 
 | 	return root; | 
 | } | 
 |  | 
 | static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, | 
 | 				     u32 new_pool_size, u32 old_pool_size) | 
 | { | 
 | 	if (new_pool_size == old_pool_size) | 
 | 		return; | 
 |  | 
 | 	fs_info->thread_pool_size = new_pool_size; | 
 |  | 
 | 	btrfs_info(fs_info, "resize thread pool %d -> %d", | 
 | 	       old_pool_size, new_pool_size); | 
 |  | 
 | 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, | 
 | 				new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); | 
 | 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, | 
 | 				new_pool_size); | 
 | } | 
 |  | 
 | static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); | 
 | } | 
 |  | 
 | static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, | 
 | 				       unsigned long old_opts, int flags) | 
 | { | 
 | 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && | 
 | 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || | 
 | 	     (flags & SB_RDONLY))) { | 
 | 		/* wait for any defraggers to finish */ | 
 | 		wait_event(fs_info->transaction_wait, | 
 | 			   (atomic_read(&fs_info->defrag_running) == 0)); | 
 | 		if (flags & SB_RDONLY) | 
 | 			sync_filesystem(fs_info->sb); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, | 
 | 					 unsigned long old_opts) | 
 | { | 
 | 	/* | 
 | 	 * We need to cleanup all defragable inodes if the autodefragment is | 
 | 	 * close or the filesystem is read only. | 
 | 	 */ | 
 | 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && | 
 | 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { | 
 | 		btrfs_cleanup_defrag_inodes(fs_info); | 
 | 	} | 
 |  | 
 | 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); | 
 | } | 
 |  | 
 | static int btrfs_remount(struct super_block *sb, int *flags, char *data) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
 | 	struct btrfs_root *root = fs_info->tree_root; | 
 | 	unsigned old_flags = sb->s_flags; | 
 | 	unsigned long old_opts = fs_info->mount_opt; | 
 | 	unsigned long old_compress_type = fs_info->compress_type; | 
 | 	u64 old_max_inline = fs_info->max_inline; | 
 | 	u32 old_thread_pool_size = fs_info->thread_pool_size; | 
 | 	u32 old_metadata_ratio = fs_info->metadata_ratio; | 
 | 	int ret; | 
 |  | 
 | 	sync_filesystem(sb); | 
 | 	btrfs_remount_prepare(fs_info); | 
 |  | 
 | 	if (data) { | 
 | 		struct security_mnt_opts new_sec_opts; | 
 |  | 
 | 		security_init_mnt_opts(&new_sec_opts); | 
 | 		ret = parse_security_options(data, &new_sec_opts); | 
 | 		if (ret) | 
 | 			goto restore; | 
 | 		ret = setup_security_options(fs_info, sb, | 
 | 					     &new_sec_opts); | 
 | 		if (ret) { | 
 | 			security_free_mnt_opts(&new_sec_opts); | 
 | 			goto restore; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ret = btrfs_parse_options(fs_info, data, *flags); | 
 | 	if (ret) | 
 | 		goto restore; | 
 |  | 
 | 	btrfs_remount_begin(fs_info, old_opts, *flags); | 
 | 	btrfs_resize_thread_pool(fs_info, | 
 | 		fs_info->thread_pool_size, old_thread_pool_size); | 
 |  | 
 | 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) | 
 | 		goto out; | 
 |  | 
 | 	if (*flags & SB_RDONLY) { | 
 | 		/* | 
 | 		 * this also happens on 'umount -rf' or on shutdown, when | 
 | 		 * the filesystem is busy. | 
 | 		 */ | 
 | 		cancel_work_sync(&fs_info->async_reclaim_work); | 
 |  | 
 | 		/* wait for the uuid_scan task to finish */ | 
 | 		down(&fs_info->uuid_tree_rescan_sem); | 
 | 		/* avoid complains from lockdep et al. */ | 
 | 		up(&fs_info->uuid_tree_rescan_sem); | 
 |  | 
 | 		sb->s_flags |= SB_RDONLY; | 
 |  | 
 | 		/* | 
 | 		 * Setting SB_RDONLY will put the cleaner thread to | 
 | 		 * sleep at the next loop if it's already active. | 
 | 		 * If it's already asleep, we'll leave unused block | 
 | 		 * groups on disk until we're mounted read-write again | 
 | 		 * unless we clean them up here. | 
 | 		 */ | 
 | 		btrfs_delete_unused_bgs(fs_info); | 
 |  | 
 | 		btrfs_dev_replace_suspend_for_unmount(fs_info); | 
 | 		btrfs_scrub_cancel(fs_info); | 
 | 		btrfs_pause_balance(fs_info); | 
 |  | 
 | 		ret = btrfs_commit_super(fs_info); | 
 | 		if (ret) | 
 | 			goto restore; | 
 | 	} else { | 
 | 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { | 
 | 			btrfs_err(fs_info, | 
 | 				"Remounting read-write after error is not allowed"); | 
 | 			ret = -EINVAL; | 
 | 			goto restore; | 
 | 		} | 
 | 		if (fs_info->fs_devices->rw_devices == 0) { | 
 | 			ret = -EACCES; | 
 | 			goto restore; | 
 | 		} | 
 |  | 
 | 		if (!btrfs_check_rw_degradable(fs_info, NULL)) { | 
 | 			btrfs_warn(fs_info, | 
 | 				"too many missing devices, writeable remount is not allowed"); | 
 | 			ret = -EACCES; | 
 | 			goto restore; | 
 | 		} | 
 |  | 
 | 		if (btrfs_super_log_root(fs_info->super_copy) != 0) { | 
 | 			ret = -EINVAL; | 
 | 			goto restore; | 
 | 		} | 
 |  | 
 | 		ret = btrfs_cleanup_fs_roots(fs_info); | 
 | 		if (ret) | 
 | 			goto restore; | 
 |  | 
 | 		/* recover relocation */ | 
 | 		mutex_lock(&fs_info->cleaner_mutex); | 
 | 		ret = btrfs_recover_relocation(root); | 
 | 		mutex_unlock(&fs_info->cleaner_mutex); | 
 | 		if (ret) | 
 | 			goto restore; | 
 |  | 
 | 		ret = btrfs_resume_balance_async(fs_info); | 
 | 		if (ret) | 
 | 			goto restore; | 
 |  | 
 | 		ret = btrfs_resume_dev_replace_async(fs_info); | 
 | 		if (ret) { | 
 | 			btrfs_warn(fs_info, "failed to resume dev_replace"); | 
 | 			goto restore; | 
 | 		} | 
 |  | 
 | 		btrfs_qgroup_rescan_resume(fs_info); | 
 |  | 
 | 		if (!fs_info->uuid_root) { | 
 | 			btrfs_info(fs_info, "creating UUID tree"); | 
 | 			ret = btrfs_create_uuid_tree(fs_info); | 
 | 			if (ret) { | 
 | 				btrfs_warn(fs_info, | 
 | 					   "failed to create the UUID tree %d", | 
 | 					   ret); | 
 | 				goto restore; | 
 | 			} | 
 | 		} | 
 | 		sb->s_flags &= ~SB_RDONLY; | 
 |  | 
 | 		set_bit(BTRFS_FS_OPEN, &fs_info->flags); | 
 | 	} | 
 | out: | 
 | 	wake_up_process(fs_info->transaction_kthread); | 
 | 	btrfs_remount_cleanup(fs_info, old_opts); | 
 | 	return 0; | 
 |  | 
 | restore: | 
 | 	/* We've hit an error - don't reset SB_RDONLY */ | 
 | 	if (sb_rdonly(sb)) | 
 | 		old_flags |= SB_RDONLY; | 
 | 	sb->s_flags = old_flags; | 
 | 	fs_info->mount_opt = old_opts; | 
 | 	fs_info->compress_type = old_compress_type; | 
 | 	fs_info->max_inline = old_max_inline; | 
 | 	btrfs_resize_thread_pool(fs_info, | 
 | 		old_thread_pool_size, fs_info->thread_pool_size); | 
 | 	fs_info->metadata_ratio = old_metadata_ratio; | 
 | 	btrfs_remount_cleanup(fs_info, old_opts); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* Used to sort the devices by max_avail(descending sort) */ | 
 | static inline int btrfs_cmp_device_free_bytes(const void *dev_info1, | 
 | 				       const void *dev_info2) | 
 | { | 
 | 	if (((struct btrfs_device_info *)dev_info1)->max_avail > | 
 | 	    ((struct btrfs_device_info *)dev_info2)->max_avail) | 
 | 		return -1; | 
 | 	else if (((struct btrfs_device_info *)dev_info1)->max_avail < | 
 | 		 ((struct btrfs_device_info *)dev_info2)->max_avail) | 
 | 		return 1; | 
 | 	else | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * sort the devices by max_avail, in which max free extent size of each device | 
 |  * is stored.(Descending Sort) | 
 |  */ | 
 | static inline void btrfs_descending_sort_devices( | 
 | 					struct btrfs_device_info *devices, | 
 | 					size_t nr_devices) | 
 | { | 
 | 	sort(devices, nr_devices, sizeof(struct btrfs_device_info), | 
 | 	     btrfs_cmp_device_free_bytes, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * The helper to calc the free space on the devices that can be used to store | 
 |  * file data. | 
 |  */ | 
 | static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, | 
 | 					      u64 *free_bytes) | 
 | { | 
 | 	struct btrfs_device_info *devices_info; | 
 | 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; | 
 | 	struct btrfs_device *device; | 
 | 	u64 skip_space; | 
 | 	u64 type; | 
 | 	u64 avail_space; | 
 | 	u64 min_stripe_size; | 
 | 	int min_stripes = 1, num_stripes = 1; | 
 | 	int i = 0, nr_devices; | 
 |  | 
 | 	/* | 
 | 	 * We aren't under the device list lock, so this is racy-ish, but good | 
 | 	 * enough for our purposes. | 
 | 	 */ | 
 | 	nr_devices = fs_info->fs_devices->open_devices; | 
 | 	if (!nr_devices) { | 
 | 		smp_mb(); | 
 | 		nr_devices = fs_info->fs_devices->open_devices; | 
 | 		ASSERT(nr_devices); | 
 | 		if (!nr_devices) { | 
 | 			*free_bytes = 0; | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), | 
 | 			       GFP_KERNEL); | 
 | 	if (!devices_info) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* calc min stripe number for data space allocation */ | 
 | 	type = btrfs_data_alloc_profile(fs_info); | 
 | 	if (type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 		min_stripes = 2; | 
 | 		num_stripes = nr_devices; | 
 | 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) { | 
 | 		min_stripes = 2; | 
 | 		num_stripes = 2; | 
 | 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 		min_stripes = 4; | 
 | 		num_stripes = 4; | 
 | 	} | 
 |  | 
 | 	if (type & BTRFS_BLOCK_GROUP_DUP) | 
 | 		min_stripe_size = 2 * BTRFS_STRIPE_LEN; | 
 | 	else | 
 | 		min_stripe_size = BTRFS_STRIPE_LEN; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { | 
 | 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, | 
 | 						&device->dev_state) || | 
 | 		    !device->bdev || | 
 | 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) | 
 | 			continue; | 
 |  | 
 | 		if (i >= nr_devices) | 
 | 			break; | 
 |  | 
 | 		avail_space = device->total_bytes - device->bytes_used; | 
 |  | 
 | 		/* align with stripe_len */ | 
 | 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); | 
 | 		avail_space *= BTRFS_STRIPE_LEN; | 
 |  | 
 | 		/* | 
 | 		 * In order to avoid overwriting the superblock on the drive, | 
 | 		 * btrfs starts at an offset of at least 1MB when doing chunk | 
 | 		 * allocation. | 
 | 		 */ | 
 | 		skip_space = SZ_1M; | 
 |  | 
 | 		/* | 
 | 		 * we can use the free space in [0, skip_space - 1], subtract | 
 | 		 * it from the total. | 
 | 		 */ | 
 | 		if (avail_space && avail_space >= skip_space) | 
 | 			avail_space -= skip_space; | 
 | 		else | 
 | 			avail_space = 0; | 
 |  | 
 | 		if (avail_space < min_stripe_size) | 
 | 			continue; | 
 |  | 
 | 		devices_info[i].dev = device; | 
 | 		devices_info[i].max_avail = avail_space; | 
 |  | 
 | 		i++; | 
 | 	} | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	nr_devices = i; | 
 |  | 
 | 	btrfs_descending_sort_devices(devices_info, nr_devices); | 
 |  | 
 | 	i = nr_devices - 1; | 
 | 	avail_space = 0; | 
 | 	while (nr_devices >= min_stripes) { | 
 | 		if (num_stripes > nr_devices) | 
 | 			num_stripes = nr_devices; | 
 |  | 
 | 		if (devices_info[i].max_avail >= min_stripe_size) { | 
 | 			int j; | 
 | 			u64 alloc_size; | 
 |  | 
 | 			avail_space += devices_info[i].max_avail * num_stripes; | 
 | 			alloc_size = devices_info[i].max_avail; | 
 | 			for (j = i + 1 - num_stripes; j <= i; j++) | 
 | 				devices_info[j].max_avail -= alloc_size; | 
 | 		} | 
 | 		i--; | 
 | 		nr_devices--; | 
 | 	} | 
 |  | 
 | 	kfree(devices_info); | 
 | 	*free_bytes = avail_space; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. | 
 |  * | 
 |  * If there's a redundant raid level at DATA block groups, use the respective | 
 |  * multiplier to scale the sizes. | 
 |  * | 
 |  * Unused device space usage is based on simulating the chunk allocator | 
 |  * algorithm that respects the device sizes and order of allocations.  This is | 
 |  * a close approximation of the actual use but there are other factors that may | 
 |  * change the result (like a new metadata chunk). | 
 |  * | 
 |  * If metadata is exhausted, f_bavail will be 0. | 
 |  */ | 
 | static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); | 
 | 	struct btrfs_super_block *disk_super = fs_info->super_copy; | 
 | 	struct list_head *head = &fs_info->space_info; | 
 | 	struct btrfs_space_info *found; | 
 | 	u64 total_used = 0; | 
 | 	u64 total_free_data = 0; | 
 | 	u64 total_free_meta = 0; | 
 | 	int bits = dentry->d_sb->s_blocksize_bits; | 
 | 	__be32 *fsid = (__be32 *)fs_info->fsid; | 
 | 	unsigned factor = 1; | 
 | 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; | 
 | 	int ret; | 
 | 	u64 thresh = 0; | 
 | 	int mixed = 0; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	list_for_each_entry_rcu(found, head, list) { | 
 | 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) { | 
 | 			int i; | 
 |  | 
 | 			total_free_data += found->disk_total - found->disk_used; | 
 | 			total_free_data -= | 
 | 				btrfs_account_ro_block_groups_free_space(found); | 
 |  | 
 | 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { | 
 | 				if (!list_empty(&found->block_groups[i])) | 
 | 					factor = btrfs_bg_type_to_factor( | 
 | 						btrfs_raid_array[i].bg_flag); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Metadata in mixed block goup profiles are accounted in data | 
 | 		 */ | 
 | 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { | 
 | 			if (found->flags & BTRFS_BLOCK_GROUP_DATA) | 
 | 				mixed = 1; | 
 | 			else | 
 | 				total_free_meta += found->disk_total - | 
 | 					found->disk_used; | 
 | 		} | 
 |  | 
 | 		total_used += found->disk_used; | 
 | 	} | 
 |  | 
 | 	rcu_read_unlock(); | 
 |  | 
 | 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); | 
 | 	buf->f_blocks >>= bits; | 
 | 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); | 
 |  | 
 | 	/* Account global block reserve as used, it's in logical size already */ | 
 | 	spin_lock(&block_rsv->lock); | 
 | 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */ | 
 | 	if (buf->f_bfree >= block_rsv->size >> bits) | 
 | 		buf->f_bfree -= block_rsv->size >> bits; | 
 | 	else | 
 | 		buf->f_bfree = 0; | 
 | 	spin_unlock(&block_rsv->lock); | 
 |  | 
 | 	buf->f_bavail = div_u64(total_free_data, factor); | 
 | 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	buf->f_bavail += div_u64(total_free_data, factor); | 
 | 	buf->f_bavail = buf->f_bavail >> bits; | 
 |  | 
 | 	/* | 
 | 	 * We calculate the remaining metadata space minus global reserve. If | 
 | 	 * this is (supposedly) smaller than zero, there's no space. But this | 
 | 	 * does not hold in practice, the exhausted state happens where's still | 
 | 	 * some positive delta. So we apply some guesswork and compare the | 
 | 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.) | 
 | 	 * | 
 | 	 * We probably cannot calculate the exact threshold value because this | 
 | 	 * depends on the internal reservations requested by various | 
 | 	 * operations, so some operations that consume a few metadata will | 
 | 	 * succeed even if the Avail is zero. But this is better than the other | 
 | 	 * way around. | 
 | 	 */ | 
 | 	thresh = SZ_4M; | 
 |  | 
 | 	if (!mixed && total_free_meta - thresh < block_rsv->size) | 
 | 		buf->f_bavail = 0; | 
 |  | 
 | 	buf->f_type = BTRFS_SUPER_MAGIC; | 
 | 	buf->f_bsize = dentry->d_sb->s_blocksize; | 
 | 	buf->f_namelen = BTRFS_NAME_LEN; | 
 |  | 
 | 	/* We treat it as constant endianness (it doesn't matter _which_) | 
 | 	   because we want the fsid to come out the same whether mounted | 
 | 	   on a big-endian or little-endian host */ | 
 | 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); | 
 | 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); | 
 | 	/* Mask in the root object ID too, to disambiguate subvols */ | 
 | 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; | 
 | 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void btrfs_kill_super(struct super_block *sb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
 | 	kill_anon_super(sb); | 
 | 	free_fs_info(fs_info); | 
 | } | 
 |  | 
 | static struct file_system_type btrfs_fs_type = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.name		= "btrfs", | 
 | 	.mount		= btrfs_mount, | 
 | 	.kill_sb	= btrfs_kill_super, | 
 | 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, | 
 | }; | 
 |  | 
 | static struct file_system_type btrfs_root_fs_type = { | 
 | 	.owner		= THIS_MODULE, | 
 | 	.name		= "btrfs", | 
 | 	.mount		= btrfs_mount_root, | 
 | 	.kill_sb	= btrfs_kill_super, | 
 | 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, | 
 | }; | 
 |  | 
 | MODULE_ALIAS_FS("btrfs"); | 
 |  | 
 | static int btrfs_control_open(struct inode *inode, struct file *file) | 
 | { | 
 | 	/* | 
 | 	 * The control file's private_data is used to hold the | 
 | 	 * transaction when it is started and is used to keep | 
 | 	 * track of whether a transaction is already in progress. | 
 | 	 */ | 
 | 	file->private_data = NULL; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * used by btrfsctl to scan devices when no FS is mounted | 
 |  */ | 
 | static long btrfs_control_ioctl(struct file *file, unsigned int cmd, | 
 | 				unsigned long arg) | 
 | { | 
 | 	struct btrfs_ioctl_vol_args *vol; | 
 | 	struct btrfs_device *device = NULL; | 
 | 	int ret = -ENOTTY; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	vol = memdup_user((void __user *)arg, sizeof(*vol)); | 
 | 	if (IS_ERR(vol)) | 
 | 		return PTR_ERR(vol); | 
 | 	vol->name[BTRFS_PATH_NAME_MAX] = '\0'; | 
 |  | 
 | 	switch (cmd) { | 
 | 	case BTRFS_IOC_SCAN_DEV: | 
 | 		mutex_lock(&uuid_mutex); | 
 | 		device = btrfs_scan_one_device(vol->name, FMODE_READ, | 
 | 					       &btrfs_root_fs_type); | 
 | 		ret = PTR_ERR_OR_ZERO(device); | 
 | 		mutex_unlock(&uuid_mutex); | 
 | 		break; | 
 | 	case BTRFS_IOC_DEVICES_READY: | 
 | 		mutex_lock(&uuid_mutex); | 
 | 		device = btrfs_scan_one_device(vol->name, FMODE_READ, | 
 | 					       &btrfs_root_fs_type); | 
 | 		if (IS_ERR(device)) { | 
 | 			mutex_unlock(&uuid_mutex); | 
 | 			ret = PTR_ERR(device); | 
 | 			break; | 
 | 		} | 
 | 		ret = !(device->fs_devices->num_devices == | 
 | 			device->fs_devices->total_devices); | 
 | 		mutex_unlock(&uuid_mutex); | 
 | 		break; | 
 | 	case BTRFS_IOC_GET_SUPPORTED_FEATURES: | 
 | 		ret = btrfs_ioctl_get_supported_features((void __user*)arg); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	kfree(vol); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int btrfs_freeze(struct super_block *sb) | 
 | { | 
 | 	struct btrfs_trans_handle *trans; | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
 | 	struct btrfs_root *root = fs_info->tree_root; | 
 |  | 
 | 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags); | 
 | 	/* | 
 | 	 * We don't need a barrier here, we'll wait for any transaction that | 
 | 	 * could be in progress on other threads (and do delayed iputs that | 
 | 	 * we want to avoid on a frozen filesystem), or do the commit | 
 | 	 * ourselves. | 
 | 	 */ | 
 | 	trans = btrfs_attach_transaction_barrier(root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		/* no transaction, don't bother */ | 
 | 		if (PTR_ERR(trans) == -ENOENT) | 
 | 			return 0; | 
 | 		return PTR_ERR(trans); | 
 | 	} | 
 | 	return btrfs_commit_transaction(trans); | 
 | } | 
 |  | 
 | static int btrfs_unfreeze(struct super_block *sb) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(sb); | 
 |  | 
 | 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int btrfs_show_devname(struct seq_file *m, struct dentry *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); | 
 | 	struct btrfs_fs_devices *cur_devices; | 
 | 	struct btrfs_device *dev, *first_dev = NULL; | 
 | 	struct list_head *head; | 
 |  | 
 | 	/* | 
 | 	 * Lightweight locking of the devices. We should not need | 
 | 	 * device_list_mutex here as we only read the device data and the list | 
 | 	 * is protected by RCU.  Even if a device is deleted during the list | 
 | 	 * traversals, we'll get valid data, the freeing callback will wait at | 
 | 	 * least until until the rcu_read_unlock. | 
 | 	 */ | 
 | 	rcu_read_lock(); | 
 | 	cur_devices = fs_info->fs_devices; | 
 | 	while (cur_devices) { | 
 | 		head = &cur_devices->devices; | 
 | 		list_for_each_entry_rcu(dev, head, dev_list) { | 
 | 			if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) | 
 | 				continue; | 
 | 			if (!dev->name) | 
 | 				continue; | 
 | 			if (!first_dev || dev->devid < first_dev->devid) | 
 | 				first_dev = dev; | 
 | 		} | 
 | 		cur_devices = cur_devices->seed; | 
 | 	} | 
 |  | 
 | 	if (first_dev) | 
 | 		seq_escape(m, rcu_str_deref(first_dev->name), " \t\n\\"); | 
 | 	else | 
 | 		WARN_ON(1); | 
 | 	rcu_read_unlock(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct super_operations btrfs_super_ops = { | 
 | 	.drop_inode	= btrfs_drop_inode, | 
 | 	.evict_inode	= btrfs_evict_inode, | 
 | 	.put_super	= btrfs_put_super, | 
 | 	.sync_fs	= btrfs_sync_fs, | 
 | 	.show_options	= btrfs_show_options, | 
 | 	.show_devname	= btrfs_show_devname, | 
 | 	.alloc_inode	= btrfs_alloc_inode, | 
 | 	.destroy_inode	= btrfs_destroy_inode, | 
 | 	.statfs		= btrfs_statfs, | 
 | 	.remount_fs	= btrfs_remount, | 
 | 	.freeze_fs	= btrfs_freeze, | 
 | 	.unfreeze_fs	= btrfs_unfreeze, | 
 | }; | 
 |  | 
 | static const struct file_operations btrfs_ctl_fops = { | 
 | 	.open = btrfs_control_open, | 
 | 	.unlocked_ioctl	 = btrfs_control_ioctl, | 
 | 	.compat_ioctl = btrfs_control_ioctl, | 
 | 	.owner	 = THIS_MODULE, | 
 | 	.llseek = noop_llseek, | 
 | }; | 
 |  | 
 | static struct miscdevice btrfs_misc = { | 
 | 	.minor		= BTRFS_MINOR, | 
 | 	.name		= "btrfs-control", | 
 | 	.fops		= &btrfs_ctl_fops | 
 | }; | 
 |  | 
 | MODULE_ALIAS_MISCDEV(BTRFS_MINOR); | 
 | MODULE_ALIAS("devname:btrfs-control"); | 
 |  | 
 | static int __init btrfs_interface_init(void) | 
 | { | 
 | 	return misc_register(&btrfs_misc); | 
 | } | 
 |  | 
 | static __cold void btrfs_interface_exit(void) | 
 | { | 
 | 	misc_deregister(&btrfs_misc); | 
 | } | 
 |  | 
 | static void __init btrfs_print_mod_info(void) | 
 | { | 
 | 	static const char options[] = "" | 
 | #ifdef CONFIG_BTRFS_DEBUG | 
 | 			", debug=on" | 
 | #endif | 
 | #ifdef CONFIG_BTRFS_ASSERT | 
 | 			", assert=on" | 
 | #endif | 
 | #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY | 
 | 			", integrity-checker=on" | 
 | #endif | 
 | #ifdef CONFIG_BTRFS_FS_REF_VERIFY | 
 | 			", ref-verify=on" | 
 | #endif | 
 | 			; | 
 | 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); | 
 | } | 
 |  | 
 | static int __init init_btrfs_fs(void) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	btrfs_props_init(); | 
 |  | 
 | 	err = btrfs_init_sysfs(); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	btrfs_init_compress(); | 
 |  | 
 | 	err = btrfs_init_cachep(); | 
 | 	if (err) | 
 | 		goto free_compress; | 
 |  | 
 | 	err = extent_io_init(); | 
 | 	if (err) | 
 | 		goto free_cachep; | 
 |  | 
 | 	err = extent_map_init(); | 
 | 	if (err) | 
 | 		goto free_extent_io; | 
 |  | 
 | 	err = ordered_data_init(); | 
 | 	if (err) | 
 | 		goto free_extent_map; | 
 |  | 
 | 	err = btrfs_delayed_inode_init(); | 
 | 	if (err) | 
 | 		goto free_ordered_data; | 
 |  | 
 | 	err = btrfs_auto_defrag_init(); | 
 | 	if (err) | 
 | 		goto free_delayed_inode; | 
 |  | 
 | 	err = btrfs_delayed_ref_init(); | 
 | 	if (err) | 
 | 		goto free_auto_defrag; | 
 |  | 
 | 	err = btrfs_prelim_ref_init(); | 
 | 	if (err) | 
 | 		goto free_delayed_ref; | 
 |  | 
 | 	err = btrfs_end_io_wq_init(); | 
 | 	if (err) | 
 | 		goto free_prelim_ref; | 
 |  | 
 | 	err = btrfs_interface_init(); | 
 | 	if (err) | 
 | 		goto free_end_io_wq; | 
 |  | 
 | 	btrfs_init_lockdep(); | 
 |  | 
 | 	btrfs_print_mod_info(); | 
 |  | 
 | 	err = btrfs_run_sanity_tests(); | 
 | 	if (err) | 
 | 		goto unregister_ioctl; | 
 |  | 
 | 	err = register_filesystem(&btrfs_fs_type); | 
 | 	if (err) | 
 | 		goto unregister_ioctl; | 
 |  | 
 | 	return 0; | 
 |  | 
 | unregister_ioctl: | 
 | 	btrfs_interface_exit(); | 
 | free_end_io_wq: | 
 | 	btrfs_end_io_wq_exit(); | 
 | free_prelim_ref: | 
 | 	btrfs_prelim_ref_exit(); | 
 | free_delayed_ref: | 
 | 	btrfs_delayed_ref_exit(); | 
 | free_auto_defrag: | 
 | 	btrfs_auto_defrag_exit(); | 
 | free_delayed_inode: | 
 | 	btrfs_delayed_inode_exit(); | 
 | free_ordered_data: | 
 | 	ordered_data_exit(); | 
 | free_extent_map: | 
 | 	extent_map_exit(); | 
 | free_extent_io: | 
 | 	extent_io_exit(); | 
 | free_cachep: | 
 | 	btrfs_destroy_cachep(); | 
 | free_compress: | 
 | 	btrfs_exit_compress(); | 
 | 	btrfs_exit_sysfs(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static void __exit exit_btrfs_fs(void) | 
 | { | 
 | 	btrfs_destroy_cachep(); | 
 | 	btrfs_delayed_ref_exit(); | 
 | 	btrfs_auto_defrag_exit(); | 
 | 	btrfs_delayed_inode_exit(); | 
 | 	btrfs_prelim_ref_exit(); | 
 | 	ordered_data_exit(); | 
 | 	extent_map_exit(); | 
 | 	extent_io_exit(); | 
 | 	btrfs_interface_exit(); | 
 | 	btrfs_end_io_wq_exit(); | 
 | 	unregister_filesystem(&btrfs_fs_type); | 
 | 	btrfs_exit_sysfs(); | 
 | 	btrfs_cleanup_fs_uuids(); | 
 | 	btrfs_exit_compress(); | 
 | } | 
 |  | 
 | late_initcall(init_btrfs_fs); | 
 | module_exit(exit_btrfs_fs) | 
 |  | 
 | MODULE_LICENSE("GPL"); |