| /* | 
 |  * Copyright (c) 2014-2016, NVIDIA CORPORATION.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify it | 
 |  * under the terms and conditions of the GNU General Public License, | 
 |  * version 2, as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope it will be useful, but WITHOUT | 
 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 |  * more details. | 
 |  */ | 
 |  | 
 | #include <soc/tegra/ivc.h> | 
 |  | 
 | #define TEGRA_IVC_ALIGN 64 | 
 |  | 
 | /* | 
 |  * IVC channel reset protocol. | 
 |  * | 
 |  * Each end uses its tx_channel.state to indicate its synchronization state. | 
 |  */ | 
 | enum tegra_ivc_state { | 
 | 	/* | 
 | 	 * This value is zero for backwards compatibility with services that | 
 | 	 * assume channels to be initially zeroed. Such channels are in an | 
 | 	 * initially valid state, but cannot be asynchronously reset, and must | 
 | 	 * maintain a valid state at all times. | 
 | 	 * | 
 | 	 * The transmitting end can enter the established state from the sync or | 
 | 	 * ack state when it observes the receiving endpoint in the ack or | 
 | 	 * established state, indicating that has cleared the counters in our | 
 | 	 * rx_channel. | 
 | 	 */ | 
 | 	TEGRA_IVC_STATE_ESTABLISHED = 0, | 
 |  | 
 | 	/* | 
 | 	 * If an endpoint is observed in the sync state, the remote endpoint is | 
 | 	 * allowed to clear the counters it owns asynchronously with respect to | 
 | 	 * the current endpoint. Therefore, the current endpoint is no longer | 
 | 	 * allowed to communicate. | 
 | 	 */ | 
 | 	TEGRA_IVC_STATE_SYNC, | 
 |  | 
 | 	/* | 
 | 	 * When the transmitting end observes the receiving end in the sync | 
 | 	 * state, it can clear the w_count and r_count and transition to the ack | 
 | 	 * state. If the remote endpoint observes us in the ack state, it can | 
 | 	 * return to the established state once it has cleared its counters. | 
 | 	 */ | 
 | 	TEGRA_IVC_STATE_ACK | 
 | }; | 
 |  | 
 | /* | 
 |  * This structure is divided into two-cache aligned parts, the first is only | 
 |  * written through the tx.channel pointer, while the second is only written | 
 |  * through the rx.channel pointer. This delineates ownership of the cache | 
 |  * lines, which is critical to performance and necessary in non-cache coherent | 
 |  * implementations. | 
 |  */ | 
 | struct tegra_ivc_header { | 
 | 	union { | 
 | 		struct { | 
 | 			/* fields owned by the transmitting end */ | 
 | 			u32 count; | 
 | 			u32 state; | 
 | 		}; | 
 |  | 
 | 		u8 pad[TEGRA_IVC_ALIGN]; | 
 | 	} tx; | 
 |  | 
 | 	union { | 
 | 		/* fields owned by the receiving end */ | 
 | 		u32 count; | 
 | 		u8 pad[TEGRA_IVC_ALIGN]; | 
 | 	} rx; | 
 | }; | 
 |  | 
 | static inline void tegra_ivc_invalidate(struct tegra_ivc *ivc, dma_addr_t phys) | 
 | { | 
 | 	if (!ivc->peer) | 
 | 		return; | 
 |  | 
 | 	dma_sync_single_for_cpu(ivc->peer, phys, TEGRA_IVC_ALIGN, | 
 | 				DMA_FROM_DEVICE); | 
 | } | 
 |  | 
 | static inline void tegra_ivc_flush(struct tegra_ivc *ivc, dma_addr_t phys) | 
 | { | 
 | 	if (!ivc->peer) | 
 | 		return; | 
 |  | 
 | 	dma_sync_single_for_device(ivc->peer, phys, TEGRA_IVC_ALIGN, | 
 | 				   DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | static inline bool tegra_ivc_empty(struct tegra_ivc *ivc, | 
 | 				   struct tegra_ivc_header *header) | 
 | { | 
 | 	/* | 
 | 	 * This function performs multiple checks on the same values with | 
 | 	 * security implications, so create snapshots with READ_ONCE() to | 
 | 	 * ensure that these checks use the same values. | 
 | 	 */ | 
 | 	u32 tx = READ_ONCE(header->tx.count); | 
 | 	u32 rx = READ_ONCE(header->rx.count); | 
 |  | 
 | 	/* | 
 | 	 * Perform an over-full check to prevent denial of service attacks | 
 | 	 * where a server could be easily fooled into believing that there's | 
 | 	 * an extremely large number of frames ready, since receivers are not | 
 | 	 * expected to check for full or over-full conditions. | 
 | 	 * | 
 | 	 * Although the channel isn't empty, this is an invalid case caused by | 
 | 	 * a potentially malicious peer, so returning empty is safer, because | 
 | 	 * it gives the impression that the channel has gone silent. | 
 | 	 */ | 
 | 	if (tx - rx > ivc->num_frames) | 
 | 		return true; | 
 |  | 
 | 	return tx == rx; | 
 | } | 
 |  | 
 | static inline bool tegra_ivc_full(struct tegra_ivc *ivc, | 
 | 				  struct tegra_ivc_header *header) | 
 | { | 
 | 	u32 tx = READ_ONCE(header->tx.count); | 
 | 	u32 rx = READ_ONCE(header->rx.count); | 
 |  | 
 | 	/* | 
 | 	 * Invalid cases where the counters indicate that the queue is over | 
 | 	 * capacity also appear full. | 
 | 	 */ | 
 | 	return tx - rx >= ivc->num_frames; | 
 | } | 
 |  | 
 | static inline u32 tegra_ivc_available(struct tegra_ivc *ivc, | 
 | 				      struct tegra_ivc_header *header) | 
 | { | 
 | 	u32 tx = READ_ONCE(header->tx.count); | 
 | 	u32 rx = READ_ONCE(header->rx.count); | 
 |  | 
 | 	/* | 
 | 	 * This function isn't expected to be used in scenarios where an | 
 | 	 * over-full situation can lead to denial of service attacks. See the | 
 | 	 * comment in tegra_ivc_empty() for an explanation about special | 
 | 	 * over-full considerations. | 
 | 	 */ | 
 | 	return tx - rx; | 
 | } | 
 |  | 
 | static inline void tegra_ivc_advance_tx(struct tegra_ivc *ivc) | 
 | { | 
 | 	WRITE_ONCE(ivc->tx.channel->tx.count, | 
 | 		   READ_ONCE(ivc->tx.channel->tx.count) + 1); | 
 |  | 
 | 	if (ivc->tx.position == ivc->num_frames - 1) | 
 | 		ivc->tx.position = 0; | 
 | 	else | 
 | 		ivc->tx.position++; | 
 | } | 
 |  | 
 | static inline void tegra_ivc_advance_rx(struct tegra_ivc *ivc) | 
 | { | 
 | 	WRITE_ONCE(ivc->rx.channel->rx.count, | 
 | 		   READ_ONCE(ivc->rx.channel->rx.count) + 1); | 
 |  | 
 | 	if (ivc->rx.position == ivc->num_frames - 1) | 
 | 		ivc->rx.position = 0; | 
 | 	else | 
 | 		ivc->rx.position++; | 
 | } | 
 |  | 
 | static inline int tegra_ivc_check_read(struct tegra_ivc *ivc) | 
 | { | 
 | 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); | 
 |  | 
 | 	/* | 
 | 	 * tx.channel->state is set locally, so it is not synchronized with | 
 | 	 * state from the remote peer. The remote peer cannot reset its | 
 | 	 * transmit counters until we've acknowledged its synchronization | 
 | 	 * request, so no additional synchronization is required because an | 
 | 	 * asynchronous transition of rx.channel->state to | 
 | 	 * TEGRA_IVC_STATE_ACK is not allowed. | 
 | 	 */ | 
 | 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) | 
 | 		return -ECONNRESET; | 
 |  | 
 | 	/* | 
 | 	 * Avoid unnecessary invalidations when performing repeated accesses | 
 | 	 * to an IVC channel by checking the old queue pointers first. | 
 | 	 * | 
 | 	 * Synchronization is only necessary when these pointers indicate | 
 | 	 * empty or full. | 
 | 	 */ | 
 | 	if (!tegra_ivc_empty(ivc, ivc->rx.channel)) | 
 | 		return 0; | 
 |  | 
 | 	tegra_ivc_invalidate(ivc, ivc->rx.phys + offset); | 
 |  | 
 | 	if (tegra_ivc_empty(ivc, ivc->rx.channel)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int tegra_ivc_check_write(struct tegra_ivc *ivc) | 
 | { | 
 | 	unsigned int offset = offsetof(struct tegra_ivc_header, rx.count); | 
 |  | 
 | 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) | 
 | 		return -ECONNRESET; | 
 |  | 
 | 	if (!tegra_ivc_full(ivc, ivc->tx.channel)) | 
 | 		return 0; | 
 |  | 
 | 	tegra_ivc_invalidate(ivc, ivc->tx.phys + offset); | 
 |  | 
 | 	if (tegra_ivc_full(ivc, ivc->tx.channel)) | 
 | 		return -ENOSPC; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *tegra_ivc_frame_virt(struct tegra_ivc *ivc, | 
 | 				  struct tegra_ivc_header *header, | 
 | 				  unsigned int frame) | 
 | { | 
 | 	if (WARN_ON(frame >= ivc->num_frames)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	return (void *)(header + 1) + ivc->frame_size * frame; | 
 | } | 
 |  | 
 | static inline dma_addr_t tegra_ivc_frame_phys(struct tegra_ivc *ivc, | 
 | 					      dma_addr_t phys, | 
 | 					      unsigned int frame) | 
 | { | 
 | 	unsigned long offset; | 
 |  | 
 | 	offset = sizeof(struct tegra_ivc_header) + ivc->frame_size * frame; | 
 |  | 
 | 	return phys + offset; | 
 | } | 
 |  | 
 | static inline void tegra_ivc_invalidate_frame(struct tegra_ivc *ivc, | 
 | 					      dma_addr_t phys, | 
 | 					      unsigned int frame, | 
 | 					      unsigned int offset, | 
 | 					      size_t size) | 
 | { | 
 | 	if (!ivc->peer || WARN_ON(frame >= ivc->num_frames)) | 
 | 		return; | 
 |  | 
 | 	phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset; | 
 |  | 
 | 	dma_sync_single_for_cpu(ivc->peer, phys, size, DMA_FROM_DEVICE); | 
 | } | 
 |  | 
 | static inline void tegra_ivc_flush_frame(struct tegra_ivc *ivc, | 
 | 					 dma_addr_t phys, | 
 | 					 unsigned int frame, | 
 | 					 unsigned int offset, | 
 | 					 size_t size) | 
 | { | 
 | 	if (!ivc->peer || WARN_ON(frame >= ivc->num_frames)) | 
 | 		return; | 
 |  | 
 | 	phys = tegra_ivc_frame_phys(ivc, phys, frame) + offset; | 
 |  | 
 | 	dma_sync_single_for_device(ivc->peer, phys, size, DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | /* directly peek at the next frame rx'ed */ | 
 | void *tegra_ivc_read_get_next_frame(struct tegra_ivc *ivc) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON(ivc == NULL)) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	err = tegra_ivc_check_read(ivc); | 
 | 	if (err < 0) | 
 | 		return ERR_PTR(err); | 
 |  | 
 | 	/* | 
 | 	 * Order observation of ivc->rx.position potentially indicating new | 
 | 	 * data before data read. | 
 | 	 */ | 
 | 	smp_rmb(); | 
 |  | 
 | 	tegra_ivc_invalidate_frame(ivc, ivc->rx.phys, ivc->rx.position, 0, | 
 | 				   ivc->frame_size); | 
 |  | 
 | 	return tegra_ivc_frame_virt(ivc, ivc->rx.channel, ivc->rx.position); | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_read_get_next_frame); | 
 |  | 
 | int tegra_ivc_read_advance(struct tegra_ivc *ivc) | 
 | { | 
 | 	unsigned int rx = offsetof(struct tegra_ivc_header, rx.count); | 
 | 	unsigned int tx = offsetof(struct tegra_ivc_header, tx.count); | 
 | 	int err; | 
 |  | 
 | 	/* | 
 | 	 * No read barriers or synchronization here: the caller is expected to | 
 | 	 * have already observed the channel non-empty. This check is just to | 
 | 	 * catch programming errors. | 
 | 	 */ | 
 | 	err = tegra_ivc_check_read(ivc); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	tegra_ivc_advance_rx(ivc); | 
 |  | 
 | 	tegra_ivc_flush(ivc, ivc->rx.phys + rx); | 
 |  | 
 | 	/* | 
 | 	 * Ensure our write to ivc->rx.position occurs before our read from | 
 | 	 * ivc->tx.position. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* | 
 | 	 * Notify only upon transition from full to non-full. The available | 
 | 	 * count can only asynchronously increase, so the worst possible | 
 | 	 * side-effect will be a spurious notification. | 
 | 	 */ | 
 | 	tegra_ivc_invalidate(ivc, ivc->rx.phys + tx); | 
 |  | 
 | 	if (tegra_ivc_available(ivc, ivc->rx.channel) == ivc->num_frames - 1) | 
 | 		ivc->notify(ivc, ivc->notify_data); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_read_advance); | 
 |  | 
 | /* directly poke at the next frame to be tx'ed */ | 
 | void *tegra_ivc_write_get_next_frame(struct tegra_ivc *ivc) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = tegra_ivc_check_write(ivc); | 
 | 	if (err < 0) | 
 | 		return ERR_PTR(err); | 
 |  | 
 | 	return tegra_ivc_frame_virt(ivc, ivc->tx.channel, ivc->tx.position); | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_write_get_next_frame); | 
 |  | 
 | /* advance the tx buffer */ | 
 | int tegra_ivc_write_advance(struct tegra_ivc *ivc) | 
 | { | 
 | 	unsigned int tx = offsetof(struct tegra_ivc_header, tx.count); | 
 | 	unsigned int rx = offsetof(struct tegra_ivc_header, rx.count); | 
 | 	int err; | 
 |  | 
 | 	err = tegra_ivc_check_write(ivc); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	tegra_ivc_flush_frame(ivc, ivc->tx.phys, ivc->tx.position, 0, | 
 | 			      ivc->frame_size); | 
 |  | 
 | 	/* | 
 | 	 * Order any possible stores to the frame before update of | 
 | 	 * ivc->tx.position. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	tegra_ivc_advance_tx(ivc); | 
 | 	tegra_ivc_flush(ivc, ivc->tx.phys + tx); | 
 |  | 
 | 	/* | 
 | 	 * Ensure our write to ivc->tx.position occurs before our read from | 
 | 	 * ivc->rx.position. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	/* | 
 | 	 * Notify only upon transition from empty to non-empty. The available | 
 | 	 * count can only asynchronously decrease, so the worst possible | 
 | 	 * side-effect will be a spurious notification. | 
 | 	 */ | 
 | 	tegra_ivc_invalidate(ivc, ivc->tx.phys + rx); | 
 |  | 
 | 	if (tegra_ivc_available(ivc, ivc->tx.channel) == 1) | 
 | 		ivc->notify(ivc, ivc->notify_data); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_write_advance); | 
 |  | 
 | void tegra_ivc_reset(struct tegra_ivc *ivc) | 
 | { | 
 | 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); | 
 |  | 
 | 	ivc->tx.channel->tx.state = TEGRA_IVC_STATE_SYNC; | 
 | 	tegra_ivc_flush(ivc, ivc->tx.phys + offset); | 
 | 	ivc->notify(ivc, ivc->notify_data); | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_reset); | 
 |  | 
 | /* | 
 |  * ======================================================= | 
 |  *  IVC State Transition Table - see tegra_ivc_notified() | 
 |  * ======================================================= | 
 |  * | 
 |  *	local	remote	action | 
 |  *	-----	------	----------------------------------- | 
 |  *	SYNC	EST	<none> | 
 |  *	SYNC	ACK	reset counters; move to EST; notify | 
 |  *	SYNC	SYNC	reset counters; move to ACK; notify | 
 |  *	ACK	EST	move to EST; notify | 
 |  *	ACK	ACK	move to EST; notify | 
 |  *	ACK	SYNC	reset counters; move to ACK; notify | 
 |  *	EST	EST	<none> | 
 |  *	EST	ACK	<none> | 
 |  *	EST	SYNC	reset counters; move to ACK; notify | 
 |  * | 
 |  * =============================================================== | 
 |  */ | 
 |  | 
 | int tegra_ivc_notified(struct tegra_ivc *ivc) | 
 | { | 
 | 	unsigned int offset = offsetof(struct tegra_ivc_header, tx.count); | 
 | 	enum tegra_ivc_state state; | 
 |  | 
 | 	/* Copy the receiver's state out of shared memory. */ | 
 | 	tegra_ivc_invalidate(ivc, ivc->rx.phys + offset); | 
 | 	state = READ_ONCE(ivc->rx.channel->tx.state); | 
 |  | 
 | 	if (state == TEGRA_IVC_STATE_SYNC) { | 
 | 		offset = offsetof(struct tegra_ivc_header, tx.count); | 
 |  | 
 | 		/* | 
 | 		 * Order observation of TEGRA_IVC_STATE_SYNC before stores | 
 | 		 * clearing tx.channel. | 
 | 		 */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		/* | 
 | 		 * Reset tx.channel counters. The remote end is in the SYNC | 
 | 		 * state and won't make progress until we change our state, | 
 | 		 * so the counters are not in use at this time. | 
 | 		 */ | 
 | 		ivc->tx.channel->tx.count = 0; | 
 | 		ivc->rx.channel->rx.count = 0; | 
 |  | 
 | 		ivc->tx.position = 0; | 
 | 		ivc->rx.position = 0; | 
 |  | 
 | 		/* | 
 | 		 * Ensure that counters appear cleared before new state can be | 
 | 		 * observed. | 
 | 		 */ | 
 | 		smp_wmb(); | 
 |  | 
 | 		/* | 
 | 		 * Move to ACK state. We have just cleared our counters, so it | 
 | 		 * is now safe for the remote end to start using these values. | 
 | 		 */ | 
 | 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ACK; | 
 | 		tegra_ivc_flush(ivc, ivc->tx.phys + offset); | 
 |  | 
 | 		/* | 
 | 		 * Notify remote end to observe state transition. | 
 | 		 */ | 
 | 		ivc->notify(ivc, ivc->notify_data); | 
 |  | 
 | 	} else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_SYNC && | 
 | 		   state == TEGRA_IVC_STATE_ACK) { | 
 | 		offset = offsetof(struct tegra_ivc_header, tx.count); | 
 |  | 
 | 		/* | 
 | 		 * Order observation of ivc_state_sync before stores clearing | 
 | 		 * tx_channel. | 
 | 		 */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		/* | 
 | 		 * Reset tx.channel counters. The remote end is in the ACK | 
 | 		 * state and won't make progress until we change our state, | 
 | 		 * so the counters are not in use at this time. | 
 | 		 */ | 
 | 		ivc->tx.channel->tx.count = 0; | 
 | 		ivc->rx.channel->rx.count = 0; | 
 |  | 
 | 		ivc->tx.position = 0; | 
 | 		ivc->rx.position = 0; | 
 |  | 
 | 		/* | 
 | 		 * Ensure that counters appear cleared before new state can be | 
 | 		 * observed. | 
 | 		 */ | 
 | 		smp_wmb(); | 
 |  | 
 | 		/* | 
 | 		 * Move to ESTABLISHED state. We know that the remote end has | 
 | 		 * already cleared its counters, so it is safe to start | 
 | 		 * writing/reading on this channel. | 
 | 		 */ | 
 | 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED; | 
 | 		tegra_ivc_flush(ivc, ivc->tx.phys + offset); | 
 |  | 
 | 		/* | 
 | 		 * Notify remote end to observe state transition. | 
 | 		 */ | 
 | 		ivc->notify(ivc, ivc->notify_data); | 
 |  | 
 | 	} else if (ivc->tx.channel->tx.state == TEGRA_IVC_STATE_ACK) { | 
 | 		offset = offsetof(struct tegra_ivc_header, tx.count); | 
 |  | 
 | 		/* | 
 | 		 * At this point, we have observed the peer to be in either | 
 | 		 * the ACK or ESTABLISHED state. Next, order observation of | 
 | 		 * peer state before storing to tx.channel. | 
 | 		 */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		/* | 
 | 		 * Move to ESTABLISHED state. We know that we have previously | 
 | 		 * cleared our counters, and we know that the remote end has | 
 | 		 * cleared its counters, so it is safe to start writing/reading | 
 | 		 * on this channel. | 
 | 		 */ | 
 | 		ivc->tx.channel->tx.state = TEGRA_IVC_STATE_ESTABLISHED; | 
 | 		tegra_ivc_flush(ivc, ivc->tx.phys + offset); | 
 |  | 
 | 		/* | 
 | 		 * Notify remote end to observe state transition. | 
 | 		 */ | 
 | 		ivc->notify(ivc, ivc->notify_data); | 
 |  | 
 | 	} else { | 
 | 		/* | 
 | 		 * There is no need to handle any further action. Either the | 
 | 		 * channel is already fully established, or we are waiting for | 
 | 		 * the remote end to catch up with our current state. Refer | 
 | 		 * to the diagram in "IVC State Transition Table" above. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	if (ivc->tx.channel->tx.state != TEGRA_IVC_STATE_ESTABLISHED) | 
 | 		return -EAGAIN; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_notified); | 
 |  | 
 | size_t tegra_ivc_align(size_t size) | 
 | { | 
 | 	return ALIGN(size, TEGRA_IVC_ALIGN); | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_align); | 
 |  | 
 | unsigned tegra_ivc_total_queue_size(unsigned queue_size) | 
 | { | 
 | 	if (!IS_ALIGNED(queue_size, TEGRA_IVC_ALIGN)) { | 
 | 		pr_err("%s: queue_size (%u) must be %u-byte aligned\n", | 
 | 		       __func__, queue_size, TEGRA_IVC_ALIGN); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return queue_size + sizeof(struct tegra_ivc_header); | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_total_queue_size); | 
 |  | 
 | static int tegra_ivc_check_params(unsigned long rx, unsigned long tx, | 
 | 				  unsigned int num_frames, size_t frame_size) | 
 | { | 
 | 	BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, tx.count), | 
 | 				 TEGRA_IVC_ALIGN)); | 
 | 	BUILD_BUG_ON(!IS_ALIGNED(offsetof(struct tegra_ivc_header, rx.count), | 
 | 				 TEGRA_IVC_ALIGN)); | 
 | 	BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct tegra_ivc_header), | 
 | 				 TEGRA_IVC_ALIGN)); | 
 |  | 
 | 	if ((uint64_t)num_frames * (uint64_t)frame_size >= 0x100000000UL) { | 
 | 		pr_err("num_frames * frame_size overflows\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!IS_ALIGNED(frame_size, TEGRA_IVC_ALIGN)) { | 
 | 		pr_err("frame size not adequately aligned: %zu\n", frame_size); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The headers must at least be aligned enough for counters | 
 | 	 * to be accessed atomically. | 
 | 	 */ | 
 | 	if (!IS_ALIGNED(rx, TEGRA_IVC_ALIGN)) { | 
 | 		pr_err("IVC channel start not aligned: %#lx\n", rx); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!IS_ALIGNED(tx, TEGRA_IVC_ALIGN)) { | 
 | 		pr_err("IVC channel start not aligned: %#lx\n", tx); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (rx < tx) { | 
 | 		if (rx + frame_size * num_frames > tx) { | 
 | 			pr_err("queue regions overlap: %#lx + %zx > %#lx\n", | 
 | 			       rx, frame_size * num_frames, tx); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else { | 
 | 		if (tx + frame_size * num_frames > rx) { | 
 | 			pr_err("queue regions overlap: %#lx + %zx > %#lx\n", | 
 | 			       tx, frame_size * num_frames, rx); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int tegra_ivc_init(struct tegra_ivc *ivc, struct device *peer, void *rx, | 
 | 		   dma_addr_t rx_phys, void *tx, dma_addr_t tx_phys, | 
 | 		   unsigned int num_frames, size_t frame_size, | 
 | 		   void (*notify)(struct tegra_ivc *ivc, void *data), | 
 | 		   void *data) | 
 | { | 
 | 	size_t queue_size; | 
 | 	int err; | 
 |  | 
 | 	if (WARN_ON(!ivc || !notify)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * All sizes that can be returned by communication functions should | 
 | 	 * fit in an int. | 
 | 	 */ | 
 | 	if (frame_size > INT_MAX) | 
 | 		return -E2BIG; | 
 |  | 
 | 	err = tegra_ivc_check_params((unsigned long)rx, (unsigned long)tx, | 
 | 				     num_frames, frame_size); | 
 | 	if (err < 0) | 
 | 		return err; | 
 |  | 
 | 	queue_size = tegra_ivc_total_queue_size(num_frames * frame_size); | 
 |  | 
 | 	if (peer) { | 
 | 		ivc->rx.phys = dma_map_single(peer, rx, queue_size, | 
 | 					      DMA_BIDIRECTIONAL); | 
 | 		if (dma_mapping_error(peer, ivc->rx.phys)) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		ivc->tx.phys = dma_map_single(peer, tx, queue_size, | 
 | 					      DMA_BIDIRECTIONAL); | 
 | 		if (dma_mapping_error(peer, ivc->tx.phys)) { | 
 | 			dma_unmap_single(peer, ivc->rx.phys, queue_size, | 
 | 					 DMA_BIDIRECTIONAL); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 	} else { | 
 | 		ivc->rx.phys = rx_phys; | 
 | 		ivc->tx.phys = tx_phys; | 
 | 	} | 
 |  | 
 | 	ivc->rx.channel = rx; | 
 | 	ivc->tx.channel = tx; | 
 | 	ivc->peer = peer; | 
 | 	ivc->notify = notify; | 
 | 	ivc->notify_data = data; | 
 | 	ivc->frame_size = frame_size; | 
 | 	ivc->num_frames = num_frames; | 
 |  | 
 | 	/* | 
 | 	 * These values aren't necessarily correct until the channel has been | 
 | 	 * reset. | 
 | 	 */ | 
 | 	ivc->tx.position = 0; | 
 | 	ivc->rx.position = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_init); | 
 |  | 
 | void tegra_ivc_cleanup(struct tegra_ivc *ivc) | 
 | { | 
 | 	if (ivc->peer) { | 
 | 		size_t size = tegra_ivc_total_queue_size(ivc->num_frames * | 
 | 							 ivc->frame_size); | 
 |  | 
 | 		dma_unmap_single(ivc->peer, ivc->rx.phys, size, | 
 | 				 DMA_BIDIRECTIONAL); | 
 | 		dma_unmap_single(ivc->peer, ivc->tx.phys, size, | 
 | 				 DMA_BIDIRECTIONAL); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(tegra_ivc_cleanup); |