| /* | 
 |  * aes-ce-glue.c - wrapper code for ARMv8 AES | 
 |  * | 
 |  * Copyright (C) 2015 Linaro Ltd <ard.biesheuvel@linaro.org> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  */ | 
 |  | 
 | #include <asm/hwcap.h> | 
 | #include <asm/neon.h> | 
 | #include <asm/hwcap.h> | 
 | #include <crypto/aes.h> | 
 | #include <crypto/internal/simd.h> | 
 | #include <crypto/internal/skcipher.h> | 
 | #include <linux/cpufeature.h> | 
 | #include <linux/module.h> | 
 | #include <crypto/xts.h> | 
 |  | 
 | MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions"); | 
 | MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); | 
 | MODULE_LICENSE("GPL v2"); | 
 |  | 
 | /* defined in aes-ce-core.S */ | 
 | asmlinkage u32 ce_aes_sub(u32 input); | 
 | asmlinkage void ce_aes_invert(void *dst, void *src); | 
 |  | 
 | asmlinkage void ce_aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[], | 
 | 				   int rounds, int blocks); | 
 | asmlinkage void ce_aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[], | 
 | 				   int rounds, int blocks); | 
 |  | 
 | asmlinkage void ce_aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[], | 
 | 				   int rounds, int blocks, u8 iv[]); | 
 | asmlinkage void ce_aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[], | 
 | 				   int rounds, int blocks, u8 iv[]); | 
 |  | 
 | asmlinkage void ce_aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[], | 
 | 				   int rounds, int blocks, u8 ctr[]); | 
 |  | 
 | asmlinkage void ce_aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[], | 
 | 				   int rounds, int blocks, u8 iv[], | 
 | 				   u8 const rk2[], int first); | 
 | asmlinkage void ce_aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[], | 
 | 				   int rounds, int blocks, u8 iv[], | 
 | 				   u8 const rk2[], int first); | 
 |  | 
 | struct aes_block { | 
 | 	u8 b[AES_BLOCK_SIZE]; | 
 | }; | 
 |  | 
 | static int num_rounds(struct crypto_aes_ctx *ctx) | 
 | { | 
 | 	/* | 
 | 	 * # of rounds specified by AES: | 
 | 	 * 128 bit key		10 rounds | 
 | 	 * 192 bit key		12 rounds | 
 | 	 * 256 bit key		14 rounds | 
 | 	 * => n byte key	=> 6 + (n/4) rounds | 
 | 	 */ | 
 | 	return 6 + ctx->key_length / 4; | 
 | } | 
 |  | 
 | static int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, | 
 | 			    unsigned int key_len) | 
 | { | 
 | 	/* | 
 | 	 * The AES key schedule round constants | 
 | 	 */ | 
 | 	static u8 const rcon[] = { | 
 | 		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, | 
 | 	}; | 
 |  | 
 | 	u32 kwords = key_len / sizeof(u32); | 
 | 	struct aes_block *key_enc, *key_dec; | 
 | 	int i, j; | 
 |  | 
 | 	if (key_len != AES_KEYSIZE_128 && | 
 | 	    key_len != AES_KEYSIZE_192 && | 
 | 	    key_len != AES_KEYSIZE_256) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(ctx->key_enc, in_key, key_len); | 
 | 	ctx->key_length = key_len; | 
 |  | 
 | 	kernel_neon_begin(); | 
 | 	for (i = 0; i < sizeof(rcon); i++) { | 
 | 		u32 *rki = ctx->key_enc + (i * kwords); | 
 | 		u32 *rko = rki + kwords; | 
 |  | 
 | #ifndef CONFIG_CPU_BIG_ENDIAN | 
 | 		rko[0] = ror32(ce_aes_sub(rki[kwords - 1]), 8); | 
 | 		rko[0] = rko[0] ^ rki[0] ^ rcon[i]; | 
 | #else | 
 | 		rko[0] = rol32(ce_aes_sub(rki[kwords - 1]), 8); | 
 | 		rko[0] = rko[0] ^ rki[0] ^ (rcon[i] << 24); | 
 | #endif | 
 | 		rko[1] = rko[0] ^ rki[1]; | 
 | 		rko[2] = rko[1] ^ rki[2]; | 
 | 		rko[3] = rko[2] ^ rki[3]; | 
 |  | 
 | 		if (key_len == AES_KEYSIZE_192) { | 
 | 			if (i >= 7) | 
 | 				break; | 
 | 			rko[4] = rko[3] ^ rki[4]; | 
 | 			rko[5] = rko[4] ^ rki[5]; | 
 | 		} else if (key_len == AES_KEYSIZE_256) { | 
 | 			if (i >= 6) | 
 | 				break; | 
 | 			rko[4] = ce_aes_sub(rko[3]) ^ rki[4]; | 
 | 			rko[5] = rko[4] ^ rki[5]; | 
 | 			rko[6] = rko[5] ^ rki[6]; | 
 | 			rko[7] = rko[6] ^ rki[7]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Generate the decryption keys for the Equivalent Inverse Cipher. | 
 | 	 * This involves reversing the order of the round keys, and applying | 
 | 	 * the Inverse Mix Columns transformation on all but the first and | 
 | 	 * the last one. | 
 | 	 */ | 
 | 	key_enc = (struct aes_block *)ctx->key_enc; | 
 | 	key_dec = (struct aes_block *)ctx->key_dec; | 
 | 	j = num_rounds(ctx); | 
 |  | 
 | 	key_dec[0] = key_enc[j]; | 
 | 	for (i = 1, j--; j > 0; i++, j--) | 
 | 		ce_aes_invert(key_dec + i, key_enc + j); | 
 | 	key_dec[i] = key_enc[0]; | 
 |  | 
 | 	kernel_neon_end(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ce_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key, | 
 | 			 unsigned int key_len) | 
 | { | 
 | 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	int ret; | 
 |  | 
 | 	ret = ce_aes_expandkey(ctx, in_key, key_len); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | struct crypto_aes_xts_ctx { | 
 | 	struct crypto_aes_ctx key1; | 
 | 	struct crypto_aes_ctx __aligned(8) key2; | 
 | }; | 
 |  | 
 | static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key, | 
 | 		       unsigned int key_len) | 
 | { | 
 | 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	int ret; | 
 |  | 
 | 	ret = xts_verify_key(tfm, in_key, key_len); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	ret = ce_aes_expandkey(&ctx->key1, in_key, key_len / 2); | 
 | 	if (!ret) | 
 | 		ret = ce_aes_expandkey(&ctx->key2, &in_key[key_len / 2], | 
 | 				       key_len / 2); | 
 | 	if (!ret) | 
 | 		return 0; | 
 |  | 
 | 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | static int ecb_encrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	struct skcipher_walk walk; | 
 | 	unsigned int blocks; | 
 | 	int err; | 
 |  | 
 | 	err = skcipher_walk_virt(&walk, req, true); | 
 |  | 
 | 	kernel_neon_begin(); | 
 | 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { | 
 | 		ce_aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr, | 
 | 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks); | 
 | 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); | 
 | 	} | 
 | 	kernel_neon_end(); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ecb_decrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	struct skcipher_walk walk; | 
 | 	unsigned int blocks; | 
 | 	int err; | 
 |  | 
 | 	err = skcipher_walk_virt(&walk, req, true); | 
 |  | 
 | 	kernel_neon_begin(); | 
 | 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { | 
 | 		ce_aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr, | 
 | 				   (u8 *)ctx->key_dec, num_rounds(ctx), blocks); | 
 | 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); | 
 | 	} | 
 | 	kernel_neon_end(); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cbc_encrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	struct skcipher_walk walk; | 
 | 	unsigned int blocks; | 
 | 	int err; | 
 |  | 
 | 	err = skcipher_walk_virt(&walk, req, true); | 
 |  | 
 | 	kernel_neon_begin(); | 
 | 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { | 
 | 		ce_aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr, | 
 | 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks, | 
 | 				   walk.iv); | 
 | 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); | 
 | 	} | 
 | 	kernel_neon_end(); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int cbc_decrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	struct skcipher_walk walk; | 
 | 	unsigned int blocks; | 
 | 	int err; | 
 |  | 
 | 	err = skcipher_walk_virt(&walk, req, true); | 
 |  | 
 | 	kernel_neon_begin(); | 
 | 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { | 
 | 		ce_aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, | 
 | 				   (u8 *)ctx->key_dec, num_rounds(ctx), blocks, | 
 | 				   walk.iv); | 
 | 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); | 
 | 	} | 
 | 	kernel_neon_end(); | 
 | 	return err; | 
 | } | 
 |  | 
 | static int ctr_encrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	struct skcipher_walk walk; | 
 | 	int err, blocks; | 
 |  | 
 | 	err = skcipher_walk_virt(&walk, req, true); | 
 |  | 
 | 	kernel_neon_begin(); | 
 | 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { | 
 | 		ce_aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr, | 
 | 				   (u8 *)ctx->key_enc, num_rounds(ctx), blocks, | 
 | 				   walk.iv); | 
 | 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); | 
 | 	} | 
 | 	if (walk.nbytes) { | 
 | 		u8 __aligned(8) tail[AES_BLOCK_SIZE]; | 
 | 		unsigned int nbytes = walk.nbytes; | 
 | 		u8 *tdst = walk.dst.virt.addr; | 
 | 		u8 *tsrc = walk.src.virt.addr; | 
 |  | 
 | 		/* | 
 | 		 * Tell aes_ctr_encrypt() to process a tail block. | 
 | 		 */ | 
 | 		blocks = -1; | 
 |  | 
 | 		ce_aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc, | 
 | 				   num_rounds(ctx), blocks, walk.iv); | 
 | 		crypto_xor_cpy(tdst, tsrc, tail, nbytes); | 
 | 		err = skcipher_walk_done(&walk, 0); | 
 | 	} | 
 | 	kernel_neon_end(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int xts_encrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	int err, first, rounds = num_rounds(&ctx->key1); | 
 | 	struct skcipher_walk walk; | 
 | 	unsigned int blocks; | 
 |  | 
 | 	err = skcipher_walk_virt(&walk, req, true); | 
 |  | 
 | 	kernel_neon_begin(); | 
 | 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { | 
 | 		ce_aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, | 
 | 				   (u8 *)ctx->key1.key_enc, rounds, blocks, | 
 | 				   walk.iv, (u8 *)ctx->key2.key_enc, first); | 
 | 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); | 
 | 	} | 
 | 	kernel_neon_end(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static int xts_decrypt(struct skcipher_request *req) | 
 | { | 
 | 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); | 
 | 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); | 
 | 	int err, first, rounds = num_rounds(&ctx->key1); | 
 | 	struct skcipher_walk walk; | 
 | 	unsigned int blocks; | 
 |  | 
 | 	err = skcipher_walk_virt(&walk, req, true); | 
 |  | 
 | 	kernel_neon_begin(); | 
 | 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) { | 
 | 		ce_aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, | 
 | 				   (u8 *)ctx->key1.key_dec, rounds, blocks, | 
 | 				   walk.iv, (u8 *)ctx->key2.key_enc, first); | 
 | 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); | 
 | 	} | 
 | 	kernel_neon_end(); | 
 |  | 
 | 	return err; | 
 | } | 
 |  | 
 | static struct skcipher_alg aes_algs[] = { { | 
 | 	.base = { | 
 | 		.cra_name		= "__ecb(aes)", | 
 | 		.cra_driver_name	= "__ecb-aes-ce", | 
 | 		.cra_priority		= 300, | 
 | 		.cra_flags		= CRYPTO_ALG_INTERNAL, | 
 | 		.cra_blocksize		= AES_BLOCK_SIZE, | 
 | 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx), | 
 | 		.cra_module		= THIS_MODULE, | 
 | 	}, | 
 | 	.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 	.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 	.setkey		= ce_aes_setkey, | 
 | 	.encrypt	= ecb_encrypt, | 
 | 	.decrypt	= ecb_decrypt, | 
 | }, { | 
 | 	.base = { | 
 | 		.cra_name		= "__cbc(aes)", | 
 | 		.cra_driver_name	= "__cbc-aes-ce", | 
 | 		.cra_priority		= 300, | 
 | 		.cra_flags		= CRYPTO_ALG_INTERNAL, | 
 | 		.cra_blocksize		= AES_BLOCK_SIZE, | 
 | 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx), | 
 | 		.cra_module		= THIS_MODULE, | 
 | 	}, | 
 | 	.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 	.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 	.ivsize		= AES_BLOCK_SIZE, | 
 | 	.setkey		= ce_aes_setkey, | 
 | 	.encrypt	= cbc_encrypt, | 
 | 	.decrypt	= cbc_decrypt, | 
 | }, { | 
 | 	.base = { | 
 | 		.cra_name		= "__ctr(aes)", | 
 | 		.cra_driver_name	= "__ctr-aes-ce", | 
 | 		.cra_priority		= 300, | 
 | 		.cra_flags		= CRYPTO_ALG_INTERNAL, | 
 | 		.cra_blocksize		= 1, | 
 | 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx), | 
 | 		.cra_module		= THIS_MODULE, | 
 | 	}, | 
 | 	.min_keysize	= AES_MIN_KEY_SIZE, | 
 | 	.max_keysize	= AES_MAX_KEY_SIZE, | 
 | 	.ivsize		= AES_BLOCK_SIZE, | 
 | 	.chunksize	= AES_BLOCK_SIZE, | 
 | 	.setkey		= ce_aes_setkey, | 
 | 	.encrypt	= ctr_encrypt, | 
 | 	.decrypt	= ctr_encrypt, | 
 | }, { | 
 | 	.base = { | 
 | 		.cra_name		= "__xts(aes)", | 
 | 		.cra_driver_name	= "__xts-aes-ce", | 
 | 		.cra_priority		= 300, | 
 | 		.cra_flags		= CRYPTO_ALG_INTERNAL, | 
 | 		.cra_blocksize		= AES_BLOCK_SIZE, | 
 | 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx), | 
 | 		.cra_module		= THIS_MODULE, | 
 | 	}, | 
 | 	.min_keysize	= 2 * AES_MIN_KEY_SIZE, | 
 | 	.max_keysize	= 2 * AES_MAX_KEY_SIZE, | 
 | 	.ivsize		= AES_BLOCK_SIZE, | 
 | 	.setkey		= xts_set_key, | 
 | 	.encrypt	= xts_encrypt, | 
 | 	.decrypt	= xts_decrypt, | 
 | } }; | 
 |  | 
 | static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)]; | 
 |  | 
 | static void aes_exit(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs) && aes_simd_algs[i]; i++) | 
 | 		simd_skcipher_free(aes_simd_algs[i]); | 
 |  | 
 | 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); | 
 | } | 
 |  | 
 | static int __init aes_init(void) | 
 | { | 
 | 	struct simd_skcipher_alg *simd; | 
 | 	const char *basename; | 
 | 	const char *algname; | 
 | 	const char *drvname; | 
 | 	int err; | 
 | 	int i; | 
 |  | 
 | 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) { | 
 | 		algname = aes_algs[i].base.cra_name + 2; | 
 | 		drvname = aes_algs[i].base.cra_driver_name + 2; | 
 | 		basename = aes_algs[i].base.cra_driver_name; | 
 | 		simd = simd_skcipher_create_compat(algname, drvname, basename); | 
 | 		err = PTR_ERR(simd); | 
 | 		if (IS_ERR(simd)) | 
 | 			goto unregister_simds; | 
 |  | 
 | 		aes_simd_algs[i] = simd; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | unregister_simds: | 
 | 	aes_exit(); | 
 | 	return err; | 
 | } | 
 |  | 
 | module_cpu_feature_match(AES, aes_init); | 
 | module_exit(aes_exit); |