| /* | 
 |  * Based on arch/arm/mm/init.c | 
 |  * | 
 |  * Copyright (C) 1995-2005 Russell King | 
 |  * Copyright (C) 2012 ARM Ltd. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License version 2 as | 
 |  * published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/export.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/init.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/cache.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/sort.h> | 
 | #include <linux/of.h> | 
 | #include <linux/of_fdt.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/dma-contiguous.h> | 
 | #include <linux/efi.h> | 
 | #include <linux/swiotlb.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/crash_dump.h> | 
 |  | 
 | #include <asm/boot.h> | 
 | #include <asm/fixmap.h> | 
 | #include <asm/kasan.h> | 
 | #include <asm/kernel-pgtable.h> | 
 | #include <asm/memory.h> | 
 | #include <asm/numa.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/sizes.h> | 
 | #include <asm/tlb.h> | 
 | #include <asm/alternative.h> | 
 |  | 
 | /* | 
 |  * We need to be able to catch inadvertent references to memstart_addr | 
 |  * that occur (potentially in generic code) before arm64_memblock_init() | 
 |  * executes, which assigns it its actual value. So use a default value | 
 |  * that cannot be mistaken for a real physical address. | 
 |  */ | 
 | s64 memstart_addr __ro_after_init = -1; | 
 | phys_addr_t arm64_dma_phys_limit __ro_after_init; | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | static int __init early_initrd(char *p) | 
 | { | 
 | 	unsigned long start, size; | 
 | 	char *endp; | 
 |  | 
 | 	start = memparse(p, &endp); | 
 | 	if (*endp == ',') { | 
 | 		size = memparse(endp + 1, NULL); | 
 |  | 
 | 		initrd_start = start; | 
 | 		initrd_end = start + size; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | early_param("initrd", early_initrd); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_KEXEC_CORE | 
 | /* | 
 |  * reserve_crashkernel() - reserves memory for crash kernel | 
 |  * | 
 |  * This function reserves memory area given in "crashkernel=" kernel command | 
 |  * line parameter. The memory reserved is used by dump capture kernel when | 
 |  * primary kernel is crashing. | 
 |  */ | 
 | static void __init reserve_crashkernel(void) | 
 | { | 
 | 	unsigned long long crash_base, crash_size; | 
 | 	int ret; | 
 |  | 
 | 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), | 
 | 				&crash_size, &crash_base); | 
 | 	/* no crashkernel= or invalid value specified */ | 
 | 	if (ret || !crash_size) | 
 | 		return; | 
 |  | 
 | 	crash_size = PAGE_ALIGN(crash_size); | 
 |  | 
 | 	if (crash_base == 0) { | 
 | 		/* Current arm64 boot protocol requires 2MB alignment */ | 
 | 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, | 
 | 				crash_size, SZ_2M); | 
 | 		if (crash_base == 0) { | 
 | 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n", | 
 | 				crash_size); | 
 | 			return; | 
 | 		} | 
 | 	} else { | 
 | 		/* User specifies base address explicitly. */ | 
 | 		if (!memblock_is_region_memory(crash_base, crash_size)) { | 
 | 			pr_warn("cannot reserve crashkernel: region is not memory\n"); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (memblock_is_region_reserved(crash_base, crash_size)) { | 
 | 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		if (!IS_ALIGNED(crash_base, SZ_2M)) { | 
 | 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); | 
 | 			return; | 
 | 		} | 
 | 	} | 
 | 	memblock_reserve(crash_base, crash_size); | 
 |  | 
 | 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", | 
 | 		crash_base, crash_base + crash_size, crash_size >> 20); | 
 |  | 
 | 	crashk_res.start = crash_base; | 
 | 	crashk_res.end = crash_base + crash_size - 1; | 
 | } | 
 |  | 
 | static void __init kexec_reserve_crashkres_pages(void) | 
 | { | 
 | #ifdef CONFIG_HIBERNATION | 
 | 	phys_addr_t addr; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!crashk_res.end) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * To reduce the size of hibernation image, all the pages are | 
 | 	 * marked as Reserved initially. | 
 | 	 */ | 
 | 	for (addr = crashk_res.start; addr < (crashk_res.end + 1); | 
 | 			addr += PAGE_SIZE) { | 
 | 		page = phys_to_page(addr); | 
 | 		SetPageReserved(page); | 
 | 	} | 
 | #endif | 
 | } | 
 | #else | 
 | static void __init reserve_crashkernel(void) | 
 | { | 
 | } | 
 |  | 
 | static void __init kexec_reserve_crashkres_pages(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_KEXEC_CORE */ | 
 |  | 
 | #ifdef CONFIG_CRASH_DUMP | 
 | static int __init early_init_dt_scan_elfcorehdr(unsigned long node, | 
 | 		const char *uname, int depth, void *data) | 
 | { | 
 | 	const __be32 *reg; | 
 | 	int len; | 
 |  | 
 | 	if (depth != 1 || strcmp(uname, "chosen") != 0) | 
 | 		return 0; | 
 |  | 
 | 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); | 
 | 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) | 
 | 		return 1; | 
 |  | 
 | 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); | 
 | 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * reserve_elfcorehdr() - reserves memory for elf core header | 
 |  * | 
 |  * This function reserves the memory occupied by an elf core header | 
 |  * described in the device tree. This region contains all the | 
 |  * information about primary kernel's core image and is used by a dump | 
 |  * capture kernel to access the system memory on primary kernel. | 
 |  */ | 
 | static void __init reserve_elfcorehdr(void) | 
 | { | 
 | 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); | 
 |  | 
 | 	if (!elfcorehdr_size) | 
 | 		return; | 
 |  | 
 | 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { | 
 | 		pr_warn("elfcorehdr is overlapped\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size); | 
 |  | 
 | 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", | 
 | 		elfcorehdr_size >> 10, elfcorehdr_addr); | 
 | } | 
 | #else | 
 | static void __init reserve_elfcorehdr(void) | 
 | { | 
 | } | 
 | #endif /* CONFIG_CRASH_DUMP */ | 
 | /* | 
 |  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It | 
 |  * currently assumes that for memory starting above 4G, 32-bit devices will | 
 |  * use a DMA offset. | 
 |  */ | 
 | static phys_addr_t __init max_zone_dma_phys(void) | 
 | { | 
 | 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); | 
 | 	return min(offset + (1ULL << 32), memblock_end_of_DRAM()); | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |  | 
 | static void __init zone_sizes_init(unsigned long min, unsigned long max) | 
 | { | 
 | 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0}; | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); | 
 | #endif | 
 | 	max_zone_pfns[ZONE_NORMAL] = max; | 
 |  | 
 | 	free_area_init_nodes(max_zone_pfns); | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | static void __init zone_sizes_init(unsigned long min, unsigned long max) | 
 | { | 
 | 	struct memblock_region *reg; | 
 | 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; | 
 | 	unsigned long max_dma = min; | 
 |  | 
 | 	memset(zone_size, 0, sizeof(zone_size)); | 
 |  | 
 | 	/* 4GB maximum for 32-bit only capable devices */ | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 	max_dma = PFN_DOWN(arm64_dma_phys_limit); | 
 | 	zone_size[ZONE_DMA32] = max_dma - min; | 
 | #endif | 
 | 	zone_size[ZONE_NORMAL] = max - max_dma; | 
 |  | 
 | 	memcpy(zhole_size, zone_size, sizeof(zhole_size)); | 
 |  | 
 | 	for_each_memblock(memory, reg) { | 
 | 		unsigned long start = memblock_region_memory_base_pfn(reg); | 
 | 		unsigned long end = memblock_region_memory_end_pfn(reg); | 
 |  | 
 | 		if (start >= max) | 
 | 			continue; | 
 |  | 
 | #ifdef CONFIG_ZONE_DMA32 | 
 | 		if (start < max_dma) { | 
 | 			unsigned long dma_end = min(end, max_dma); | 
 | 			zhole_size[ZONE_DMA32] -= dma_end - start; | 
 | 		} | 
 | #endif | 
 | 		if (end > max_dma) { | 
 | 			unsigned long normal_end = min(end, max); | 
 | 			unsigned long normal_start = max(start, max_dma); | 
 | 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	free_area_init_node(0, zone_size, min, zhole_size); | 
 | } | 
 |  | 
 | #endif /* CONFIG_NUMA */ | 
 |  | 
 | #ifdef CONFIG_HAVE_ARCH_PFN_VALID | 
 | int pfn_valid(unsigned long pfn) | 
 | { | 
 | 	phys_addr_t addr = pfn << PAGE_SHIFT; | 
 |  | 
 | 	if ((addr >> PAGE_SHIFT) != pfn) | 
 | 		return 0; | 
 | 	return memblock_is_map_memory(addr); | 
 | } | 
 | EXPORT_SYMBOL(pfn_valid); | 
 | #endif | 
 |  | 
 | #ifndef CONFIG_SPARSEMEM | 
 | static void __init arm64_memory_present(void) | 
 | { | 
 | } | 
 | #else | 
 | static void __init arm64_memory_present(void) | 
 | { | 
 | 	struct memblock_region *reg; | 
 |  | 
 | 	for_each_memblock(memory, reg) { | 
 | 		int nid = memblock_get_region_node(reg); | 
 |  | 
 | 		memory_present(nid, memblock_region_memory_base_pfn(reg), | 
 | 				memblock_region_memory_end_pfn(reg)); | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | static phys_addr_t memory_limit = PHYS_ADDR_MAX; | 
 |  | 
 | /* | 
 |  * Limit the memory size that was specified via FDT. | 
 |  */ | 
 | static int __init early_mem(char *p) | 
 | { | 
 | 	if (!p) | 
 | 		return 1; | 
 |  | 
 | 	memory_limit = memparse(p, &p) & PAGE_MASK; | 
 | 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("mem", early_mem); | 
 |  | 
 | static int __init early_init_dt_scan_usablemem(unsigned long node, | 
 | 		const char *uname, int depth, void *data) | 
 | { | 
 | 	struct memblock_region *usablemem = data; | 
 | 	const __be32 *reg; | 
 | 	int len; | 
 |  | 
 | 	if (depth != 1 || strcmp(uname, "chosen") != 0) | 
 | 		return 0; | 
 |  | 
 | 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); | 
 | 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) | 
 | 		return 1; | 
 |  | 
 | 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); | 
 | 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void __init fdt_enforce_memory_region(void) | 
 | { | 
 | 	struct memblock_region reg = { | 
 | 		.size = 0, | 
 | 	}; | 
 |  | 
 | 	of_scan_flat_dt(early_init_dt_scan_usablemem, ®); | 
 |  | 
 | 	if (reg.size) | 
 | 		memblock_cap_memory_range(reg.base, reg.size); | 
 | } | 
 |  | 
 | void __init arm64_memblock_init(void) | 
 | { | 
 | 	const s64 linear_region_size = -(s64)PAGE_OFFSET; | 
 |  | 
 | 	/* Handle linux,usable-memory-range property */ | 
 | 	fdt_enforce_memory_region(); | 
 |  | 
 | 	/* Remove memory above our supported physical address size */ | 
 | 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); | 
 |  | 
 | 	/* | 
 | 	 * Ensure that the linear region takes up exactly half of the kernel | 
 | 	 * virtual address space. This way, we can distinguish a linear address | 
 | 	 * from a kernel/module/vmalloc address by testing a single bit. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1)); | 
 |  | 
 | 	/* | 
 | 	 * Select a suitable value for the base of physical memory. | 
 | 	 */ | 
 | 	memstart_addr = round_down(memblock_start_of_DRAM(), | 
 | 				   ARM64_MEMSTART_ALIGN); | 
 |  | 
 | 	/* | 
 | 	 * Remove the memory that we will not be able to cover with the | 
 | 	 * linear mapping. Take care not to clip the kernel which may be | 
 | 	 * high in memory. | 
 | 	 */ | 
 | 	memblock_remove(max_t(u64, memstart_addr + linear_region_size, | 
 | 			__pa_symbol(_end)), ULLONG_MAX); | 
 | 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { | 
 | 		/* ensure that memstart_addr remains sufficiently aligned */ | 
 | 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, | 
 | 					 ARM64_MEMSTART_ALIGN); | 
 | 		memblock_remove(0, memstart_addr); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Apply the memory limit if it was set. Since the kernel may be loaded | 
 | 	 * high up in memory, add back the kernel region that must be accessible | 
 | 	 * via the linear mapping. | 
 | 	 */ | 
 | 	if (memory_limit != PHYS_ADDR_MAX) { | 
 | 		memblock_mem_limit_remove_map(memory_limit); | 
 | 		memblock_add(__pa_symbol(_text), (u64)(_end - _text)); | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) { | 
 | 		/* | 
 | 		 * Add back the memory we just removed if it results in the | 
 | 		 * initrd to become inaccessible via the linear mapping. | 
 | 		 * Otherwise, this is a no-op | 
 | 		 */ | 
 | 		u64 base = initrd_start & PAGE_MASK; | 
 | 		u64 size = PAGE_ALIGN(initrd_end) - base; | 
 |  | 
 | 		/* | 
 | 		 * We can only add back the initrd memory if we don't end up | 
 | 		 * with more memory than we can address via the linear mapping. | 
 | 		 * It is up to the bootloader to position the kernel and the | 
 | 		 * initrd reasonably close to each other (i.e., within 32 GB of | 
 | 		 * each other) so that all granule/#levels combinations can | 
 | 		 * always access both. | 
 | 		 */ | 
 | 		if (WARN(base < memblock_start_of_DRAM() || | 
 | 			 base + size > memblock_start_of_DRAM() + | 
 | 				       linear_region_size, | 
 | 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { | 
 | 			initrd_start = 0; | 
 | 		} else { | 
 | 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */ | 
 | 			memblock_add(base, size); | 
 | 			memblock_reserve(base, size); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { | 
 | 		extern u16 memstart_offset_seed; | 
 | 		u64 range = linear_region_size - | 
 | 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM()); | 
 |  | 
 | 		/* | 
 | 		 * If the size of the linear region exceeds, by a sufficient | 
 | 		 * margin, the size of the region that the available physical | 
 | 		 * memory spans, randomize the linear region as well. | 
 | 		 */ | 
 | 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { | 
 | 			range /= ARM64_MEMSTART_ALIGN; | 
 | 			memstart_addr -= ARM64_MEMSTART_ALIGN * | 
 | 					 ((range * memstart_offset_seed) >> 16); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Register the kernel text, kernel data, initrd, and initial | 
 | 	 * pagetables with memblock. | 
 | 	 */ | 
 | 	memblock_reserve(__pa_symbol(_text), _end - _text); | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	if (initrd_start) { | 
 | 		memblock_reserve(initrd_start, initrd_end - initrd_start); | 
 |  | 
 | 		/* the generic initrd code expects virtual addresses */ | 
 | 		initrd_start = __phys_to_virt(initrd_start); | 
 | 		initrd_end = __phys_to_virt(initrd_end); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	early_init_fdt_scan_reserved_mem(); | 
 |  | 
 | 	/* 4GB maximum for 32-bit only capable devices */ | 
 | 	if (IS_ENABLED(CONFIG_ZONE_DMA32)) | 
 | 		arm64_dma_phys_limit = max_zone_dma_phys(); | 
 | 	else | 
 | 		arm64_dma_phys_limit = PHYS_MASK + 1; | 
 |  | 
 | 	reserve_crashkernel(); | 
 |  | 
 | 	reserve_elfcorehdr(); | 
 |  | 
 | 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1; | 
 |  | 
 | 	dma_contiguous_reserve(arm64_dma_phys_limit); | 
 |  | 
 | 	memblock_allow_resize(); | 
 | } | 
 |  | 
 | void __init bootmem_init(void) | 
 | { | 
 | 	unsigned long min, max; | 
 |  | 
 | 	min = PFN_UP(memblock_start_of_DRAM()); | 
 | 	max = PFN_DOWN(memblock_end_of_DRAM()); | 
 |  | 
 | 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); | 
 |  | 
 | 	max_pfn = max_low_pfn = max; | 
 | 	min_low_pfn = min; | 
 |  | 
 | 	arm64_numa_init(); | 
 | 	/* | 
 | 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be | 
 | 	 * done after the fixed reservations. | 
 | 	 */ | 
 | 	arm64_memory_present(); | 
 |  | 
 | 	sparse_init(); | 
 | 	zone_sizes_init(min, max); | 
 |  | 
 | 	memblock_dump_all(); | 
 | } | 
 |  | 
 | #ifndef CONFIG_SPARSEMEM_VMEMMAP | 
 | static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	struct page *start_pg, *end_pg; | 
 | 	unsigned long pg, pgend; | 
 |  | 
 | 	/* | 
 | 	 * Convert start_pfn/end_pfn to a struct page pointer. | 
 | 	 */ | 
 | 	start_pg = pfn_to_page(start_pfn - 1) + 1; | 
 | 	end_pg = pfn_to_page(end_pfn - 1) + 1; | 
 |  | 
 | 	/* | 
 | 	 * Convert to physical addresses, and round start upwards and end | 
 | 	 * downwards. | 
 | 	 */ | 
 | 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); | 
 | 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; | 
 |  | 
 | 	/* | 
 | 	 * If there are free pages between these, free the section of the | 
 | 	 * memmap array. | 
 | 	 */ | 
 | 	if (pg < pgend) | 
 | 		free_bootmem(pg, pgend - pg); | 
 | } | 
 |  | 
 | /* | 
 |  * The mem_map array can get very big. Free the unused area of the memory map. | 
 |  */ | 
 | static void __init free_unused_memmap(void) | 
 | { | 
 | 	unsigned long start, prev_end = 0; | 
 | 	struct memblock_region *reg; | 
 |  | 
 | 	for_each_memblock(memory, reg) { | 
 | 		start = __phys_to_pfn(reg->base); | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 		/* | 
 | 		 * Take care not to free memmap entries that don't exist due | 
 | 		 * to SPARSEMEM sections which aren't present. | 
 | 		 */ | 
 | 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); | 
 | #endif | 
 | 		/* | 
 | 		 * If we had a previous bank, and there is a space between the | 
 | 		 * current bank and the previous, free it. | 
 | 		 */ | 
 | 		if (prev_end && prev_end < start) | 
 | 			free_memmap(prev_end, start); | 
 |  | 
 | 		/* | 
 | 		 * Align up here since the VM subsystem insists that the | 
 | 		 * memmap entries are valid from the bank end aligned to | 
 | 		 * MAX_ORDER_NR_PAGES. | 
 | 		 */ | 
 | 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), | 
 | 				 MAX_ORDER_NR_PAGES); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM | 
 | 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) | 
 | 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); | 
 | #endif | 
 | } | 
 | #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */ | 
 |  | 
 | /* | 
 |  * mem_init() marks the free areas in the mem_map and tells us how much memory | 
 |  * is free.  This is done after various parts of the system have claimed their | 
 |  * memory after the kernel image. | 
 |  */ | 
 | void __init mem_init(void) | 
 | { | 
 | 	if (swiotlb_force == SWIOTLB_FORCE || | 
 | 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) | 
 | 		swiotlb_init(1); | 
 | 	else | 
 | 		swiotlb_force = SWIOTLB_NO_FORCE; | 
 |  | 
 | 	set_max_mapnr(pfn_to_page(max_pfn) - mem_map); | 
 |  | 
 | #ifndef CONFIG_SPARSEMEM_VMEMMAP | 
 | 	free_unused_memmap(); | 
 | #endif | 
 | 	/* this will put all unused low memory onto the freelists */ | 
 | 	free_all_bootmem(); | 
 |  | 
 | 	kexec_reserve_crashkres_pages(); | 
 |  | 
 | 	mem_init_print_info(NULL); | 
 |  | 
 | 	/* | 
 | 	 * Check boundaries twice: Some fundamental inconsistencies can be | 
 | 	 * detected at build time already. | 
 | 	 */ | 
 | #ifdef CONFIG_COMPAT | 
 | 	BUILD_BUG_ON(TASK_SIZE_32			> TASK_SIZE_64); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
 | 	/* | 
 | 	 * Make sure we chose the upper bound of sizeof(struct page) | 
 | 	 * correctly when sizing the VMEMMAP array. | 
 | 	 */ | 
 | 	BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT)); | 
 | #endif | 
 |  | 
 | 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { | 
 | 		extern int sysctl_overcommit_memory; | 
 | 		/* | 
 | 		 * On a machine this small we won't get anywhere without | 
 | 		 * overcommit, so turn it on by default. | 
 | 		 */ | 
 | 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; | 
 | 	} | 
 | } | 
 |  | 
 | void free_initmem(void) | 
 | { | 
 | 	free_reserved_area(lm_alias(__init_begin), | 
 | 			   lm_alias(__init_end), | 
 | 			   0, "unused kernel"); | 
 | 	/* | 
 | 	 * Unmap the __init region but leave the VM area in place. This | 
 | 	 * prevents the region from being reused for kernel modules, which | 
 | 	 * is not supported by kallsyms. | 
 | 	 */ | 
 | 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); | 
 | } | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 |  | 
 | static int keep_initrd __initdata; | 
 |  | 
 | void __init free_initrd_mem(unsigned long start, unsigned long end) | 
 | { | 
 | 	if (!keep_initrd) { | 
 | 		free_reserved_area((void *)start, (void *)end, 0, "initrd"); | 
 | 		memblock_free(__virt_to_phys(start), end - start); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init keepinitrd_setup(char *__unused) | 
 | { | 
 | 	keep_initrd = 1; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("keepinitrd", keepinitrd_setup); | 
 | #endif | 
 |  | 
 | /* | 
 |  * Dump out memory limit information on panic. | 
 |  */ | 
 | static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) | 
 | { | 
 | 	if (memory_limit != PHYS_ADDR_MAX) { | 
 | 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); | 
 | 	} else { | 
 | 		pr_emerg("Memory Limit: none\n"); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct notifier_block mem_limit_notifier = { | 
 | 	.notifier_call = dump_mem_limit, | 
 | }; | 
 |  | 
 | static int __init register_mem_limit_dumper(void) | 
 | { | 
 | 	atomic_notifier_chain_register(&panic_notifier_list, | 
 | 				       &mem_limit_notifier); | 
 | 	return 0; | 
 | } | 
 | __initcall(register_mem_limit_dumper); |