|  | /* | 
|  | *  linux/arch/arm/vfp/vfpmodule.c | 
|  | * | 
|  | *  Copyright (C) 2004 ARM Limited. | 
|  | *  Written by Deep Blue Solutions Limited. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpu_pm.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/export.h> | 
|  |  | 
|  | #include <asm/cp15.h> | 
|  | #include <asm/cputype.h> | 
|  | #include <asm/system_info.h> | 
|  | #include <asm/thread_notify.h> | 
|  | #include <asm/vfp.h> | 
|  |  | 
|  | #include "vfpinstr.h" | 
|  | #include "vfp.h" | 
|  |  | 
|  | /* | 
|  | * Our undef handlers (in entry.S) | 
|  | */ | 
|  | asmlinkage void vfp_testing_entry(void); | 
|  | asmlinkage void vfp_support_entry(void); | 
|  | asmlinkage void vfp_null_entry(void); | 
|  |  | 
|  | asmlinkage void (*vfp_vector)(void) = vfp_null_entry; | 
|  |  | 
|  | /* | 
|  | * Dual-use variable. | 
|  | * Used in startup: set to non-zero if VFP checks fail | 
|  | * After startup, holds VFP architecture | 
|  | */ | 
|  | unsigned int VFP_arch; | 
|  |  | 
|  | /* | 
|  | * The pointer to the vfpstate structure of the thread which currently | 
|  | * owns the context held in the VFP hardware, or NULL if the hardware | 
|  | * context is invalid. | 
|  | * | 
|  | * For UP, this is sufficient to tell which thread owns the VFP context. | 
|  | * However, for SMP, we also need to check the CPU number stored in the | 
|  | * saved state too to catch migrations. | 
|  | */ | 
|  | union vfp_state *vfp_current_hw_state[NR_CPUS]; | 
|  |  | 
|  | /* | 
|  | * Is 'thread's most up to date state stored in this CPUs hardware? | 
|  | * Must be called from non-preemptible context. | 
|  | */ | 
|  | static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | if (thread->vfpstate.hard.cpu != cpu) | 
|  | return false; | 
|  | #endif | 
|  | return vfp_current_hw_state[cpu] == &thread->vfpstate; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force a reload of the VFP context from the thread structure.  We do | 
|  | * this by ensuring that access to the VFP hardware is disabled, and | 
|  | * clear vfp_current_hw_state.  Must be called from non-preemptible context. | 
|  | */ | 
|  | static void vfp_force_reload(unsigned int cpu, struct thread_info *thread) | 
|  | { | 
|  | if (vfp_state_in_hw(cpu, thread)) { | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | vfp_current_hw_state[cpu] = NULL; | 
|  | } | 
|  | #ifdef CONFIG_SMP | 
|  | thread->vfpstate.hard.cpu = NR_CPUS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Per-thread VFP initialization. | 
|  | */ | 
|  | static void vfp_thread_flush(struct thread_info *thread) | 
|  | { | 
|  | union vfp_state *vfp = &thread->vfpstate; | 
|  | unsigned int cpu; | 
|  |  | 
|  | /* | 
|  | * Disable VFP to ensure we initialize it first.  We must ensure | 
|  | * that the modification of vfp_current_hw_state[] and hardware | 
|  | * disable are done for the same CPU and without preemption. | 
|  | * | 
|  | * Do this first to ensure that preemption won't overwrite our | 
|  | * state saving should access to the VFP be enabled at this point. | 
|  | */ | 
|  | cpu = get_cpu(); | 
|  | if (vfp_current_hw_state[cpu] == vfp) | 
|  | vfp_current_hw_state[cpu] = NULL; | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | put_cpu(); | 
|  |  | 
|  | memset(vfp, 0, sizeof(union vfp_state)); | 
|  |  | 
|  | vfp->hard.fpexc = FPEXC_EN; | 
|  | vfp->hard.fpscr = FPSCR_ROUND_NEAREST; | 
|  | #ifdef CONFIG_SMP | 
|  | vfp->hard.cpu = NR_CPUS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void vfp_thread_exit(struct thread_info *thread) | 
|  | { | 
|  | /* release case: Per-thread VFP cleanup. */ | 
|  | union vfp_state *vfp = &thread->vfpstate; | 
|  | unsigned int cpu = get_cpu(); | 
|  |  | 
|  | if (vfp_current_hw_state[cpu] == vfp) | 
|  | vfp_current_hw_state[cpu] = NULL; | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | static void vfp_thread_copy(struct thread_info *thread) | 
|  | { | 
|  | struct thread_info *parent = current_thread_info(); | 
|  |  | 
|  | vfp_sync_hwstate(parent); | 
|  | thread->vfpstate = parent->vfpstate; | 
|  | #ifdef CONFIG_SMP | 
|  | thread->vfpstate.hard.cpu = NR_CPUS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When this function is called with the following 'cmd's, the following | 
|  | * is true while this function is being run: | 
|  | *  THREAD_NOFTIFY_SWTICH: | 
|  | *   - the previously running thread will not be scheduled onto another CPU. | 
|  | *   - the next thread to be run (v) will not be running on another CPU. | 
|  | *   - thread->cpu is the local CPU number | 
|  | *   - not preemptible as we're called in the middle of a thread switch | 
|  | *  THREAD_NOTIFY_FLUSH: | 
|  | *   - the thread (v) will be running on the local CPU, so | 
|  | *	v === current_thread_info() | 
|  | *   - thread->cpu is the local CPU number at the time it is accessed, | 
|  | *	but may change at any time. | 
|  | *   - we could be preempted if tree preempt rcu is enabled, so | 
|  | *	it is unsafe to use thread->cpu. | 
|  | *  THREAD_NOTIFY_EXIT | 
|  | *   - we could be preempted if tree preempt rcu is enabled, so | 
|  | *	it is unsafe to use thread->cpu. | 
|  | */ | 
|  | static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v) | 
|  | { | 
|  | struct thread_info *thread = v; | 
|  | u32 fpexc; | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned int cpu; | 
|  | #endif | 
|  |  | 
|  | switch (cmd) { | 
|  | case THREAD_NOTIFY_SWITCH: | 
|  | fpexc = fmrx(FPEXC); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | cpu = thread->cpu; | 
|  |  | 
|  | /* | 
|  | * On SMP, if VFP is enabled, save the old state in | 
|  | * case the thread migrates to a different CPU. The | 
|  | * restoring is done lazily. | 
|  | */ | 
|  | if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) | 
|  | vfp_save_state(vfp_current_hw_state[cpu], fpexc); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Always disable VFP so we can lazily save/restore the | 
|  | * old state. | 
|  | */ | 
|  | fmxr(FPEXC, fpexc & ~FPEXC_EN); | 
|  | break; | 
|  |  | 
|  | case THREAD_NOTIFY_FLUSH: | 
|  | vfp_thread_flush(thread); | 
|  | break; | 
|  |  | 
|  | case THREAD_NOTIFY_EXIT: | 
|  | vfp_thread_exit(thread); | 
|  | break; | 
|  |  | 
|  | case THREAD_NOTIFY_COPY: | 
|  | vfp_thread_copy(thread); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static struct notifier_block vfp_notifier_block = { | 
|  | .notifier_call	= vfp_notifier, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Raise a SIGFPE for the current process. | 
|  | * sicode describes the signal being raised. | 
|  | */ | 
|  | static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_code = sicode; | 
|  | info.si_addr = (void __user *)(instruction_pointer(regs) - 4); | 
|  |  | 
|  | /* | 
|  | * This is the same as NWFPE, because it's not clear what | 
|  | * this is used for | 
|  | */ | 
|  | current->thread.error_code = 0; | 
|  | current->thread.trap_no = 6; | 
|  |  | 
|  | send_sig_info(SIGFPE, &info, current); | 
|  | } | 
|  |  | 
|  | static void vfp_panic(char *reason, u32 inst) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | pr_err("VFP: Error: %s\n", reason); | 
|  | pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n", | 
|  | fmrx(FPEXC), fmrx(FPSCR), inst); | 
|  | for (i = 0; i < 32; i += 2) | 
|  | pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n", | 
|  | i, vfp_get_float(i), i+1, vfp_get_float(i+1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process bitmask of exception conditions. | 
|  | */ | 
|  | static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) | 
|  | { | 
|  | int si_code = 0; | 
|  |  | 
|  | pr_debug("VFP: raising exceptions %08x\n", exceptions); | 
|  |  | 
|  | if (exceptions == VFP_EXCEPTION_ERROR) { | 
|  | vfp_panic("unhandled bounce", inst); | 
|  | vfp_raise_sigfpe(FPE_FLTINV, regs); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If any of the status flags are set, update the FPSCR. | 
|  | * Comparison instructions always return at least one of | 
|  | * these flags set. | 
|  | */ | 
|  | if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) | 
|  | fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); | 
|  |  | 
|  | fpscr |= exceptions; | 
|  |  | 
|  | fmxr(FPSCR, fpscr); | 
|  |  | 
|  | #define RAISE(stat,en,sig)				\ | 
|  | if (exceptions & stat && fpscr & en)		\ | 
|  | si_code = sig; | 
|  |  | 
|  | /* | 
|  | * These are arranged in priority order, least to highest. | 
|  | */ | 
|  | RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV); | 
|  | RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES); | 
|  | RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND); | 
|  | RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); | 
|  | RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); | 
|  |  | 
|  | if (si_code) | 
|  | vfp_raise_sigfpe(si_code, regs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Emulate a VFP instruction. | 
|  | */ | 
|  | static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) | 
|  | { | 
|  | u32 exceptions = VFP_EXCEPTION_ERROR; | 
|  |  | 
|  | pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr); | 
|  |  | 
|  | if (INST_CPRTDO(inst)) { | 
|  | if (!INST_CPRT(inst)) { | 
|  | /* | 
|  | * CPDO | 
|  | */ | 
|  | if (vfp_single(inst)) { | 
|  | exceptions = vfp_single_cpdo(inst, fpscr); | 
|  | } else { | 
|  | exceptions = vfp_double_cpdo(inst, fpscr); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * A CPRT instruction can not appear in FPINST2, nor | 
|  | * can it cause an exception.  Therefore, we do not | 
|  | * have to emulate it. | 
|  | */ | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * A CPDT instruction can not appear in FPINST2, nor can | 
|  | * it cause an exception.  Therefore, we do not have to | 
|  | * emulate it. | 
|  | */ | 
|  | } | 
|  | return exceptions & ~VFP_NAN_FLAG; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Package up a bounce condition. | 
|  | */ | 
|  | void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) | 
|  | { | 
|  | u32 fpscr, orig_fpscr, fpsid, exceptions; | 
|  |  | 
|  | pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); | 
|  |  | 
|  | /* | 
|  | * At this point, FPEXC can have the following configuration: | 
|  | * | 
|  | *  EX DEX IXE | 
|  | *  0   1   x   - synchronous exception | 
|  | *  1   x   0   - asynchronous exception | 
|  | *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later | 
|  | *  0   0   1   - synchronous on VFP9 (non-standard subarch 1 | 
|  | *                implementation), undefined otherwise | 
|  | * | 
|  | * Clear various bits and enable access to the VFP so we can | 
|  | * handle the bounce. | 
|  | */ | 
|  | fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK)); | 
|  |  | 
|  | fpsid = fmrx(FPSID); | 
|  | orig_fpscr = fpscr = fmrx(FPSCR); | 
|  |  | 
|  | /* | 
|  | * Check for the special VFP subarch 1 and FPSCR.IXE bit case | 
|  | */ | 
|  | if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT) | 
|  | && (fpscr & FPSCR_IXE)) { | 
|  | /* | 
|  | * Synchronous exception, emulate the trigger instruction | 
|  | */ | 
|  | goto emulate; | 
|  | } | 
|  |  | 
|  | if (fpexc & FPEXC_EX) { | 
|  | #ifndef CONFIG_CPU_FEROCEON | 
|  | /* | 
|  | * Asynchronous exception. The instruction is read from FPINST | 
|  | * and the interrupted instruction has to be restarted. | 
|  | */ | 
|  | trigger = fmrx(FPINST); | 
|  | regs->ARM_pc -= 4; | 
|  | #endif | 
|  | } else if (!(fpexc & FPEXC_DEX)) { | 
|  | /* | 
|  | * Illegal combination of bits. It can be caused by an | 
|  | * unallocated VFP instruction but with FPSCR.IXE set and not | 
|  | * on VFP subarch 1. | 
|  | */ | 
|  | vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Modify fpscr to indicate the number of iterations remaining. | 
|  | * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates | 
|  | * whether FPEXC.VECITR or FPSCR.LEN is used. | 
|  | */ | 
|  | if (fpexc & (FPEXC_EX | FPEXC_VV)) { | 
|  | u32 len; | 
|  |  | 
|  | len = fpexc + (1 << FPEXC_LENGTH_BIT); | 
|  |  | 
|  | fpscr &= ~FPSCR_LENGTH_MASK; | 
|  | fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle the first FP instruction.  We used to take note of the | 
|  | * FPEXC bounce reason, but this appears to be unreliable. | 
|  | * Emulate the bounced instruction instead. | 
|  | */ | 
|  | exceptions = vfp_emulate_instruction(trigger, fpscr, regs); | 
|  | if (exceptions) | 
|  | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); | 
|  |  | 
|  | /* | 
|  | * If there isn't a second FP instruction, exit now. Note that | 
|  | * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. | 
|  | */ | 
|  | if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V)) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * The barrier() here prevents fpinst2 being read | 
|  | * before the condition above. | 
|  | */ | 
|  | barrier(); | 
|  | trigger = fmrx(FPINST2); | 
|  |  | 
|  | emulate: | 
|  | exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); | 
|  | if (exceptions) | 
|  | vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); | 
|  | exit: | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void vfp_enable(void *unused) | 
|  | { | 
|  | u32 access; | 
|  |  | 
|  | BUG_ON(preemptible()); | 
|  | access = get_copro_access(); | 
|  |  | 
|  | /* | 
|  | * Enable full access to VFP (cp10 and cp11) | 
|  | */ | 
|  | set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11)); | 
|  | } | 
|  |  | 
|  | /* Called by platforms on which we want to disable VFP because it may not be | 
|  | * present on all CPUs within a SMP complex. Needs to be called prior to | 
|  | * vfp_init(). | 
|  | */ | 
|  | void vfp_disable(void) | 
|  | { | 
|  | if (VFP_arch) { | 
|  | pr_debug("%s: should be called prior to vfp_init\n", __func__); | 
|  | return; | 
|  | } | 
|  | VFP_arch = 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CPU_PM | 
|  | static int vfp_pm_suspend(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  | u32 fpexc = fmrx(FPEXC); | 
|  |  | 
|  | /* if vfp is on, then save state for resumption */ | 
|  | if (fpexc & FPEXC_EN) { | 
|  | pr_debug("%s: saving vfp state\n", __func__); | 
|  | vfp_save_state(&ti->vfpstate, fpexc); | 
|  |  | 
|  | /* disable, just in case */ | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | } else if (vfp_current_hw_state[ti->cpu]) { | 
|  | #ifndef CONFIG_SMP | 
|  | fmxr(FPEXC, fpexc | FPEXC_EN); | 
|  | vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc); | 
|  | fmxr(FPEXC, fpexc); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* clear any information we had about last context state */ | 
|  | vfp_current_hw_state[ti->cpu] = NULL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vfp_pm_resume(void) | 
|  | { | 
|  | /* ensure we have access to the vfp */ | 
|  | vfp_enable(NULL); | 
|  |  | 
|  | /* and disable it to ensure the next usage restores the state */ | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | } | 
|  |  | 
|  | static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd, | 
|  | void *v) | 
|  | { | 
|  | switch (cmd) { | 
|  | case CPU_PM_ENTER: | 
|  | vfp_pm_suspend(); | 
|  | break; | 
|  | case CPU_PM_ENTER_FAILED: | 
|  | case CPU_PM_EXIT: | 
|  | vfp_pm_resume(); | 
|  | break; | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | static struct notifier_block vfp_cpu_pm_notifier_block = { | 
|  | .notifier_call = vfp_cpu_pm_notifier, | 
|  | }; | 
|  |  | 
|  | static void vfp_pm_init(void) | 
|  | { | 
|  | cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block); | 
|  | } | 
|  |  | 
|  | #else | 
|  | static inline void vfp_pm_init(void) { } | 
|  | #endif /* CONFIG_CPU_PM */ | 
|  |  | 
|  | /* | 
|  | * Ensure that the VFP state stored in 'thread->vfpstate' is up to date | 
|  | * with the hardware state. | 
|  | */ | 
|  | void vfp_sync_hwstate(struct thread_info *thread) | 
|  | { | 
|  | unsigned int cpu = get_cpu(); | 
|  |  | 
|  | if (vfp_state_in_hw(cpu, thread)) { | 
|  | u32 fpexc = fmrx(FPEXC); | 
|  |  | 
|  | /* | 
|  | * Save the last VFP state on this CPU. | 
|  | */ | 
|  | fmxr(FPEXC, fpexc | FPEXC_EN); | 
|  | vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN); | 
|  | fmxr(FPEXC, fpexc); | 
|  | } | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* Ensure that the thread reloads the hardware VFP state on the next use. */ | 
|  | void vfp_flush_hwstate(struct thread_info *thread) | 
|  | { | 
|  | unsigned int cpu = get_cpu(); | 
|  |  | 
|  | vfp_force_reload(cpu, thread); | 
|  |  | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save the current VFP state into the provided structures and prepare | 
|  | * for entry into a new function (signal handler). | 
|  | */ | 
|  | int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp, | 
|  | struct user_vfp_exc *ufp_exc) | 
|  | { | 
|  | struct thread_info *thread = current_thread_info(); | 
|  | struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; | 
|  |  | 
|  | /* Ensure that the saved hwstate is up-to-date. */ | 
|  | vfp_sync_hwstate(thread); | 
|  |  | 
|  | /* | 
|  | * Copy the floating point registers. There can be unused | 
|  | * registers see asm/hwcap.h for details. | 
|  | */ | 
|  | memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs)); | 
|  |  | 
|  | /* | 
|  | * Copy the status and control register. | 
|  | */ | 
|  | ufp->fpscr = hwstate->fpscr; | 
|  |  | 
|  | /* | 
|  | * Copy the exception registers. | 
|  | */ | 
|  | ufp_exc->fpexc = hwstate->fpexc; | 
|  | ufp_exc->fpinst = hwstate->fpinst; | 
|  | ufp_exc->fpinst2 = hwstate->fpinst2; | 
|  |  | 
|  | /* Ensure that VFP is disabled. */ | 
|  | vfp_flush_hwstate(thread); | 
|  |  | 
|  | /* | 
|  | * As per the PCS, clear the length and stride bits for function | 
|  | * entry. | 
|  | */ | 
|  | hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Sanitise and restore the current VFP state from the provided structures. */ | 
|  | int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc) | 
|  | { | 
|  | struct thread_info *thread = current_thread_info(); | 
|  | struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; | 
|  | unsigned long fpexc; | 
|  |  | 
|  | /* Disable VFP to avoid corrupting the new thread state. */ | 
|  | vfp_flush_hwstate(thread); | 
|  |  | 
|  | /* | 
|  | * Copy the floating point registers. There can be unused | 
|  | * registers see asm/hwcap.h for details. | 
|  | */ | 
|  | memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs)); | 
|  | /* | 
|  | * Copy the status and control register. | 
|  | */ | 
|  | hwstate->fpscr = ufp->fpscr; | 
|  |  | 
|  | /* | 
|  | * Sanitise and restore the exception registers. | 
|  | */ | 
|  | fpexc = ufp_exc->fpexc; | 
|  |  | 
|  | /* Ensure the VFP is enabled. */ | 
|  | fpexc |= FPEXC_EN; | 
|  |  | 
|  | /* Ensure FPINST2 is invalid and the exception flag is cleared. */ | 
|  | fpexc &= ~(FPEXC_EX | FPEXC_FP2V); | 
|  | hwstate->fpexc = fpexc; | 
|  |  | 
|  | hwstate->fpinst = ufp_exc->fpinst; | 
|  | hwstate->fpinst2 = ufp_exc->fpinst2; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * VFP hardware can lose all context when a CPU goes offline. | 
|  | * As we will be running in SMP mode with CPU hotplug, we will save the | 
|  | * hardware state at every thread switch.  We clear our held state when | 
|  | * a CPU has been killed, indicating that the VFP hardware doesn't contain | 
|  | * a threads VFP state.  When a CPU starts up, we re-enable access to the | 
|  | * VFP hardware. The callbacks below are called on the CPU which | 
|  | * is being offlined/onlined. | 
|  | */ | 
|  | static int vfp_dying_cpu(unsigned int cpu) | 
|  | { | 
|  | vfp_current_hw_state[cpu] = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vfp_starting_cpu(unsigned int unused) | 
|  | { | 
|  | vfp_enable(NULL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void vfp_kmode_exception(void) | 
|  | { | 
|  | /* | 
|  | * If we reach this point, a floating point exception has been raised | 
|  | * while running in kernel mode. If the NEON/VFP unit was enabled at the | 
|  | * time, it means a VFP instruction has been issued that requires | 
|  | * software assistance to complete, something which is not currently | 
|  | * supported in kernel mode. | 
|  | * If the NEON/VFP unit was disabled, and the location pointed to below | 
|  | * is properly preceded by a call to kernel_neon_begin(), something has | 
|  | * caused the task to be scheduled out and back in again. In this case, | 
|  | * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should | 
|  | * be helpful in localizing the problem. | 
|  | */ | 
|  | if (fmrx(FPEXC) & FPEXC_EN) | 
|  | pr_crit("BUG: unsupported FP instruction in kernel mode\n"); | 
|  | else | 
|  | pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KERNEL_MODE_NEON | 
|  |  | 
|  | /* | 
|  | * Kernel-side NEON support functions | 
|  | */ | 
|  | void kernel_neon_begin(void) | 
|  | { | 
|  | struct thread_info *thread = current_thread_info(); | 
|  | unsigned int cpu; | 
|  | u32 fpexc; | 
|  |  | 
|  | /* | 
|  | * Kernel mode NEON is only allowed outside of interrupt context | 
|  | * with preemption disabled. This will make sure that the kernel | 
|  | * mode NEON register contents never need to be preserved. | 
|  | */ | 
|  | BUG_ON(in_interrupt()); | 
|  | cpu = get_cpu(); | 
|  |  | 
|  | fpexc = fmrx(FPEXC) | FPEXC_EN; | 
|  | fmxr(FPEXC, fpexc); | 
|  |  | 
|  | /* | 
|  | * Save the userland NEON/VFP state. Under UP, | 
|  | * the owner could be a task other than 'current' | 
|  | */ | 
|  | if (vfp_state_in_hw(cpu, thread)) | 
|  | vfp_save_state(&thread->vfpstate, fpexc); | 
|  | #ifndef CONFIG_SMP | 
|  | else if (vfp_current_hw_state[cpu] != NULL) | 
|  | vfp_save_state(vfp_current_hw_state[cpu], fpexc); | 
|  | #endif | 
|  | vfp_current_hw_state[cpu] = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(kernel_neon_begin); | 
|  |  | 
|  | void kernel_neon_end(void) | 
|  | { | 
|  | /* Disable the NEON/VFP unit. */ | 
|  | fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); | 
|  | put_cpu(); | 
|  | } | 
|  | EXPORT_SYMBOL(kernel_neon_end); | 
|  |  | 
|  | #endif /* CONFIG_KERNEL_MODE_NEON */ | 
|  |  | 
|  | /* | 
|  | * VFP support code initialisation. | 
|  | */ | 
|  | static int __init vfp_init(void) | 
|  | { | 
|  | unsigned int vfpsid; | 
|  | unsigned int cpu_arch = cpu_architecture(); | 
|  |  | 
|  | /* | 
|  | * Enable the access to the VFP on all online CPUs so the | 
|  | * following test on FPSID will succeed. | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6) | 
|  | on_each_cpu(vfp_enable, NULL, 1); | 
|  |  | 
|  | /* | 
|  | * First check that there is a VFP that we can use. | 
|  | * The handler is already setup to just log calls, so | 
|  | * we just need to read the VFPSID register. | 
|  | */ | 
|  | vfp_vector = vfp_testing_entry; | 
|  | barrier(); | 
|  | vfpsid = fmrx(FPSID); | 
|  | barrier(); | 
|  | vfp_vector = vfp_null_entry; | 
|  |  | 
|  | pr_info("VFP support v0.3: "); | 
|  | if (VFP_arch) { | 
|  | pr_cont("not present\n"); | 
|  | return 0; | 
|  | /* Extract the architecture on CPUID scheme */ | 
|  | } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { | 
|  | VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK; | 
|  | VFP_arch >>= FPSID_ARCH_BIT; | 
|  | /* | 
|  | * Check for the presence of the Advanced SIMD | 
|  | * load/store instructions, integer and single | 
|  | * precision floating point operations. Only check | 
|  | * for NEON if the hardware has the MVFR registers. | 
|  | */ | 
|  | if (IS_ENABLED(CONFIG_NEON) && | 
|  | (fmrx(MVFR1) & 0x000fff00) == 0x00011100) | 
|  | elf_hwcap |= HWCAP_NEON; | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_VFPv3)) { | 
|  | u32 mvfr0 = fmrx(MVFR0); | 
|  | if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 || | 
|  | ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) { | 
|  | elf_hwcap |= HWCAP_VFPv3; | 
|  | /* | 
|  | * Check for VFPv3 D16 and VFPv4 D16.  CPUs in | 
|  | * this configuration only have 16 x 64bit | 
|  | * registers. | 
|  | */ | 
|  | if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1) | 
|  | /* also v4-D16 */ | 
|  | elf_hwcap |= HWCAP_VFPv3D16; | 
|  | else | 
|  | elf_hwcap |= HWCAP_VFPD32; | 
|  | } | 
|  |  | 
|  | if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000) | 
|  | elf_hwcap |= HWCAP_VFPv4; | 
|  | } | 
|  | /* Extract the architecture version on pre-cpuid scheme */ | 
|  | } else { | 
|  | if (vfpsid & FPSID_NODOUBLE) { | 
|  | pr_cont("no double precision support\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; | 
|  | } | 
|  |  | 
|  | cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING, | 
|  | "arm/vfp:starting", vfp_starting_cpu, | 
|  | vfp_dying_cpu); | 
|  |  | 
|  | vfp_vector = vfp_support_entry; | 
|  |  | 
|  | thread_register_notifier(&vfp_notifier_block); | 
|  | vfp_pm_init(); | 
|  |  | 
|  | /* | 
|  | * We detected VFP, and the support code is | 
|  | * in place; report VFP support to userspace. | 
|  | */ | 
|  | elf_hwcap |= HWCAP_VFP; | 
|  |  | 
|  | pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n", | 
|  | (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT, | 
|  | VFP_arch, | 
|  | (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT, | 
|  | (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT, | 
|  | (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | core_initcall(vfp_init); |