|  | /* | 
|  | *  Driver for Xceive XC5000 "QAM/8VSB single chip tuner" | 
|  | * | 
|  | *  Copyright (c) 2007 Xceive Corporation | 
|  | *  Copyright (c) 2007 Steven Toth <stoth@linuxtv.org> | 
|  | *  Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com> | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * | 
|  | *  GNU General Public License for more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/moduleparam.h> | 
|  | #include <linux/videodev2.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/dvb/frontend.h> | 
|  | #include <linux/i2c.h> | 
|  |  | 
|  | #include <media/dvb_frontend.h> | 
|  |  | 
|  | #include "xc5000.h" | 
|  | #include "tuner-i2c.h" | 
|  |  | 
|  | static int debug; | 
|  | module_param(debug, int, 0644); | 
|  | MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off)."); | 
|  |  | 
|  | static int no_poweroff; | 
|  | module_param(no_poweroff, int, 0644); | 
|  | MODULE_PARM_DESC(no_poweroff, "0 (default) powers device off when not used.\n" | 
|  | "\t\t1 keep device energized and with tuner ready all the times.\n" | 
|  | "\t\tFaster, but consumes more power and keeps the device hotter"); | 
|  |  | 
|  | static DEFINE_MUTEX(xc5000_list_mutex); | 
|  | static LIST_HEAD(hybrid_tuner_instance_list); | 
|  |  | 
|  | #define dprintk(level, fmt, arg...) if (debug >= level) \ | 
|  | printk(KERN_INFO "%s: " fmt, "xc5000", ## arg) | 
|  |  | 
|  | struct xc5000_priv { | 
|  | struct tuner_i2c_props i2c_props; | 
|  | struct list_head hybrid_tuner_instance_list; | 
|  |  | 
|  | u32 if_khz; | 
|  | u16 xtal_khz; | 
|  | u32 freq_hz, freq_offset; | 
|  | u32 bandwidth; | 
|  | u8  video_standard; | 
|  | unsigned int mode; | 
|  | u8  rf_mode; | 
|  | u8  radio_input; | 
|  | u16  output_amp; | 
|  |  | 
|  | int chip_id; | 
|  | u16 pll_register_no; | 
|  | u8 init_status_supported; | 
|  | u8 fw_checksum_supported; | 
|  |  | 
|  | struct dvb_frontend *fe; | 
|  | struct delayed_work timer_sleep; | 
|  |  | 
|  | const struct firmware   *firmware; | 
|  | }; | 
|  |  | 
|  | /* Misc Defines */ | 
|  | #define MAX_TV_STANDARD			24 | 
|  | #define XC_MAX_I2C_WRITE_LENGTH		64 | 
|  |  | 
|  | /* Time to suspend after the .sleep callback is called */ | 
|  | #define XC5000_SLEEP_TIME		5000 /* ms */ | 
|  |  | 
|  | /* Signal Types */ | 
|  | #define XC_RF_MODE_AIR			0 | 
|  | #define XC_RF_MODE_CABLE		1 | 
|  |  | 
|  | /* Product id */ | 
|  | #define XC_PRODUCT_ID_FW_NOT_LOADED	0x2000 | 
|  | #define XC_PRODUCT_ID_FW_LOADED	0x1388 | 
|  |  | 
|  | /* Registers */ | 
|  | #define XREG_INIT         0x00 | 
|  | #define XREG_VIDEO_MODE   0x01 | 
|  | #define XREG_AUDIO_MODE   0x02 | 
|  | #define XREG_RF_FREQ      0x03 | 
|  | #define XREG_D_CODE       0x04 | 
|  | #define XREG_IF_OUT       0x05 | 
|  | #define XREG_SEEK_MODE    0x07 | 
|  | #define XREG_POWER_DOWN   0x0A /* Obsolete */ | 
|  | /* Set the output amplitude - SIF for analog, DTVP/DTVN for digital */ | 
|  | #define XREG_OUTPUT_AMP   0x0B | 
|  | #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */ | 
|  | #define XREG_SMOOTHEDCVBS 0x0E | 
|  | #define XREG_XTALFREQ     0x0F | 
|  | #define XREG_FINERFREQ    0x10 | 
|  | #define XREG_DDIMODE      0x11 | 
|  |  | 
|  | #define XREG_ADC_ENV      0x00 | 
|  | #define XREG_QUALITY      0x01 | 
|  | #define XREG_FRAME_LINES  0x02 | 
|  | #define XREG_HSYNC_FREQ   0x03 | 
|  | #define XREG_LOCK         0x04 | 
|  | #define XREG_FREQ_ERROR   0x05 | 
|  | #define XREG_SNR          0x06 | 
|  | #define XREG_VERSION      0x07 | 
|  | #define XREG_PRODUCT_ID   0x08 | 
|  | #define XREG_BUSY         0x09 | 
|  | #define XREG_BUILD        0x0D | 
|  | #define XREG_TOTALGAIN    0x0F | 
|  | #define XREG_FW_CHECKSUM  0x12 | 
|  | #define XREG_INIT_STATUS  0x13 | 
|  |  | 
|  | /* | 
|  | Basic firmware description. This will remain with | 
|  | the driver for documentation purposes. | 
|  |  | 
|  | This represents an I2C firmware file encoded as a | 
|  | string of unsigned char. Format is as follows: | 
|  |  | 
|  | char[0  ]=len0_MSB  -> len = len_MSB * 256 + len_LSB | 
|  | char[1  ]=len0_LSB  -> length of first write transaction | 
|  | char[2  ]=data0 -> first byte to be sent | 
|  | char[3  ]=data1 | 
|  | char[4  ]=data2 | 
|  | char[   ]=... | 
|  | char[M  ]=dataN  -> last byte to be sent | 
|  | char[M+1]=len1_MSB  -> len = len_MSB * 256 + len_LSB | 
|  | char[M+2]=len1_LSB  -> length of second write transaction | 
|  | char[M+3]=data0 | 
|  | char[M+4]=data1 | 
|  | ... | 
|  | etc. | 
|  |  | 
|  | The [len] value should be interpreted as follows: | 
|  |  | 
|  | len= len_MSB _ len_LSB | 
|  | len=1111_1111_1111_1111   : End of I2C_SEQUENCE | 
|  | len=0000_0000_0000_0000   : Reset command: Do hardware reset | 
|  | len=0NNN_NNNN_NNNN_NNNN   : Normal transaction: number of bytes = {1:32767) | 
|  | len=1WWW_WWWW_WWWW_WWWW   : Wait command: wait for {1:32767} ms | 
|  |  | 
|  | For the RESET and WAIT commands, the two following bytes will contain | 
|  | immediately the length of the following transaction. | 
|  |  | 
|  | */ | 
|  | struct XC_TV_STANDARD { | 
|  | char *name; | 
|  | u16 audio_mode; | 
|  | u16 video_mode; | 
|  | }; | 
|  |  | 
|  | /* Tuner standards */ | 
|  | #define MN_NTSC_PAL_BTSC	0 | 
|  | #define MN_NTSC_PAL_A2		1 | 
|  | #define MN_NTSC_PAL_EIAJ	2 | 
|  | #define MN_NTSC_PAL_MONO	3 | 
|  | #define BG_PAL_A2		4 | 
|  | #define BG_PAL_NICAM		5 | 
|  | #define BG_PAL_MONO		6 | 
|  | #define I_PAL_NICAM		7 | 
|  | #define I_PAL_NICAM_MONO	8 | 
|  | #define DK_PAL_A2		9 | 
|  | #define DK_PAL_NICAM		10 | 
|  | #define DK_PAL_MONO		11 | 
|  | #define DK_SECAM_A2DK1		12 | 
|  | #define DK_SECAM_A2LDK3		13 | 
|  | #define DK_SECAM_A2MONO		14 | 
|  | #define L_SECAM_NICAM		15 | 
|  | #define LC_SECAM_NICAM		16 | 
|  | #define DTV6			17 | 
|  | #define DTV8			18 | 
|  | #define DTV7_8			19 | 
|  | #define DTV7			20 | 
|  | #define FM_RADIO_INPUT2		21 | 
|  | #define FM_RADIO_INPUT1		22 | 
|  | #define FM_RADIO_INPUT1_MONO	23 | 
|  |  | 
|  | static struct XC_TV_STANDARD xc5000_standard[MAX_TV_STANDARD] = { | 
|  | {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020}, | 
|  | {"M/N-NTSC/PAL-A2",   0x0600, 0x8020}, | 
|  | {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020}, | 
|  | {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020}, | 
|  | {"B/G-PAL-A2",        0x0A00, 0x8049}, | 
|  | {"B/G-PAL-NICAM",     0x0C04, 0x8049}, | 
|  | {"B/G-PAL-MONO",      0x0878, 0x8059}, | 
|  | {"I-PAL-NICAM",       0x1080, 0x8009}, | 
|  | {"I-PAL-NICAM-MONO",  0x0E78, 0x8009}, | 
|  | {"D/K-PAL-A2",        0x1600, 0x8009}, | 
|  | {"D/K-PAL-NICAM",     0x0E80, 0x8009}, | 
|  | {"D/K-PAL-MONO",      0x1478, 0x8009}, | 
|  | {"D/K-SECAM-A2 DK1",  0x1200, 0x8009}, | 
|  | {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009}, | 
|  | {"D/K-SECAM-A2 MONO", 0x1478, 0x8009}, | 
|  | {"L-SECAM-NICAM",     0x8E82, 0x0009}, | 
|  | {"L'-SECAM-NICAM",    0x8E82, 0x4009}, | 
|  | {"DTV6",              0x00C0, 0x8002}, | 
|  | {"DTV8",              0x00C0, 0x800B}, | 
|  | {"DTV7/8",            0x00C0, 0x801B}, | 
|  | {"DTV7",              0x00C0, 0x8007}, | 
|  | {"FM Radio-INPUT2",   0x9802, 0x9002}, | 
|  | {"FM Radio-INPUT1",   0x0208, 0x9002}, | 
|  | {"FM Radio-INPUT1_MONO", 0x0278, 0x9002} | 
|  | }; | 
|  |  | 
|  |  | 
|  | struct xc5000_fw_cfg { | 
|  | char *name; | 
|  | u16 size; | 
|  | u16 pll_reg; | 
|  | u8 init_status_supported; | 
|  | u8 fw_checksum_supported; | 
|  | }; | 
|  |  | 
|  | #define XC5000A_FIRMWARE "dvb-fe-xc5000-1.6.114.fw" | 
|  | static const struct xc5000_fw_cfg xc5000a_1_6_114 = { | 
|  | .name = XC5000A_FIRMWARE, | 
|  | .size = 12401, | 
|  | .pll_reg = 0x806c, | 
|  | }; | 
|  |  | 
|  | #define XC5000C_FIRMWARE "dvb-fe-xc5000c-4.1.30.7.fw" | 
|  | static const struct xc5000_fw_cfg xc5000c_41_024_5 = { | 
|  | .name = XC5000C_FIRMWARE, | 
|  | .size = 16497, | 
|  | .pll_reg = 0x13, | 
|  | .init_status_supported = 1, | 
|  | .fw_checksum_supported = 1, | 
|  | }; | 
|  |  | 
|  | static inline const struct xc5000_fw_cfg *xc5000_assign_firmware(int chip_id) | 
|  | { | 
|  | switch (chip_id) { | 
|  | default: | 
|  | case XC5000A: | 
|  | return &xc5000a_1_6_114; | 
|  | case XC5000C: | 
|  | return &xc5000c_41_024_5; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force); | 
|  | static int xc5000_is_firmware_loaded(struct dvb_frontend *fe); | 
|  | static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val); | 
|  | static int xc5000_tuner_reset(struct dvb_frontend *fe); | 
|  |  | 
|  | static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) | 
|  | { | 
|  | struct i2c_msg msg = { .addr = priv->i2c_props.addr, | 
|  | .flags = 0, .buf = buf, .len = len }; | 
|  |  | 
|  | if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { | 
|  | printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n", len); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | /* This routine is never used because the only time we read data from the | 
|  | i2c bus is when we read registers, and we want that to be an atomic i2c | 
|  | transaction in case we are on a multi-master bus */ | 
|  | static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len) | 
|  | { | 
|  | struct i2c_msg msg = { .addr = priv->i2c_props.addr, | 
|  | .flags = I2C_M_RD, .buf = buf, .len = len }; | 
|  |  | 
|  | if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) { | 
|  | printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", len); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val) | 
|  | { | 
|  | u8 buf[2] = { reg >> 8, reg & 0xff }; | 
|  | u8 bval[2] = { 0, 0 }; | 
|  | struct i2c_msg msg[2] = { | 
|  | { .addr = priv->i2c_props.addr, | 
|  | .flags = 0, .buf = &buf[0], .len = 2 }, | 
|  | { .addr = priv->i2c_props.addr, | 
|  | .flags = I2C_M_RD, .buf = &bval[0], .len = 2 }, | 
|  | }; | 
|  |  | 
|  | if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) { | 
|  | printk(KERN_WARNING "xc5000: I2C read failed\n"); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | *val = (bval[0] << 8) | bval[1]; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_tuner_reset(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  |  | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | if (fe->callback) { | 
|  | ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ? | 
|  | fe->dvb->priv : | 
|  | priv->i2c_props.adap->algo_data, | 
|  | DVB_FRONTEND_COMPONENT_TUNER, | 
|  | XC5000_TUNER_RESET, 0); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "xc5000: reset failed\n"); | 
|  | return ret; | 
|  | } | 
|  | } else { | 
|  | printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc_write_reg(struct xc5000_priv *priv, u16 reg_addr, u16 i2c_data) | 
|  | { | 
|  | u8 buf[4]; | 
|  | int watch_dog_timer = 100; | 
|  | int result; | 
|  |  | 
|  | buf[0] = (reg_addr >> 8) & 0xFF; | 
|  | buf[1] = reg_addr & 0xFF; | 
|  | buf[2] = (i2c_data >> 8) & 0xFF; | 
|  | buf[3] = i2c_data & 0xFF; | 
|  | result = xc_send_i2c_data(priv, buf, 4); | 
|  | if (result == 0) { | 
|  | /* wait for busy flag to clear */ | 
|  | while ((watch_dog_timer > 0) && (result == 0)) { | 
|  | result = xc5000_readreg(priv, XREG_BUSY, (u16 *)buf); | 
|  | if (result == 0) { | 
|  | if ((buf[0] == 0) && (buf[1] == 0)) { | 
|  | /* busy flag cleared */ | 
|  | break; | 
|  | } else { | 
|  | msleep(5); /* wait 5 ms */ | 
|  | watch_dog_timer--; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | if (watch_dog_timer <= 0) | 
|  | result = -EREMOTEIO; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  |  | 
|  | int i, nbytes_to_send, result; | 
|  | unsigned int len, pos, index; | 
|  | u8 buf[XC_MAX_I2C_WRITE_LENGTH]; | 
|  |  | 
|  | index = 0; | 
|  | while ((i2c_sequence[index] != 0xFF) || | 
|  | (i2c_sequence[index + 1] != 0xFF)) { | 
|  | len = i2c_sequence[index] * 256 + i2c_sequence[index+1]; | 
|  | if (len == 0x0000) { | 
|  | /* RESET command */ | 
|  | result = xc5000_tuner_reset(fe); | 
|  | index += 2; | 
|  | if (result != 0) | 
|  | return result; | 
|  | } else if (len & 0x8000) { | 
|  | /* WAIT command */ | 
|  | msleep(len & 0x7FFF); | 
|  | index += 2; | 
|  | } else { | 
|  | /* Send i2c data whilst ensuring individual transactions | 
|  | * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes. | 
|  | */ | 
|  | index += 2; | 
|  | buf[0] = i2c_sequence[index]; | 
|  | buf[1] = i2c_sequence[index + 1]; | 
|  | pos = 2; | 
|  | while (pos < len) { | 
|  | if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) | 
|  | nbytes_to_send = | 
|  | XC_MAX_I2C_WRITE_LENGTH; | 
|  | else | 
|  | nbytes_to_send = (len - pos + 2); | 
|  | for (i = 2; i < nbytes_to_send; i++) { | 
|  | buf[i] = i2c_sequence[index + pos + | 
|  | i - 2]; | 
|  | } | 
|  | result = xc_send_i2c_data(priv, buf, | 
|  | nbytes_to_send); | 
|  |  | 
|  | if (result != 0) | 
|  | return result; | 
|  |  | 
|  | pos += nbytes_to_send - 2; | 
|  | } | 
|  | index += len; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc_initialize(struct xc5000_priv *priv) | 
|  | { | 
|  | dprintk(1, "%s()\n", __func__); | 
|  | return xc_write_reg(priv, XREG_INIT, 0); | 
|  | } | 
|  |  | 
|  | static int xc_set_tv_standard(struct xc5000_priv *priv, | 
|  | u16 video_mode, u16 audio_mode, u8 radio_mode) | 
|  | { | 
|  | int ret; | 
|  | dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode); | 
|  | if (radio_mode) { | 
|  | dprintk(1, "%s() Standard = %s\n", | 
|  | __func__, | 
|  | xc5000_standard[radio_mode].name); | 
|  | } else { | 
|  | dprintk(1, "%s() Standard = %s\n", | 
|  | __func__, | 
|  | xc5000_standard[priv->video_standard].name); | 
|  | } | 
|  |  | 
|  | ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode); | 
|  | if (ret == 0) | 
|  | ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int xc_set_signal_source(struct xc5000_priv *priv, u16 rf_mode) | 
|  | { | 
|  | dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode, | 
|  | rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE"); | 
|  |  | 
|  | if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) { | 
|  | rf_mode = XC_RF_MODE_CABLE; | 
|  | printk(KERN_ERR | 
|  | "%s(), Invalid mode, defaulting to CABLE", | 
|  | __func__); | 
|  | } | 
|  | return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode); | 
|  | } | 
|  |  | 
|  | static const struct dvb_tuner_ops xc5000_tuner_ops; | 
|  |  | 
|  | static int xc_set_rf_frequency(struct xc5000_priv *priv, u32 freq_hz) | 
|  | { | 
|  | u16 freq_code; | 
|  |  | 
|  | dprintk(1, "%s(%u)\n", __func__, freq_hz); | 
|  |  | 
|  | if ((freq_hz > xc5000_tuner_ops.info.frequency_max_hz) || | 
|  | (freq_hz < xc5000_tuner_ops.info.frequency_min_hz)) | 
|  | return -EINVAL; | 
|  |  | 
|  | freq_code = (u16)(freq_hz / 15625); | 
|  |  | 
|  | /* Starting in firmware version 1.1.44, Xceive recommends using the | 
|  | FINERFREQ for all normal tuning (the doc indicates reg 0x03 should | 
|  | only be used for fast scanning for channel lock) */ | 
|  | return xc_write_reg(priv, XREG_FINERFREQ, freq_code); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz) | 
|  | { | 
|  | u32 freq_code = (freq_khz * 1024)/1000; | 
|  | dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n", | 
|  | __func__, freq_khz, freq_code); | 
|  |  | 
|  | return xc_write_reg(priv, XREG_IF_OUT, freq_code); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int xc_get_adc_envelope(struct xc5000_priv *priv, u16 *adc_envelope) | 
|  | { | 
|  | return xc5000_readreg(priv, XREG_ADC_ENV, adc_envelope); | 
|  | } | 
|  |  | 
|  | static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz) | 
|  | { | 
|  | int result; | 
|  | u16 reg_data; | 
|  | u32 tmp; | 
|  |  | 
|  | result = xc5000_readreg(priv, XREG_FREQ_ERROR, ®_data); | 
|  | if (result != 0) | 
|  | return result; | 
|  |  | 
|  | tmp = (u32)reg_data; | 
|  | (*freq_error_hz) = (tmp * 15625) / 1000; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status) | 
|  | { | 
|  | return xc5000_readreg(priv, XREG_LOCK, lock_status); | 
|  | } | 
|  |  | 
|  | static int xc_get_version(struct xc5000_priv *priv, | 
|  | u8 *hw_majorversion, u8 *hw_minorversion, | 
|  | u8 *fw_majorversion, u8 *fw_minorversion) | 
|  | { | 
|  | u16 data; | 
|  | int result; | 
|  |  | 
|  | result = xc5000_readreg(priv, XREG_VERSION, &data); | 
|  | if (result != 0) | 
|  | return result; | 
|  |  | 
|  | (*hw_majorversion) = (data >> 12) & 0x0F; | 
|  | (*hw_minorversion) = (data >>  8) & 0x0F; | 
|  | (*fw_majorversion) = (data >>  4) & 0x0F; | 
|  | (*fw_minorversion) = data & 0x0F; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc_get_buildversion(struct xc5000_priv *priv, u16 *buildrev) | 
|  | { | 
|  | return xc5000_readreg(priv, XREG_BUILD, buildrev); | 
|  | } | 
|  |  | 
|  | static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz) | 
|  | { | 
|  | u16 reg_data; | 
|  | int result; | 
|  |  | 
|  | result = xc5000_readreg(priv, XREG_HSYNC_FREQ, ®_data); | 
|  | if (result != 0) | 
|  | return result; | 
|  |  | 
|  | (*hsync_freq_hz) = ((reg_data & 0x0fff) * 763)/100; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines) | 
|  | { | 
|  | return xc5000_readreg(priv, XREG_FRAME_LINES, frame_lines); | 
|  | } | 
|  |  | 
|  | static int xc_get_quality(struct xc5000_priv *priv, u16 *quality) | 
|  | { | 
|  | return xc5000_readreg(priv, XREG_QUALITY, quality); | 
|  | } | 
|  |  | 
|  | static int xc_get_analogsnr(struct xc5000_priv *priv, u16 *snr) | 
|  | { | 
|  | return xc5000_readreg(priv, XREG_SNR, snr); | 
|  | } | 
|  |  | 
|  | static int xc_get_totalgain(struct xc5000_priv *priv, u16 *totalgain) | 
|  | { | 
|  | return xc5000_readreg(priv, XREG_TOTALGAIN, totalgain); | 
|  | } | 
|  |  | 
|  | #define XC_TUNE_ANALOG  0 | 
|  | #define XC_TUNE_DIGITAL 1 | 
|  | static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz, int mode) | 
|  | { | 
|  | dprintk(1, "%s(%u)\n", __func__, freq_hz); | 
|  |  | 
|  | if (xc_set_rf_frequency(priv, freq_hz) != 0) | 
|  | return -EREMOTEIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc_set_xtal(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | int ret = 0; | 
|  |  | 
|  | switch (priv->chip_id) { | 
|  | default: | 
|  | case XC5000A: | 
|  | /* 32.000 MHz xtal is default */ | 
|  | break; | 
|  | case XC5000C: | 
|  | switch (priv->xtal_khz) { | 
|  | default: | 
|  | case 32000: | 
|  | /* 32.000 MHz xtal is default */ | 
|  | break; | 
|  | case 31875: | 
|  | /* 31.875 MHz xtal configuration */ | 
|  | ret = xc_write_reg(priv, 0x000f, 0x8081); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int xc5000_fwupload(struct dvb_frontend *fe, | 
|  | const struct xc5000_fw_cfg *desired_fw, | 
|  | const struct firmware *fw) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  |  | 
|  | /* request the firmware, this will block and timeout */ | 
|  | dprintk(1, "waiting for firmware upload (%s)...\n", | 
|  | desired_fw->name); | 
|  |  | 
|  | priv->pll_register_no = desired_fw->pll_reg; | 
|  | priv->init_status_supported = desired_fw->init_status_supported; | 
|  | priv->fw_checksum_supported = desired_fw->fw_checksum_supported; | 
|  |  | 
|  |  | 
|  | dprintk(1, "firmware uploading...\n"); | 
|  | ret = xc_load_i2c_sequence(fe,  fw->data); | 
|  | if (!ret) { | 
|  | ret = xc_set_xtal(fe); | 
|  | dprintk(1, "Firmware upload complete...\n"); | 
|  | } else | 
|  | printk(KERN_ERR "xc5000: firmware upload failed...\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void xc_debug_dump(struct xc5000_priv *priv) | 
|  | { | 
|  | u16 adc_envelope; | 
|  | u32 freq_error_hz = 0; | 
|  | u16 lock_status; | 
|  | u32 hsync_freq_hz = 0; | 
|  | u16 frame_lines; | 
|  | u16 quality; | 
|  | u16 snr; | 
|  | u16 totalgain; | 
|  | u8 hw_majorversion = 0, hw_minorversion = 0; | 
|  | u8 fw_majorversion = 0, fw_minorversion = 0; | 
|  | u16 fw_buildversion = 0; | 
|  | u16 regval; | 
|  |  | 
|  | /* Wait for stats to stabilize. | 
|  | * Frame Lines needs two frame times after initial lock | 
|  | * before it is valid. | 
|  | */ | 
|  | msleep(100); | 
|  |  | 
|  | xc_get_adc_envelope(priv,  &adc_envelope); | 
|  | dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope); | 
|  |  | 
|  | xc_get_frequency_error(priv, &freq_error_hz); | 
|  | dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz); | 
|  |  | 
|  | xc_get_lock_status(priv,  &lock_status); | 
|  | dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n", | 
|  | lock_status); | 
|  |  | 
|  | xc_get_version(priv,  &hw_majorversion, &hw_minorversion, | 
|  | &fw_majorversion, &fw_minorversion); | 
|  | xc_get_buildversion(priv,  &fw_buildversion); | 
|  | dprintk(1, "*** HW: V%d.%d, FW: V %d.%d.%d\n", | 
|  | hw_majorversion, hw_minorversion, | 
|  | fw_majorversion, fw_minorversion, fw_buildversion); | 
|  |  | 
|  | xc_get_hsync_freq(priv,  &hsync_freq_hz); | 
|  | dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz); | 
|  |  | 
|  | xc_get_frame_lines(priv,  &frame_lines); | 
|  | dprintk(1, "*** Frame lines = %d\n", frame_lines); | 
|  |  | 
|  | xc_get_quality(priv,  &quality); | 
|  | dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality & 0x07); | 
|  |  | 
|  | xc_get_analogsnr(priv,  &snr); | 
|  | dprintk(1, "*** Unweighted analog SNR = %d dB\n", snr & 0x3f); | 
|  |  | 
|  | xc_get_totalgain(priv,  &totalgain); | 
|  | dprintk(1, "*** Total gain = %d.%d dB\n", totalgain / 256, | 
|  | (totalgain % 256) * 100 / 256); | 
|  |  | 
|  | if (priv->pll_register_no) { | 
|  | if (!xc5000_readreg(priv, priv->pll_register_no, ®val)) | 
|  | dprintk(1, "*** PLL lock status = 0x%04x\n", regval); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xc5000_tune_digital(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  | u32 bw = fe->dtv_property_cache.bandwidth_hz; | 
|  |  | 
|  | ret = xc_set_signal_source(priv, priv->rf_mode); | 
|  | if (ret != 0) { | 
|  | printk(KERN_ERR | 
|  | "xc5000: xc_set_signal_source(%d) failed\n", | 
|  | priv->rf_mode); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | ret = xc_set_tv_standard(priv, | 
|  | xc5000_standard[priv->video_standard].video_mode, | 
|  | xc5000_standard[priv->video_standard].audio_mode, 0); | 
|  | if (ret != 0) { | 
|  | printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | ret = xc_set_IF_frequency(priv, priv->if_khz); | 
|  | if (ret != 0) { | 
|  | printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n", | 
|  | priv->if_khz); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | dprintk(1, "%s() setting OUTPUT_AMP to 0x%x\n", | 
|  | __func__, priv->output_amp); | 
|  | xc_write_reg(priv, XREG_OUTPUT_AMP, priv->output_amp); | 
|  |  | 
|  | xc_tune_channel(priv, priv->freq_hz, XC_TUNE_DIGITAL); | 
|  |  | 
|  | if (debug) | 
|  | xc_debug_dump(priv); | 
|  |  | 
|  | priv->bandwidth = bw; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_set_digital_params(struct dvb_frontend *fe) | 
|  | { | 
|  | int b; | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | u32 bw = fe->dtv_property_cache.bandwidth_hz; | 
|  | u32 freq = fe->dtv_property_cache.frequency; | 
|  | u32 delsys  = fe->dtv_property_cache.delivery_system; | 
|  |  | 
|  | if (xc_load_fw_and_init_tuner(fe, 0) != 0) { | 
|  | dprintk(1, "Unable to load firmware and init tuner\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dprintk(1, "%s() frequency=%d (Hz)\n", __func__, freq); | 
|  |  | 
|  | switch (delsys) { | 
|  | case SYS_ATSC: | 
|  | dprintk(1, "%s() VSB modulation\n", __func__); | 
|  | priv->rf_mode = XC_RF_MODE_AIR; | 
|  | priv->freq_offset = 1750000; | 
|  | priv->video_standard = DTV6; | 
|  | break; | 
|  | case SYS_DVBC_ANNEX_B: | 
|  | dprintk(1, "%s() QAM modulation\n", __func__); | 
|  | priv->rf_mode = XC_RF_MODE_CABLE; | 
|  | priv->freq_offset = 1750000; | 
|  | priv->video_standard = DTV6; | 
|  | break; | 
|  | case SYS_ISDBT: | 
|  | /* All ISDB-T are currently for 6 MHz bw */ | 
|  | if (!bw) | 
|  | bw = 6000000; | 
|  | /* fall to OFDM handling */ | 
|  | /* fall through */ | 
|  | case SYS_DMBTH: | 
|  | case SYS_DVBT: | 
|  | case SYS_DVBT2: | 
|  | dprintk(1, "%s() OFDM\n", __func__); | 
|  | switch (bw) { | 
|  | case 6000000: | 
|  | priv->video_standard = DTV6; | 
|  | priv->freq_offset = 1750000; | 
|  | break; | 
|  | case 7000000: | 
|  | priv->video_standard = DTV7; | 
|  | priv->freq_offset = 2250000; | 
|  | break; | 
|  | case 8000000: | 
|  | priv->video_standard = DTV8; | 
|  | priv->freq_offset = 2750000; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "xc5000 bandwidth not set!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | priv->rf_mode = XC_RF_MODE_AIR; | 
|  | break; | 
|  | case SYS_DVBC_ANNEX_A: | 
|  | case SYS_DVBC_ANNEX_C: | 
|  | dprintk(1, "%s() QAM modulation\n", __func__); | 
|  | priv->rf_mode = XC_RF_MODE_CABLE; | 
|  | if (bw <= 6000000) { | 
|  | priv->video_standard = DTV6; | 
|  | priv->freq_offset = 1750000; | 
|  | b = 6; | 
|  | } else if (bw <= 7000000) { | 
|  | priv->video_standard = DTV7; | 
|  | priv->freq_offset = 2250000; | 
|  | b = 7; | 
|  | } else { | 
|  | priv->video_standard = DTV7_8; | 
|  | priv->freq_offset = 2750000; | 
|  | b = 8; | 
|  | } | 
|  | dprintk(1, "%s() Bandwidth %dMHz (%d)\n", __func__, | 
|  | b, bw); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "xc5000: delivery system is not supported!\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | priv->freq_hz = freq - priv->freq_offset; | 
|  | priv->mode = V4L2_TUNER_DIGITAL_TV; | 
|  |  | 
|  | dprintk(1, "%s() frequency=%d (compensated to %d)\n", | 
|  | __func__, freq, priv->freq_hz); | 
|  |  | 
|  | return xc5000_tune_digital(fe); | 
|  | } | 
|  |  | 
|  | static int xc5000_is_firmware_loaded(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  | u16 id; | 
|  |  | 
|  | ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id); | 
|  | if (!ret) { | 
|  | if (id == XC_PRODUCT_ID_FW_NOT_LOADED) | 
|  | ret = -ENOENT; | 
|  | else | 
|  | ret = 0; | 
|  | dprintk(1, "%s() returns id = 0x%x\n", __func__, id); | 
|  | } else { | 
|  | dprintk(1, "%s() returns error %d\n", __func__, ret); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void xc5000_config_tv(struct dvb_frontend *fe, | 
|  | struct analog_parameters *params) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  |  | 
|  | dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n", | 
|  | __func__, params->frequency); | 
|  |  | 
|  | /* Fix me: it could be air. */ | 
|  | priv->rf_mode = params->mode; | 
|  | if (params->mode > XC_RF_MODE_CABLE) | 
|  | priv->rf_mode = XC_RF_MODE_CABLE; | 
|  |  | 
|  | /* params->frequency is in units of 62.5khz */ | 
|  | priv->freq_hz = params->frequency * 62500; | 
|  |  | 
|  | /* FIX ME: Some video standards may have several possible audio | 
|  | standards. We simply default to one of them here. | 
|  | */ | 
|  | if (params->std & V4L2_STD_MN) { | 
|  | /* default to BTSC audio standard */ | 
|  | priv->video_standard = MN_NTSC_PAL_BTSC; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (params->std & V4L2_STD_PAL_BG) { | 
|  | /* default to NICAM audio standard */ | 
|  | priv->video_standard = BG_PAL_NICAM; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (params->std & V4L2_STD_PAL_I) { | 
|  | /* default to NICAM audio standard */ | 
|  | priv->video_standard = I_PAL_NICAM; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (params->std & V4L2_STD_PAL_DK) { | 
|  | /* default to NICAM audio standard */ | 
|  | priv->video_standard = DK_PAL_NICAM; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (params->std & V4L2_STD_SECAM_DK) { | 
|  | /* default to A2 DK1 audio standard */ | 
|  | priv->video_standard = DK_SECAM_A2DK1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (params->std & V4L2_STD_SECAM_L) { | 
|  | priv->video_standard = L_SECAM_NICAM; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (params->std & V4L2_STD_SECAM_LC) { | 
|  | priv->video_standard = LC_SECAM_NICAM; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int xc5000_set_tv_freq(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | u16 pll_lock_status; | 
|  | int ret; | 
|  |  | 
|  | tune_channel: | 
|  | ret = xc_set_signal_source(priv, priv->rf_mode); | 
|  | if (ret != 0) { | 
|  | printk(KERN_ERR | 
|  | "xc5000: xc_set_signal_source(%d) failed\n", | 
|  | priv->rf_mode); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | ret = xc_set_tv_standard(priv, | 
|  | xc5000_standard[priv->video_standard].video_mode, | 
|  | xc5000_standard[priv->video_standard].audio_mode, 0); | 
|  | if (ret != 0) { | 
|  | printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09); | 
|  |  | 
|  | xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); | 
|  |  | 
|  | if (debug) | 
|  | xc_debug_dump(priv); | 
|  |  | 
|  | if (priv->pll_register_no != 0) { | 
|  | msleep(20); | 
|  | ret = xc5000_readreg(priv, priv->pll_register_no, | 
|  | &pll_lock_status); | 
|  | if (ret) | 
|  | return ret; | 
|  | if (pll_lock_status > 63) { | 
|  | /* PLL is unlocked, force reload of the firmware */ | 
|  | dprintk(1, "xc5000: PLL not locked (0x%x).  Reloading...\n", | 
|  | pll_lock_status); | 
|  | if (xc_load_fw_and_init_tuner(fe, 1) != 0) { | 
|  | printk(KERN_ERR "xc5000: Unable to reload fw\n"); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  | goto tune_channel; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_config_radio(struct dvb_frontend *fe, | 
|  | struct analog_parameters *params) | 
|  |  | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  |  | 
|  | dprintk(1, "%s() frequency=%d (in units of khz)\n", | 
|  | __func__, params->frequency); | 
|  |  | 
|  | if (priv->radio_input == XC5000_RADIO_NOT_CONFIGURED) { | 
|  | dprintk(1, "%s() radio input not configured\n", __func__); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | priv->freq_hz = params->frequency * 125 / 2; | 
|  | priv->rf_mode = XC_RF_MODE_AIR; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_set_radio_freq(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  | u8 radio_input; | 
|  |  | 
|  | if (priv->radio_input == XC5000_RADIO_FM1) | 
|  | radio_input = FM_RADIO_INPUT1; | 
|  | else if  (priv->radio_input == XC5000_RADIO_FM2) | 
|  | radio_input = FM_RADIO_INPUT2; | 
|  | else if  (priv->radio_input == XC5000_RADIO_FM1_MONO) | 
|  | radio_input = FM_RADIO_INPUT1_MONO; | 
|  | else { | 
|  | dprintk(1, "%s() unknown radio input %d\n", __func__, | 
|  | priv->radio_input); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = xc_set_tv_standard(priv, xc5000_standard[radio_input].video_mode, | 
|  | xc5000_standard[radio_input].audio_mode, radio_input); | 
|  |  | 
|  | if (ret != 0) { | 
|  | printk(KERN_ERR "xc5000: xc_set_tv_standard failed\n"); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | ret = xc_set_signal_source(priv, priv->rf_mode); | 
|  | if (ret != 0) { | 
|  | printk(KERN_ERR | 
|  | "xc5000: xc_set_signal_source(%d) failed\n", | 
|  | priv->rf_mode); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | if ((priv->radio_input == XC5000_RADIO_FM1) || | 
|  | (priv->radio_input == XC5000_RADIO_FM2)) | 
|  | xc_write_reg(priv, XREG_OUTPUT_AMP, 0x09); | 
|  | else if  (priv->radio_input == XC5000_RADIO_FM1_MONO) | 
|  | xc_write_reg(priv, XREG_OUTPUT_AMP, 0x06); | 
|  |  | 
|  | xc_tune_channel(priv, priv->freq_hz, XC_TUNE_ANALOG); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_set_params(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  |  | 
|  | if (xc_load_fw_and_init_tuner(fe, 0) != 0) { | 
|  | dprintk(1, "Unable to load firmware and init tuner\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (priv->mode) { | 
|  | case V4L2_TUNER_RADIO: | 
|  | return xc5000_set_radio_freq(fe); | 
|  | case V4L2_TUNER_ANALOG_TV: | 
|  | return xc5000_set_tv_freq(fe); | 
|  | case V4L2_TUNER_DIGITAL_TV: | 
|  | return xc5000_tune_digital(fe); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_set_analog_params(struct dvb_frontend *fe, | 
|  | struct analog_parameters *params) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  |  | 
|  | if (priv->i2c_props.adap == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (params->mode) { | 
|  | case V4L2_TUNER_RADIO: | 
|  | ret = xc5000_config_radio(fe, params); | 
|  | if (ret) | 
|  | return ret; | 
|  | break; | 
|  | case V4L2_TUNER_ANALOG_TV: | 
|  | xc5000_config_tv(fe, params); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | priv->mode = params->mode; | 
|  |  | 
|  | return xc5000_set_params(fe); | 
|  | } | 
|  |  | 
|  | static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | dprintk(1, "%s()\n", __func__); | 
|  | *freq = priv->freq_hz + priv->freq_offset; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_get_if_frequency(struct dvb_frontend *fe, u32 *freq) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | dprintk(1, "%s()\n", __func__); | 
|  | *freq = priv->if_khz * 1000; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | *bw = priv->bandwidth; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_get_status(struct dvb_frontend *fe, u32 *status) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | u16 lock_status = 0; | 
|  |  | 
|  | xc_get_lock_status(priv, &lock_status); | 
|  |  | 
|  | dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status); | 
|  |  | 
|  | *status = lock_status; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe, int force) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | const struct xc5000_fw_cfg *desired_fw = xc5000_assign_firmware(priv->chip_id); | 
|  | const struct firmware *fw; | 
|  | int ret, i; | 
|  | u16 pll_lock_status; | 
|  | u16 fw_ck; | 
|  |  | 
|  | cancel_delayed_work(&priv->timer_sleep); | 
|  |  | 
|  | if (!force && xc5000_is_firmware_loaded(fe) == 0) | 
|  | return 0; | 
|  |  | 
|  | if (!priv->firmware) { | 
|  | ret = request_firmware(&fw, desired_fw->name, | 
|  | priv->i2c_props.adap->dev.parent); | 
|  | if (ret) { | 
|  | pr_err("xc5000: Upload failed. rc %d\n", ret); | 
|  | return ret; | 
|  | } | 
|  | dprintk(1, "firmware read %zu bytes.\n", fw->size); | 
|  |  | 
|  | if (fw->size != desired_fw->size) { | 
|  | pr_err("xc5000: Firmware file with incorrect size\n"); | 
|  | release_firmware(fw); | 
|  | return -EINVAL; | 
|  | } | 
|  | priv->firmware = fw; | 
|  | } else | 
|  | fw = priv->firmware; | 
|  |  | 
|  | /* Try up to 5 times to load firmware */ | 
|  | for (i = 0; i < 5; i++) { | 
|  | if (i) | 
|  | printk(KERN_CONT " - retrying to upload firmware.\n"); | 
|  |  | 
|  | ret = xc5000_fwupload(fe, desired_fw, fw); | 
|  | if (ret != 0) | 
|  | goto err; | 
|  |  | 
|  | msleep(20); | 
|  |  | 
|  | if (priv->fw_checksum_supported) { | 
|  | if (xc5000_readreg(priv, XREG_FW_CHECKSUM, &fw_ck)) { | 
|  | printk(KERN_ERR | 
|  | "xc5000: FW checksum reading failed."); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!fw_ck) { | 
|  | printk(KERN_ERR | 
|  | "xc5000: FW checksum failed = 0x%04x.", | 
|  | fw_ck); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Start the tuner self-calibration process */ | 
|  | ret = xc_initialize(priv); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "xc5000: Can't request self-calibration."); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Wait for calibration to complete. | 
|  | * We could continue but XC5000 will clock stretch subsequent | 
|  | * I2C transactions until calibration is complete.  This way we | 
|  | * don't have to rely on clock stretching working. | 
|  | */ | 
|  | msleep(100); | 
|  |  | 
|  | if (priv->init_status_supported) { | 
|  | if (xc5000_readreg(priv, XREG_INIT_STATUS, &fw_ck)) { | 
|  | printk(KERN_ERR | 
|  | "xc5000: FW failed reading init status."); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!fw_ck) { | 
|  | printk(KERN_ERR | 
|  | "xc5000: FW init status failed = 0x%04x.", | 
|  | fw_ck); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (priv->pll_register_no) { | 
|  | ret = xc5000_readreg(priv, priv->pll_register_no, | 
|  | &pll_lock_status); | 
|  | if (ret) | 
|  | continue; | 
|  | if (pll_lock_status > 63) { | 
|  | /* PLL is unlocked, force reload of the firmware */ | 
|  | printk(KERN_ERR | 
|  | "xc5000: PLL not running after fwload."); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Default to "CABLE" mode */ | 
|  | ret = xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE); | 
|  | if (!ret) | 
|  | break; | 
|  | printk(KERN_ERR "xc5000: can't set to cable mode."); | 
|  | } | 
|  |  | 
|  | err: | 
|  | if (!ret) | 
|  | printk(KERN_INFO "xc5000: Firmware %s loaded and running.\n", | 
|  | desired_fw->name); | 
|  | else | 
|  | printk(KERN_CONT " - too many retries. Giving up\n"); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void xc5000_do_timer_sleep(struct work_struct *timer_sleep) | 
|  | { | 
|  | struct xc5000_priv *priv =container_of(timer_sleep, struct xc5000_priv, | 
|  | timer_sleep.work); | 
|  | struct dvb_frontend *fe = priv->fe; | 
|  | int ret; | 
|  |  | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | /* According to Xceive technical support, the "powerdown" register | 
|  | was removed in newer versions of the firmware.  The "supported" | 
|  | way to sleep the tuner is to pull the reset pin low for 10ms */ | 
|  | ret = xc5000_tuner_reset(fe); | 
|  | if (ret != 0) | 
|  | printk(KERN_ERR | 
|  | "xc5000: %s() unable to shutdown tuner\n", | 
|  | __func__); | 
|  | } | 
|  |  | 
|  | static int xc5000_sleep(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  |  | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | /* Avoid firmware reload on slow devices */ | 
|  | if (no_poweroff) | 
|  | return 0; | 
|  |  | 
|  | schedule_delayed_work(&priv->timer_sleep, | 
|  | msecs_to_jiffies(XC5000_SLEEP_TIME)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_suspend(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | int ret; | 
|  |  | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | cancel_delayed_work(&priv->timer_sleep); | 
|  |  | 
|  | ret = xc5000_tuner_reset(fe); | 
|  | if (ret != 0) | 
|  | printk(KERN_ERR | 
|  | "xc5000: %s() unable to shutdown tuner\n", | 
|  | __func__); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int xc5000_resume(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  |  | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | /* suspended before firmware is loaded. | 
|  | Avoid firmware load in resume path. */ | 
|  | if (!priv->firmware) | 
|  | return 0; | 
|  |  | 
|  | return xc5000_set_params(fe); | 
|  | } | 
|  |  | 
|  | static int xc5000_init(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | if (xc_load_fw_and_init_tuner(fe, 0) != 0) { | 
|  | printk(KERN_ERR "xc5000: Unable to initialise tuner\n"); | 
|  | return -EREMOTEIO; | 
|  | } | 
|  |  | 
|  | if (debug) | 
|  | xc_debug_dump(priv); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xc5000_release(struct dvb_frontend *fe) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  |  | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | mutex_lock(&xc5000_list_mutex); | 
|  |  | 
|  | if (priv) { | 
|  | cancel_delayed_work(&priv->timer_sleep); | 
|  | if (priv->firmware) { | 
|  | release_firmware(priv->firmware); | 
|  | priv->firmware = NULL; | 
|  | } | 
|  | hybrid_tuner_release_state(priv); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&xc5000_list_mutex); | 
|  |  | 
|  | fe->tuner_priv = NULL; | 
|  | } | 
|  |  | 
|  | static int xc5000_set_config(struct dvb_frontend *fe, void *priv_cfg) | 
|  | { | 
|  | struct xc5000_priv *priv = fe->tuner_priv; | 
|  | struct xc5000_config *p = priv_cfg; | 
|  |  | 
|  | dprintk(1, "%s()\n", __func__); | 
|  |  | 
|  | if (p->if_khz) | 
|  | priv->if_khz = p->if_khz; | 
|  |  | 
|  | if (p->radio_input) | 
|  | priv->radio_input = p->radio_input; | 
|  |  | 
|  | if (p->output_amp) | 
|  | priv->output_amp = p->output_amp; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static const struct dvb_tuner_ops xc5000_tuner_ops = { | 
|  | .info = { | 
|  | .name              = "Xceive XC5000", | 
|  | .frequency_min_hz  =    1 * MHz, | 
|  | .frequency_max_hz  = 1023 * MHz, | 
|  | .frequency_step_hz =   50 * kHz, | 
|  | }, | 
|  |  | 
|  | .release	   = xc5000_release, | 
|  | .init		   = xc5000_init, | 
|  | .sleep		   = xc5000_sleep, | 
|  | .suspend	   = xc5000_suspend, | 
|  | .resume		   = xc5000_resume, | 
|  |  | 
|  | .set_config	   = xc5000_set_config, | 
|  | .set_params	   = xc5000_set_digital_params, | 
|  | .set_analog_params = xc5000_set_analog_params, | 
|  | .get_frequency	   = xc5000_get_frequency, | 
|  | .get_if_frequency  = xc5000_get_if_frequency, | 
|  | .get_bandwidth	   = xc5000_get_bandwidth, | 
|  | .get_status	   = xc5000_get_status | 
|  | }; | 
|  |  | 
|  | struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe, | 
|  | struct i2c_adapter *i2c, | 
|  | const struct xc5000_config *cfg) | 
|  | { | 
|  | struct xc5000_priv *priv = NULL; | 
|  | int instance; | 
|  | u16 id = 0; | 
|  |  | 
|  | dprintk(1, "%s(%d-%04x)\n", __func__, | 
|  | i2c ? i2c_adapter_id(i2c) : -1, | 
|  | cfg ? cfg->i2c_address : -1); | 
|  |  | 
|  | mutex_lock(&xc5000_list_mutex); | 
|  |  | 
|  | instance = hybrid_tuner_request_state(struct xc5000_priv, priv, | 
|  | hybrid_tuner_instance_list, | 
|  | i2c, cfg->i2c_address, "xc5000"); | 
|  | switch (instance) { | 
|  | case 0: | 
|  | goto fail; | 
|  | case 1: | 
|  | /* new tuner instance */ | 
|  | priv->bandwidth = 6000000; | 
|  | fe->tuner_priv = priv; | 
|  | priv->fe = fe; | 
|  | INIT_DELAYED_WORK(&priv->timer_sleep, xc5000_do_timer_sleep); | 
|  | break; | 
|  | default: | 
|  | /* existing tuner instance */ | 
|  | fe->tuner_priv = priv; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (priv->if_khz == 0) { | 
|  | /* If the IF hasn't been set yet, use the value provided by | 
|  | the caller (occurs in hybrid devices where the analog | 
|  | call to xc5000_attach occurs before the digital side) */ | 
|  | priv->if_khz = cfg->if_khz; | 
|  | } | 
|  |  | 
|  | if (priv->xtal_khz == 0) | 
|  | priv->xtal_khz = cfg->xtal_khz; | 
|  |  | 
|  | if (priv->radio_input == 0) | 
|  | priv->radio_input = cfg->radio_input; | 
|  |  | 
|  | /* don't override chip id if it's already been set | 
|  | unless explicitly specified */ | 
|  | if ((priv->chip_id == 0) || (cfg->chip_id)) | 
|  | /* use default chip id if none specified, set to 0 so | 
|  | it can be overridden if this is a hybrid driver */ | 
|  | priv->chip_id = (cfg->chip_id) ? cfg->chip_id : 0; | 
|  |  | 
|  | /* don't override output_amp if it's already been set | 
|  | unless explicitly specified */ | 
|  | if ((priv->output_amp == 0) || (cfg->output_amp)) | 
|  | /* use default output_amp value if none specified */ | 
|  | priv->output_amp = (cfg->output_amp) ? cfg->output_amp : 0x8a; | 
|  |  | 
|  | /* Check if firmware has been loaded. It is possible that another | 
|  | instance of the driver has loaded the firmware. | 
|  | */ | 
|  | if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) | 
|  | goto fail; | 
|  |  | 
|  | switch (id) { | 
|  | case XC_PRODUCT_ID_FW_LOADED: | 
|  | printk(KERN_INFO | 
|  | "xc5000: Successfully identified at address 0x%02x\n", | 
|  | cfg->i2c_address); | 
|  | printk(KERN_INFO | 
|  | "xc5000: Firmware has been loaded previously\n"); | 
|  | break; | 
|  | case XC_PRODUCT_ID_FW_NOT_LOADED: | 
|  | printk(KERN_INFO | 
|  | "xc5000: Successfully identified at address 0x%02x\n", | 
|  | cfg->i2c_address); | 
|  | printk(KERN_INFO | 
|  | "xc5000: Firmware has not been loaded previously\n"); | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR | 
|  | "xc5000: Device not found at addr 0x%02x (0x%x)\n", | 
|  | cfg->i2c_address, id); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&xc5000_list_mutex); | 
|  |  | 
|  | memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops, | 
|  | sizeof(struct dvb_tuner_ops)); | 
|  |  | 
|  | return fe; | 
|  | fail: | 
|  | mutex_unlock(&xc5000_list_mutex); | 
|  |  | 
|  | xc5000_release(fe); | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL(xc5000_attach); | 
|  |  | 
|  | MODULE_AUTHOR("Steven Toth"); | 
|  | MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_FIRMWARE(XC5000A_FIRMWARE); | 
|  | MODULE_FIRMWARE(XC5000C_FIRMWARE); |