| // SPDX-License-Identifier: GPL-2.0 | 
 | /* | 
 |  * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
 |  * All Rights Reserved. | 
 |  */ | 
 | #include "xfs.h" | 
 | #include "xfs_fs.h" | 
 | #include "xfs_shared.h" | 
 | #include "xfs_format.h" | 
 | #include "xfs_log_format.h" | 
 | #include "xfs_trans_resv.h" | 
 | #include "xfs_bit.h" | 
 | #include "xfs_sb.h" | 
 | #include "xfs_mount.h" | 
 | #include "xfs_defer.h" | 
 | #include "xfs_da_format.h" | 
 | #include "xfs_da_btree.h" | 
 | #include "xfs_inode.h" | 
 | #include "xfs_dir2.h" | 
 | #include "xfs_ialloc.h" | 
 | #include "xfs_alloc.h" | 
 | #include "xfs_rtalloc.h" | 
 | #include "xfs_bmap.h" | 
 | #include "xfs_trans.h" | 
 | #include "xfs_trans_priv.h" | 
 | #include "xfs_log.h" | 
 | #include "xfs_error.h" | 
 | #include "xfs_quota.h" | 
 | #include "xfs_fsops.h" | 
 | #include "xfs_trace.h" | 
 | #include "xfs_icache.h" | 
 | #include "xfs_sysfs.h" | 
 | #include "xfs_rmap_btree.h" | 
 | #include "xfs_refcount_btree.h" | 
 | #include "xfs_reflink.h" | 
 | #include "xfs_extent_busy.h" | 
 |  | 
 |  | 
 | static DEFINE_MUTEX(xfs_uuid_table_mutex); | 
 | static int xfs_uuid_table_size; | 
 | static uuid_t *xfs_uuid_table; | 
 |  | 
 | void | 
 | xfs_uuid_table_free(void) | 
 | { | 
 | 	if (xfs_uuid_table_size == 0) | 
 | 		return; | 
 | 	kmem_free(xfs_uuid_table); | 
 | 	xfs_uuid_table = NULL; | 
 | 	xfs_uuid_table_size = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * See if the UUID is unique among mounted XFS filesystems. | 
 |  * Mount fails if UUID is nil or a FS with the same UUID is already mounted. | 
 |  */ | 
 | STATIC int | 
 | xfs_uuid_mount( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	uuid_t			*uuid = &mp->m_sb.sb_uuid; | 
 | 	int			hole, i; | 
 |  | 
 | 	/* Publish UUID in struct super_block */ | 
 | 	uuid_copy(&mp->m_super->s_uuid, uuid); | 
 |  | 
 | 	if (mp->m_flags & XFS_MOUNT_NOUUID) | 
 | 		return 0; | 
 |  | 
 | 	if (uuid_is_null(uuid)) { | 
 | 		xfs_warn(mp, "Filesystem has null UUID - can't mount"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	mutex_lock(&xfs_uuid_table_mutex); | 
 | 	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { | 
 | 		if (uuid_is_null(&xfs_uuid_table[i])) { | 
 | 			hole = i; | 
 | 			continue; | 
 | 		} | 
 | 		if (uuid_equal(uuid, &xfs_uuid_table[i])) | 
 | 			goto out_duplicate; | 
 | 	} | 
 |  | 
 | 	if (hole < 0) { | 
 | 		xfs_uuid_table = kmem_realloc(xfs_uuid_table, | 
 | 			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), | 
 | 			KM_SLEEP); | 
 | 		hole = xfs_uuid_table_size++; | 
 | 	} | 
 | 	xfs_uuid_table[hole] = *uuid; | 
 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_duplicate: | 
 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 | 	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); | 
 | 	return -EINVAL; | 
 | } | 
 |  | 
 | STATIC void | 
 | xfs_uuid_unmount( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	uuid_t			*uuid = &mp->m_sb.sb_uuid; | 
 | 	int			i; | 
 |  | 
 | 	if (mp->m_flags & XFS_MOUNT_NOUUID) | 
 | 		return; | 
 |  | 
 | 	mutex_lock(&xfs_uuid_table_mutex); | 
 | 	for (i = 0; i < xfs_uuid_table_size; i++) { | 
 | 		if (uuid_is_null(&xfs_uuid_table[i])) | 
 | 			continue; | 
 | 		if (!uuid_equal(uuid, &xfs_uuid_table[i])) | 
 | 			continue; | 
 | 		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); | 
 | 		break; | 
 | 	} | 
 | 	ASSERT(i < xfs_uuid_table_size); | 
 | 	mutex_unlock(&xfs_uuid_table_mutex); | 
 | } | 
 |  | 
 |  | 
 | STATIC void | 
 | __xfs_free_perag( | 
 | 	struct rcu_head	*head) | 
 | { | 
 | 	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); | 
 |  | 
 | 	ASSERT(atomic_read(&pag->pag_ref) == 0); | 
 | 	kmem_free(pag); | 
 | } | 
 |  | 
 | /* | 
 |  * Free up the per-ag resources associated with the mount structure. | 
 |  */ | 
 | STATIC void | 
 | xfs_free_perag( | 
 | 	xfs_mount_t	*mp) | 
 | { | 
 | 	xfs_agnumber_t	agno; | 
 | 	struct xfs_perag *pag; | 
 |  | 
 | 	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { | 
 | 		spin_lock(&mp->m_perag_lock); | 
 | 		pag = radix_tree_delete(&mp->m_perag_tree, agno); | 
 | 		spin_unlock(&mp->m_perag_lock); | 
 | 		ASSERT(pag); | 
 | 		ASSERT(atomic_read(&pag->pag_ref) == 0); | 
 | 		xfs_buf_hash_destroy(pag); | 
 | 		mutex_destroy(&pag->pag_ici_reclaim_lock); | 
 | 		call_rcu(&pag->rcu_head, __xfs_free_perag); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Check size of device based on the (data/realtime) block count. | 
 |  * Note: this check is used by the growfs code as well as mount. | 
 |  */ | 
 | int | 
 | xfs_sb_validate_fsb_count( | 
 | 	xfs_sb_t	*sbp, | 
 | 	uint64_t	nblocks) | 
 | { | 
 | 	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); | 
 | 	ASSERT(sbp->sb_blocklog >= BBSHIFT); | 
 |  | 
 | 	/* Limited by ULONG_MAX of page cache index */ | 
 | 	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) | 
 | 		return -EFBIG; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | xfs_initialize_perag( | 
 | 	xfs_mount_t	*mp, | 
 | 	xfs_agnumber_t	agcount, | 
 | 	xfs_agnumber_t	*maxagi) | 
 | { | 
 | 	xfs_agnumber_t	index; | 
 | 	xfs_agnumber_t	first_initialised = NULLAGNUMBER; | 
 | 	xfs_perag_t	*pag; | 
 | 	int		error = -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * Walk the current per-ag tree so we don't try to initialise AGs | 
 | 	 * that already exist (growfs case). Allocate and insert all the | 
 | 	 * AGs we don't find ready for initialisation. | 
 | 	 */ | 
 | 	for (index = 0; index < agcount; index++) { | 
 | 		pag = xfs_perag_get(mp, index); | 
 | 		if (pag) { | 
 | 			xfs_perag_put(pag); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); | 
 | 		if (!pag) | 
 | 			goto out_unwind_new_pags; | 
 | 		pag->pag_agno = index; | 
 | 		pag->pag_mount = mp; | 
 | 		spin_lock_init(&pag->pag_ici_lock); | 
 | 		mutex_init(&pag->pag_ici_reclaim_lock); | 
 | 		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); | 
 | 		if (xfs_buf_hash_init(pag)) | 
 | 			goto out_free_pag; | 
 | 		init_waitqueue_head(&pag->pagb_wait); | 
 | 		spin_lock_init(&pag->pagb_lock); | 
 | 		pag->pagb_count = 0; | 
 | 		pag->pagb_tree = RB_ROOT; | 
 |  | 
 | 		if (radix_tree_preload(GFP_NOFS)) | 
 | 			goto out_hash_destroy; | 
 |  | 
 | 		spin_lock(&mp->m_perag_lock); | 
 | 		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { | 
 | 			BUG(); | 
 | 			spin_unlock(&mp->m_perag_lock); | 
 | 			radix_tree_preload_end(); | 
 | 			error = -EEXIST; | 
 | 			goto out_hash_destroy; | 
 | 		} | 
 | 		spin_unlock(&mp->m_perag_lock); | 
 | 		radix_tree_preload_end(); | 
 | 		/* first new pag is fully initialized */ | 
 | 		if (first_initialised == NULLAGNUMBER) | 
 | 			first_initialised = index; | 
 | 	} | 
 |  | 
 | 	index = xfs_set_inode_alloc(mp, agcount); | 
 |  | 
 | 	if (maxagi) | 
 | 		*maxagi = index; | 
 |  | 
 | 	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); | 
 | 	return 0; | 
 |  | 
 | out_hash_destroy: | 
 | 	xfs_buf_hash_destroy(pag); | 
 | out_free_pag: | 
 | 	mutex_destroy(&pag->pag_ici_reclaim_lock); | 
 | 	kmem_free(pag); | 
 | out_unwind_new_pags: | 
 | 	/* unwind any prior newly initialized pags */ | 
 | 	for (index = first_initialised; index < agcount; index++) { | 
 | 		pag = radix_tree_delete(&mp->m_perag_tree, index); | 
 | 		if (!pag) | 
 | 			break; | 
 | 		xfs_buf_hash_destroy(pag); | 
 | 		mutex_destroy(&pag->pag_ici_reclaim_lock); | 
 | 		kmem_free(pag); | 
 | 	} | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_readsb | 
 |  * | 
 |  * Does the initial read of the superblock. | 
 |  */ | 
 | int | 
 | xfs_readsb( | 
 | 	struct xfs_mount *mp, | 
 | 	int		flags) | 
 | { | 
 | 	unsigned int	sector_size; | 
 | 	struct xfs_buf	*bp; | 
 | 	struct xfs_sb	*sbp = &mp->m_sb; | 
 | 	int		error; | 
 | 	int		loud = !(flags & XFS_MFSI_QUIET); | 
 | 	const struct xfs_buf_ops *buf_ops; | 
 |  | 
 | 	ASSERT(mp->m_sb_bp == NULL); | 
 | 	ASSERT(mp->m_ddev_targp != NULL); | 
 |  | 
 | 	/* | 
 | 	 * For the initial read, we must guess at the sector | 
 | 	 * size based on the block device.  It's enough to | 
 | 	 * get the sb_sectsize out of the superblock and | 
 | 	 * then reread with the proper length. | 
 | 	 * We don't verify it yet, because it may not be complete. | 
 | 	 */ | 
 | 	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); | 
 | 	buf_ops = NULL; | 
 |  | 
 | 	/* | 
 | 	 * Allocate a (locked) buffer to hold the superblock. This will be kept | 
 | 	 * around at all times to optimize access to the superblock. Therefore, | 
 | 	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count | 
 | 	 * elevated. | 
 | 	 */ | 
 | reread: | 
 | 	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, | 
 | 				      BTOBB(sector_size), XBF_NO_IOACCT, &bp, | 
 | 				      buf_ops); | 
 | 	if (error) { | 
 | 		if (loud) | 
 | 			xfs_warn(mp, "SB validate failed with error %d.", error); | 
 | 		/* bad CRC means corrupted metadata */ | 
 | 		if (error == -EFSBADCRC) | 
 | 			error = -EFSCORRUPTED; | 
 | 		return error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize the mount structure from the superblock. | 
 | 	 */ | 
 | 	xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); | 
 |  | 
 | 	/* | 
 | 	 * If we haven't validated the superblock, do so now before we try | 
 | 	 * to check the sector size and reread the superblock appropriately. | 
 | 	 */ | 
 | 	if (sbp->sb_magicnum != XFS_SB_MAGIC) { | 
 | 		if (loud) | 
 | 			xfs_warn(mp, "Invalid superblock magic number"); | 
 | 		error = -EINVAL; | 
 | 		goto release_buf; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We must be able to do sector-sized and sector-aligned IO. | 
 | 	 */ | 
 | 	if (sector_size > sbp->sb_sectsize) { | 
 | 		if (loud) | 
 | 			xfs_warn(mp, "device supports %u byte sectors (not %u)", | 
 | 				sector_size, sbp->sb_sectsize); | 
 | 		error = -ENOSYS; | 
 | 		goto release_buf; | 
 | 	} | 
 |  | 
 | 	if (buf_ops == NULL) { | 
 | 		/* | 
 | 		 * Re-read the superblock so the buffer is correctly sized, | 
 | 		 * and properly verified. | 
 | 		 */ | 
 | 		xfs_buf_relse(bp); | 
 | 		sector_size = sbp->sb_sectsize; | 
 | 		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; | 
 | 		goto reread; | 
 | 	} | 
 |  | 
 | 	xfs_reinit_percpu_counters(mp); | 
 |  | 
 | 	/* no need to be quiet anymore, so reset the buf ops */ | 
 | 	bp->b_ops = &xfs_sb_buf_ops; | 
 |  | 
 | 	mp->m_sb_bp = bp; | 
 | 	xfs_buf_unlock(bp); | 
 | 	return 0; | 
 |  | 
 | release_buf: | 
 | 	xfs_buf_relse(bp); | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * Update alignment values based on mount options and sb values | 
 |  */ | 
 | STATIC int | 
 | xfs_update_alignment(xfs_mount_t *mp) | 
 | { | 
 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 |  | 
 | 	if (mp->m_dalign) { | 
 | 		/* | 
 | 		 * If stripe unit and stripe width are not multiples | 
 | 		 * of the fs blocksize turn off alignment. | 
 | 		 */ | 
 | 		if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || | 
 | 		    (BBTOB(mp->m_swidth) & mp->m_blockmask)) { | 
 | 			xfs_warn(mp, | 
 | 		"alignment check failed: sunit/swidth vs. blocksize(%d)", | 
 | 				sbp->sb_blocksize); | 
 | 			return -EINVAL; | 
 | 		} else { | 
 | 			/* | 
 | 			 * Convert the stripe unit and width to FSBs. | 
 | 			 */ | 
 | 			mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); | 
 | 			if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) { | 
 | 				xfs_warn(mp, | 
 | 			"alignment check failed: sunit/swidth vs. agsize(%d)", | 
 | 					 sbp->sb_agblocks); | 
 | 				return -EINVAL; | 
 | 			} else if (mp->m_dalign) { | 
 | 				mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); | 
 | 			} else { | 
 | 				xfs_warn(mp, | 
 | 			"alignment check failed: sunit(%d) less than bsize(%d)", | 
 | 					 mp->m_dalign, sbp->sb_blocksize); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Update superblock with new values | 
 | 		 * and log changes | 
 | 		 */ | 
 | 		if (xfs_sb_version_hasdalign(sbp)) { | 
 | 			if (sbp->sb_unit != mp->m_dalign) { | 
 | 				sbp->sb_unit = mp->m_dalign; | 
 | 				mp->m_update_sb = true; | 
 | 			} | 
 | 			if (sbp->sb_width != mp->m_swidth) { | 
 | 				sbp->sb_width = mp->m_swidth; | 
 | 				mp->m_update_sb = true; | 
 | 			} | 
 | 		} else { | 
 | 			xfs_warn(mp, | 
 | 	"cannot change alignment: superblock does not support data alignment"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && | 
 | 		    xfs_sb_version_hasdalign(&mp->m_sb)) { | 
 | 			mp->m_dalign = sbp->sb_unit; | 
 | 			mp->m_swidth = sbp->sb_width; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Set the maximum inode count for this filesystem | 
 |  */ | 
 | STATIC void | 
 | xfs_set_maxicount(xfs_mount_t *mp) | 
 | { | 
 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 | 	uint64_t	icount; | 
 |  | 
 | 	if (sbp->sb_imax_pct) { | 
 | 		/* | 
 | 		 * Make sure the maximum inode count is a multiple | 
 | 		 * of the units we allocate inodes in. | 
 | 		 */ | 
 | 		icount = sbp->sb_dblocks * sbp->sb_imax_pct; | 
 | 		do_div(icount, 100); | 
 | 		do_div(icount, mp->m_ialloc_blks); | 
 | 		mp->m_maxicount = (icount * mp->m_ialloc_blks)  << | 
 | 				   sbp->sb_inopblog; | 
 | 	} else { | 
 | 		mp->m_maxicount = 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Set the default minimum read and write sizes unless | 
 |  * already specified in a mount option. | 
 |  * We use smaller I/O sizes when the file system | 
 |  * is being used for NFS service (wsync mount option). | 
 |  */ | 
 | STATIC void | 
 | xfs_set_rw_sizes(xfs_mount_t *mp) | 
 | { | 
 | 	xfs_sb_t	*sbp = &(mp->m_sb); | 
 | 	int		readio_log, writeio_log; | 
 |  | 
 | 	if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) { | 
 | 		if (mp->m_flags & XFS_MOUNT_WSYNC) { | 
 | 			readio_log = XFS_WSYNC_READIO_LOG; | 
 | 			writeio_log = XFS_WSYNC_WRITEIO_LOG; | 
 | 		} else { | 
 | 			readio_log = XFS_READIO_LOG_LARGE; | 
 | 			writeio_log = XFS_WRITEIO_LOG_LARGE; | 
 | 		} | 
 | 	} else { | 
 | 		readio_log = mp->m_readio_log; | 
 | 		writeio_log = mp->m_writeio_log; | 
 | 	} | 
 |  | 
 | 	if (sbp->sb_blocklog > readio_log) { | 
 | 		mp->m_readio_log = sbp->sb_blocklog; | 
 | 	} else { | 
 | 		mp->m_readio_log = readio_log; | 
 | 	} | 
 | 	mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog); | 
 | 	if (sbp->sb_blocklog > writeio_log) { | 
 | 		mp->m_writeio_log = sbp->sb_blocklog; | 
 | 	} else { | 
 | 		mp->m_writeio_log = writeio_log; | 
 | 	} | 
 | 	mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog); | 
 | } | 
 |  | 
 | /* | 
 |  * precalculate the low space thresholds for dynamic speculative preallocation. | 
 |  */ | 
 | void | 
 | xfs_set_low_space_thresholds( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < XFS_LOWSP_MAX; i++) { | 
 | 		uint64_t space = mp->m_sb.sb_dblocks; | 
 |  | 
 | 		do_div(space, 100); | 
 | 		mp->m_low_space[i] = space * (i + 1); | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Set whether we're using inode alignment. | 
 |  */ | 
 | STATIC void | 
 | xfs_set_inoalignment(xfs_mount_t *mp) | 
 | { | 
 | 	if (xfs_sb_version_hasalign(&mp->m_sb) && | 
 | 		mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp)) | 
 | 		mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1; | 
 | 	else | 
 | 		mp->m_inoalign_mask = 0; | 
 | 	/* | 
 | 	 * If we are using stripe alignment, check whether | 
 | 	 * the stripe unit is a multiple of the inode alignment | 
 | 	 */ | 
 | 	if (mp->m_dalign && mp->m_inoalign_mask && | 
 | 	    !(mp->m_dalign & mp->m_inoalign_mask)) | 
 | 		mp->m_sinoalign = mp->m_dalign; | 
 | 	else | 
 | 		mp->m_sinoalign = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Check that the data (and log if separate) is an ok size. | 
 |  */ | 
 | STATIC int | 
 | xfs_check_sizes( | 
 | 	struct xfs_mount *mp) | 
 | { | 
 | 	struct xfs_buf	*bp; | 
 | 	xfs_daddr_t	d; | 
 | 	int		error; | 
 |  | 
 | 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); | 
 | 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { | 
 | 		xfs_warn(mp, "filesystem size mismatch detected"); | 
 | 		return -EFBIG; | 
 | 	} | 
 | 	error = xfs_buf_read_uncached(mp->m_ddev_targp, | 
 | 					d - XFS_FSS_TO_BB(mp, 1), | 
 | 					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "last sector read failed"); | 
 | 		return error; | 
 | 	} | 
 | 	xfs_buf_relse(bp); | 
 |  | 
 | 	if (mp->m_logdev_targp == mp->m_ddev_targp) | 
 | 		return 0; | 
 |  | 
 | 	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); | 
 | 	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { | 
 | 		xfs_warn(mp, "log size mismatch detected"); | 
 | 		return -EFBIG; | 
 | 	} | 
 | 	error = xfs_buf_read_uncached(mp->m_logdev_targp, | 
 | 					d - XFS_FSB_TO_BB(mp, 1), | 
 | 					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "log device read failed"); | 
 | 		return error; | 
 | 	} | 
 | 	xfs_buf_relse(bp); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Clear the quotaflags in memory and in the superblock. | 
 |  */ | 
 | int | 
 | xfs_mount_reset_sbqflags( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	mp->m_qflags = 0; | 
 |  | 
 | 	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ | 
 | 	if (mp->m_sb.sb_qflags == 0) | 
 | 		return 0; | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	mp->m_sb.sb_qflags = 0; | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 |  | 
 | 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) | 
 | 		return 0; | 
 |  | 
 | 	return xfs_sync_sb(mp, false); | 
 | } | 
 |  | 
 | uint64_t | 
 | xfs_default_resblks(xfs_mount_t *mp) | 
 | { | 
 | 	uint64_t resblks; | 
 |  | 
 | 	/* | 
 | 	 * We default to 5% or 8192 fsbs of space reserved, whichever is | 
 | 	 * smaller.  This is intended to cover concurrent allocation | 
 | 	 * transactions when we initially hit enospc. These each require a 4 | 
 | 	 * block reservation. Hence by default we cover roughly 2000 concurrent | 
 | 	 * allocation reservations. | 
 | 	 */ | 
 | 	resblks = mp->m_sb.sb_dblocks; | 
 | 	do_div(resblks, 20); | 
 | 	resblks = min_t(uint64_t, resblks, 8192); | 
 | 	return resblks; | 
 | } | 
 |  | 
 | /* Ensure the summary counts are correct. */ | 
 | STATIC int | 
 | xfs_check_summary_counts( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	/* | 
 | 	 * The AG0 superblock verifier rejects in-progress filesystems, | 
 | 	 * so we should never see the flag set this far into mounting. | 
 | 	 */ | 
 | 	if (mp->m_sb.sb_inprogress) { | 
 | 		xfs_err(mp, "sb_inprogress set after log recovery??"); | 
 | 		WARN_ON(1); | 
 | 		return -EFSCORRUPTED; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now the log is mounted, we know if it was an unclean shutdown or | 
 | 	 * not. If it was, with the first phase of recovery has completed, we | 
 | 	 * have consistent AG blocks on disk. We have not recovered EFIs yet, | 
 | 	 * but they are recovered transactionally in the second recovery phase | 
 | 	 * later. | 
 | 	 * | 
 | 	 * If the log was clean when we mounted, we can check the summary | 
 | 	 * counters.  If any of them are obviously incorrect, we can recompute | 
 | 	 * them from the AGF headers in the next step. | 
 | 	 */ | 
 | 	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && | 
 | 	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || | 
 | 	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) || | 
 | 	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) | 
 | 		mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; | 
 |  | 
 | 	/* | 
 | 	 * We can safely re-initialise incore superblock counters from the | 
 | 	 * per-ag data. These may not be correct if the filesystem was not | 
 | 	 * cleanly unmounted, so we waited for recovery to finish before doing | 
 | 	 * this. | 
 | 	 * | 
 | 	 * If the filesystem was cleanly unmounted or the previous check did | 
 | 	 * not flag anything weird, then we can trust the values in the | 
 | 	 * superblock to be correct and we don't need to do anything here. | 
 | 	 * Otherwise, recalculate the summary counters. | 
 | 	 */ | 
 | 	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || | 
 | 	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && | 
 | 	    !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY)) | 
 | 		return 0; | 
 |  | 
 | 	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); | 
 | } | 
 |  | 
 | /* | 
 |  * This function does the following on an initial mount of a file system: | 
 |  *	- reads the superblock from disk and init the mount struct | 
 |  *	- if we're a 32-bit kernel, do a size check on the superblock | 
 |  *		so we don't mount terabyte filesystems | 
 |  *	- init mount struct realtime fields | 
 |  *	- allocate inode hash table for fs | 
 |  *	- init directory manager | 
 |  *	- perform recovery and init the log manager | 
 |  */ | 
 | int | 
 | xfs_mountfs( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	struct xfs_sb		*sbp = &(mp->m_sb); | 
 | 	struct xfs_inode	*rip; | 
 | 	uint64_t		resblks; | 
 | 	uint			quotamount = 0; | 
 | 	uint			quotaflags = 0; | 
 | 	int			error = 0; | 
 |  | 
 | 	xfs_sb_mount_common(mp, sbp); | 
 |  | 
 | 	/* | 
 | 	 * Check for a mismatched features2 values.  Older kernels read & wrote | 
 | 	 * into the wrong sb offset for sb_features2 on some platforms due to | 
 | 	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, | 
 | 	 * which made older superblock reading/writing routines swap it as a | 
 | 	 * 64-bit value. | 
 | 	 * | 
 | 	 * For backwards compatibility, we make both slots equal. | 
 | 	 * | 
 | 	 * If we detect a mismatched field, we OR the set bits into the existing | 
 | 	 * features2 field in case it has already been modified; we don't want | 
 | 	 * to lose any features.  We then update the bad location with the ORed | 
 | 	 * value so that older kernels will see any features2 flags. The | 
 | 	 * superblock writeback code ensures the new sb_features2 is copied to | 
 | 	 * sb_bad_features2 before it is logged or written to disk. | 
 | 	 */ | 
 | 	if (xfs_sb_has_mismatched_features2(sbp)) { | 
 | 		xfs_warn(mp, "correcting sb_features alignment problem"); | 
 | 		sbp->sb_features2 |= sbp->sb_bad_features2; | 
 | 		mp->m_update_sb = true; | 
 |  | 
 | 		/* | 
 | 		 * Re-check for ATTR2 in case it was found in bad_features2 | 
 | 		 * slot. | 
 | 		 */ | 
 | 		if (xfs_sb_version_hasattr2(&mp->m_sb) && | 
 | 		   !(mp->m_flags & XFS_MOUNT_NOATTR2)) | 
 | 			mp->m_flags |= XFS_MOUNT_ATTR2; | 
 | 	} | 
 |  | 
 | 	if (xfs_sb_version_hasattr2(&mp->m_sb) && | 
 | 	   (mp->m_flags & XFS_MOUNT_NOATTR2)) { | 
 | 		xfs_sb_version_removeattr2(&mp->m_sb); | 
 | 		mp->m_update_sb = true; | 
 |  | 
 | 		/* update sb_versionnum for the clearing of the morebits */ | 
 | 		if (!sbp->sb_features2) | 
 | 			mp->m_update_sb = true; | 
 | 	} | 
 |  | 
 | 	/* always use v2 inodes by default now */ | 
 | 	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { | 
 | 		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; | 
 | 		mp->m_update_sb = true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Check if sb_agblocks is aligned at stripe boundary | 
 | 	 * If sb_agblocks is NOT aligned turn off m_dalign since | 
 | 	 * allocator alignment is within an ag, therefore ag has | 
 | 	 * to be aligned at stripe boundary. | 
 | 	 */ | 
 | 	error = xfs_update_alignment(mp); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	xfs_alloc_compute_maxlevels(mp); | 
 | 	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); | 
 | 	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); | 
 | 	xfs_ialloc_compute_maxlevels(mp); | 
 | 	xfs_rmapbt_compute_maxlevels(mp); | 
 | 	xfs_refcountbt_compute_maxlevels(mp); | 
 |  | 
 | 	xfs_set_maxicount(mp); | 
 |  | 
 | 	/* enable fail_at_unmount as default */ | 
 | 	mp->m_fail_unmount = true; | 
 |  | 
 | 	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname); | 
 | 	if (error) | 
 | 		goto out; | 
 |  | 
 | 	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, | 
 | 			       &mp->m_kobj, "stats"); | 
 | 	if (error) | 
 | 		goto out_remove_sysfs; | 
 |  | 
 | 	error = xfs_error_sysfs_init(mp); | 
 | 	if (error) | 
 | 		goto out_del_stats; | 
 |  | 
 | 	error = xfs_errortag_init(mp); | 
 | 	if (error) | 
 | 		goto out_remove_error_sysfs; | 
 |  | 
 | 	error = xfs_uuid_mount(mp); | 
 | 	if (error) | 
 | 		goto out_remove_errortag; | 
 |  | 
 | 	/* | 
 | 	 * Set the minimum read and write sizes | 
 | 	 */ | 
 | 	xfs_set_rw_sizes(mp); | 
 |  | 
 | 	/* set the low space thresholds for dynamic preallocation */ | 
 | 	xfs_set_low_space_thresholds(mp); | 
 |  | 
 | 	/* | 
 | 	 * Set the inode cluster size. | 
 | 	 * This may still be overridden by the file system | 
 | 	 * block size if it is larger than the chosen cluster size. | 
 | 	 * | 
 | 	 * For v5 filesystems, scale the cluster size with the inode size to | 
 | 	 * keep a constant ratio of inode per cluster buffer, but only if mkfs | 
 | 	 * has set the inode alignment value appropriately for larger cluster | 
 | 	 * sizes. | 
 | 	 */ | 
 | 	mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE; | 
 | 	if (xfs_sb_version_hascrc(&mp->m_sb)) { | 
 | 		int	new_size = mp->m_inode_cluster_size; | 
 |  | 
 | 		new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE; | 
 | 		if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size)) | 
 | 			mp->m_inode_cluster_size = new_size; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If enabled, sparse inode chunk alignment is expected to match the | 
 | 	 * cluster size. Full inode chunk alignment must match the chunk size, | 
 | 	 * but that is checked on sb read verification... | 
 | 	 */ | 
 | 	if (xfs_sb_version_hassparseinodes(&mp->m_sb) && | 
 | 	    mp->m_sb.sb_spino_align != | 
 | 			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) { | 
 | 		xfs_warn(mp, | 
 | 	"Sparse inode block alignment (%u) must match cluster size (%llu).", | 
 | 			 mp->m_sb.sb_spino_align, | 
 | 			 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)); | 
 | 		error = -EINVAL; | 
 | 		goto out_remove_uuid; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Set inode alignment fields | 
 | 	 */ | 
 | 	xfs_set_inoalignment(mp); | 
 |  | 
 | 	/* | 
 | 	 * Check that the data (and log if separate) is an ok size. | 
 | 	 */ | 
 | 	error = xfs_check_sizes(mp); | 
 | 	if (error) | 
 | 		goto out_remove_uuid; | 
 |  | 
 | 	/* | 
 | 	 * Initialize realtime fields in the mount structure | 
 | 	 */ | 
 | 	error = xfs_rtmount_init(mp); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "RT mount failed"); | 
 | 		goto out_remove_uuid; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 *  Copies the low order bits of the timestamp and the randomly | 
 | 	 *  set "sequence" number out of a UUID. | 
 | 	 */ | 
 | 	mp->m_fixedfsid[0] = | 
 | 		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | | 
 | 		 get_unaligned_be16(&sbp->sb_uuid.b[4]); | 
 | 	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); | 
 |  | 
 | 	error = xfs_da_mount(mp); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "Failed dir/attr init: %d", error); | 
 | 		goto out_remove_uuid; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialize the precomputed transaction reservations values. | 
 | 	 */ | 
 | 	xfs_trans_init(mp); | 
 |  | 
 | 	/* | 
 | 	 * Allocate and initialize the per-ag data. | 
 | 	 */ | 
 | 	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "Failed per-ag init: %d", error); | 
 | 		goto out_free_dir; | 
 | 	} | 
 |  | 
 | 	if (!sbp->sb_logblocks) { | 
 | 		xfs_warn(mp, "no log defined"); | 
 | 		XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp); | 
 | 		error = -EFSCORRUPTED; | 
 | 		goto out_free_perag; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Log's mount-time initialization. The first part of recovery can place | 
 | 	 * some items on the AIL, to be handled when recovery is finished or | 
 | 	 * cancelled. | 
 | 	 */ | 
 | 	error = xfs_log_mount(mp, mp->m_logdev_targp, | 
 | 			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), | 
 | 			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "log mount failed"); | 
 | 		goto out_fail_wait; | 
 | 	} | 
 |  | 
 | 	/* Make sure the summary counts are ok. */ | 
 | 	error = xfs_check_summary_counts(mp); | 
 | 	if (error) | 
 | 		goto out_log_dealloc; | 
 |  | 
 | 	/* | 
 | 	 * Get and sanity-check the root inode. | 
 | 	 * Save the pointer to it in the mount structure. | 
 | 	 */ | 
 | 	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, | 
 | 			 XFS_ILOCK_EXCL, &rip); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, | 
 | 			"Failed to read root inode 0x%llx, error %d", | 
 | 			sbp->sb_rootino, -error); | 
 | 		goto out_log_dealloc; | 
 | 	} | 
 |  | 
 | 	ASSERT(rip != NULL); | 
 |  | 
 | 	if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) { | 
 | 		xfs_warn(mp, "corrupted root inode %llu: not a directory", | 
 | 			(unsigned long long)rip->i_ino); | 
 | 		xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
 | 		XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW, | 
 | 				 mp); | 
 | 		error = -EFSCORRUPTED; | 
 | 		goto out_rele_rip; | 
 | 	} | 
 | 	mp->m_rootip = rip;	/* save it */ | 
 |  | 
 | 	xfs_iunlock(rip, XFS_ILOCK_EXCL); | 
 |  | 
 | 	/* | 
 | 	 * Initialize realtime inode pointers in the mount structure | 
 | 	 */ | 
 | 	error = xfs_rtmount_inodes(mp); | 
 | 	if (error) { | 
 | 		/* | 
 | 		 * Free up the root inode. | 
 | 		 */ | 
 | 		xfs_warn(mp, "failed to read RT inodes"); | 
 | 		goto out_rele_rip; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this is a read-only mount defer the superblock updates until | 
 | 	 * the next remount into writeable mode.  Otherwise we would never | 
 | 	 * perform the update e.g. for the root filesystem. | 
 | 	 */ | 
 | 	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { | 
 | 		error = xfs_sync_sb(mp, false); | 
 | 		if (error) { | 
 | 			xfs_warn(mp, "failed to write sb changes"); | 
 | 			goto out_rtunmount; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initialise the XFS quota management subsystem for this mount | 
 | 	 */ | 
 | 	if (XFS_IS_QUOTA_RUNNING(mp)) { | 
 | 		error = xfs_qm_newmount(mp, "amount, "aflags); | 
 | 		if (error) | 
 | 			goto out_rtunmount; | 
 | 	} else { | 
 | 		ASSERT(!XFS_IS_QUOTA_ON(mp)); | 
 |  | 
 | 		/* | 
 | 		 * If a file system had quotas running earlier, but decided to | 
 | 		 * mount without -o uquota/pquota/gquota options, revoke the | 
 | 		 * quotachecked license. | 
 | 		 */ | 
 | 		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { | 
 | 			xfs_notice(mp, "resetting quota flags"); | 
 | 			error = xfs_mount_reset_sbqflags(mp); | 
 | 			if (error) | 
 | 				goto out_rtunmount; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Finish recovering the file system.  This part needed to be delayed | 
 | 	 * until after the root and real-time bitmap inodes were consistently | 
 | 	 * read in. | 
 | 	 */ | 
 | 	error = xfs_log_mount_finish(mp); | 
 | 	if (error) { | 
 | 		xfs_warn(mp, "log mount finish failed"); | 
 | 		goto out_rtunmount; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now the log is fully replayed, we can transition to full read-only | 
 | 	 * mode for read-only mounts. This will sync all the metadata and clean | 
 | 	 * the log so that the recovery we just performed does not have to be | 
 | 	 * replayed again on the next mount. | 
 | 	 * | 
 | 	 * We use the same quiesce mechanism as the rw->ro remount, as they are | 
 | 	 * semantically identical operations. | 
 | 	 */ | 
 | 	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == | 
 | 							XFS_MOUNT_RDONLY) { | 
 | 		xfs_quiesce_attr(mp); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Complete the quota initialisation, post-log-replay component. | 
 | 	 */ | 
 | 	if (quotamount) { | 
 | 		ASSERT(mp->m_qflags == 0); | 
 | 		mp->m_qflags = quotaflags; | 
 |  | 
 | 		xfs_qm_mount_quotas(mp); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now we are mounted, reserve a small amount of unused space for | 
 | 	 * privileged transactions. This is needed so that transaction | 
 | 	 * space required for critical operations can dip into this pool | 
 | 	 * when at ENOSPC. This is needed for operations like create with | 
 | 	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations | 
 | 	 * are not allowed to use this reserved space. | 
 | 	 * | 
 | 	 * This may drive us straight to ENOSPC on mount, but that implies | 
 | 	 * we were already there on the last unmount. Warn if this occurs. | 
 | 	 */ | 
 | 	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { | 
 | 		resblks = xfs_default_resblks(mp); | 
 | 		error = xfs_reserve_blocks(mp, &resblks, NULL); | 
 | 		if (error) | 
 | 			xfs_warn(mp, | 
 | 	"Unable to allocate reserve blocks. Continuing without reserve pool."); | 
 |  | 
 | 		/* Recover any CoW blocks that never got remapped. */ | 
 | 		error = xfs_reflink_recover_cow(mp); | 
 | 		if (error) { | 
 | 			xfs_err(mp, | 
 | 	"Error %d recovering leftover CoW allocations.", error); | 
 | 			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
 | 			goto out_quota; | 
 | 		} | 
 |  | 
 | 		/* Reserve AG blocks for future btree expansion. */ | 
 | 		error = xfs_fs_reserve_ag_blocks(mp); | 
 | 		if (error && error != -ENOSPC) | 
 | 			goto out_agresv; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 |  out_agresv: | 
 | 	xfs_fs_unreserve_ag_blocks(mp); | 
 |  out_quota: | 
 | 	xfs_qm_unmount_quotas(mp); | 
 |  out_rtunmount: | 
 | 	xfs_rtunmount_inodes(mp); | 
 |  out_rele_rip: | 
 | 	xfs_irele(rip); | 
 | 	/* Clean out dquots that might be in memory after quotacheck. */ | 
 | 	xfs_qm_unmount(mp); | 
 | 	/* | 
 | 	 * Cancel all delayed reclaim work and reclaim the inodes directly. | 
 | 	 * We have to do this /after/ rtunmount and qm_unmount because those | 
 | 	 * two will have scheduled delayed reclaim for the rt/quota inodes. | 
 | 	 * | 
 | 	 * This is slightly different from the unmountfs call sequence | 
 | 	 * because we could be tearing down a partially set up mount.  In | 
 | 	 * particular, if log_mount_finish fails we bail out without calling | 
 | 	 * qm_unmount_quotas and therefore rely on qm_unmount to release the | 
 | 	 * quota inodes. | 
 | 	 */ | 
 | 	cancel_delayed_work_sync(&mp->m_reclaim_work); | 
 | 	xfs_reclaim_inodes(mp, SYNC_WAIT); | 
 |  out_log_dealloc: | 
 | 	mp->m_flags |= XFS_MOUNT_UNMOUNTING; | 
 | 	xfs_log_mount_cancel(mp); | 
 |  out_fail_wait: | 
 | 	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) | 
 | 		xfs_wait_buftarg(mp->m_logdev_targp); | 
 | 	xfs_wait_buftarg(mp->m_ddev_targp); | 
 |  out_free_perag: | 
 | 	xfs_free_perag(mp); | 
 |  out_free_dir: | 
 | 	xfs_da_unmount(mp); | 
 |  out_remove_uuid: | 
 | 	xfs_uuid_unmount(mp); | 
 |  out_remove_errortag: | 
 | 	xfs_errortag_del(mp); | 
 |  out_remove_error_sysfs: | 
 | 	xfs_error_sysfs_del(mp); | 
 |  out_del_stats: | 
 | 	xfs_sysfs_del(&mp->m_stats.xs_kobj); | 
 |  out_remove_sysfs: | 
 | 	xfs_sysfs_del(&mp->m_kobj); | 
 |  out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /* | 
 |  * This flushes out the inodes,dquots and the superblock, unmounts the | 
 |  * log and makes sure that incore structures are freed. | 
 |  */ | 
 | void | 
 | xfs_unmountfs( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	uint64_t		resblks; | 
 | 	int			error; | 
 |  | 
 | 	xfs_icache_disable_reclaim(mp); | 
 | 	xfs_fs_unreserve_ag_blocks(mp); | 
 | 	xfs_qm_unmount_quotas(mp); | 
 | 	xfs_rtunmount_inodes(mp); | 
 | 	xfs_irele(mp->m_rootip); | 
 |  | 
 | 	/* | 
 | 	 * We can potentially deadlock here if we have an inode cluster | 
 | 	 * that has been freed has its buffer still pinned in memory because | 
 | 	 * the transaction is still sitting in a iclog. The stale inodes | 
 | 	 * on that buffer will have their flush locks held until the | 
 | 	 * transaction hits the disk and the callbacks run. the inode | 
 | 	 * flush takes the flush lock unconditionally and with nothing to | 
 | 	 * push out the iclog we will never get that unlocked. hence we | 
 | 	 * need to force the log first. | 
 | 	 */ | 
 | 	xfs_log_force(mp, XFS_LOG_SYNC); | 
 |  | 
 | 	/* | 
 | 	 * Wait for all busy extents to be freed, including completion of | 
 | 	 * any discard operation. | 
 | 	 */ | 
 | 	xfs_extent_busy_wait_all(mp); | 
 | 	flush_workqueue(xfs_discard_wq); | 
 |  | 
 | 	/* | 
 | 	 * We now need to tell the world we are unmounting. This will allow | 
 | 	 * us to detect that the filesystem is going away and we should error | 
 | 	 * out anything that we have been retrying in the background. This will | 
 | 	 * prevent neverending retries in AIL pushing from hanging the unmount. | 
 | 	 */ | 
 | 	mp->m_flags |= XFS_MOUNT_UNMOUNTING; | 
 |  | 
 | 	/* | 
 | 	 * Flush all pending changes from the AIL. | 
 | 	 */ | 
 | 	xfs_ail_push_all_sync(mp->m_ail); | 
 |  | 
 | 	/* | 
 | 	 * And reclaim all inodes.  At this point there should be no dirty | 
 | 	 * inodes and none should be pinned or locked, but use synchronous | 
 | 	 * reclaim just to be sure. We can stop background inode reclaim | 
 | 	 * here as well if it is still running. | 
 | 	 */ | 
 | 	cancel_delayed_work_sync(&mp->m_reclaim_work); | 
 | 	xfs_reclaim_inodes(mp, SYNC_WAIT); | 
 |  | 
 | 	xfs_qm_unmount(mp); | 
 |  | 
 | 	/* | 
 | 	 * Unreserve any blocks we have so that when we unmount we don't account | 
 | 	 * the reserved free space as used. This is really only necessary for | 
 | 	 * lazy superblock counting because it trusts the incore superblock | 
 | 	 * counters to be absolutely correct on clean unmount. | 
 | 	 * | 
 | 	 * We don't bother correcting this elsewhere for lazy superblock | 
 | 	 * counting because on mount of an unclean filesystem we reconstruct the | 
 | 	 * correct counter value and this is irrelevant. | 
 | 	 * | 
 | 	 * For non-lazy counter filesystems, this doesn't matter at all because | 
 | 	 * we only every apply deltas to the superblock and hence the incore | 
 | 	 * value does not matter.... | 
 | 	 */ | 
 | 	resblks = 0; | 
 | 	error = xfs_reserve_blocks(mp, &resblks, NULL); | 
 | 	if (error) | 
 | 		xfs_warn(mp, "Unable to free reserved block pool. " | 
 | 				"Freespace may not be correct on next mount."); | 
 |  | 
 | 	error = xfs_log_sbcount(mp); | 
 | 	if (error) | 
 | 		xfs_warn(mp, "Unable to update superblock counters. " | 
 | 				"Freespace may not be correct on next mount."); | 
 |  | 
 |  | 
 | 	xfs_log_unmount(mp); | 
 | 	xfs_da_unmount(mp); | 
 | 	xfs_uuid_unmount(mp); | 
 |  | 
 | #if defined(DEBUG) | 
 | 	xfs_errortag_clearall(mp); | 
 | #endif | 
 | 	xfs_free_perag(mp); | 
 |  | 
 | 	xfs_errortag_del(mp); | 
 | 	xfs_error_sysfs_del(mp); | 
 | 	xfs_sysfs_del(&mp->m_stats.xs_kobj); | 
 | 	xfs_sysfs_del(&mp->m_kobj); | 
 | } | 
 |  | 
 | /* | 
 |  * Determine whether modifications can proceed. The caller specifies the minimum | 
 |  * freeze level for which modifications should not be allowed. This allows | 
 |  * certain operations to proceed while the freeze sequence is in progress, if | 
 |  * necessary. | 
 |  */ | 
 | bool | 
 | xfs_fs_writable( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			level) | 
 | { | 
 | 	ASSERT(level > SB_UNFROZEN); | 
 | 	if ((mp->m_super->s_writers.frozen >= level) || | 
 | 	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_log_sbcount | 
 |  * | 
 |  * Sync the superblock counters to disk. | 
 |  * | 
 |  * Note this code can be called during the process of freezing, so we use the | 
 |  * transaction allocator that does not block when the transaction subsystem is | 
 |  * in its frozen state. | 
 |  */ | 
 | int | 
 | xfs_log_sbcount(xfs_mount_t *mp) | 
 | { | 
 | 	/* allow this to proceed during the freeze sequence... */ | 
 | 	if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * we don't need to do this if we are updating the superblock | 
 | 	 * counters on every modification. | 
 | 	 */ | 
 | 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
 | 		return 0; | 
 |  | 
 | 	return xfs_sync_sb(mp, true); | 
 | } | 
 |  | 
 | /* | 
 |  * Deltas for the inode count are +/-64, hence we use a large batch size | 
 |  * of 128 so we don't need to take the counter lock on every update. | 
 |  */ | 
 | #define XFS_ICOUNT_BATCH	128 | 
 | int | 
 | xfs_mod_icount( | 
 | 	struct xfs_mount	*mp, | 
 | 	int64_t			delta) | 
 | { | 
 | 	percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH); | 
 | 	if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) { | 
 | 		ASSERT(0); | 
 | 		percpu_counter_add(&mp->m_icount, -delta); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int | 
 | xfs_mod_ifree( | 
 | 	struct xfs_mount	*mp, | 
 | 	int64_t			delta) | 
 | { | 
 | 	percpu_counter_add(&mp->m_ifree, delta); | 
 | 	if (percpu_counter_compare(&mp->m_ifree, 0) < 0) { | 
 | 		ASSERT(0); | 
 | 		percpu_counter_add(&mp->m_ifree, -delta); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Deltas for the block count can vary from 1 to very large, but lock contention | 
 |  * only occurs on frequent small block count updates such as in the delayed | 
 |  * allocation path for buffered writes (page a time updates). Hence we set | 
 |  * a large batch count (1024) to minimise global counter updates except when | 
 |  * we get near to ENOSPC and we have to be very accurate with our updates. | 
 |  */ | 
 | #define XFS_FDBLOCKS_BATCH	1024 | 
 | int | 
 | xfs_mod_fdblocks( | 
 | 	struct xfs_mount	*mp, | 
 | 	int64_t			delta, | 
 | 	bool			rsvd) | 
 | { | 
 | 	int64_t			lcounter; | 
 | 	long long		res_used; | 
 | 	s32			batch; | 
 |  | 
 | 	if (delta > 0) { | 
 | 		/* | 
 | 		 * If the reserve pool is depleted, put blocks back into it | 
 | 		 * first. Most of the time the pool is full. | 
 | 		 */ | 
 | 		if (likely(mp->m_resblks == mp->m_resblks_avail)) { | 
 | 			percpu_counter_add(&mp->m_fdblocks, delta); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		spin_lock(&mp->m_sb_lock); | 
 | 		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); | 
 |  | 
 | 		if (res_used > delta) { | 
 | 			mp->m_resblks_avail += delta; | 
 | 		} else { | 
 | 			delta -= res_used; | 
 | 			mp->m_resblks_avail = mp->m_resblks; | 
 | 			percpu_counter_add(&mp->m_fdblocks, delta); | 
 | 		} | 
 | 		spin_unlock(&mp->m_sb_lock); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Taking blocks away, need to be more accurate the closer we | 
 | 	 * are to zero. | 
 | 	 * | 
 | 	 * If the counter has a value of less than 2 * max batch size, | 
 | 	 * then make everything serialise as we are real close to | 
 | 	 * ENOSPC. | 
 | 	 */ | 
 | 	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, | 
 | 				     XFS_FDBLOCKS_BATCH) < 0) | 
 | 		batch = 1; | 
 | 	else | 
 | 		batch = XFS_FDBLOCKS_BATCH; | 
 |  | 
 | 	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); | 
 | 	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, | 
 | 				     XFS_FDBLOCKS_BATCH) >= 0) { | 
 | 		/* we had space! */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * lock up the sb for dipping into reserves before releasing the space | 
 | 	 * that took us to ENOSPC. | 
 | 	 */ | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	percpu_counter_add(&mp->m_fdblocks, -delta); | 
 | 	if (!rsvd) | 
 | 		goto fdblocks_enospc; | 
 |  | 
 | 	lcounter = (long long)mp->m_resblks_avail + delta; | 
 | 	if (lcounter >= 0) { | 
 | 		mp->m_resblks_avail = lcounter; | 
 | 		spin_unlock(&mp->m_sb_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	printk_once(KERN_WARNING | 
 | 		"Filesystem \"%s\": reserve blocks depleted! " | 
 | 		"Consider increasing reserve pool size.", | 
 | 		mp->m_fsname); | 
 | fdblocks_enospc: | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | int | 
 | xfs_mod_frextents( | 
 | 	struct xfs_mount	*mp, | 
 | 	int64_t			delta) | 
 | { | 
 | 	int64_t			lcounter; | 
 | 	int			ret = 0; | 
 |  | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	lcounter = mp->m_sb.sb_frextents + delta; | 
 | 	if (lcounter < 0) | 
 | 		ret = -ENOSPC; | 
 | 	else | 
 | 		mp->m_sb.sb_frextents = lcounter; | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * xfs_getsb() is called to obtain the buffer for the superblock. | 
 |  * The buffer is returned locked and read in from disk. | 
 |  * The buffer should be released with a call to xfs_brelse(). | 
 |  * | 
 |  * If the flags parameter is BUF_TRYLOCK, then we'll only return | 
 |  * the superblock buffer if it can be locked without sleeping. | 
 |  * If it can't then we'll return NULL. | 
 |  */ | 
 | struct xfs_buf * | 
 | xfs_getsb( | 
 | 	struct xfs_mount	*mp, | 
 | 	int			flags) | 
 | { | 
 | 	struct xfs_buf		*bp = mp->m_sb_bp; | 
 |  | 
 | 	if (!xfs_buf_trylock(bp)) { | 
 | 		if (flags & XBF_TRYLOCK) | 
 | 			return NULL; | 
 | 		xfs_buf_lock(bp); | 
 | 	} | 
 |  | 
 | 	xfs_buf_hold(bp); | 
 | 	ASSERT(bp->b_flags & XBF_DONE); | 
 | 	return bp; | 
 | } | 
 |  | 
 | /* | 
 |  * Used to free the superblock along various error paths. | 
 |  */ | 
 | void | 
 | xfs_freesb( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	struct xfs_buf		*bp = mp->m_sb_bp; | 
 |  | 
 | 	xfs_buf_lock(bp); | 
 | 	mp->m_sb_bp = NULL; | 
 | 	xfs_buf_relse(bp); | 
 | } | 
 |  | 
 | /* | 
 |  * If the underlying (data/log/rt) device is readonly, there are some | 
 |  * operations that cannot proceed. | 
 |  */ | 
 | int | 
 | xfs_dev_is_read_only( | 
 | 	struct xfs_mount	*mp, | 
 | 	char			*message) | 
 | { | 
 | 	if (xfs_readonly_buftarg(mp->m_ddev_targp) || | 
 | 	    xfs_readonly_buftarg(mp->m_logdev_targp) || | 
 | 	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { | 
 | 		xfs_notice(mp, "%s required on read-only device.", message); | 
 | 		xfs_notice(mp, "write access unavailable, cannot proceed."); | 
 | 		return -EROFS; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Force the summary counters to be recalculated at next mount. */ | 
 | void | 
 | xfs_force_summary_recalc( | 
 | 	struct xfs_mount	*mp) | 
 | { | 
 | 	if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&mp->m_sb_lock); | 
 | 	mp->m_flags |= XFS_MOUNT_BAD_SUMMARY; | 
 | 	spin_unlock(&mp->m_sb_lock); | 
 | } |