[Feature] add GA346 baseline version

Change-Id: Ic62933698569507dcf98240cdf5d9931ae34348f
diff --git a/src/kernel/linux/v4.19/Documentation/watchdog/watchdog-kernel-api.txt b/src/kernel/linux/v4.19/Documentation/watchdog/watchdog-kernel-api.txt
new file mode 100644
index 0000000..9b93953
--- /dev/null
+++ b/src/kernel/linux/v4.19/Documentation/watchdog/watchdog-kernel-api.txt
@@ -0,0 +1,309 @@
+The Linux WatchDog Timer Driver Core kernel API.
+===============================================
+Last reviewed: 12-Feb-2013
+
+Wim Van Sebroeck <wim@iguana.be>
+
+Introduction
+------------
+This document does not describe what a WatchDog Timer (WDT) Driver or Device is.
+It also does not describe the API which can be used by user space to communicate
+with a WatchDog Timer. If you want to know this then please read the following
+file: Documentation/watchdog/watchdog-api.txt .
+
+So what does this document describe? It describes the API that can be used by
+WatchDog Timer Drivers that want to use the WatchDog Timer Driver Core
+Framework. This framework provides all interfacing towards user space so that
+the same code does not have to be reproduced each time. This also means that
+a watchdog timer driver then only needs to provide the different routines
+(operations) that control the watchdog timer (WDT).
+
+The API
+-------
+Each watchdog timer driver that wants to use the WatchDog Timer Driver Core
+must #include <linux/watchdog.h> (you would have to do this anyway when
+writing a watchdog device driver). This include file contains following
+register/unregister routines:
+
+extern int watchdog_register_device(struct watchdog_device *);
+extern void watchdog_unregister_device(struct watchdog_device *);
+
+The watchdog_register_device routine registers a watchdog timer device.
+The parameter of this routine is a pointer to a watchdog_device structure.
+This routine returns zero on success and a negative errno code for failure.
+
+The watchdog_unregister_device routine deregisters a registered watchdog timer
+device. The parameter of this routine is the pointer to the registered
+watchdog_device structure.
+
+The watchdog subsystem includes an registration deferral mechanism,
+which allows you to register an watchdog as early as you wish during
+the boot process.
+
+The watchdog device structure looks like this:
+
+struct watchdog_device {
+	int id;
+	struct device *parent;
+	const struct attribute_group **groups;
+	const struct watchdog_info *info;
+	const struct watchdog_ops *ops;
+	const struct watchdog_governor *gov;
+	unsigned int bootstatus;
+	unsigned int timeout;
+	unsigned int pretimeout;
+	unsigned int min_timeout;
+	unsigned int max_timeout;
+	unsigned int min_hw_heartbeat_ms;
+	unsigned int max_hw_heartbeat_ms;
+	struct notifier_block reboot_nb;
+	struct notifier_block restart_nb;
+	void *driver_data;
+	struct watchdog_core_data *wd_data;
+	unsigned long status;
+	struct list_head deferred;
+};
+
+It contains following fields:
+* id: set by watchdog_register_device, id 0 is special. It has both a
+  /dev/watchdog0 cdev (dynamic major, minor 0) as well as the old
+  /dev/watchdog miscdev. The id is set automatically when calling
+  watchdog_register_device.
+* parent: set this to the parent device (or NULL) before calling
+  watchdog_register_device.
+* groups: List of sysfs attribute groups to create when creating the watchdog
+  device.
+* info: a pointer to a watchdog_info structure. This structure gives some
+  additional information about the watchdog timer itself. (Like it's unique name)
+* ops: a pointer to the list of watchdog operations that the watchdog supports.
+* gov: a pointer to the assigned watchdog device pretimeout governor or NULL.
+* timeout: the watchdog timer's timeout value (in seconds).
+  This is the time after which the system will reboot if user space does
+  not send a heartbeat request if WDOG_ACTIVE is set.
+* pretimeout: the watchdog timer's pretimeout value (in seconds).
+* min_timeout: the watchdog timer's minimum timeout value (in seconds).
+  If set, the minimum configurable value for 'timeout'.
+* max_timeout: the watchdog timer's maximum timeout value (in seconds),
+  as seen from userspace. If set, the maximum configurable value for
+  'timeout'. Not used if max_hw_heartbeat_ms is non-zero.
+* min_hw_heartbeat_ms: Hardware limit for minimum time between heartbeats,
+  in milli-seconds. This value is normally 0; it should only be provided
+  if the hardware can not tolerate lower intervals between heartbeats.
+* max_hw_heartbeat_ms: Maximum hardware heartbeat, in milli-seconds.
+  If set, the infrastructure will send heartbeats to the watchdog driver
+  if 'timeout' is larger than max_hw_heartbeat_ms, unless WDOG_ACTIVE
+  is set and userspace failed to send a heartbeat for at least 'timeout'
+  seconds. max_hw_heartbeat_ms must be set if a driver does not implement
+  the stop function.
+* reboot_nb: notifier block that is registered for reboot notifications, for
+  internal use only. If the driver calls watchdog_stop_on_reboot, watchdog core
+  will stop the watchdog on such notifications.
+* restart_nb: notifier block that is registered for machine restart, for
+  internal use only. If a watchdog is capable of restarting the machine, it
+  should define ops->restart. Priority can be changed through
+  watchdog_set_restart_priority.
+* bootstatus: status of the device after booting (reported with watchdog
+  WDIOF_* status bits).
+* driver_data: a pointer to the drivers private data of a watchdog device.
+  This data should only be accessed via the watchdog_set_drvdata and
+  watchdog_get_drvdata routines.
+* wd_data: a pointer to watchdog core internal data.
+* status: this field contains a number of status bits that give extra
+  information about the status of the device (Like: is the watchdog timer
+  running/active, or is the nowayout bit set).
+* deferred: entry in wtd_deferred_reg_list which is used to
+  register early initialized watchdogs.
+
+The list of watchdog operations is defined as:
+
+struct watchdog_ops {
+	struct module *owner;
+	/* mandatory operations */
+	int (*start)(struct watchdog_device *);
+	int (*stop)(struct watchdog_device *);
+	/* optional operations */
+	int (*ping)(struct watchdog_device *);
+	unsigned int (*status)(struct watchdog_device *);
+	int (*set_timeout)(struct watchdog_device *, unsigned int);
+	int (*set_pretimeout)(struct watchdog_device *, unsigned int);
+	unsigned int (*get_timeleft)(struct watchdog_device *);
+	int (*restart)(struct watchdog_device *);
+	void (*ref)(struct watchdog_device *) __deprecated;
+	void (*unref)(struct watchdog_device *) __deprecated;
+	long (*ioctl)(struct watchdog_device *, unsigned int, unsigned long);
+};
+
+It is important that you first define the module owner of the watchdog timer
+driver's operations. This module owner will be used to lock the module when
+the watchdog is active. (This to avoid a system crash when you unload the
+module and /dev/watchdog is still open).
+
+Some operations are mandatory and some are optional. The mandatory operations
+are:
+* start: this is a pointer to the routine that starts the watchdog timer
+  device.
+  The routine needs a pointer to the watchdog timer device structure as a
+  parameter. It returns zero on success or a negative errno code for failure.
+
+Not all watchdog timer hardware supports the same functionality. That's why
+all other routines/operations are optional. They only need to be provided if
+they are supported. These optional routines/operations are:
+* stop: with this routine the watchdog timer device is being stopped.
+  The routine needs a pointer to the watchdog timer device structure as a
+  parameter. It returns zero on success or a negative errno code for failure.
+  Some watchdog timer hardware can only be started and not be stopped. A
+  driver supporting such hardware does not have to implement the stop routine.
+  If a driver has no stop function, the watchdog core will set WDOG_HW_RUNNING
+  and start calling the driver's keepalive pings function after the watchdog
+  device is closed.
+  If a watchdog driver does not implement the stop function, it must set
+  max_hw_heartbeat_ms.
+* ping: this is the routine that sends a keepalive ping to the watchdog timer
+  hardware.
+  The routine needs a pointer to the watchdog timer device structure as a
+  parameter. It returns zero on success or a negative errno code for failure.
+  Most hardware that does not support this as a separate function uses the
+  start function to restart the watchdog timer hardware. And that's also what
+  the watchdog timer driver core does: to send a keepalive ping to the watchdog
+  timer hardware it will either use the ping operation (when available) or the
+  start operation (when the ping operation is not available).
+  (Note: the WDIOC_KEEPALIVE ioctl call will only be active when the
+  WDIOF_KEEPALIVEPING bit has been set in the option field on the watchdog's
+  info structure).
+* status: this routine checks the status of the watchdog timer device. The
+  status of the device is reported with watchdog WDIOF_* status flags/bits.
+  WDIOF_MAGICCLOSE and WDIOF_KEEPALIVEPING are reported by the watchdog core;
+  it is not necessary to report those bits from the driver. Also, if no status
+  function is provided by the driver, the watchdog core reports the status bits
+  provided in the bootstatus variable of struct watchdog_device.
+* set_timeout: this routine checks and changes the timeout of the watchdog
+  timer device. It returns 0 on success, -EINVAL for "parameter out of range"
+  and -EIO for "could not write value to the watchdog". On success this
+  routine should set the timeout value of the watchdog_device to the
+  achieved timeout value (which may be different from the requested one
+  because the watchdog does not necessarily have a 1 second resolution).
+  Drivers implementing max_hw_heartbeat_ms set the hardware watchdog heartbeat
+  to the minimum of timeout and max_hw_heartbeat_ms. Those drivers set the
+  timeout value of the watchdog_device either to the requested timeout value
+  (if it is larger than max_hw_heartbeat_ms), or to the achieved timeout value.
+  (Note: the WDIOF_SETTIMEOUT needs to be set in the options field of the
+  watchdog's info structure).
+  If the watchdog driver does not have to perform any action but setting the
+  watchdog_device.timeout, this callback can be omitted.
+  If set_timeout is not provided but, WDIOF_SETTIMEOUT is set, the watchdog
+  infrastructure updates the timeout value of the watchdog_device internally
+  to the requested value.
+  If the pretimeout feature is used (WDIOF_PRETIMEOUT), then set_timeout must
+  also take care of checking if pretimeout is still valid and set up the timer
+  accordingly. This can't be done in the core without races, so it is the
+  duty of the driver.
+* set_pretimeout: this routine checks and changes the pretimeout value of
+  the watchdog. It is optional because not all watchdogs support pretimeout
+  notification. The timeout value is not an absolute time, but the number of
+  seconds before the actual timeout would happen. It returns 0 on success,
+  -EINVAL for "parameter out of range" and -EIO for "could not write value to
+  the watchdog". A value of 0 disables pretimeout notification.
+  (Note: the WDIOF_PRETIMEOUT needs to be set in the options field of the
+  watchdog's info structure).
+  If the watchdog driver does not have to perform any action but setting the
+  watchdog_device.pretimeout, this callback can be omitted. That means if
+  set_pretimeout is not provided but WDIOF_PRETIMEOUT is set, the watchdog
+  infrastructure updates the pretimeout value of the watchdog_device internally
+  to the requested value.
+* get_timeleft: this routines returns the time that's left before a reset.
+* restart: this routine restarts the machine. It returns 0 on success or a
+  negative errno code for failure.
+* ioctl: if this routine is present then it will be called first before we do
+  our own internal ioctl call handling. This routine should return -ENOIOCTLCMD
+  if a command is not supported. The parameters that are passed to the ioctl
+  call are: watchdog_device, cmd and arg.
+
+The 'ref' and 'unref' operations are no longer used and deprecated.
+
+The status bits should (preferably) be set with the set_bit and clear_bit alike
+bit-operations. The status bits that are defined are:
+* WDOG_ACTIVE: this status bit indicates whether or not a watchdog timer device
+  is active or not from user perspective. User space is expected to send
+  heartbeat requests to the driver while this flag is set.
+* WDOG_NO_WAY_OUT: this bit stores the nowayout setting for the watchdog.
+  If this bit is set then the watchdog timer will not be able to stop.
+* WDOG_HW_RUNNING: Set by the watchdog driver if the hardware watchdog is
+  running. The bit must be set if the watchdog timer hardware can not be
+  stopped. The bit may also be set if the watchdog timer is running after
+  booting, before the watchdog device is opened. If set, the watchdog
+  infrastructure will send keepalives to the watchdog hardware while
+  WDOG_ACTIVE is not set.
+  Note: when you register the watchdog timer device with this bit set,
+  then opening /dev/watchdog will skip the start operation but send a keepalive
+  request instead.
+
+  To set the WDOG_NO_WAY_OUT status bit (before registering your watchdog
+  timer device) you can either:
+  * set it statically in your watchdog_device struct with
+	.status = WATCHDOG_NOWAYOUT_INIT_STATUS,
+    (this will set the value the same as CONFIG_WATCHDOG_NOWAYOUT) or
+  * use the following helper function:
+  static inline void watchdog_set_nowayout(struct watchdog_device *wdd, int nowayout)
+
+Note: The WatchDog Timer Driver Core supports the magic close feature and
+the nowayout feature. To use the magic close feature you must set the
+WDIOF_MAGICCLOSE bit in the options field of the watchdog's info structure.
+The nowayout feature will overrule the magic close feature.
+
+To get or set driver specific data the following two helper functions should be
+used:
+
+static inline void watchdog_set_drvdata(struct watchdog_device *wdd, void *data)
+static inline void *watchdog_get_drvdata(struct watchdog_device *wdd)
+
+The watchdog_set_drvdata function allows you to add driver specific data. The
+arguments of this function are the watchdog device where you want to add the
+driver specific data to and a pointer to the data itself.
+
+The watchdog_get_drvdata function allows you to retrieve driver specific data.
+The argument of this function is the watchdog device where you want to retrieve
+data from. The function returns the pointer to the driver specific data.
+
+To initialize the timeout field, the following function can be used:
+
+extern int watchdog_init_timeout(struct watchdog_device *wdd,
+                                  unsigned int timeout_parm, struct device *dev);
+
+The watchdog_init_timeout function allows you to initialize the timeout field
+using the module timeout parameter or by retrieving the timeout-sec property from
+the device tree (if the module timeout parameter is invalid). Best practice is
+to set the default timeout value as timeout value in the watchdog_device and
+then use this function to set the user "preferred" timeout value.
+This routine returns zero on success and a negative errno code for failure.
+
+To disable the watchdog on reboot, the user must call the following helper:
+
+static inline void watchdog_stop_on_reboot(struct watchdog_device *wdd);
+
+To disable the watchdog when unregistering the watchdog, the user must call
+the following helper. Note that this will only stop the watchdog if the
+nowayout flag is not set.
+
+static inline void watchdog_stop_on_unregister(struct watchdog_device *wdd);
+
+To change the priority of the restart handler the following helper should be
+used:
+
+void watchdog_set_restart_priority(struct watchdog_device *wdd, int priority);
+
+User should follow the following guidelines for setting the priority:
+* 0: should be called in last resort, has limited restart capabilities
+* 128: default restart handler, use if no other handler is expected to be
+  available, and/or if restart is sufficient to restart the entire system
+* 255: highest priority, will preempt all other restart handlers
+
+To raise a pretimeout notification, the following function should be used:
+
+void watchdog_notify_pretimeout(struct watchdog_device *wdd)
+
+The function can be called in the interrupt context. If watchdog pretimeout
+governor framework (kbuild CONFIG_WATCHDOG_PRETIMEOUT_GOV symbol) is enabled,
+an action is taken by a preconfigured pretimeout governor preassigned to
+the watchdog device. If watchdog pretimeout governor framework is not
+enabled, watchdog_notify_pretimeout() prints a notification message to
+the kernel log buffer.