[Feature] add GA346 baseline version

Change-Id: Ic62933698569507dcf98240cdf5d9931ae34348f
diff --git a/src/kernel/linux/v4.19/fs/crypto/Kconfig b/src/kernel/linux/v4.19/fs/crypto/Kconfig
new file mode 100644
index 0000000..0701bb9
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/Kconfig
@@ -0,0 +1,23 @@
+config FS_ENCRYPTION
+	bool "FS Encryption (Per-file encryption)"
+	select CRYPTO
+	select CRYPTO_AES
+	select CRYPTO_CBC
+	select CRYPTO_ECB
+	select CRYPTO_XTS
+	select CRYPTO_CTS
+	select CRYPTO_SHA512
+	select CRYPTO_HMAC
+	select KEYS
+	help
+	  Enable encryption of files and directories.  This
+	  feature is similar to ecryptfs, but it is more memory
+	  efficient since it avoids caching the encrypted and
+	  decrypted pages in the page cache.  Currently Ext4,
+	  F2FS and UBIFS make use of this feature.
+
+config FS_ENCRYPTION_INLINE_CRYPT
+	bool "Enable fscrypt to use inline crypto"
+	depends on FS_ENCRYPTION && BLK_INLINE_ENCRYPTION
+	help
+	  Enable fscrypt to use inline encryption hardware if available.
diff --git a/src/kernel/linux/v4.19/fs/crypto/Makefile b/src/kernel/linux/v4.19/fs/crypto/Makefile
new file mode 100644
index 0000000..1a6b077
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/Makefile
@@ -0,0 +1,13 @@
+obj-$(CONFIG_FS_ENCRYPTION)	+= fscrypto.o
+
+fscrypto-y := crypto.o \
+	      fname.o \
+	      hkdf.o \
+	      hooks.o \
+	      keyring.o \
+	      keysetup.o \
+	      keysetup_v1.o \
+	      policy.o
+
+fscrypto-$(CONFIG_BLOCK) += bio.o
+fscrypto-$(CONFIG_FS_ENCRYPTION_INLINE_CRYPT) += inline_crypt.o
diff --git a/src/kernel/linux/v4.19/fs/crypto/bio.c b/src/kernel/linux/v4.19/fs/crypto/bio.c
new file mode 100644
index 0000000..f62375d
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/bio.c
@@ -0,0 +1,103 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This contains encryption functions for per-file encryption.
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility
+ *
+ * Written by Michael Halcrow, 2014.
+ *
+ * Filename encryption additions
+ *	Uday Savagaonkar, 2014
+ * Encryption policy handling additions
+ *	Ildar Muslukhov, 2014
+ * Add fscrypt_pullback_bio_page()
+ *	Jaegeuk Kim, 2015.
+ *
+ * This has not yet undergone a rigorous security audit.
+ *
+ * The usage of AES-XTS should conform to recommendations in NIST
+ * Special Publication 800-38E and IEEE P1619/D16.
+ */
+
+#include <linux/pagemap.h>
+#include <linux/module.h>
+#include <linux/bio.h>
+#include <linux/namei.h>
+#include "fscrypt_private.h"
+
+void fscrypt_decrypt_bio(struct bio *bio)
+{
+	struct bio_vec *bv;
+	int i;
+
+	bio_for_each_segment_all(bv, bio, i) {
+		struct page *page = bv->bv_page;
+		int ret = fscrypt_decrypt_pagecache_blocks(page, bv->bv_len,
+							   bv->bv_offset);
+		if (ret)
+			SetPageError(page);
+	}
+}
+EXPORT_SYMBOL(fscrypt_decrypt_bio);
+
+int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
+				sector_t pblk, unsigned int len)
+{
+	const unsigned int blockbits = inode->i_blkbits;
+	const unsigned int blocksize = 1 << blockbits;
+	const bool inlinecrypt = fscrypt_inode_uses_inline_crypto(inode);
+	struct page *ciphertext_page;
+	struct bio *bio;
+	int ret, err = 0;
+
+	if (inlinecrypt) {
+		ciphertext_page = ZERO_PAGE(0);
+	} else {
+		ciphertext_page = fscrypt_alloc_bounce_page(GFP_NOWAIT);
+		if (!ciphertext_page)
+			return -ENOMEM;
+	}
+
+	while (len--) {
+		if (!inlinecrypt) {
+			err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk,
+						  ZERO_PAGE(0), ciphertext_page,
+						  blocksize, 0, GFP_NOFS);
+			if (err)
+				goto errout;
+		}
+
+		bio = bio_alloc(GFP_NOWAIT, 1);
+		if (!bio) {
+			err = -ENOMEM;
+			goto errout;
+		}
+		fscrypt_set_bio_crypt_ctx(bio, inode, lblk, GFP_NOIO);
+
+		bio_set_dev(bio, inode->i_sb->s_bdev);
+		bio->bi_iter.bi_sector = pblk << (blockbits - 9);
+		bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
+		ret = bio_add_page(bio, ciphertext_page, blocksize, 0);
+		if (WARN_ON(ret != blocksize)) {
+			/* should never happen! */
+			bio_put(bio);
+			err = -EIO;
+			goto errout;
+		}
+		err = submit_bio_wait(bio);
+		if (err == 0 && bio->bi_status)
+			err = -EIO;
+		bio_put(bio);
+		if (err)
+			goto errout;
+		lblk++;
+		pblk++;
+	}
+	err = 0;
+errout:
+	if (!inlinecrypt)
+		fscrypt_free_bounce_page(ciphertext_page);
+	return err;
+}
+EXPORT_SYMBOL(fscrypt_zeroout_range);
diff --git a/src/kernel/linux/v4.19/fs/crypto/crypto.c b/src/kernel/linux/v4.19/fs/crypto/crypto.c
new file mode 100644
index 0000000..41b4fe1
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/crypto.c
@@ -0,0 +1,429 @@
+/*
+ * This contains encryption functions for per-file encryption.
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility
+ *
+ * Written by Michael Halcrow, 2014.
+ *
+ * Filename encryption additions
+ *	Uday Savagaonkar, 2014
+ * Encryption policy handling additions
+ *	Ildar Muslukhov, 2014
+ * Add fscrypt_pullback_bio_page()
+ *	Jaegeuk Kim, 2015.
+ *
+ * This has not yet undergone a rigorous security audit.
+ *
+ * The usage of AES-XTS should conform to recommendations in NIST
+ * Special Publication 800-38E and IEEE P1619/D16.
+ */
+
+#include <linux/pagemap.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/scatterlist.h>
+#include <linux/ratelimit.h>
+#include <linux/dcache.h>
+#include <linux/namei.h>
+#include <crypto/skcipher.h>
+#include "fscrypt_private.h"
+
+static unsigned int num_prealloc_crypto_pages = 32;
+
+module_param(num_prealloc_crypto_pages, uint, 0444);
+MODULE_PARM_DESC(num_prealloc_crypto_pages,
+		"Number of crypto pages to preallocate");
+
+static mempool_t *fscrypt_bounce_page_pool = NULL;
+
+static struct workqueue_struct *fscrypt_read_workqueue;
+static DEFINE_MUTEX(fscrypt_init_mutex);
+
+struct kmem_cache *fscrypt_info_cachep;
+
+void fscrypt_enqueue_decrypt_work(struct work_struct *work)
+{
+	queue_work(fscrypt_read_workqueue, work);
+}
+EXPORT_SYMBOL(fscrypt_enqueue_decrypt_work);
+
+struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags)
+{
+	return mempool_alloc(fscrypt_bounce_page_pool, gfp_flags);
+}
+
+/**
+ * fscrypt_free_bounce_page() - free a ciphertext bounce page
+ *
+ * Free a bounce page that was allocated by fscrypt_encrypt_pagecache_blocks(),
+ * or by fscrypt_alloc_bounce_page() directly.
+ */
+void fscrypt_free_bounce_page(struct page *bounce_page)
+{
+	if (!bounce_page)
+		return;
+	set_page_private(bounce_page, (unsigned long)NULL);
+	ClearPagePrivate(bounce_page);
+	mempool_free(bounce_page, fscrypt_bounce_page_pool);
+}
+EXPORT_SYMBOL(fscrypt_free_bounce_page);
+
+void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
+			 const struct fscrypt_info *ci)
+{
+	u8 flags = fscrypt_policy_flags(&ci->ci_policy);
+
+	memset(iv, 0, ci->ci_mode->ivsize);
+
+	if (flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
+		WARN_ON_ONCE((u32)lblk_num != lblk_num);
+		lblk_num |= (u64)ci->ci_inode->i_ino << 32;
+	} else if (flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
+		memcpy(iv->nonce, ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE);
+	}
+	iv->lblk_num = cpu_to_le64(lblk_num);
+}
+
+/* Encrypt or decrypt a single filesystem block of file contents */
+int fscrypt_crypt_block(const struct inode *inode, fscrypt_direction_t rw,
+			u64 lblk_num, struct page *src_page,
+			struct page *dest_page, unsigned int len,
+			unsigned int offs, gfp_t gfp_flags)
+{
+	union fscrypt_iv iv;
+	struct skcipher_request *req = NULL;
+	DECLARE_CRYPTO_WAIT(wait);
+	struct scatterlist dst, src;
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	struct crypto_skcipher *tfm = ci->ci_key.tfm;
+	int res = 0;
+
+	if (WARN_ON_ONCE(len <= 0))
+		return -EINVAL;
+	if (WARN_ON_ONCE(len % FS_CRYPTO_BLOCK_SIZE != 0))
+		return -EINVAL;
+
+	fscrypt_generate_iv(&iv, lblk_num, ci);
+
+	req = skcipher_request_alloc(tfm, gfp_flags);
+	if (!req)
+		return -ENOMEM;
+
+	skcipher_request_set_callback(
+		req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+		crypto_req_done, &wait);
+
+	sg_init_table(&dst, 1);
+	sg_set_page(&dst, dest_page, len, offs);
+	sg_init_table(&src, 1);
+	sg_set_page(&src, src_page, len, offs);
+	skcipher_request_set_crypt(req, &src, &dst, len, &iv);
+	if (rw == FS_DECRYPT)
+		res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
+	else
+		res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+	skcipher_request_free(req);
+	if (res) {
+		fscrypt_err(inode, "%scryption failed for block %llu: %d",
+			    (rw == FS_DECRYPT ? "De" : "En"), lblk_num, res);
+		return res;
+	}
+	return 0;
+}
+
+/**
+ * fscrypt_encrypt_pagecache_blocks() - Encrypt filesystem blocks from a pagecache page
+ * @page:      The locked pagecache page containing the block(s) to encrypt
+ * @len:       Total size of the block(s) to encrypt.  Must be a nonzero
+ *		multiple of the filesystem's block size.
+ * @offs:      Byte offset within @page of the first block to encrypt.  Must be
+ *		a multiple of the filesystem's block size.
+ * @gfp_flags: Memory allocation flags
+ *
+ * A new bounce page is allocated, and the specified block(s) are encrypted into
+ * it.  In the bounce page, the ciphertext block(s) will be located at the same
+ * offsets at which the plaintext block(s) were located in the source page; any
+ * other parts of the bounce page will be left uninitialized.  However, normally
+ * blocksize == PAGE_SIZE and the whole page is encrypted at once.
+ *
+ * This is for use by the filesystem's ->writepages() method.
+ *
+ * Return: the new encrypted bounce page on success; an ERR_PTR() on failure
+ */
+struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
+					      unsigned int len,
+					      unsigned int offs,
+					      gfp_t gfp_flags)
+
+{
+	const struct inode *inode = page->mapping->host;
+	const unsigned int blockbits = inode->i_blkbits;
+	const unsigned int blocksize = 1 << blockbits;
+	struct page *ciphertext_page;
+	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
+		       (offs >> blockbits);
+	unsigned int i;
+	int err;
+
+	if (WARN_ON_ONCE(!PageLocked(page)))
+		return ERR_PTR(-EINVAL);
+
+	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
+		return ERR_PTR(-EINVAL);
+
+	ciphertext_page = fscrypt_alloc_bounce_page(gfp_flags);
+	if (!ciphertext_page)
+		return ERR_PTR(-ENOMEM);
+
+	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
+		err = fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num,
+					  page, ciphertext_page,
+					  blocksize, i, gfp_flags);
+		if (err) {
+			fscrypt_free_bounce_page(ciphertext_page);
+			return ERR_PTR(err);
+		}
+	}
+	SetPagePrivate(ciphertext_page);
+	set_page_private(ciphertext_page, (unsigned long)page);
+	return ciphertext_page;
+}
+EXPORT_SYMBOL(fscrypt_encrypt_pagecache_blocks);
+
+/**
+ * fscrypt_encrypt_block_inplace() - Encrypt a filesystem block in-place
+ * @inode:     The inode to which this block belongs
+ * @page:      The page containing the block to encrypt
+ * @len:       Size of block to encrypt.  Doesn't need to be a multiple of the
+ *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
+ * @offs:      Byte offset within @page at which the block to encrypt begins
+ * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
+ *		number of the block within the file
+ * @gfp_flags: Memory allocation flags
+ *
+ * Encrypt a possibly-compressed filesystem block that is located in an
+ * arbitrary page, not necessarily in the original pagecache page.  The @inode
+ * and @lblk_num must be specified, as they can't be determined from @page.
+ *
+ * Return: 0 on success; -errno on failure
+ */
+int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
+				  unsigned int len, unsigned int offs,
+				  u64 lblk_num, gfp_t gfp_flags)
+{
+	return fscrypt_crypt_block(inode, FS_ENCRYPT, lblk_num, page, page,
+				   len, offs, gfp_flags);
+}
+EXPORT_SYMBOL(fscrypt_encrypt_block_inplace);
+
+/**
+ * fscrypt_decrypt_pagecache_blocks() - Decrypt filesystem blocks in a pagecache page
+ * @page:      The locked pagecache page containing the block(s) to decrypt
+ * @len:       Total size of the block(s) to decrypt.  Must be a nonzero
+ *		multiple of the filesystem's block size.
+ * @offs:      Byte offset within @page of the first block to decrypt.  Must be
+ *		a multiple of the filesystem's block size.
+ *
+ * The specified block(s) are decrypted in-place within the pagecache page,
+ * which must still be locked and not uptodate.  Normally, blocksize ==
+ * PAGE_SIZE and the whole page is decrypted at once.
+ *
+ * This is for use by the filesystem's ->readpages() method.
+ *
+ * Return: 0 on success; -errno on failure
+ */
+int fscrypt_decrypt_pagecache_blocks(struct page *page, unsigned int len,
+				     unsigned int offs)
+{
+	const struct inode *inode = page->mapping->host;
+	const unsigned int blockbits = inode->i_blkbits;
+	const unsigned int blocksize = 1 << blockbits;
+	u64 lblk_num = ((u64)page->index << (PAGE_SHIFT - blockbits)) +
+		       (offs >> blockbits);
+	unsigned int i;
+	int err;
+
+	if (WARN_ON_ONCE(!PageLocked(page)))
+		return -EINVAL;
+
+	if (WARN_ON_ONCE(len <= 0 || !IS_ALIGNED(len | offs, blocksize)))
+		return -EINVAL;
+
+	for (i = offs; i < offs + len; i += blocksize, lblk_num++) {
+		err = fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page,
+					  page, blocksize, i, GFP_NOFS);
+		if (err)
+			return err;
+	}
+	return 0;
+}
+EXPORT_SYMBOL(fscrypt_decrypt_pagecache_blocks);
+
+/**
+ * fscrypt_decrypt_block_inplace() - Decrypt a filesystem block in-place
+ * @inode:     The inode to which this block belongs
+ * @page:      The page containing the block to decrypt
+ * @len:       Size of block to decrypt.  Doesn't need to be a multiple of the
+ *		fs block size, but must be a multiple of FS_CRYPTO_BLOCK_SIZE.
+ * @offs:      Byte offset within @page at which the block to decrypt begins
+ * @lblk_num:  Filesystem logical block number of the block, i.e. the 0-based
+ *		number of the block within the file
+ *
+ * Decrypt a possibly-compressed filesystem block that is located in an
+ * arbitrary page, not necessarily in the original pagecache page.  The @inode
+ * and @lblk_num must be specified, as they can't be determined from @page.
+ *
+ * Return: 0 on success; -errno on failure
+ */
+int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
+				  unsigned int len, unsigned int offs,
+				  u64 lblk_num)
+{
+	return fscrypt_crypt_block(inode, FS_DECRYPT, lblk_num, page, page,
+				   len, offs, GFP_NOFS);
+}
+EXPORT_SYMBOL(fscrypt_decrypt_block_inplace);
+
+/*
+ * Validate dentries in encrypted directories to make sure we aren't potentially
+ * caching stale dentries after a key has been added.
+ */
+static int fscrypt_d_revalidate(struct dentry *dentry, unsigned int flags)
+{
+	struct dentry *dir;
+	int err;
+	int valid;
+
+	/*
+	 * Plaintext names are always valid, since fscrypt doesn't support
+	 * reverting to ciphertext names without evicting the directory's inode
+	 * -- which implies eviction of the dentries in the directory.
+	 */
+	if (!(dentry->d_flags & DCACHE_ENCRYPTED_NAME))
+		return 1;
+
+	/*
+	 * Ciphertext name; valid if the directory's key is still unavailable.
+	 *
+	 * Although fscrypt forbids rename() on ciphertext names, we still must
+	 * use dget_parent() here rather than use ->d_parent directly.  That's
+	 * because a corrupted fs image may contain directory hard links, which
+	 * the VFS handles by moving the directory's dentry tree in the dcache
+	 * each time ->lookup() finds the directory and it already has a dentry
+	 * elsewhere.  Thus ->d_parent can be changing, and we must safely grab
+	 * a reference to some ->d_parent to prevent it from being freed.
+	 */
+
+	if (flags & LOOKUP_RCU)
+		return -ECHILD;
+
+	dir = dget_parent(dentry);
+	err = fscrypt_get_encryption_info(d_inode(dir));
+	valid = !fscrypt_has_encryption_key(d_inode(dir));
+	dput(dir);
+
+	if (err < 0)
+		return err;
+
+	return valid;
+}
+
+const struct dentry_operations fscrypt_d_ops = {
+	.d_revalidate = fscrypt_d_revalidate,
+};
+
+/**
+ * fscrypt_initialize() - allocate major buffers for fs encryption.
+ * @cop_flags:  fscrypt operations flags
+ *
+ * We only call this when we start accessing encrypted files, since it
+ * results in memory getting allocated that wouldn't otherwise be used.
+ *
+ * Return: 0 on success; -errno on failure
+ */
+int fscrypt_initialize(unsigned int cop_flags)
+{
+	int err = 0;
+
+	/* No need to allocate a bounce page pool if this FS won't use it. */
+	if (cop_flags & FS_CFLG_OWN_PAGES)
+		return 0;
+
+	mutex_lock(&fscrypt_init_mutex);
+	if (fscrypt_bounce_page_pool)
+		goto out_unlock;
+
+	err = -ENOMEM;
+	fscrypt_bounce_page_pool =
+		mempool_create_page_pool(num_prealloc_crypto_pages, 0);
+	if (!fscrypt_bounce_page_pool)
+		goto out_unlock;
+
+	err = 0;
+out_unlock:
+	mutex_unlock(&fscrypt_init_mutex);
+	return err;
+}
+
+void fscrypt_msg(const struct inode *inode, const char *level,
+		 const char *fmt, ...)
+{
+	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
+				      DEFAULT_RATELIMIT_BURST);
+	struct va_format vaf;
+	va_list args;
+
+	if (!__ratelimit(&rs))
+		return;
+
+	va_start(args, fmt);
+	vaf.fmt = fmt;
+	vaf.va = &args;
+	if (inode)
+		printk("%sfscrypt (%s, inode %lu): %pV\n",
+		       level, inode->i_sb->s_id, inode->i_ino, &vaf);
+	else
+		printk("%sfscrypt: %pV\n", level, &vaf);
+	va_end(args);
+}
+
+/**
+ * fscrypt_init() - Set up for fs encryption.
+ */
+static int __init fscrypt_init(void)
+{
+	int err = -ENOMEM;
+
+	/*
+	 * Use an unbound workqueue to allow bios to be decrypted in parallel
+	 * even when they happen to complete on the same CPU.  This sacrifices
+	 * locality, but it's worthwhile since decryption is CPU-intensive.
+	 *
+	 * Also use a high-priority workqueue to prioritize decryption work,
+	 * which blocks reads from completing, over regular application tasks.
+	 */
+	fscrypt_read_workqueue = alloc_workqueue("fscrypt_read_queue",
+						 WQ_UNBOUND | WQ_HIGHPRI,
+						 num_online_cpus());
+	if (!fscrypt_read_workqueue)
+		goto fail;
+
+	fscrypt_info_cachep = KMEM_CACHE(fscrypt_info, SLAB_RECLAIM_ACCOUNT);
+	if (!fscrypt_info_cachep)
+		goto fail_free_queue;
+
+	err = fscrypt_init_keyring();
+	if (err)
+		goto fail_free_info;
+
+	return 0;
+
+fail_free_info:
+	kmem_cache_destroy(fscrypt_info_cachep);
+fail_free_queue:
+	destroy_workqueue(fscrypt_read_workqueue);
+fail:
+	return err;
+}
+late_initcall(fscrypt_init)
diff --git a/src/kernel/linux/v4.19/fs/crypto/fname.c b/src/kernel/linux/v4.19/fs/crypto/fname.c
new file mode 100644
index 0000000..3aafdda
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/fname.c
@@ -0,0 +1,402 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * This contains functions for filename crypto management
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility
+ *
+ * Written by Uday Savagaonkar, 2014.
+ * Modified by Jaegeuk Kim, 2015.
+ *
+ * This has not yet undergone a rigorous security audit.
+ */
+
+#include <linux/scatterlist.h>
+#include <crypto/skcipher.h>
+#include "fscrypt_private.h"
+
+static inline bool fscrypt_is_dot_dotdot(const struct qstr *str)
+{
+	if (str->len == 1 && str->name[0] == '.')
+		return true;
+
+	if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
+		return true;
+
+	return false;
+}
+
+/**
+ * fname_encrypt() - encrypt a filename
+ *
+ * The output buffer must be at least as large as the input buffer.
+ * Any extra space is filled with NUL padding before encryption.
+ *
+ * Return: 0 on success, -errno on failure
+ */
+int fname_encrypt(struct inode *inode, const struct qstr *iname,
+		  u8 *out, unsigned int olen)
+{
+	struct skcipher_request *req = NULL;
+	DECLARE_CRYPTO_WAIT(wait);
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	struct crypto_skcipher *tfm = ci->ci_key.tfm;
+	union fscrypt_iv iv;
+	struct scatterlist sg;
+	int res;
+
+	/*
+	 * Copy the filename to the output buffer for encrypting in-place and
+	 * pad it with the needed number of NUL bytes.
+	 */
+	if (WARN_ON(olen < iname->len))
+		return -ENOBUFS;
+	memcpy(out, iname->name, iname->len);
+	memset(out + iname->len, 0, olen - iname->len);
+
+	/* Initialize the IV */
+	fscrypt_generate_iv(&iv, 0, ci);
+
+	/* Set up the encryption request */
+	req = skcipher_request_alloc(tfm, GFP_NOFS);
+	if (!req)
+		return -ENOMEM;
+	skcipher_request_set_callback(req,
+			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+			crypto_req_done, &wait);
+	sg_init_one(&sg, out, olen);
+	skcipher_request_set_crypt(req, &sg, &sg, olen, &iv);
+
+	/* Do the encryption */
+	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+	skcipher_request_free(req);
+	if (res < 0) {
+		fscrypt_err(inode, "Filename encryption failed: %d", res);
+		return res;
+	}
+
+	return 0;
+}
+
+/**
+ * fname_decrypt() - decrypt a filename
+ *
+ * The caller must have allocated sufficient memory for the @oname string.
+ *
+ * Return: 0 on success, -errno on failure
+ */
+static int fname_decrypt(struct inode *inode,
+				const struct fscrypt_str *iname,
+				struct fscrypt_str *oname)
+{
+	struct skcipher_request *req = NULL;
+	DECLARE_CRYPTO_WAIT(wait);
+	struct scatterlist src_sg, dst_sg;
+	struct fscrypt_info *ci = inode->i_crypt_info;
+	struct crypto_skcipher *tfm = ci->ci_key.tfm;
+	union fscrypt_iv iv;
+	int res;
+
+	/* Allocate request */
+	req = skcipher_request_alloc(tfm, GFP_NOFS);
+	if (!req)
+		return -ENOMEM;
+	skcipher_request_set_callback(req,
+		CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+		crypto_req_done, &wait);
+
+	/* Initialize IV */
+	fscrypt_generate_iv(&iv, 0, ci);
+
+	/* Create decryption request */
+	sg_init_one(&src_sg, iname->name, iname->len);
+	sg_init_one(&dst_sg, oname->name, oname->len);
+	skcipher_request_set_crypt(req, &src_sg, &dst_sg, iname->len, &iv);
+	res = crypto_wait_req(crypto_skcipher_decrypt(req), &wait);
+	skcipher_request_free(req);
+	if (res < 0) {
+		fscrypt_err(inode, "Filename decryption failed: %d", res);
+		return res;
+	}
+
+	oname->len = strnlen(oname->name, iname->len);
+	return 0;
+}
+
+static const char lookup_table[65] =
+	"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+,";
+
+#define BASE64_CHARS(nbytes)	DIV_ROUND_UP((nbytes) * 4, 3)
+
+/**
+ * base64_encode() -
+ *
+ * Encodes the input string using characters from the set [A-Za-z0-9+,].
+ * The encoded string is roughly 4/3 times the size of the input string.
+ *
+ * Return: length of the encoded string
+ */
+static int base64_encode(const u8 *src, int len, char *dst)
+{
+	int i, bits = 0, ac = 0;
+	char *cp = dst;
+
+	for (i = 0; i < len; i++) {
+		ac += src[i] << bits;
+		bits += 8;
+		do {
+			*cp++ = lookup_table[ac & 0x3f];
+			ac >>= 6;
+			bits -= 6;
+		} while (bits >= 6);
+	}
+	if (bits)
+		*cp++ = lookup_table[ac & 0x3f];
+	return cp - dst;
+}
+
+static int base64_decode(const char *src, int len, u8 *dst)
+{
+	int i, bits = 0, ac = 0;
+	const char *p;
+	u8 *cp = dst;
+
+	for (i = 0; i < len; i++) {
+		p = strchr(lookup_table, src[i]);
+		if (p == NULL || src[i] == 0)
+			return -2;
+		ac += (p - lookup_table) << bits;
+		bits += 6;
+		if (bits >= 8) {
+			*cp++ = ac & 0xff;
+			ac >>= 8;
+			bits -= 8;
+		}
+	}
+	if (ac)
+		return -1;
+	return cp - dst;
+}
+
+bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
+				  u32 max_len, u32 *encrypted_len_ret)
+{
+	const struct fscrypt_info *ci = inode->i_crypt_info;
+	int padding = 4 << (fscrypt_policy_flags(&ci->ci_policy) &
+			    FSCRYPT_POLICY_FLAGS_PAD_MASK);
+	u32 encrypted_len;
+
+	if (orig_len > max_len)
+		return false;
+	encrypted_len = max(orig_len, (u32)FS_CRYPTO_BLOCK_SIZE);
+	encrypted_len = round_up(encrypted_len, padding);
+	*encrypted_len_ret = min(encrypted_len, max_len);
+	return true;
+}
+
+/**
+ * fscrypt_fname_alloc_buffer - allocate a buffer for presented filenames
+ *
+ * Allocate a buffer that is large enough to hold any decrypted or encoded
+ * filename (null-terminated), for the given maximum encrypted filename length.
+ *
+ * Return: 0 on success, -errno on failure
+ */
+int fscrypt_fname_alloc_buffer(const struct inode *inode,
+			       u32 max_encrypted_len,
+			       struct fscrypt_str *crypto_str)
+{
+	const u32 max_encoded_len =
+		max_t(u32, BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE),
+		      1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)));
+	u32 max_presented_len;
+
+	max_presented_len = max(max_encoded_len, max_encrypted_len);
+
+	crypto_str->name = kmalloc(max_presented_len + 1, GFP_NOFS);
+	if (!crypto_str->name)
+		return -ENOMEM;
+	crypto_str->len = max_presented_len;
+	return 0;
+}
+EXPORT_SYMBOL(fscrypt_fname_alloc_buffer);
+
+/**
+ * fscrypt_fname_free_buffer - free the buffer for presented filenames
+ *
+ * Free the buffer allocated by fscrypt_fname_alloc_buffer().
+ */
+void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
+{
+	if (!crypto_str)
+		return;
+	kfree(crypto_str->name);
+	crypto_str->name = NULL;
+}
+EXPORT_SYMBOL(fscrypt_fname_free_buffer);
+
+/**
+ * fscrypt_fname_disk_to_usr() - converts a filename from disk space to user
+ * space
+ *
+ * The caller must have allocated sufficient memory for the @oname string.
+ *
+ * If the key is available, we'll decrypt the disk name; otherwise, we'll encode
+ * it for presentation.  Short names are directly base64-encoded, while long
+ * names are encoded in fscrypt_digested_name format.
+ *
+ * Return: 0 on success, -errno on failure
+ */
+int fscrypt_fname_disk_to_usr(struct inode *inode,
+			u32 hash, u32 minor_hash,
+			const struct fscrypt_str *iname,
+			struct fscrypt_str *oname)
+{
+	const struct qstr qname = FSTR_TO_QSTR(iname);
+	struct fscrypt_digested_name digested_name;
+
+	if (fscrypt_is_dot_dotdot(&qname)) {
+		oname->name[0] = '.';
+		oname->name[iname->len - 1] = '.';
+		oname->len = iname->len;
+		return 0;
+	}
+
+	if (iname->len < FS_CRYPTO_BLOCK_SIZE)
+		return -EUCLEAN;
+
+	if (fscrypt_has_encryption_key(inode))
+		return fname_decrypt(inode, iname, oname);
+
+	if (iname->len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE) {
+		oname->len = base64_encode(iname->name, iname->len,
+					   oname->name);
+		return 0;
+	}
+	if (hash) {
+		digested_name.hash = hash;
+		digested_name.minor_hash = minor_hash;
+	} else {
+		digested_name.hash = 0;
+		digested_name.minor_hash = 0;
+	}
+	memcpy(digested_name.digest,
+	       FSCRYPT_FNAME_DIGEST(iname->name, iname->len),
+	       FSCRYPT_FNAME_DIGEST_SIZE);
+	oname->name[0] = '_';
+	oname->len = 1 + base64_encode((const u8 *)&digested_name,
+				       sizeof(digested_name), oname->name + 1);
+	return 0;
+}
+EXPORT_SYMBOL(fscrypt_fname_disk_to_usr);
+
+/**
+ * fscrypt_setup_filename() - prepare to search a possibly encrypted directory
+ * @dir: the directory that will be searched
+ * @iname: the user-provided filename being searched for
+ * @lookup: 1 if we're allowed to proceed without the key because it's
+ *	->lookup() or we're finding the dir_entry for deletion; 0 if we cannot
+ *	proceed without the key because we're going to create the dir_entry.
+ * @fname: the filename information to be filled in
+ *
+ * Given a user-provided filename @iname, this function sets @fname->disk_name
+ * to the name that would be stored in the on-disk directory entry, if possible.
+ * If the directory is unencrypted this is simply @iname.  Else, if we have the
+ * directory's encryption key, then @iname is the plaintext, so we encrypt it to
+ * get the disk_name.
+ *
+ * Else, for keyless @lookup operations, @iname is the presented ciphertext, so
+ * we decode it to get either the ciphertext disk_name (for short names) or the
+ * fscrypt_digested_name (for long names).  Non-@lookup operations will be
+ * impossible in this case, so we fail them with ENOKEY.
+ *
+ * If successful, fscrypt_free_filename() must be called later to clean up.
+ *
+ * Return: 0 on success, -errno on failure
+ */
+int fscrypt_setup_filename(struct inode *dir, const struct qstr *iname,
+			      int lookup, struct fscrypt_name *fname)
+{
+	int ret;
+	int digested;
+
+	memset(fname, 0, sizeof(struct fscrypt_name));
+	fname->usr_fname = iname;
+
+	if (!IS_ENCRYPTED(dir) || fscrypt_is_dot_dotdot(iname)) {
+		fname->disk_name.name = (unsigned char *)iname->name;
+		fname->disk_name.len = iname->len;
+		return 0;
+	}
+	ret = fscrypt_get_encryption_info(dir);
+	if (ret)
+		return ret;
+
+	if (fscrypt_has_encryption_key(dir)) {
+		if (!fscrypt_fname_encrypted_size(dir, iname->len,
+						  dir->i_sb->s_cop->max_namelen,
+						  &fname->crypto_buf.len))
+			return -ENAMETOOLONG;
+		fname->crypto_buf.name = kmalloc(fname->crypto_buf.len,
+						 GFP_NOFS);
+		if (!fname->crypto_buf.name)
+			return -ENOMEM;
+
+		ret = fname_encrypt(dir, iname, fname->crypto_buf.name,
+				    fname->crypto_buf.len);
+		if (ret)
+			goto errout;
+		fname->disk_name.name = fname->crypto_buf.name;
+		fname->disk_name.len = fname->crypto_buf.len;
+		return 0;
+	}
+	if (!lookup)
+		return -ENOKEY;
+	fname->is_ciphertext_name = true;
+
+	/*
+	 * We don't have the key and we are doing a lookup; decode the
+	 * user-supplied name
+	 */
+	if (iname->name[0] == '_') {
+		if (iname->len !=
+		    1 + BASE64_CHARS(sizeof(struct fscrypt_digested_name)))
+			return -ENOENT;
+		digested = 1;
+	} else {
+		if (iname->len >
+		    BASE64_CHARS(FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE))
+			return -ENOENT;
+		digested = 0;
+	}
+
+	fname->crypto_buf.name =
+		kmalloc(max_t(size_t, FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE,
+			      sizeof(struct fscrypt_digested_name)),
+			GFP_KERNEL);
+	if (fname->crypto_buf.name == NULL)
+		return -ENOMEM;
+
+	ret = base64_decode(iname->name + digested, iname->len - digested,
+			    fname->crypto_buf.name);
+	if (ret < 0) {
+		ret = -ENOENT;
+		goto errout;
+	}
+	fname->crypto_buf.len = ret;
+	if (digested) {
+		const struct fscrypt_digested_name *n =
+			(const void *)fname->crypto_buf.name;
+		fname->hash = n->hash;
+		fname->minor_hash = n->minor_hash;
+	} else {
+		fname->disk_name.name = fname->crypto_buf.name;
+		fname->disk_name.len = fname->crypto_buf.len;
+	}
+	return 0;
+
+errout:
+	kfree(fname->crypto_buf.name);
+	return ret;
+}
+EXPORT_SYMBOL(fscrypt_setup_filename);
diff --git a/src/kernel/linux/v4.19/fs/crypto/fscrypt_private.h b/src/kernel/linux/v4.19/fs/crypto/fscrypt_private.h
new file mode 100644
index 0000000..5d7b20f
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/fscrypt_private.h
@@ -0,0 +1,605 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+/*
+ * fscrypt_private.h
+ *
+ * Copyright (C) 2015, Google, Inc.
+ *
+ * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
+ * Heavily modified since then.
+ */
+
+#ifndef _FSCRYPT_PRIVATE_H
+#define _FSCRYPT_PRIVATE_H
+
+#include <linux/fscrypt.h>
+#include <crypto/hash.h>
+#include <linux/bio-crypt-ctx.h>
+
+#define CONST_STRLEN(str)	(sizeof(str) - 1)
+
+#define FS_KEY_DERIVATION_NONCE_SIZE	16
+
+#define FSCRYPT_MIN_KEY_SIZE		16
+#define FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE	128
+
+#define FSCRYPT_CONTEXT_V1	1
+#define FSCRYPT_CONTEXT_V2	2
+
+struct fscrypt_context_v1 {
+	u8 version; /* FSCRYPT_CONTEXT_V1 */
+	u8 contents_encryption_mode;
+	u8 filenames_encryption_mode;
+	u8 flags;
+	u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
+};
+
+struct fscrypt_context_v2 {
+	u8 version; /* FSCRYPT_CONTEXT_V2 */
+	u8 contents_encryption_mode;
+	u8 filenames_encryption_mode;
+	u8 flags;
+	u8 __reserved[4];
+	u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
+	u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
+};
+
+/**
+ * fscrypt_context - the encryption context of an inode
+ *
+ * This is the on-disk equivalent of an fscrypt_policy, stored alongside each
+ * encrypted file usually in a hidden extended attribute.  It contains the
+ * fields from the fscrypt_policy, in order to identify the encryption algorithm
+ * and key with which the file is encrypted.  It also contains a nonce that was
+ * randomly generated by fscrypt itself; this is used as KDF input or as a tweak
+ * to cause different files to be encrypted differently.
+ */
+union fscrypt_context {
+	u8 version;
+	struct fscrypt_context_v1 v1;
+	struct fscrypt_context_v2 v2;
+};
+
+/*
+ * Return the size expected for the given fscrypt_context based on its version
+ * number, or 0 if the context version is unrecognized.
+ */
+static inline int fscrypt_context_size(const union fscrypt_context *ctx)
+{
+	switch (ctx->version) {
+	case FSCRYPT_CONTEXT_V1:
+		BUILD_BUG_ON(sizeof(ctx->v1) != 28);
+		return sizeof(ctx->v1);
+	case FSCRYPT_CONTEXT_V2:
+		BUILD_BUG_ON(sizeof(ctx->v2) != 40);
+		return sizeof(ctx->v2);
+	}
+	return 0;
+}
+
+#undef fscrypt_policy
+union fscrypt_policy {
+	u8 version;
+	struct fscrypt_policy_v1 v1;
+	struct fscrypt_policy_v2 v2;
+};
+
+/*
+ * Return the size expected for the given fscrypt_policy based on its version
+ * number, or 0 if the policy version is unrecognized.
+ */
+static inline int fscrypt_policy_size(const union fscrypt_policy *policy)
+{
+	switch (policy->version) {
+	case FSCRYPT_POLICY_V1:
+		return sizeof(policy->v1);
+	case FSCRYPT_POLICY_V2:
+		return sizeof(policy->v2);
+	}
+	return 0;
+}
+
+/* Return the contents encryption mode of a valid encryption policy */
+static inline u8
+fscrypt_policy_contents_mode(const union fscrypt_policy *policy)
+{
+	switch (policy->version) {
+	case FSCRYPT_POLICY_V1:
+		return policy->v1.contents_encryption_mode;
+	case FSCRYPT_POLICY_V2:
+		return policy->v2.contents_encryption_mode;
+	}
+	BUG();
+}
+
+/* Return the filenames encryption mode of a valid encryption policy */
+static inline u8
+fscrypt_policy_fnames_mode(const union fscrypt_policy *policy)
+{
+	switch (policy->version) {
+	case FSCRYPT_POLICY_V1:
+		return policy->v1.filenames_encryption_mode;
+	case FSCRYPT_POLICY_V2:
+		return policy->v2.filenames_encryption_mode;
+	}
+	BUG();
+}
+
+/* Return the flags (FSCRYPT_POLICY_FLAG*) of a valid encryption policy */
+static inline u8
+fscrypt_policy_flags(const union fscrypt_policy *policy)
+{
+	switch (policy->version) {
+	case FSCRYPT_POLICY_V1:
+		return policy->v1.flags;
+	case FSCRYPT_POLICY_V2:
+		return policy->v2.flags;
+	}
+	BUG();
+}
+
+static inline bool
+fscrypt_is_direct_key_policy(const union fscrypt_policy *policy)
+{
+	return fscrypt_policy_flags(policy) & FSCRYPT_POLICY_FLAG_DIRECT_KEY;
+}
+
+/**
+ * For encrypted symlinks, the ciphertext length is stored at the beginning
+ * of the string in little-endian format.
+ */
+struct fscrypt_symlink_data {
+	__le16 len;
+	char encrypted_path[1];
+} __packed;
+
+/**
+ * struct fscrypt_prepared_key - a key prepared for actual encryption/decryption
+ * @tfm: crypto API transform object
+ * @blk_key: key for blk-crypto
+ *
+ * Normally only one of the fields will be non-NULL.
+ */
+struct fscrypt_prepared_key {
+	struct crypto_skcipher *tfm;
+#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
+	struct fscrypt_blk_crypto_key *blk_key;
+#endif
+};
+
+/*
+ * fscrypt_info - the "encryption key" for an inode
+ *
+ * When an encrypted file's key is made available, an instance of this struct is
+ * allocated and stored in ->i_crypt_info.  Once created, it remains until the
+ * inode is evicted.
+ */
+struct fscrypt_info {
+
+	/* The key in a form prepared for actual encryption/decryption */
+	struct fscrypt_prepared_key	ci_key;
+
+	/* True if the key should be freed when this fscrypt_info is freed */
+	bool ci_owns_key;
+
+#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
+	/*
+	 * True if this inode will use inline encryption (blk-crypto) instead of
+	 * the traditional filesystem-layer encryption.
+	 */
+	bool ci_inlinecrypt;
+#endif
+
+	/*
+	 * Encryption mode used for this inode.  It corresponds to either the
+	 * contents or filenames encryption mode, depending on the inode type.
+	 */
+	struct fscrypt_mode *ci_mode;
+
+	/* Back-pointer to the inode */
+	struct inode *ci_inode;
+
+	/*
+	 * The master key with which this inode was unlocked (decrypted).  This
+	 * will be NULL if the master key was found in a process-subscribed
+	 * keyring rather than in the filesystem-level keyring.
+	 */
+	struct key *ci_master_key;
+
+	/*
+	 * Link in list of inodes that were unlocked with the master key.
+	 * Only used when ->ci_master_key is set.
+	 */
+	struct list_head ci_master_key_link;
+
+	/*
+	 * If non-NULL, then encryption is done using the master key directly
+	 * and ci_key will equal ci_direct_key->dk_key.
+	 */
+	struct fscrypt_direct_key *ci_direct_key;
+
+	/* The encryption policy used by this inode */
+	union fscrypt_policy ci_policy;
+
+	/* This inode's nonce, copied from the fscrypt_context */
+	u8 ci_nonce[FS_KEY_DERIVATION_NONCE_SIZE];
+};
+
+typedef enum {
+	FS_DECRYPT = 0,
+	FS_ENCRYPT,
+} fscrypt_direction_t;
+
+static inline bool fscrypt_valid_enc_modes(u32 contents_mode,
+					   u32 filenames_mode)
+{
+	if (contents_mode == FSCRYPT_MODE_AES_128_CBC &&
+	    filenames_mode == FSCRYPT_MODE_AES_128_CTS)
+		return true;
+
+	if (contents_mode == FSCRYPT_MODE_AES_256_XTS &&
+	    filenames_mode == FSCRYPT_MODE_AES_256_CTS)
+		return true;
+
+	if (contents_mode == FSCRYPT_MODE_ADIANTUM &&
+	    filenames_mode == FSCRYPT_MODE_ADIANTUM)
+		return true;
+
+	return false;
+}
+
+/* crypto.c */
+extern struct kmem_cache *fscrypt_info_cachep;
+extern int fscrypt_initialize(unsigned int cop_flags);
+extern int fscrypt_crypt_block(const struct inode *inode,
+			       fscrypt_direction_t rw, u64 lblk_num,
+			       struct page *src_page, struct page *dest_page,
+			       unsigned int len, unsigned int offs,
+			       gfp_t gfp_flags);
+extern struct page *fscrypt_alloc_bounce_page(gfp_t gfp_flags);
+extern const struct dentry_operations fscrypt_d_ops;
+
+extern void __printf(3, 4) __cold
+fscrypt_msg(const struct inode *inode, const char *level, const char *fmt, ...);
+
+#define fscrypt_warn(inode, fmt, ...)		\
+	fscrypt_msg((inode), KERN_WARNING, fmt, ##__VA_ARGS__)
+#define fscrypt_err(inode, fmt, ...)		\
+	fscrypt_msg((inode), KERN_ERR, fmt, ##__VA_ARGS__)
+
+#define FSCRYPT_MAX_IV_SIZE	32
+
+union fscrypt_iv {
+	struct {
+		/* logical block number within the file */
+		__le64 lblk_num;
+
+		/* per-file nonce; only set in DIRECT_KEY mode */
+		u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
+	};
+	u8 raw[FSCRYPT_MAX_IV_SIZE];
+	__le64 dun[FSCRYPT_MAX_IV_SIZE / sizeof(__le64)];
+};
+
+void fscrypt_generate_iv(union fscrypt_iv *iv, u64 lblk_num,
+			 const struct fscrypt_info *ci);
+
+/* fname.c */
+extern int fname_encrypt(struct inode *inode, const struct qstr *iname,
+			 u8 *out, unsigned int olen);
+extern bool fscrypt_fname_encrypted_size(const struct inode *inode,
+					 u32 orig_len, u32 max_len,
+					 u32 *encrypted_len_ret);
+
+/* hkdf.c */
+
+struct fscrypt_hkdf {
+	struct crypto_shash *hmac_tfm;
+};
+
+extern int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
+			     unsigned int master_key_size);
+
+/*
+ * The list of contexts in which fscrypt uses HKDF.  These values are used as
+ * the first byte of the HKDF application-specific info string to guarantee that
+ * info strings are never repeated between contexts.  This ensures that all HKDF
+ * outputs are unique and cryptographically isolated, i.e. knowledge of one
+ * output doesn't reveal another.
+ */
+#define HKDF_CONTEXT_KEY_IDENTIFIER	1
+#define HKDF_CONTEXT_PER_FILE_KEY	2
+#define HKDF_CONTEXT_DIRECT_KEY		3
+#define HKDF_CONTEXT_IV_INO_LBLK_64_KEY	4
+
+extern int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
+			       const u8 *info, unsigned int infolen,
+			       u8 *okm, unsigned int okmlen);
+
+extern void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf);
+
+/* inline_crypt.c */
+#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
+extern void fscrypt_select_encryption_impl(struct fscrypt_info *ci);
+
+static inline bool
+fscrypt_using_inline_encryption(const struct fscrypt_info *ci)
+{
+	return ci->ci_inlinecrypt;
+}
+
+extern int fscrypt_prepare_inline_crypt_key(
+					struct fscrypt_prepared_key *prep_key,
+					const u8 *raw_key,
+					unsigned int raw_key_size,
+					const struct fscrypt_info *ci);
+
+extern void fscrypt_destroy_inline_crypt_key(
+					struct fscrypt_prepared_key *prep_key);
+
+extern int fscrypt_derive_raw_secret(struct super_block *sb,
+				     const u8 *wrapped_key,
+				     unsigned int wrapped_key_size,
+				     u8 *raw_secret,
+				     unsigned int raw_secret_size);
+
+/*
+ * Check whether the crypto transform or blk-crypto key has been allocated in
+ * @prep_key, depending on which encryption implementation the file will use.
+ */
+static inline bool
+fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
+			const struct fscrypt_info *ci)
+{
+	/*
+	 * The READ_ONCE() here pairs with the smp_store_release() in
+	 * fscrypt_prepare_key().  (This only matters for the per-mode keys,
+	 * which are shared by multiple inodes.)
+	 */
+	if (fscrypt_using_inline_encryption(ci))
+		return READ_ONCE(prep_key->blk_key) != NULL;
+	return READ_ONCE(prep_key->tfm) != NULL;
+}
+
+#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
+
+static inline void fscrypt_select_encryption_impl(struct fscrypt_info *ci)
+{
+}
+
+static inline bool fscrypt_using_inline_encryption(
+					const struct fscrypt_info *ci)
+{
+	return false;
+}
+
+static inline int
+fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
+				 const u8 *raw_key, unsigned int raw_key_size,
+				 const struct fscrypt_info *ci)
+{
+	WARN_ON(1);
+	return -EOPNOTSUPP;
+}
+
+static inline void
+fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
+{
+}
+
+static inline int fscrypt_derive_raw_secret(struct super_block *sb,
+					    const u8 *wrapped_key,
+					    unsigned int wrapped_key_size,
+					    u8 *raw_secret,
+					    unsigned int raw_secret_size)
+{
+	fscrypt_warn(NULL,
+		     "kernel built without support for hardware-wrapped keys");
+	return -EOPNOTSUPP;
+}
+
+static inline bool
+fscrypt_is_key_prepared(struct fscrypt_prepared_key *prep_key,
+			const struct fscrypt_info *ci)
+{
+	return READ_ONCE(prep_key->tfm) != NULL;
+}
+#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */
+
+/* keyring.c */
+
+/*
+ * fscrypt_master_key_secret - secret key material of an in-use master key
+ */
+struct fscrypt_master_key_secret {
+
+	/*
+	 * For v2 policy keys: HKDF context keyed by this master key.
+	 * For v1 policy keys: not set (hkdf.hmac_tfm == NULL).
+	 */
+	struct fscrypt_hkdf	hkdf;
+
+	/* Size of the raw key in bytes.  Set even if ->raw isn't set. */
+	u32			size;
+
+	/* True if the key in ->raw is a hardware-wrapped key. */
+	bool			is_hw_wrapped;
+
+	/*
+	 * For v1 policy keys: the raw key.  Wiped for v2 policy keys, unless
+	 * ->is_hw_wrapped is true, in which case this contains the wrapped key
+	 * rather than the key with which 'hkdf' was keyed.
+	 */
+	u8			raw[FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE];
+
+} __randomize_layout;
+
+/*
+ * fscrypt_master_key - an in-use master key
+ *
+ * This represents a master encryption key which has been added to the
+ * filesystem and can be used to "unlock" the encrypted files which were
+ * encrypted with it.
+ */
+struct fscrypt_master_key {
+
+	/*
+	 * The secret key material.  After FS_IOC_REMOVE_ENCRYPTION_KEY is
+	 * executed, this is wiped and no new inodes can be unlocked with this
+	 * key; however, there may still be inodes in ->mk_decrypted_inodes
+	 * which could not be evicted.  As long as some inodes still remain,
+	 * FS_IOC_REMOVE_ENCRYPTION_KEY can be retried, or
+	 * FS_IOC_ADD_ENCRYPTION_KEY can add the secret again.
+	 *
+	 * Locking: protected by key->sem (outer) and mk_secret_sem (inner).
+	 * The reason for two locks is that key->sem also protects modifying
+	 * mk_users, which ranks it above the semaphore for the keyring key
+	 * type, which is in turn above page faults (via keyring_read).  But
+	 * sometimes filesystems call fscrypt_get_encryption_info() from within
+	 * a transaction, which ranks it below page faults.  So we need a
+	 * separate lock which protects mk_secret but not also mk_users.
+	 */
+	struct fscrypt_master_key_secret	mk_secret;
+	struct rw_semaphore			mk_secret_sem;
+
+	/*
+	 * For v1 policy keys: an arbitrary key descriptor which was assigned by
+	 * userspace (->descriptor).
+	 *
+	 * For v2 policy keys: a cryptographic hash of this key (->identifier).
+	 */
+	struct fscrypt_key_specifier		mk_spec;
+
+	/*
+	 * Keyring which contains a key of type 'key_type_fscrypt_user' for each
+	 * user who has added this key.  Normally each key will be added by just
+	 * one user, but it's possible that multiple users share a key, and in
+	 * that case we need to keep track of those users so that one user can't
+	 * remove the key before the others want it removed too.
+	 *
+	 * This is NULL for v1 policy keys; those can only be added by root.
+	 *
+	 * Locking: in addition to this keyrings own semaphore, this is
+	 * protected by the master key's key->sem, so we can do atomic
+	 * search+insert.  It can also be searched without taking any locks, but
+	 * in that case the returned key may have already been removed.
+	 */
+	struct key		*mk_users;
+
+	/*
+	 * Length of ->mk_decrypted_inodes, plus one if mk_secret is present.
+	 * Once this goes to 0, the master key is removed from ->s_master_keys.
+	 * The 'struct fscrypt_master_key' will continue to live as long as the
+	 * 'struct key' whose payload it is, but we won't let this reference
+	 * count rise again.
+	 */
+	refcount_t		mk_refcount;
+
+	/*
+	 * List of inodes that were unlocked using this key.  This allows the
+	 * inodes to be evicted efficiently if the key is removed.
+	 */
+	struct list_head	mk_decrypted_inodes;
+	spinlock_t		mk_decrypted_inodes_lock;
+
+	/* Per-mode keys for DIRECT_KEY policies, allocated on-demand */
+	struct fscrypt_prepared_key mk_direct_keys[__FSCRYPT_MODE_MAX + 1];
+
+	/* Per-mode keys for IV_INO_LBLK_64 policies, allocated on-demand */
+	struct fscrypt_prepared_key mk_iv_ino_lblk_64_keys[__FSCRYPT_MODE_MAX + 1];
+
+} __randomize_layout;
+
+static inline bool
+is_master_key_secret_present(const struct fscrypt_master_key_secret *secret)
+{
+	/*
+	 * The READ_ONCE() is only necessary for fscrypt_drop_inode() and
+	 * fscrypt_key_describe().  These run in atomic context, so they can't
+	 * take ->mk_secret_sem and thus 'secret' can change concurrently which
+	 * would be a data race.  But they only need to know whether the secret
+	 * *was* present at the time of check, so READ_ONCE() suffices.
+	 */
+	return READ_ONCE(secret->size) != 0;
+}
+
+static inline const char *master_key_spec_type(
+				const struct fscrypt_key_specifier *spec)
+{
+	switch (spec->type) {
+	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
+		return "descriptor";
+	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
+		return "identifier";
+	}
+	return "[unknown]";
+}
+
+static inline int master_key_spec_len(const struct fscrypt_key_specifier *spec)
+{
+	switch (spec->type) {
+	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
+		return FSCRYPT_KEY_DESCRIPTOR_SIZE;
+	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
+		return FSCRYPT_KEY_IDENTIFIER_SIZE;
+	}
+	return 0;
+}
+
+extern struct key *
+fscrypt_find_master_key(struct super_block *sb,
+			const struct fscrypt_key_specifier *mk_spec);
+
+extern int fscrypt_verify_key_added(struct super_block *sb,
+				    const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]);
+
+extern int __init fscrypt_init_keyring(void);
+
+/* keysetup.c */
+
+struct fscrypt_mode {
+	const char *friendly_name;
+	const char *cipher_str;
+	int keysize;
+	int ivsize;
+	int logged_impl_name;
+	enum blk_crypto_mode_num blk_crypto_mode;
+};
+
+extern struct fscrypt_mode fscrypt_modes[];
+
+static inline bool
+fscrypt_mode_supports_direct_key(const struct fscrypt_mode *mode)
+{
+	return mode->ivsize >= offsetofend(union fscrypt_iv, nonce);
+}
+
+extern int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
+			       const u8 *raw_key, unsigned int raw_key_size,
+			       const struct fscrypt_info *ci);
+
+extern void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key);
+
+extern int fscrypt_set_derived_key(struct fscrypt_info *ci,
+				   const u8 *derived_key);
+
+/* keysetup_v1.c */
+
+extern void fscrypt_put_direct_key(struct fscrypt_direct_key *dk);
+
+extern int fscrypt_setup_v1_file_key(struct fscrypt_info *ci,
+				     const u8 *raw_master_key);
+
+extern int fscrypt_setup_v1_file_key_via_subscribed_keyrings(
+					struct fscrypt_info *ci);
+/* policy.c */
+
+extern bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
+				   const union fscrypt_policy *policy2);
+extern bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
+				     const struct inode *inode);
+extern int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
+				       const union fscrypt_context *ctx_u,
+				       int ctx_size);
+
+#endif /* _FSCRYPT_PRIVATE_H */
diff --git a/src/kernel/linux/v4.19/fs/crypto/hkdf.c b/src/kernel/linux/v4.19/fs/crypto/hkdf.c
new file mode 100644
index 0000000..2c02600
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/hkdf.c
@@ -0,0 +1,183 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Implementation of HKDF ("HMAC-based Extract-and-Expand Key Derivation
+ * Function"), aka RFC 5869.  See also the original paper (Krawczyk 2010):
+ * "Cryptographic Extraction and Key Derivation: The HKDF Scheme".
+ *
+ * This is used to derive keys from the fscrypt master keys.
+ *
+ * Copyright 2019 Google LLC
+ */
+
+#include <crypto/hash.h>
+#include <crypto/sha.h>
+
+#include "fscrypt_private.h"
+
+/*
+ * HKDF supports any unkeyed cryptographic hash algorithm, but fscrypt uses
+ * SHA-512 because it is reasonably secure and efficient; and since it produces
+ * a 64-byte digest, deriving an AES-256-XTS key preserves all 64 bytes of
+ * entropy from the master key and requires only one iteration of HKDF-Expand.
+ */
+#define HKDF_HMAC_ALG		"hmac(sha512)"
+#define HKDF_HASHLEN		SHA512_DIGEST_SIZE
+
+/*
+ * HKDF consists of two steps:
+ *
+ * 1. HKDF-Extract: extract a pseudorandom key of length HKDF_HASHLEN bytes from
+ *    the input keying material and optional salt.
+ * 2. HKDF-Expand: expand the pseudorandom key into output keying material of
+ *    any length, parameterized by an application-specific info string.
+ *
+ * HKDF-Extract can be skipped if the input is already a pseudorandom key of
+ * length HKDF_HASHLEN bytes.  However, cipher modes other than AES-256-XTS take
+ * shorter keys, and we don't want to force users of those modes to provide
+ * unnecessarily long master keys.  Thus fscrypt still does HKDF-Extract.  No
+ * salt is used, since fscrypt master keys should already be pseudorandom and
+ * there's no way to persist a random salt per master key from kernel mode.
+ */
+
+/* HKDF-Extract (RFC 5869 section 2.2), unsalted */
+static int hkdf_extract(struct crypto_shash *hmac_tfm, const u8 *ikm,
+			unsigned int ikmlen, u8 prk[HKDF_HASHLEN])
+{
+	static const u8 default_salt[HKDF_HASHLEN];
+	SHASH_DESC_ON_STACK(desc, hmac_tfm);
+	int err;
+
+	err = crypto_shash_setkey(hmac_tfm, default_salt, HKDF_HASHLEN);
+	if (err)
+		return err;
+
+	desc->tfm = hmac_tfm;
+	desc->flags = 0;
+	err = crypto_shash_digest(desc, ikm, ikmlen, prk);
+	shash_desc_zero(desc);
+	return err;
+}
+
+/*
+ * Compute HKDF-Extract using the given master key as the input keying material,
+ * and prepare an HMAC transform object keyed by the resulting pseudorandom key.
+ *
+ * Afterwards, the keyed HMAC transform object can be used for HKDF-Expand many
+ * times without having to recompute HKDF-Extract each time.
+ */
+int fscrypt_init_hkdf(struct fscrypt_hkdf *hkdf, const u8 *master_key,
+		      unsigned int master_key_size)
+{
+	struct crypto_shash *hmac_tfm;
+	u8 prk[HKDF_HASHLEN];
+	int err;
+
+	hmac_tfm = crypto_alloc_shash(HKDF_HMAC_ALG, 0, 0);
+	if (IS_ERR(hmac_tfm)) {
+		fscrypt_err(NULL, "Error allocating " HKDF_HMAC_ALG ": %ld",
+			    PTR_ERR(hmac_tfm));
+		return PTR_ERR(hmac_tfm);
+	}
+
+	if (WARN_ON(crypto_shash_digestsize(hmac_tfm) != sizeof(prk))) {
+		err = -EINVAL;
+		goto err_free_tfm;
+	}
+
+	err = hkdf_extract(hmac_tfm, master_key, master_key_size, prk);
+	if (err)
+		goto err_free_tfm;
+
+	err = crypto_shash_setkey(hmac_tfm, prk, sizeof(prk));
+	if (err)
+		goto err_free_tfm;
+
+	hkdf->hmac_tfm = hmac_tfm;
+	goto out;
+
+err_free_tfm:
+	crypto_free_shash(hmac_tfm);
+out:
+	memzero_explicit(prk, sizeof(prk));
+	return err;
+}
+
+/*
+ * HKDF-Expand (RFC 5869 section 2.3).  This expands the pseudorandom key, which
+ * was already keyed into 'hkdf->hmac_tfm' by fscrypt_init_hkdf(), into 'okmlen'
+ * bytes of output keying material parameterized by the application-specific
+ * 'info' of length 'infolen' bytes, prefixed by "fscrypt\0" and the 'context'
+ * byte.  This is thread-safe and may be called by multiple threads in parallel.
+ *
+ * ('context' isn't part of the HKDF specification; it's just a prefix fscrypt
+ * adds to its application-specific info strings to guarantee that it doesn't
+ * accidentally repeat an info string when using HKDF for different purposes.)
+ */
+int fscrypt_hkdf_expand(struct fscrypt_hkdf *hkdf, u8 context,
+			const u8 *info, unsigned int infolen,
+			u8 *okm, unsigned int okmlen)
+{
+	SHASH_DESC_ON_STACK(desc, hkdf->hmac_tfm);
+	u8 prefix[9];
+	unsigned int i;
+	int err;
+	const u8 *prev = NULL;
+	u8 counter = 1;
+	u8 tmp[HKDF_HASHLEN];
+
+	if (WARN_ON(okmlen > 255 * HKDF_HASHLEN))
+		return -EINVAL;
+
+	desc->tfm = hkdf->hmac_tfm;
+	desc->flags = 0;
+
+	memcpy(prefix, "fscrypt\0", 8);
+	prefix[8] = context;
+
+	for (i = 0; i < okmlen; i += HKDF_HASHLEN) {
+
+		err = crypto_shash_init(desc);
+		if (err)
+			goto out;
+
+		if (prev) {
+			err = crypto_shash_update(desc, prev, HKDF_HASHLEN);
+			if (err)
+				goto out;
+		}
+
+		err = crypto_shash_update(desc, prefix, sizeof(prefix));
+		if (err)
+			goto out;
+
+		err = crypto_shash_update(desc, info, infolen);
+		if (err)
+			goto out;
+
+		BUILD_BUG_ON(sizeof(counter) != 1);
+		if (okmlen - i < HKDF_HASHLEN) {
+			err = crypto_shash_finup(desc, &counter, 1, tmp);
+			if (err)
+				goto out;
+			memcpy(&okm[i], tmp, okmlen - i);
+			memzero_explicit(tmp, sizeof(tmp));
+		} else {
+			err = crypto_shash_finup(desc, &counter, 1, &okm[i]);
+			if (err)
+				goto out;
+		}
+		counter++;
+		prev = &okm[i];
+	}
+	err = 0;
+out:
+	if (unlikely(err))
+		memzero_explicit(okm, okmlen); /* so caller doesn't need to */
+	shash_desc_zero(desc);
+	return err;
+}
+
+void fscrypt_destroy_hkdf(struct fscrypt_hkdf *hkdf)
+{
+	crypto_free_shash(hkdf->hmac_tfm);
+}
diff --git a/src/kernel/linux/v4.19/fs/crypto/hooks.c b/src/kernel/linux/v4.19/fs/crypto/hooks.c
new file mode 100644
index 0000000..30b1ca6
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/hooks.c
@@ -0,0 +1,306 @@
+/*
+ * fs/crypto/hooks.c
+ *
+ * Encryption hooks for higher-level filesystem operations.
+ */
+
+#include "fscrypt_private.h"
+
+/**
+ * fscrypt_file_open - prepare to open a possibly-encrypted regular file
+ * @inode: the inode being opened
+ * @filp: the struct file being set up
+ *
+ * Currently, an encrypted regular file can only be opened if its encryption key
+ * is available; access to the raw encrypted contents is not supported.
+ * Therefore, we first set up the inode's encryption key (if not already done)
+ * and return an error if it's unavailable.
+ *
+ * We also verify that if the parent directory (from the path via which the file
+ * is being opened) is encrypted, then the inode being opened uses the same
+ * encryption policy.  This is needed as part of the enforcement that all files
+ * in an encrypted directory tree use the same encryption policy, as a
+ * protection against certain types of offline attacks.  Note that this check is
+ * needed even when opening an *unencrypted* file, since it's forbidden to have
+ * an unencrypted file in an encrypted directory.
+ *
+ * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
+ */
+int fscrypt_file_open(struct inode *inode, struct file *filp)
+{
+	int err;
+	struct dentry *dir;
+
+	err = fscrypt_require_key(inode);
+	if (err)
+		return err;
+
+	dir = dget_parent(file_dentry(filp));
+	if (IS_ENCRYPTED(d_inode(dir)) &&
+	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
+		fscrypt_warn(inode,
+			     "Inconsistent encryption context (parent directory: %lu)",
+			     d_inode(dir)->i_ino);
+		err = -EPERM;
+	}
+	dput(dir);
+	return err;
+}
+EXPORT_SYMBOL_GPL(fscrypt_file_open);
+
+int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
+			   struct dentry *dentry)
+{
+	int err;
+
+	err = fscrypt_require_key(dir);
+	if (err)
+		return err;
+
+	/* ... in case we looked up ciphertext name before key was added */
+	if (dentry->d_flags & DCACHE_ENCRYPTED_NAME)
+		return -ENOKEY;
+
+	if (!fscrypt_has_permitted_context(dir, inode))
+		return -EXDEV;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
+
+int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
+			     struct inode *new_dir, struct dentry *new_dentry,
+			     unsigned int flags)
+{
+	int err;
+
+	err = fscrypt_require_key(old_dir);
+	if (err)
+		return err;
+
+	err = fscrypt_require_key(new_dir);
+	if (err)
+		return err;
+
+	/* ... in case we looked up ciphertext name(s) before key was added */
+	if ((old_dentry->d_flags | new_dentry->d_flags) &
+	    DCACHE_ENCRYPTED_NAME)
+		return -ENOKEY;
+
+	if (old_dir != new_dir) {
+		if (IS_ENCRYPTED(new_dir) &&
+		    !fscrypt_has_permitted_context(new_dir,
+						   d_inode(old_dentry)))
+			return -EXDEV;
+
+		if ((flags & RENAME_EXCHANGE) &&
+		    IS_ENCRYPTED(old_dir) &&
+		    !fscrypt_has_permitted_context(old_dir,
+						   d_inode(new_dentry)))
+			return -EXDEV;
+	}
+	return 0;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
+
+int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
+			     struct fscrypt_name *fname)
+{
+	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
+
+	if (err && err != -ENOENT)
+		return err;
+
+	if (fname->is_ciphertext_name) {
+		spin_lock(&dentry->d_lock);
+		dentry->d_flags |= DCACHE_ENCRYPTED_NAME;
+		spin_unlock(&dentry->d_lock);
+		d_set_d_op(dentry, &fscrypt_d_ops);
+	}
+	return err;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
+
+int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
+			      unsigned int max_len,
+			      struct fscrypt_str *disk_link)
+{
+	int err;
+
+	/*
+	 * To calculate the size of the encrypted symlink target we need to know
+	 * the amount of NUL padding, which is determined by the flags set in
+	 * the encryption policy which will be inherited from the directory.
+	 * The easiest way to get access to this is to just load the directory's
+	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
+	 *
+	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
+	 */
+	err = fscrypt_get_encryption_info(dir);
+	if (err)
+		return err;
+	if (!fscrypt_has_encryption_key(dir))
+		return -ENOKEY;
+
+	/*
+	 * Calculate the size of the encrypted symlink and verify it won't
+	 * exceed max_len.  Note that for historical reasons, encrypted symlink
+	 * targets are prefixed with the ciphertext length, despite this
+	 * actually being redundant with i_size.  This decreases by 2 bytes the
+	 * longest symlink target we can accept.
+	 *
+	 * We could recover 1 byte by not counting a null terminator, but
+	 * counting it (even though it is meaningless for ciphertext) is simpler
+	 * for now since filesystems will assume it is there and subtract it.
+	 */
+	if (!fscrypt_fname_encrypted_size(dir, len,
+					  max_len - sizeof(struct fscrypt_symlink_data),
+					  &disk_link->len))
+		return -ENAMETOOLONG;
+	disk_link->len += sizeof(struct fscrypt_symlink_data);
+
+	disk_link->name = NULL;
+	return 0;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
+
+int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
+			      unsigned int len, struct fscrypt_str *disk_link)
+{
+	int err;
+	struct qstr iname = QSTR_INIT(target, len);
+	struct fscrypt_symlink_data *sd;
+	unsigned int ciphertext_len;
+
+	err = fscrypt_require_key(inode);
+	if (err)
+		return err;
+
+	if (disk_link->name) {
+		/* filesystem-provided buffer */
+		sd = (struct fscrypt_symlink_data *)disk_link->name;
+	} else {
+		sd = kmalloc(disk_link->len, GFP_NOFS);
+		if (!sd)
+			return -ENOMEM;
+	}
+	ciphertext_len = disk_link->len - sizeof(*sd);
+	sd->len = cpu_to_le16(ciphertext_len);
+
+	err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
+	if (err)
+		goto err_free_sd;
+
+	/*
+	 * Null-terminating the ciphertext doesn't make sense, but we still
+	 * count the null terminator in the length, so we might as well
+	 * initialize it just in case the filesystem writes it out.
+	 */
+	sd->encrypted_path[ciphertext_len] = '\0';
+
+	/* Cache the plaintext symlink target for later use by get_link() */
+	err = -ENOMEM;
+	inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
+	if (!inode->i_link)
+		goto err_free_sd;
+
+	if (!disk_link->name)
+		disk_link->name = (unsigned char *)sd;
+	return 0;
+
+err_free_sd:
+	if (!disk_link->name)
+		kfree(sd);
+	return err;
+}
+EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
+
+/**
+ * fscrypt_get_symlink - get the target of an encrypted symlink
+ * @inode: the symlink inode
+ * @caddr: the on-disk contents of the symlink
+ * @max_size: size of @caddr buffer
+ * @done: if successful, will be set up to free the returned target if needed
+ *
+ * If the symlink's encryption key is available, we decrypt its target.
+ * Otherwise, we encode its target for presentation.
+ *
+ * This may sleep, so the filesystem must have dropped out of RCU mode already.
+ *
+ * Return: the presentable symlink target or an ERR_PTR()
+ */
+const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
+				unsigned int max_size,
+				struct delayed_call *done)
+{
+	const struct fscrypt_symlink_data *sd;
+	struct fscrypt_str cstr, pstr;
+	bool has_key;
+	int err;
+
+	/* This is for encrypted symlinks only */
+	if (WARN_ON(!IS_ENCRYPTED(inode)))
+		return ERR_PTR(-EINVAL);
+
+	/* If the decrypted target is already cached, just return it. */
+	pstr.name = READ_ONCE(inode->i_link);
+	if (pstr.name)
+		return pstr.name;
+
+	/*
+	 * Try to set up the symlink's encryption key, but we can continue
+	 * regardless of whether the key is available or not.
+	 */
+	err = fscrypt_get_encryption_info(inode);
+	if (err)
+		return ERR_PTR(err);
+	has_key = fscrypt_has_encryption_key(inode);
+
+	/*
+	 * For historical reasons, encrypted symlink targets are prefixed with
+	 * the ciphertext length, even though this is redundant with i_size.
+	 */
+
+	if (max_size < sizeof(*sd))
+		return ERR_PTR(-EUCLEAN);
+	sd = caddr;
+	cstr.name = (unsigned char *)sd->encrypted_path;
+	cstr.len = le16_to_cpu(sd->len);
+
+	if (cstr.len == 0)
+		return ERR_PTR(-EUCLEAN);
+
+	if (cstr.len + sizeof(*sd) - 1 > max_size)
+		return ERR_PTR(-EUCLEAN);
+
+	err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
+	if (err)
+		return ERR_PTR(err);
+
+	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
+	if (err)
+		goto err_kfree;
+
+	err = -EUCLEAN;
+	if (pstr.name[0] == '\0')
+		goto err_kfree;
+
+	pstr.name[pstr.len] = '\0';
+
+	/*
+	 * Cache decrypted symlink targets in i_link for later use.  Don't cache
+	 * symlink targets encoded without the key, since those become outdated
+	 * once the key is added.  This pairs with the READ_ONCE() above and in
+	 * the VFS path lookup code.
+	 */
+	if (!has_key ||
+	    cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
+		set_delayed_call(done, kfree_link, pstr.name);
+
+	return pstr.name;
+
+err_kfree:
+	kfree(pstr.name);
+	return ERR_PTR(err);
+}
+EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
diff --git a/src/kernel/linux/v4.19/fs/crypto/inline_crypt.c b/src/kernel/linux/v4.19/fs/crypto/inline_crypt.c
new file mode 100644
index 0000000..407fe40
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/inline_crypt.c
@@ -0,0 +1,340 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Inline encryption support for fscrypt
+ *
+ * Copyright 2019 Google LLC
+ */
+
+/*
+ * With "inline encryption", the block layer handles the decryption/encryption
+ * as part of the bio, instead of the filesystem doing the crypto itself via
+ * crypto API.  See Documentation/block/inline-encryption.rst.  fscrypt still
+ * provides the key and IV to use.
+ */
+
+#include <linux/blk-crypto.h>
+#include <linux/blkdev.h>
+#include <linux/buffer_head.h>
+#include <linux/keyslot-manager.h>
+
+#include "fscrypt_private.h"
+
+struct fscrypt_blk_crypto_key {
+	struct blk_crypto_key base;
+	int num_devs;
+	struct request_queue *devs[];
+};
+
+/* Enable inline encryption for this file if supported. */
+void fscrypt_select_encryption_impl(struct fscrypt_info *ci)
+{
+	const struct inode *inode = ci->ci_inode;
+	struct super_block *sb = inode->i_sb;
+
+	/* The file must need contents encryption, not filenames encryption */
+	if (!S_ISREG(inode->i_mode))
+		return;
+
+	/* blk-crypto must implement the needed encryption algorithm */
+	if (ci->ci_mode->blk_crypto_mode == BLK_ENCRYPTION_MODE_INVALID)
+		return;
+
+	/* The filesystem must be mounted with -o inlinecrypt */
+	if (!sb->s_cop->inline_crypt_enabled ||
+	    !sb->s_cop->inline_crypt_enabled(sb))
+		return;
+
+	ci->ci_inlinecrypt = true;
+}
+
+int fscrypt_prepare_inline_crypt_key(struct fscrypt_prepared_key *prep_key,
+				     const u8 *raw_key,
+				     unsigned int raw_key_size,
+				     const struct fscrypt_info *ci)
+{
+	const struct inode *inode = ci->ci_inode;
+	struct super_block *sb = inode->i_sb;
+	enum blk_crypto_mode_num crypto_mode = ci->ci_mode->blk_crypto_mode;
+	int num_devs = 1;
+	int queue_refs = 0;
+	struct fscrypt_blk_crypto_key *blk_key;
+	int err;
+	int i;
+
+	if (sb->s_cop->get_num_devices)
+		num_devs = sb->s_cop->get_num_devices(sb);
+	if (WARN_ON(num_devs < 1))
+		return -EINVAL;
+
+	blk_key = kzalloc(struct_size(blk_key, devs, num_devs), GFP_NOFS);
+	if (!blk_key)
+		return -ENOMEM;
+
+	blk_key->num_devs = num_devs;
+	if (num_devs == 1)
+		blk_key->devs[0] = bdev_get_queue(sb->s_bdev);
+	else
+		sb->s_cop->get_devices(sb, blk_key->devs);
+
+	BUILD_BUG_ON(FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE >
+		     BLK_CRYPTO_MAX_WRAPPED_KEY_SIZE);
+
+	err = blk_crypto_init_key(&blk_key->base, raw_key, raw_key_size,
+				  crypto_mode, sb->s_blocksize);
+	if (err) {
+		fscrypt_err(inode, "error %d initializing blk-crypto key", err);
+		goto fail;
+	}
+
+	/*
+	 * We have to start using blk-crypto on all the filesystem's devices.
+	 * We also have to save all the request_queue's for later so that the
+	 * key can be evicted from them.  This is needed because some keys
+	 * aren't destroyed until after the filesystem was already unmounted
+	 * (namely, the per-mode keys in struct fscrypt_master_key).
+	 */
+	for (i = 0; i < num_devs; i++) {
+		if (!blk_get_queue(blk_key->devs[i])) {
+			fscrypt_err(inode, "couldn't get request_queue");
+			err = -EAGAIN;
+			goto fail;
+		}
+		queue_refs++;
+
+		err = blk_crypto_start_using_mode(crypto_mode, sb->s_blocksize,
+						  blk_key->devs[i]);
+		if (err) {
+			fscrypt_err(inode,
+				    "error %d starting to use blk-crypto", err);
+			goto fail;
+		}
+	}
+	/*
+	 * Pairs with READ_ONCE() in fscrypt_is_key_prepared().  (Only matters
+	 * for the per-mode keys, which are shared by multiple inodes.)
+	 */
+	smp_store_release(&prep_key->blk_key, blk_key);
+	return 0;
+
+fail:
+	for (i = 0; i < queue_refs; i++)
+		blk_put_queue(blk_key->devs[i]);
+	kzfree(blk_key);
+	return err;
+}
+
+void fscrypt_destroy_inline_crypt_key(struct fscrypt_prepared_key *prep_key)
+{
+	struct fscrypt_blk_crypto_key *blk_key = prep_key->blk_key;
+	int i;
+
+	if (blk_key) {
+		for (i = 0; i < blk_key->num_devs; i++) {
+			blk_crypto_evict_key(blk_key->devs[i], &blk_key->base);
+			blk_put_queue(blk_key->devs[i]);
+		}
+		kzfree(blk_key);
+	}
+}
+
+int fscrypt_derive_raw_secret(struct super_block *sb,
+			      const u8 *wrapped_key,
+			      unsigned int wrapped_key_size,
+			      u8 *raw_secret, unsigned int raw_secret_size)
+{
+	struct request_queue *q;
+
+	q = sb->s_bdev->bd_queue;
+	if (!q->ksm)
+		return -EOPNOTSUPP;
+
+	return keyslot_manager_derive_raw_secret(q->ksm,
+						 wrapped_key, wrapped_key_size,
+						 raw_secret, raw_secret_size);
+}
+
+/**
+ * fscrypt_inode_uses_inline_crypto - test whether an inode uses inline
+ *				      encryption
+ * @inode: an inode
+ *
+ * Return: true if the inode requires file contents encryption and if the
+ *	   encryption should be done in the block layer via blk-crypto rather
+ *	   than in the filesystem layer.
+ */
+bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
+{
+	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) &&
+		inode->i_crypt_info->ci_inlinecrypt;
+}
+EXPORT_SYMBOL_GPL(fscrypt_inode_uses_inline_crypto);
+
+/**
+ * fscrypt_inode_uses_fs_layer_crypto - test whether an inode uses fs-layer
+ *					encryption
+ * @inode: an inode
+ *
+ * Return: true if the inode requires file contents encryption and if the
+ *	   encryption should be done in the filesystem layer rather than in the
+ *	   block layer via blk-crypto.
+ */
+bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
+{
+	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode) &&
+		!inode->i_crypt_info->ci_inlinecrypt;
+}
+EXPORT_SYMBOL_GPL(fscrypt_inode_uses_fs_layer_crypto);
+
+static void fscrypt_generate_dun(const struct fscrypt_info *ci, u64 lblk_num,
+				 u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE])
+{
+	union fscrypt_iv iv;
+	int i;
+
+	fscrypt_generate_iv(&iv, lblk_num, ci);
+
+	BUILD_BUG_ON(FSCRYPT_MAX_IV_SIZE > BLK_CRYPTO_MAX_IV_SIZE);
+	memset(dun, 0, BLK_CRYPTO_MAX_IV_SIZE);
+	for (i = 0; i < ci->ci_mode->ivsize/sizeof(dun[0]); i++)
+		dun[i] = le64_to_cpu(iv.dun[i]);
+}
+
+/**
+ * fscrypt_set_bio_crypt_ctx - prepare a file contents bio for inline encryption
+ * @bio: a bio which will eventually be submitted to the file
+ * @inode: the file's inode
+ * @first_lblk: the first file logical block number in the I/O
+ * @gfp_mask: memory allocation flags - these must be a waiting mask so that
+ *					bio_crypt_set_ctx can't fail.
+ *
+ * If the contents of the file should be encrypted (or decrypted) with inline
+ * encryption, then assign the appropriate encryption context to the bio.
+ *
+ * Normally the bio should be newly allocated (i.e. no pages added yet), as
+ * otherwise fscrypt_mergeable_bio() won't work as intended.
+ *
+ * The encryption context will be freed automatically when the bio is freed.
+ */
+void fscrypt_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
+			       u64 first_lblk, gfp_t gfp_mask)
+{
+	const struct fscrypt_info *ci = inode->i_crypt_info;
+	u64 dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
+
+	if (!fscrypt_inode_uses_inline_crypto(inode))
+		return;
+
+	fscrypt_generate_dun(ci, first_lblk, dun);
+	bio_crypt_set_ctx(bio, &ci->ci_key.blk_key->base, dun, gfp_mask);
+}
+EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx);
+
+/* Extract the inode and logical block number from a buffer_head. */
+static bool bh_get_inode_and_lblk_num(const struct buffer_head *bh,
+				      const struct inode **inode_ret,
+				      u64 *lblk_num_ret)
+{
+	struct page *page = bh->b_page;
+	const struct address_space *mapping;
+	const struct inode *inode;
+
+	/*
+	 * The ext4 journal (jbd2) can submit a buffer_head it directly created
+	 * for a non-pagecache page.  fscrypt doesn't care about these.
+	 */
+	mapping = page_mapping(page);
+	if (!mapping)
+		return false;
+	inode = mapping->host;
+
+	*inode_ret = inode;
+	*lblk_num_ret = ((u64)page->index << (PAGE_SHIFT - inode->i_blkbits)) +
+			(bh_offset(bh) >> inode->i_blkbits);
+	return true;
+}
+
+/**
+ * fscrypt_set_bio_crypt_ctx_bh - prepare a file contents bio for inline
+ *				  encryption
+ * @bio: a bio which will eventually be submitted to the file
+ * @first_bh: the first buffer_head for which I/O will be submitted
+ * @gfp_mask: memory allocation flags
+ *
+ * Same as fscrypt_set_bio_crypt_ctx(), except this takes a buffer_head instead
+ * of an inode and block number directly.
+ */
+void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
+				 const struct buffer_head *first_bh,
+				 gfp_t gfp_mask)
+{
+	const struct inode *inode;
+	u64 first_lblk;
+
+	if (bh_get_inode_and_lblk_num(first_bh, &inode, &first_lblk))
+		fscrypt_set_bio_crypt_ctx(bio, inode, first_lblk, gfp_mask);
+}
+EXPORT_SYMBOL_GPL(fscrypt_set_bio_crypt_ctx_bh);
+
+/**
+ * fscrypt_mergeable_bio - test whether data can be added to a bio
+ * @bio: the bio being built up
+ * @inode: the inode for the next part of the I/O
+ * @next_lblk: the next file logical block number in the I/O
+ *
+ * When building a bio which may contain data which should undergo inline
+ * encryption (or decryption) via fscrypt, filesystems should call this function
+ * to ensure that the resulting bio contains only logically contiguous data.
+ * This will return false if the next part of the I/O cannot be merged with the
+ * bio because either the encryption key would be different or the encryption
+ * data unit numbers would be discontiguous.
+ *
+ * fscrypt_set_bio_crypt_ctx() must have already been called on the bio.
+ *
+ * Return: true iff the I/O is mergeable
+ */
+bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
+			   u64 next_lblk)
+{
+	const struct bio_crypt_ctx *bc = bio->bi_crypt_context;
+	u64 next_dun[BLK_CRYPTO_DUN_ARRAY_SIZE];
+
+	if (!!bc != fscrypt_inode_uses_inline_crypto(inode))
+		return false;
+	if (!bc)
+		return true;
+
+	/*
+	 * Comparing the key pointers is good enough, as all I/O for each key
+	 * uses the same pointer.  I.e., there's currently no need to support
+	 * merging requests where the keys are the same but the pointers differ.
+	 */
+	if (bc->bc_key != &inode->i_crypt_info->ci_key.blk_key->base)
+		return false;
+
+	fscrypt_generate_dun(inode->i_crypt_info, next_lblk, next_dun);
+	return bio_crypt_dun_is_contiguous(bc, bio->bi_iter.bi_size, next_dun);
+}
+EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio);
+
+/**
+ * fscrypt_mergeable_bio_bh - test whether data can be added to a bio
+ * @bio: the bio being built up
+ * @next_bh: the next buffer_head for which I/O will be submitted
+ *
+ * Same as fscrypt_mergeable_bio(), except this takes a buffer_head instead of
+ * an inode and block number directly.
+ *
+ * Return: true iff the I/O is mergeable
+ */
+bool fscrypt_mergeable_bio_bh(struct bio *bio,
+			      const struct buffer_head *next_bh)
+{
+	const struct inode *inode;
+	u64 next_lblk;
+
+	if (!bh_get_inode_and_lblk_num(next_bh, &inode, &next_lblk))
+		return !bio->bi_crypt_context;
+
+	return fscrypt_mergeable_bio(bio, inode, next_lblk);
+}
+EXPORT_SYMBOL_GPL(fscrypt_mergeable_bio_bh);
diff --git a/src/kernel/linux/v4.19/fs/crypto/keyring.c b/src/kernel/linux/v4.19/fs/crypto/keyring.c
new file mode 100644
index 0000000..7facb59
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/keyring.c
@@ -0,0 +1,1038 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Filesystem-level keyring for fscrypt
+ *
+ * Copyright 2019 Google LLC
+ */
+
+/*
+ * This file implements management of fscrypt master keys in the
+ * filesystem-level keyring, including the ioctls:
+ *
+ * - FS_IOC_ADD_ENCRYPTION_KEY
+ * - FS_IOC_REMOVE_ENCRYPTION_KEY
+ * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
+ * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
+ *
+ * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
+ * information about these ioctls.
+ */
+
+#include <crypto/skcipher.h>
+#include <linux/key-type.h>
+#include <linux/seq_file.h>
+
+#include "fscrypt_private.h"
+
+static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
+{
+	fscrypt_destroy_hkdf(&secret->hkdf);
+	memzero_explicit(secret, sizeof(*secret));
+}
+
+static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
+				   struct fscrypt_master_key_secret *src)
+{
+	memcpy(dst, src, sizeof(*dst));
+	memzero_explicit(src, sizeof(*src));
+}
+
+static void free_master_key(struct fscrypt_master_key *mk)
+{
+	size_t i;
+
+	wipe_master_key_secret(&mk->mk_secret);
+
+	for (i = 0; i <= __FSCRYPT_MODE_MAX; i++) {
+		fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]);
+		fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]);
+	}
+
+	key_put(mk->mk_users);
+	kzfree(mk);
+}
+
+static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
+{
+	if (spec->__reserved)
+		return false;
+	return master_key_spec_len(spec) != 0;
+}
+
+static int fscrypt_key_instantiate(struct key *key,
+				   struct key_preparsed_payload *prep)
+{
+	key->payload.data[0] = (struct fscrypt_master_key *)prep->data;
+	return 0;
+}
+
+static void fscrypt_key_destroy(struct key *key)
+{
+	free_master_key(key->payload.data[0]);
+}
+
+static void fscrypt_key_describe(const struct key *key, struct seq_file *m)
+{
+	seq_puts(m, key->description);
+
+	if (key_is_positive(key)) {
+		const struct fscrypt_master_key *mk = key->payload.data[0];
+
+		if (!is_master_key_secret_present(&mk->mk_secret))
+			seq_puts(m, ": secret removed");
+	}
+}
+
+/*
+ * Type of key in ->s_master_keys.  Each key of this type represents a master
+ * key which has been added to the filesystem.  Its payload is a
+ * 'struct fscrypt_master_key'.  The "." prefix in the key type name prevents
+ * users from adding keys of this type via the keyrings syscalls rather than via
+ * the intended method of FS_IOC_ADD_ENCRYPTION_KEY.
+ */
+static struct key_type key_type_fscrypt = {
+	.name			= "._fscrypt",
+	.instantiate		= fscrypt_key_instantiate,
+	.destroy		= fscrypt_key_destroy,
+	.describe		= fscrypt_key_describe,
+};
+
+static int fscrypt_user_key_instantiate(struct key *key,
+					struct key_preparsed_payload *prep)
+{
+	/*
+	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
+	 * each key, regardless of the exact key size.  The amount of memory
+	 * actually used is greater than the size of the raw key anyway.
+	 */
+	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
+}
+
+static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
+{
+	seq_puts(m, key->description);
+}
+
+/*
+ * Type of key in ->mk_users.  Each key of this type represents a particular
+ * user who has added a particular master key.
+ *
+ * Note that the name of this key type really should be something like
+ * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
+ * mainly for simplicity of presentation in /proc/keys when read by a non-root
+ * user.  And it is expected to be rare that a key is actually added by multiple
+ * users, since users should keep their encryption keys confidential.
+ */
+static struct key_type key_type_fscrypt_user = {
+	.name			= ".fscrypt",
+	.instantiate		= fscrypt_user_key_instantiate,
+	.describe		= fscrypt_user_key_describe,
+};
+
+/* Search ->s_master_keys or ->mk_users */
+static struct key *search_fscrypt_keyring(struct key *keyring,
+					  struct key_type *type,
+					  const char *description)
+{
+	/*
+	 * We need to mark the keyring reference as "possessed" so that we
+	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
+	 */
+	key_ref_t keyref = make_key_ref(keyring, true /* possessed */);
+
+	keyref = keyring_search(keyref, type, description);
+	if (IS_ERR(keyref)) {
+		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
+		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
+			keyref = ERR_PTR(-ENOKEY);
+		return ERR_CAST(keyref);
+	}
+	return key_ref_to_ptr(keyref);
+}
+
+#define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE	\
+	(CONST_STRLEN("fscrypt-") + FIELD_SIZEOF(struct super_block, s_id))
+
+#define FSCRYPT_MK_DESCRIPTION_SIZE	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1)
+
+#define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
+	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
+	 CONST_STRLEN("-users") + 1)
+
+#define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
+	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
+
+static void format_fs_keyring_description(
+			char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE],
+			const struct super_block *sb)
+{
+	sprintf(description, "fscrypt-%s", sb->s_id);
+}
+
+static void format_mk_description(
+			char description[FSCRYPT_MK_DESCRIPTION_SIZE],
+			const struct fscrypt_key_specifier *mk_spec)
+{
+	sprintf(description, "%*phN",
+		master_key_spec_len(mk_spec), (u8 *)&mk_spec->u);
+}
+
+static void format_mk_users_keyring_description(
+			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
+			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
+{
+	sprintf(description, "fscrypt-%*phN-users",
+		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
+}
+
+static void format_mk_user_description(
+			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
+			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
+{
+
+	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
+		mk_identifier, __kuid_val(current_fsuid()));
+}
+
+/* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
+static int allocate_filesystem_keyring(struct super_block *sb)
+{
+	char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE];
+	struct key *keyring;
+
+	if (sb->s_master_keys)
+		return 0;
+
+	format_fs_keyring_description(description, sb);
+	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
+				current_cred(), KEY_POS_SEARCH |
+				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
+				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
+	if (IS_ERR(keyring))
+		return PTR_ERR(keyring);
+
+	/* Pairs with READ_ONCE() in fscrypt_find_master_key() */
+	smp_store_release(&sb->s_master_keys, keyring);
+	return 0;
+}
+
+void fscrypt_sb_free(struct super_block *sb)
+{
+	key_put(sb->s_master_keys);
+	sb->s_master_keys = NULL;
+}
+
+/*
+ * Find the specified master key in ->s_master_keys.
+ * Returns ERR_PTR(-ENOKEY) if not found.
+ */
+struct key *fscrypt_find_master_key(struct super_block *sb,
+				    const struct fscrypt_key_specifier *mk_spec)
+{
+	struct key *keyring;
+	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
+
+	/* pairs with smp_store_release() in allocate_filesystem_keyring() */
+	keyring = READ_ONCE(sb->s_master_keys);
+	if (keyring == NULL)
+		return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */
+
+	format_mk_description(description, mk_spec);
+	return search_fscrypt_keyring(keyring, &key_type_fscrypt, description);
+}
+
+static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
+{
+	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
+	struct key *keyring;
+
+	format_mk_users_keyring_description(description,
+					    mk->mk_spec.u.identifier);
+	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
+				current_cred(), KEY_POS_SEARCH |
+				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
+				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
+	if (IS_ERR(keyring))
+		return PTR_ERR(keyring);
+
+	mk->mk_users = keyring;
+	return 0;
+}
+
+/*
+ * Find the current user's "key" in the master key's ->mk_users.
+ * Returns ERR_PTR(-ENOKEY) if not found.
+ */
+static struct key *find_master_key_user(struct fscrypt_master_key *mk)
+{
+	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
+
+	format_mk_user_description(description, mk->mk_spec.u.identifier);
+	return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user,
+				      description);
+}
+
+/*
+ * Give the current user a "key" in ->mk_users.  This charges the user's quota
+ * and marks the master key as added by the current user, so that it cannot be
+ * removed by another user with the key.  Either the master key's key->sem must
+ * be held for write, or the master key must be still undergoing initialization.
+ */
+static int add_master_key_user(struct fscrypt_master_key *mk)
+{
+	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
+	struct key *mk_user;
+	int err;
+
+	format_mk_user_description(description, mk->mk_spec.u.identifier);
+	mk_user = key_alloc(&key_type_fscrypt_user, description,
+			    current_fsuid(), current_gid(), current_cred(),
+			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
+	if (IS_ERR(mk_user))
+		return PTR_ERR(mk_user);
+
+	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
+	key_put(mk_user);
+	return err;
+}
+
+/*
+ * Remove the current user's "key" from ->mk_users.
+ * The master key's key->sem must be held for write.
+ *
+ * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
+ */
+static int remove_master_key_user(struct fscrypt_master_key *mk)
+{
+	struct key *mk_user;
+	int err;
+
+	mk_user = find_master_key_user(mk);
+	if (IS_ERR(mk_user))
+		return PTR_ERR(mk_user);
+	err = key_unlink(mk->mk_users, mk_user);
+	key_put(mk_user);
+	return err;
+}
+
+/*
+ * Allocate a new fscrypt_master_key which contains the given secret, set it as
+ * the payload of a new 'struct key' of type fscrypt, and link the 'struct key'
+ * into the given keyring.  Synchronized by fscrypt_add_key_mutex.
+ */
+static int add_new_master_key(struct fscrypt_master_key_secret *secret,
+			      const struct fscrypt_key_specifier *mk_spec,
+			      struct key *keyring)
+{
+	struct fscrypt_master_key *mk;
+	char description[FSCRYPT_MK_DESCRIPTION_SIZE];
+	struct key *key;
+	int err;
+
+	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
+	if (!mk)
+		return -ENOMEM;
+
+	mk->mk_spec = *mk_spec;
+
+	move_master_key_secret(&mk->mk_secret, secret);
+	init_rwsem(&mk->mk_secret_sem);
+
+	refcount_set(&mk->mk_refcount, 1); /* secret is present */
+	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
+	spin_lock_init(&mk->mk_decrypted_inodes_lock);
+
+	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
+		err = allocate_master_key_users_keyring(mk);
+		if (err)
+			goto out_free_mk;
+		err = add_master_key_user(mk);
+		if (err)
+			goto out_free_mk;
+	}
+
+	/*
+	 * Note that we don't charge this key to anyone's quota, since when
+	 * ->mk_users is in use those keys are charged instead, and otherwise
+	 * (when ->mk_users isn't in use) only root can add these keys.
+	 */
+	format_mk_description(description, mk_spec);
+	key = key_alloc(&key_type_fscrypt, description,
+			GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(),
+			KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW,
+			KEY_ALLOC_NOT_IN_QUOTA, NULL);
+	if (IS_ERR(key)) {
+		err = PTR_ERR(key);
+		goto out_free_mk;
+	}
+	err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL);
+	key_put(key);
+	if (err)
+		goto out_free_mk;
+
+	return 0;
+
+out_free_mk:
+	free_master_key(mk);
+	return err;
+}
+
+#define KEY_DEAD	1
+
+static int add_existing_master_key(struct fscrypt_master_key *mk,
+				   struct fscrypt_master_key_secret *secret)
+{
+	struct key *mk_user;
+	bool rekey;
+	int err;
+
+	/*
+	 * If the current user is already in ->mk_users, then there's nothing to
+	 * do.  (Not applicable for v1 policy keys, which have NULL ->mk_users.)
+	 */
+	if (mk->mk_users) {
+		mk_user = find_master_key_user(mk);
+		if (mk_user != ERR_PTR(-ENOKEY)) {
+			if (IS_ERR(mk_user))
+				return PTR_ERR(mk_user);
+			key_put(mk_user);
+			return 0;
+		}
+	}
+
+	/* If we'll be re-adding ->mk_secret, try to take the reference. */
+	rekey = !is_master_key_secret_present(&mk->mk_secret);
+	if (rekey && !refcount_inc_not_zero(&mk->mk_refcount))
+		return KEY_DEAD;
+
+	/* Add the current user to ->mk_users, if applicable. */
+	if (mk->mk_users) {
+		err = add_master_key_user(mk);
+		if (err) {
+			if (rekey && refcount_dec_and_test(&mk->mk_refcount))
+				return KEY_DEAD;
+			return err;
+		}
+	}
+
+	/* Re-add the secret if needed. */
+	if (rekey) {
+		down_write(&mk->mk_secret_sem);
+		move_master_key_secret(&mk->mk_secret, secret);
+		up_write(&mk->mk_secret_sem);
+	}
+	return 0;
+}
+
+static int add_master_key(struct super_block *sb,
+			  struct fscrypt_master_key_secret *secret,
+			  const struct fscrypt_key_specifier *mk_spec)
+{
+	static DEFINE_MUTEX(fscrypt_add_key_mutex);
+	struct key *key;
+	int err;
+
+	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
+retry:
+	key = fscrypt_find_master_key(sb, mk_spec);
+	if (IS_ERR(key)) {
+		err = PTR_ERR(key);
+		if (err != -ENOKEY)
+			goto out_unlock;
+		/* Didn't find the key in ->s_master_keys.  Add it. */
+		err = allocate_filesystem_keyring(sb);
+		if (err)
+			goto out_unlock;
+		err = add_new_master_key(secret, mk_spec, sb->s_master_keys);
+	} else {
+		/*
+		 * Found the key in ->s_master_keys.  Re-add the secret if
+		 * needed, and add the user to ->mk_users if needed.
+		 */
+		down_write(&key->sem);
+		err = add_existing_master_key(key->payload.data[0], secret);
+		up_write(&key->sem);
+		if (err == KEY_DEAD) {
+			/* Key being removed or needs to be removed */
+			key_invalidate(key);
+			key_put(key);
+			goto retry;
+		}
+		key_put(key);
+	}
+out_unlock:
+	mutex_unlock(&fscrypt_add_key_mutex);
+	return err;
+}
+
+/* Size of software "secret" derived from hardware-wrapped key */
+#define RAW_SECRET_SIZE 32
+
+/*
+ * Add a master encryption key to the filesystem, causing all files which were
+ * encrypted with it to appear "unlocked" (decrypted) when accessed.
+ *
+ * When adding a key for use by v1 encryption policies, this ioctl is
+ * privileged, and userspace must provide the 'key_descriptor'.
+ *
+ * When adding a key for use by v2+ encryption policies, this ioctl is
+ * unprivileged.  This is needed, in general, to allow non-root users to use
+ * encryption without encountering the visibility problems of process-subscribed
+ * keyrings and the inability to properly remove keys.  This works by having
+ * each key identified by its cryptographically secure hash --- the
+ * 'key_identifier'.  The cryptographic hash ensures that a malicious user
+ * cannot add the wrong key for a given identifier.  Furthermore, each added key
+ * is charged to the appropriate user's quota for the keyrings service, which
+ * prevents a malicious user from adding too many keys.  Finally, we forbid a
+ * user from removing a key while other users have added it too, which prevents
+ * a user who knows another user's key from causing a denial-of-service by
+ * removing it at an inopportune time.  (We tolerate that a user who knows a key
+ * can prevent other users from removing it.)
+ *
+ * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
+ * Documentation/filesystems/fscrypt.rst.
+ */
+int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
+{
+	struct super_block *sb = file_inode(filp)->i_sb;
+	struct fscrypt_add_key_arg __user *uarg = _uarg;
+	struct fscrypt_add_key_arg arg;
+	struct fscrypt_master_key_secret secret;
+	u8 _kdf_key[RAW_SECRET_SIZE];
+	u8 *kdf_key;
+	unsigned int kdf_key_size;
+	int err;
+
+	if (copy_from_user(&arg, uarg, sizeof(arg)))
+		return -EFAULT;
+
+	if (!valid_key_spec(&arg.key_spec))
+		return -EINVAL;
+
+	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
+		return -EINVAL;
+
+	BUILD_BUG_ON(FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE <
+		     FSCRYPT_MAX_KEY_SIZE);
+
+	if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
+	    arg.raw_size >
+	    ((arg.__flags & __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) ?
+	     FSCRYPT_MAX_HW_WRAPPED_KEY_SIZE : FSCRYPT_MAX_KEY_SIZE))
+		return -EINVAL;
+
+	memset(&secret, 0, sizeof(secret));
+	secret.size = arg.raw_size;
+	err = -EFAULT;
+	if (copy_from_user(secret.raw, uarg->raw, secret.size))
+		goto out_wipe_secret;
+
+	switch (arg.key_spec.type) {
+	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
+		/*
+		 * Only root can add keys that are identified by an arbitrary
+		 * descriptor rather than by a cryptographic hash --- since
+		 * otherwise a malicious user could add the wrong key.
+		 */
+		err = -EACCES;
+		if (!capable(CAP_SYS_ADMIN))
+			goto out_wipe_secret;
+
+		err = -EINVAL;
+		if (arg.__flags)
+			goto out_wipe_secret;
+		break;
+	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
+		err = -EINVAL;
+		if (arg.__flags & ~__FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED)
+			goto out_wipe_secret;
+		if (arg.__flags & __FSCRYPT_ADD_KEY_FLAG_HW_WRAPPED) {
+			kdf_key = _kdf_key;
+			kdf_key_size = RAW_SECRET_SIZE;
+			err = fscrypt_derive_raw_secret(sb, secret.raw,
+							secret.size,
+							kdf_key, kdf_key_size);
+			if (err)
+				goto out_wipe_secret;
+			secret.is_hw_wrapped = true;
+		} else {
+			kdf_key = secret.raw;
+			kdf_key_size = secret.size;
+		}
+		err = fscrypt_init_hkdf(&secret.hkdf, kdf_key, kdf_key_size);
+		/*
+		 * Now that the HKDF context is initialized, the raw HKDF
+		 * key is no longer needed.
+		 */
+		memzero_explicit(kdf_key, kdf_key_size);
+		if (err)
+			goto out_wipe_secret;
+
+		/* Calculate the key identifier and return it to userspace. */
+		err = fscrypt_hkdf_expand(&secret.hkdf,
+					  HKDF_CONTEXT_KEY_IDENTIFIER,
+					  NULL, 0, arg.key_spec.u.identifier,
+					  FSCRYPT_KEY_IDENTIFIER_SIZE);
+		if (err)
+			goto out_wipe_secret;
+		err = -EFAULT;
+		if (copy_to_user(uarg->key_spec.u.identifier,
+				 arg.key_spec.u.identifier,
+				 FSCRYPT_KEY_IDENTIFIER_SIZE))
+			goto out_wipe_secret;
+		break;
+	default:
+		WARN_ON(1);
+		err = -EINVAL;
+		goto out_wipe_secret;
+	}
+
+	err = add_master_key(sb, &secret, &arg.key_spec);
+out_wipe_secret:
+	wipe_master_key_secret(&secret);
+	return err;
+}
+EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
+
+/*
+ * Verify that the current user has added a master key with the given identifier
+ * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
+ * their files using some other user's key which they don't actually know.
+ * Cryptographically this isn't much of a problem, but the semantics of this
+ * would be a bit weird, so it's best to just forbid it.
+ *
+ * The system administrator (CAP_FOWNER) can override this, which should be
+ * enough for any use cases where encryption policies are being set using keys
+ * that were chosen ahead of time but aren't available at the moment.
+ *
+ * Note that the key may have already removed by the time this returns, but
+ * that's okay; we just care whether the key was there at some point.
+ *
+ * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
+ */
+int fscrypt_verify_key_added(struct super_block *sb,
+			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
+{
+	struct fscrypt_key_specifier mk_spec;
+	struct key *key, *mk_user;
+	struct fscrypt_master_key *mk;
+	int err;
+
+	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
+	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
+
+	key = fscrypt_find_master_key(sb, &mk_spec);
+	if (IS_ERR(key)) {
+		err = PTR_ERR(key);
+		goto out;
+	}
+	mk = key->payload.data[0];
+	mk_user = find_master_key_user(mk);
+	if (IS_ERR(mk_user)) {
+		err = PTR_ERR(mk_user);
+	} else {
+		key_put(mk_user);
+		err = 0;
+	}
+	key_put(key);
+out:
+	if (err == -ENOKEY && capable(CAP_FOWNER))
+		err = 0;
+	return err;
+}
+
+/*
+ * Try to evict the inode's dentries from the dentry cache.  If the inode is a
+ * directory, then it can have at most one dentry; however, that dentry may be
+ * pinned by child dentries, so first try to evict the children too.
+ */
+static void shrink_dcache_inode(struct inode *inode)
+{
+	struct dentry *dentry;
+
+	if (S_ISDIR(inode->i_mode)) {
+		dentry = d_find_any_alias(inode);
+		if (dentry) {
+			shrink_dcache_parent(dentry);
+			dput(dentry);
+		}
+	}
+	d_prune_aliases(inode);
+}
+
+static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
+{
+	struct fscrypt_info *ci;
+	struct inode *inode;
+	struct inode *toput_inode = NULL;
+
+	spin_lock(&mk->mk_decrypted_inodes_lock);
+
+	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
+		inode = ci->ci_inode;
+		spin_lock(&inode->i_lock);
+		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
+			spin_unlock(&inode->i_lock);
+			continue;
+		}
+		__iget(inode);
+		spin_unlock(&inode->i_lock);
+		spin_unlock(&mk->mk_decrypted_inodes_lock);
+
+		shrink_dcache_inode(inode);
+		iput(toput_inode);
+		toput_inode = inode;
+
+		spin_lock(&mk->mk_decrypted_inodes_lock);
+	}
+
+	spin_unlock(&mk->mk_decrypted_inodes_lock);
+	iput(toput_inode);
+}
+
+static int check_for_busy_inodes(struct super_block *sb,
+				 struct fscrypt_master_key *mk)
+{
+	struct list_head *pos;
+	size_t busy_count = 0;
+	unsigned long ino;
+	struct dentry *dentry;
+	char _path[256];
+	char *path = NULL;
+
+	spin_lock(&mk->mk_decrypted_inodes_lock);
+
+	list_for_each(pos, &mk->mk_decrypted_inodes)
+		busy_count++;
+
+	if (busy_count == 0) {
+		spin_unlock(&mk->mk_decrypted_inodes_lock);
+		return 0;
+	}
+
+	{
+		/* select an example file to show for debugging purposes */
+		struct inode *inode =
+			list_first_entry(&mk->mk_decrypted_inodes,
+					 struct fscrypt_info,
+					 ci_master_key_link)->ci_inode;
+		ino = inode->i_ino;
+		dentry = d_find_alias(inode);
+	}
+	spin_unlock(&mk->mk_decrypted_inodes_lock);
+
+	if (dentry) {
+		path = dentry_path(dentry, _path, sizeof(_path));
+		dput(dentry);
+	}
+	if (IS_ERR_OR_NULL(path))
+		path = "(unknown)";
+
+	fscrypt_warn(NULL,
+		     "%s: %zu inode(s) still busy after removing key with %s %*phN, including ino %lu (%s)",
+		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
+		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
+		     ino, path);
+	return -EBUSY;
+}
+
+static BLOCKING_NOTIFIER_HEAD(fscrypt_key_removal_notifiers);
+
+/*
+ * Register a function to be executed when the FS_IOC_REMOVE_ENCRYPTION_KEY
+ * ioctl has removed a key and is about to try evicting inodes.
+ */
+int fscrypt_register_key_removal_notifier(struct notifier_block *nb)
+{
+	return blocking_notifier_chain_register(&fscrypt_key_removal_notifiers,
+						nb);
+}
+EXPORT_SYMBOL_GPL(fscrypt_register_key_removal_notifier);
+
+int fscrypt_unregister_key_removal_notifier(struct notifier_block *nb)
+{
+	return blocking_notifier_chain_unregister(&fscrypt_key_removal_notifiers,
+						  nb);
+}
+EXPORT_SYMBOL_GPL(fscrypt_unregister_key_removal_notifier);
+
+static int try_to_lock_encrypted_files(struct super_block *sb,
+				       struct fscrypt_master_key *mk)
+{
+	int err1;
+	int err2;
+
+	blocking_notifier_call_chain(&fscrypt_key_removal_notifiers, 0, NULL);
+
+	/*
+	 * An inode can't be evicted while it is dirty or has dirty pages.
+	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
+	 *
+	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
+	 * it works, and it's more important to minimize the amount of caches we
+	 * drop than the amount of data we sync.  Also, unprivileged users can
+	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
+	 */
+	down_read(&sb->s_umount);
+	err1 = sync_filesystem(sb);
+	up_read(&sb->s_umount);
+	/* If a sync error occurs, still try to evict as much as possible. */
+
+	/*
+	 * Inodes are pinned by their dentries, so we have to evict their
+	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
+	 * and inappropriate for use by unprivileged users.  So instead go
+	 * through the inodes' alias lists and try to evict each dentry.
+	 */
+	evict_dentries_for_decrypted_inodes(mk);
+
+	/*
+	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
+	 * the list; any inodes for which that dropped the last reference will
+	 * have been evicted due to fscrypt_drop_inode() detecting the key
+	 * removal and telling the VFS to evict the inode.  So to finish, we
+	 * just need to check whether any inodes couldn't be evicted.
+	 */
+	err2 = check_for_busy_inodes(sb, mk);
+
+	return err1 ?: err2;
+}
+
+/*
+ * Try to remove an fscrypt master encryption key.
+ *
+ * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
+ * claim to the key, then removes the key itself if no other users have claims.
+ * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
+ * key itself.
+ *
+ * To "remove the key itself", first we wipe the actual master key secret, so
+ * that no more inodes can be unlocked with it.  Then we try to evict all cached
+ * inodes that had been unlocked with the key.
+ *
+ * If all inodes were evicted, then we unlink the fscrypt_master_key from the
+ * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
+ * state (without the actual secret key) where it tracks the list of remaining
+ * inodes.  Userspace can execute the ioctl again later to retry eviction, or
+ * alternatively can re-add the secret key again.
+ *
+ * For more details, see the "Removing keys" section of
+ * Documentation/filesystems/fscrypt.rst.
+ */
+static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
+{
+	struct super_block *sb = file_inode(filp)->i_sb;
+	struct fscrypt_remove_key_arg __user *uarg = _uarg;
+	struct fscrypt_remove_key_arg arg;
+	struct key *key;
+	struct fscrypt_master_key *mk;
+	u32 status_flags = 0;
+	int err;
+	bool dead;
+
+	if (copy_from_user(&arg, uarg, sizeof(arg)))
+		return -EFAULT;
+
+	if (!valid_key_spec(&arg.key_spec))
+		return -EINVAL;
+
+	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
+		return -EINVAL;
+
+	/*
+	 * Only root can add and remove keys that are identified by an arbitrary
+	 * descriptor rather than by a cryptographic hash.
+	 */
+	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
+	    !capable(CAP_SYS_ADMIN))
+		return -EACCES;
+
+	/* Find the key being removed. */
+	key = fscrypt_find_master_key(sb, &arg.key_spec);
+	if (IS_ERR(key))
+		return PTR_ERR(key);
+	mk = key->payload.data[0];
+
+	down_write(&key->sem);
+
+	/* If relevant, remove current user's (or all users) claim to the key */
+	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
+		if (all_users)
+			err = keyring_clear(mk->mk_users);
+		else
+			err = remove_master_key_user(mk);
+		if (err) {
+			up_write(&key->sem);
+			goto out_put_key;
+		}
+		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
+			/*
+			 * Other users have still added the key too.  We removed
+			 * the current user's claim to the key, but we still
+			 * can't remove the key itself.
+			 */
+			status_flags |=
+				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
+			err = 0;
+			up_write(&key->sem);
+			goto out_put_key;
+		}
+	}
+
+	/* No user claims remaining.  Go ahead and wipe the secret. */
+	dead = false;
+	if (is_master_key_secret_present(&mk->mk_secret)) {
+		down_write(&mk->mk_secret_sem);
+		wipe_master_key_secret(&mk->mk_secret);
+		dead = refcount_dec_and_test(&mk->mk_refcount);
+		up_write(&mk->mk_secret_sem);
+	}
+	up_write(&key->sem);
+	if (dead) {
+		/*
+		 * No inodes reference the key, and we wiped the secret, so the
+		 * key object is free to be removed from the keyring.
+		 */
+		key_invalidate(key);
+		err = 0;
+	} else {
+		/* Some inodes still reference this key; try to evict them. */
+		err = try_to_lock_encrypted_files(sb, mk);
+		if (err == -EBUSY) {
+			status_flags |=
+				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
+			err = 0;
+		}
+	}
+	/*
+	 * We return 0 if we successfully did something: removed a claim to the
+	 * key, wiped the secret, or tried locking the files again.  Users need
+	 * to check the informational status flags if they care whether the key
+	 * has been fully removed including all files locked.
+	 */
+out_put_key:
+	key_put(key);
+	if (err == 0)
+		err = put_user(status_flags, &uarg->removal_status_flags);
+	return err;
+}
+
+int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
+{
+	return do_remove_key(filp, uarg, false);
+}
+EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
+
+int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
+{
+	if (!capable(CAP_SYS_ADMIN))
+		return -EACCES;
+	return do_remove_key(filp, uarg, true);
+}
+EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
+
+/*
+ * Retrieve the status of an fscrypt master encryption key.
+ *
+ * We set ->status to indicate whether the key is absent, present, or
+ * incompletely removed.  "Incompletely removed" means that the master key
+ * secret has been removed, but some files which had been unlocked with it are
+ * still in use.  This field allows applications to easily determine the state
+ * of an encrypted directory without using a hack such as trying to open a
+ * regular file in it (which can confuse the "incompletely removed" state with
+ * absent or present).
+ *
+ * In addition, for v2 policy keys we allow applications to determine, via
+ * ->status_flags and ->user_count, whether the key has been added by the
+ * current user, by other users, or by both.  Most applications should not need
+ * this, since ordinarily only one user should know a given key.  However, if a
+ * secret key is shared by multiple users, applications may wish to add an
+ * already-present key to prevent other users from removing it.  This ioctl can
+ * be used to check whether that really is the case before the work is done to
+ * add the key --- which might e.g. require prompting the user for a passphrase.
+ *
+ * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
+ * Documentation/filesystems/fscrypt.rst.
+ */
+int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
+{
+	struct super_block *sb = file_inode(filp)->i_sb;
+	struct fscrypt_get_key_status_arg arg;
+	struct key *key;
+	struct fscrypt_master_key *mk;
+	int err;
+
+	if (copy_from_user(&arg, uarg, sizeof(arg)))
+		return -EFAULT;
+
+	if (!valid_key_spec(&arg.key_spec))
+		return -EINVAL;
+
+	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
+		return -EINVAL;
+
+	arg.status_flags = 0;
+	arg.user_count = 0;
+	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
+
+	key = fscrypt_find_master_key(sb, &arg.key_spec);
+	if (IS_ERR(key)) {
+		if (key != ERR_PTR(-ENOKEY))
+			return PTR_ERR(key);
+		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
+		err = 0;
+		goto out;
+	}
+	mk = key->payload.data[0];
+	down_read(&key->sem);
+
+	if (!is_master_key_secret_present(&mk->mk_secret)) {
+		arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED;
+		err = 0;
+		goto out_release_key;
+	}
+
+	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
+	if (mk->mk_users) {
+		struct key *mk_user;
+
+		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
+		mk_user = find_master_key_user(mk);
+		if (!IS_ERR(mk_user)) {
+			arg.status_flags |=
+				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
+			key_put(mk_user);
+		} else if (mk_user != ERR_PTR(-ENOKEY)) {
+			err = PTR_ERR(mk_user);
+			goto out_release_key;
+		}
+	}
+	err = 0;
+out_release_key:
+	up_read(&key->sem);
+	key_put(key);
+out:
+	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
+		err = -EFAULT;
+	return err;
+}
+EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
+
+int __init fscrypt_init_keyring(void)
+{
+	int err;
+
+	err = register_key_type(&key_type_fscrypt);
+	if (err)
+		return err;
+
+	err = register_key_type(&key_type_fscrypt_user);
+	if (err)
+		goto err_unregister_fscrypt;
+
+	return 0;
+
+err_unregister_fscrypt:
+	unregister_key_type(&key_type_fscrypt);
+	return err;
+}
diff --git a/src/kernel/linux/v4.19/fs/crypto/keysetup.c b/src/kernel/linux/v4.19/fs/crypto/keysetup.c
new file mode 100644
index 0000000..f87daf2
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/keysetup.c
@@ -0,0 +1,596 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Key setup facility for FS encryption support.
+ *
+ * Copyright (C) 2015, Google, Inc.
+ *
+ * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
+ * Heavily modified since then.
+ */
+
+#include <crypto/skcipher.h>
+#include <linux/key.h>
+
+#include "fscrypt_private.h"
+
+struct fscrypt_mode fscrypt_modes[] = {
+	[FSCRYPT_MODE_AES_256_XTS] = {
+		.friendly_name = "AES-256-XTS",
+		.cipher_str = "xts(aes)",
+		.keysize = 64,
+		.ivsize = 16,
+		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
+	},
+	[FSCRYPT_MODE_AES_256_CTS] = {
+		.friendly_name = "AES-256-CTS-CBC",
+		.cipher_str = "cts(cbc(aes))",
+		.keysize = 32,
+		.ivsize = 16,
+	},
+	[FSCRYPT_MODE_AES_128_CBC] = {
+		.friendly_name = "AES-128-CBC-ESSIV",
+		.cipher_str = "essiv(cbc(aes),sha256)",
+		.keysize = 16,
+		.ivsize = 16,
+		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
+	},
+	[FSCRYPT_MODE_AES_128_CTS] = {
+		.friendly_name = "AES-128-CTS-CBC",
+		.cipher_str = "cts(cbc(aes))",
+		.keysize = 16,
+		.ivsize = 16,
+	},
+	[FSCRYPT_MODE_ADIANTUM] = {
+		.friendly_name = "Adiantum",
+		.cipher_str = "adiantum(xchacha12,aes)",
+		.keysize = 32,
+		.ivsize = 32,
+		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
+	},
+};
+
+static struct fscrypt_mode *
+select_encryption_mode(const union fscrypt_policy *policy,
+		       const struct inode *inode)
+{
+	if (S_ISREG(inode->i_mode))
+		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
+
+	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
+		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
+
+	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
+		  inode->i_ino, (inode->i_mode & S_IFMT));
+	return ERR_PTR(-EINVAL);
+}
+
+/* Create a symmetric cipher object for the given encryption mode and key */
+static struct crypto_skcipher *
+fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
+			  const struct inode *inode)
+{
+	struct crypto_skcipher *tfm;
+	int err;
+
+	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
+	if (IS_ERR(tfm)) {
+		if (PTR_ERR(tfm) == -ENOENT) {
+			fscrypt_warn(inode,
+				     "Missing crypto API support for %s (API name: \"%s\")",
+				     mode->friendly_name, mode->cipher_str);
+			return ERR_PTR(-ENOPKG);
+		}
+		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
+			    mode->cipher_str, PTR_ERR(tfm));
+		return tfm;
+	}
+	if (!xchg(&mode->logged_impl_name, 1)) {
+		/*
+		 * fscrypt performance can vary greatly depending on which
+		 * crypto algorithm implementation is used.  Help people debug
+		 * performance problems by logging the ->cra_driver_name the
+		 * first time a mode is used.
+		 */
+		pr_info("fscrypt: %s using implementation \"%s\"\n",
+			mode->friendly_name,
+			crypto_skcipher_alg(tfm)->base.cra_driver_name);
+	}
+	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
+	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
+	if (err)
+		goto err_free_tfm;
+
+	return tfm;
+
+err_free_tfm:
+	crypto_free_skcipher(tfm);
+	return ERR_PTR(err);
+}
+
+/*
+ * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
+ * raw key, encryption mode, and flag indicating which encryption implementation
+ * (fs-layer or blk-crypto) will be used.
+ */
+int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
+			const u8 *raw_key, unsigned int raw_key_size,
+			const struct fscrypt_info *ci)
+{
+	struct crypto_skcipher *tfm;
+
+	if (fscrypt_using_inline_encryption(ci))
+		return fscrypt_prepare_inline_crypt_key(prep_key,
+				raw_key, raw_key_size, ci);
+
+	if (WARN_ON(raw_key_size != ci->ci_mode->keysize))
+		return -EINVAL;
+
+	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
+	if (IS_ERR(tfm))
+		return PTR_ERR(tfm);
+	/*
+	 * Pairs with READ_ONCE() in fscrypt_is_key_prepared().  (Only matters
+	 * for the per-mode keys, which are shared by multiple inodes.)
+	 */
+	smp_store_release(&prep_key->tfm, tfm);
+	return 0;
+}
+
+/* Destroy a crypto transform object and/or blk-crypto key. */
+void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
+{
+	crypto_free_skcipher(prep_key->tfm);
+	fscrypt_destroy_inline_crypt_key(prep_key);
+}
+
+/* Given the per-file key, set up the file's crypto transform object */
+int fscrypt_set_derived_key(struct fscrypt_info *ci, const u8 *derived_key)
+{
+	ci->ci_owns_key = true;
+	return fscrypt_prepare_key(&ci->ci_key, derived_key,
+				   ci->ci_mode->keysize, ci);
+}
+
+static int setup_per_mode_key(struct fscrypt_info *ci,
+			      struct fscrypt_master_key *mk,
+			      struct fscrypt_prepared_key *keys,
+			      u8 hkdf_context, bool include_fs_uuid)
+{
+	static DEFINE_MUTEX(mode_key_setup_mutex);
+	const struct inode *inode = ci->ci_inode;
+	const struct super_block *sb = inode->i_sb;
+	struct fscrypt_mode *mode = ci->ci_mode;
+	const u8 mode_num = mode - fscrypt_modes;
+	struct fscrypt_prepared_key *prep_key;
+	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
+	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
+	unsigned int hkdf_infolen = 0;
+	int err;
+
+	if (WARN_ON(mode_num > __FSCRYPT_MODE_MAX))
+		return -EINVAL;
+
+	prep_key = &keys[mode_num];
+	if (fscrypt_is_key_prepared(prep_key, ci)) {
+		ci->ci_key = *prep_key;
+		return 0;
+	}
+
+	mutex_lock(&mode_key_setup_mutex);
+
+	if (fscrypt_is_key_prepared(prep_key, ci))
+		goto done_unlock;
+
+	if (mk->mk_secret.is_hw_wrapped && S_ISREG(inode->i_mode)) {
+		int i;
+
+		if (!fscrypt_using_inline_encryption(ci)) {
+			fscrypt_warn(ci->ci_inode,
+				     "Hardware-wrapped keys require inline encryption (-o inlinecrypt)");
+			err = -EINVAL;
+			goto out_unlock;
+		}
+		for (i = 0; i <= __FSCRYPT_MODE_MAX; i++) {
+			if (fscrypt_is_key_prepared(&keys[i], ci)) {
+				fscrypt_warn(ci->ci_inode,
+					     "Each hardware-wrapped key can only be used with one encryption mode");
+				err = -EINVAL;
+				goto out_unlock;
+			}
+		}
+		err = fscrypt_prepare_key(prep_key, mk->mk_secret.raw,
+					  mk->mk_secret.size, ci);
+		if (err)
+			goto out_unlock;
+	} else {
+		BUILD_BUG_ON(sizeof(mode_num) != 1);
+		BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
+		BUILD_BUG_ON(sizeof(hkdf_info) != 17);
+		hkdf_info[hkdf_infolen++] = mode_num;
+		if (include_fs_uuid) {
+			memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
+				   sizeof(sb->s_uuid));
+			hkdf_infolen += sizeof(sb->s_uuid);
+		}
+		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
+					  hkdf_context, hkdf_info, hkdf_infolen,
+					  mode_key, mode->keysize);
+		if (err)
+			goto out_unlock;
+		err = fscrypt_prepare_key(prep_key, mode_key, mode->keysize,
+					  ci);
+		memzero_explicit(mode_key, mode->keysize);
+		if (err)
+			goto out_unlock;
+	}
+done_unlock:
+	ci->ci_key = *prep_key;
+	err = 0;
+out_unlock:
+	mutex_unlock(&mode_key_setup_mutex);
+	return err;
+}
+
+static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
+				     struct fscrypt_master_key *mk)
+{
+	u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
+	int err;
+
+	if (mk->mk_secret.is_hw_wrapped &&
+	    !(ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64)) {
+		fscrypt_warn(ci->ci_inode,
+			     "Hardware-wrapped keys are only supported with IV_INO_LBLK_64 policies");
+		return -EINVAL;
+	}
+
+	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
+		/*
+		 * DIRECT_KEY: instead of deriving per-file keys, the per-file
+		 * nonce will be included in all the IVs.  But unlike v1
+		 * policies, for v2 policies in this case we don't encrypt with
+		 * the master key directly but rather derive a per-mode key.
+		 * This ensures that the master key is consistently used only
+		 * for HKDF, avoiding key reuse issues.
+		 */
+		if (!fscrypt_mode_supports_direct_key(ci->ci_mode)) {
+			fscrypt_warn(ci->ci_inode,
+				     "Direct key flag not allowed with %s",
+				     ci->ci_mode->friendly_name);
+			return -EINVAL;
+		}
+		return setup_per_mode_key(ci, mk, mk->mk_direct_keys,
+					  HKDF_CONTEXT_DIRECT_KEY, false);
+	} else if (ci->ci_policy.v2.flags &
+		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
+		/*
+		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
+		 * mode_num, filesystem_uuid), and inode number is included in
+		 * the IVs.  This format is optimized for use with inline
+		 * encryption hardware compliant with the UFS or eMMC standards.
+		 */
+		return setup_per_mode_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
+					  HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
+					  true);
+	}
+
+	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
+				  HKDF_CONTEXT_PER_FILE_KEY,
+				  ci->ci_nonce, FS_KEY_DERIVATION_NONCE_SIZE,
+				  derived_key, ci->ci_mode->keysize);
+	if (err)
+		return err;
+
+	err = fscrypt_set_derived_key(ci, derived_key);
+	memzero_explicit(derived_key, ci->ci_mode->keysize);
+	return err;
+}
+
+/*
+ * Find the master key, then set up the inode's actual encryption key.
+ *
+ * If the master key is found in the filesystem-level keyring, then the
+ * corresponding 'struct key' is returned in *master_key_ret with
+ * ->mk_secret_sem read-locked.  This is needed to ensure that only one task
+ * links the fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race
+ * to create an fscrypt_info for the same inode), and to synchronize the master
+ * key being removed with a new inode starting to use it.
+ */
+static int setup_file_encryption_key(struct fscrypt_info *ci,
+				     struct key **master_key_ret)
+{
+	struct key *key;
+	struct fscrypt_master_key *mk = NULL;
+	struct fscrypt_key_specifier mk_spec;
+	int err;
+
+	fscrypt_select_encryption_impl(ci);
+
+	switch (ci->ci_policy.version) {
+	case FSCRYPT_POLICY_V1:
+		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
+		memcpy(mk_spec.u.descriptor,
+		       ci->ci_policy.v1.master_key_descriptor,
+		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
+		break;
+	case FSCRYPT_POLICY_V2:
+		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
+		memcpy(mk_spec.u.identifier,
+		       ci->ci_policy.v2.master_key_identifier,
+		       FSCRYPT_KEY_IDENTIFIER_SIZE);
+		break;
+	default:
+		WARN_ON(1);
+		return -EINVAL;
+	}
+
+	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
+	if (IS_ERR(key)) {
+		if (key != ERR_PTR(-ENOKEY) ||
+		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
+			return PTR_ERR(key);
+
+		/*
+		 * As a legacy fallback for v1 policies, search for the key in
+		 * the current task's subscribed keyrings too.  Don't move this
+		 * to before the search of ->s_master_keys, since users
+		 * shouldn't be able to override filesystem-level keys.
+		 */
+		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
+	}
+
+	mk = key->payload.data[0];
+	down_read(&mk->mk_secret_sem);
+
+	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
+	if (!is_master_key_secret_present(&mk->mk_secret)) {
+		err = -ENOKEY;
+		goto out_release_key;
+	}
+
+	/*
+	 * Require that the master key be at least as long as the derived key.
+	 * Otherwise, the derived key cannot possibly contain as much entropy as
+	 * that required by the encryption mode it will be used for.  For v1
+	 * policies it's also required for the KDF to work at all.
+	 */
+	if (mk->mk_secret.size < ci->ci_mode->keysize) {
+		fscrypt_warn(NULL,
+			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
+			     master_key_spec_type(&mk_spec),
+			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
+			     mk->mk_secret.size, ci->ci_mode->keysize);
+		err = -ENOKEY;
+		goto out_release_key;
+	}
+
+	switch (ci->ci_policy.version) {
+	case FSCRYPT_POLICY_V1:
+		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
+		break;
+	case FSCRYPT_POLICY_V2:
+		err = fscrypt_setup_v2_file_key(ci, mk);
+		break;
+	default:
+		WARN_ON(1);
+		err = -EINVAL;
+		break;
+	}
+	if (err)
+		goto out_release_key;
+
+	*master_key_ret = key;
+	return 0;
+
+out_release_key:
+	up_read(&mk->mk_secret_sem);
+	key_put(key);
+	return err;
+}
+
+static void put_crypt_info(struct fscrypt_info *ci)
+{
+	struct key *key;
+
+	if (!ci)
+		return;
+
+	if (ci->ci_direct_key)
+		fscrypt_put_direct_key(ci->ci_direct_key);
+	else if (ci->ci_owns_key)
+		fscrypt_destroy_prepared_key(&ci->ci_key);
+
+	key = ci->ci_master_key;
+	if (key) {
+		struct fscrypt_master_key *mk = key->payload.data[0];
+
+		/*
+		 * Remove this inode from the list of inodes that were unlocked
+		 * with the master key.
+		 *
+		 * In addition, if we're removing the last inode from a key that
+		 * already had its secret removed, invalidate the key so that it
+		 * gets removed from ->s_master_keys.
+		 */
+		spin_lock(&mk->mk_decrypted_inodes_lock);
+		list_del(&ci->ci_master_key_link);
+		spin_unlock(&mk->mk_decrypted_inodes_lock);
+		if (refcount_dec_and_test(&mk->mk_refcount))
+			key_invalidate(key);
+		key_put(key);
+	}
+	memzero_explicit(ci, sizeof(*ci));
+	kmem_cache_free(fscrypt_info_cachep, ci);
+}
+
+int fscrypt_get_encryption_info(struct inode *inode)
+{
+	struct fscrypt_info *crypt_info;
+	union fscrypt_context ctx;
+	struct fscrypt_mode *mode;
+	struct key *master_key = NULL;
+	int res;
+
+	if (fscrypt_has_encryption_key(inode))
+		return 0;
+
+	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
+	if (res)
+		return res;
+
+	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
+	if (res < 0) {
+		if (!fscrypt_dummy_context_enabled(inode) ||
+		    IS_ENCRYPTED(inode)) {
+			fscrypt_warn(inode,
+				     "Error %d getting encryption context",
+				     res);
+			return res;
+		}
+		/* Fake up a context for an unencrypted directory */
+		memset(&ctx, 0, sizeof(ctx));
+		ctx.version = FSCRYPT_CONTEXT_V1;
+		ctx.v1.contents_encryption_mode = FSCRYPT_MODE_AES_256_XTS;
+		ctx.v1.filenames_encryption_mode = FSCRYPT_MODE_AES_256_CTS;
+		memset(ctx.v1.master_key_descriptor, 0x42,
+		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
+		res = sizeof(ctx.v1);
+	}
+
+	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_NOFS);
+	if (!crypt_info)
+		return -ENOMEM;
+
+	crypt_info->ci_inode = inode;
+
+	res = fscrypt_policy_from_context(&crypt_info->ci_policy, &ctx, res);
+	if (res) {
+		fscrypt_warn(inode,
+			     "Unrecognized or corrupt encryption context");
+		goto out;
+	}
+
+	switch (ctx.version) {
+	case FSCRYPT_CONTEXT_V1:
+		memcpy(crypt_info->ci_nonce, ctx.v1.nonce,
+		       FS_KEY_DERIVATION_NONCE_SIZE);
+		break;
+	case FSCRYPT_CONTEXT_V2:
+		memcpy(crypt_info->ci_nonce, ctx.v2.nonce,
+		       FS_KEY_DERIVATION_NONCE_SIZE);
+		break;
+	default:
+		WARN_ON(1);
+		res = -EINVAL;
+		goto out;
+	}
+
+	if (!fscrypt_supported_policy(&crypt_info->ci_policy, inode)) {
+		res = -EINVAL;
+		goto out;
+	}
+
+	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
+	if (IS_ERR(mode)) {
+		res = PTR_ERR(mode);
+		goto out;
+	}
+	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
+	crypt_info->ci_mode = mode;
+
+	res = setup_file_encryption_key(crypt_info, &master_key);
+	if (res)
+		goto out;
+
+	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
+		if (master_key) {
+			struct fscrypt_master_key *mk =
+				master_key->payload.data[0];
+
+			refcount_inc(&mk->mk_refcount);
+			crypt_info->ci_master_key = key_get(master_key);
+			spin_lock(&mk->mk_decrypted_inodes_lock);
+			list_add(&crypt_info->ci_master_key_link,
+				 &mk->mk_decrypted_inodes);
+			spin_unlock(&mk->mk_decrypted_inodes_lock);
+		}
+		crypt_info = NULL;
+	}
+	res = 0;
+out:
+	if (master_key) {
+		struct fscrypt_master_key *mk = master_key->payload.data[0];
+
+		up_read(&mk->mk_secret_sem);
+		key_put(master_key);
+	}
+	if (res == -ENOKEY)
+		res = 0;
+	put_crypt_info(crypt_info);
+	return res;
+}
+EXPORT_SYMBOL(fscrypt_get_encryption_info);
+
+/**
+ * fscrypt_put_encryption_info - free most of an inode's fscrypt data
+ *
+ * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
+ * being evicted.  An RCU grace period need not have elapsed yet.
+ */
+void fscrypt_put_encryption_info(struct inode *inode)
+{
+	put_crypt_info(inode->i_crypt_info);
+	inode->i_crypt_info = NULL;
+}
+EXPORT_SYMBOL(fscrypt_put_encryption_info);
+
+/**
+ * fscrypt_free_inode - free an inode's fscrypt data requiring RCU delay
+ *
+ * Free the inode's cached decrypted symlink target, if any.  Filesystems must
+ * call this after an RCU grace period, just before they free the inode.
+ */
+void fscrypt_free_inode(struct inode *inode)
+{
+	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
+		kfree(inode->i_link);
+		inode->i_link = NULL;
+	}
+}
+EXPORT_SYMBOL(fscrypt_free_inode);
+
+/**
+ * fscrypt_drop_inode - check whether the inode's master key has been removed
+ *
+ * Filesystems supporting fscrypt must call this from their ->drop_inode()
+ * method so that encrypted inodes are evicted as soon as they're no longer in
+ * use and their master key has been removed.
+ *
+ * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
+ */
+int fscrypt_drop_inode(struct inode *inode)
+{
+	const struct fscrypt_info *ci = READ_ONCE(inode->i_crypt_info);
+	const struct fscrypt_master_key *mk;
+
+	/*
+	 * If ci is NULL, then the inode doesn't have an encryption key set up
+	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
+	 * was provided via the legacy mechanism of the process-subscribed
+	 * keyrings, so we don't know whether it's been removed or not.
+	 */
+	if (!ci || !ci->ci_master_key)
+		return 0;
+	mk = ci->ci_master_key->payload.data[0];
+
+	/*
+	 * Note: since we aren't holding ->mk_secret_sem, the result here can
+	 * immediately become outdated.  But there's no correctness problem with
+	 * unnecessarily evicting.  Nor is there a correctness problem with not
+	 * evicting while iput() is racing with the key being removed, since
+	 * then the thread removing the key will either evict the inode itself
+	 * or will correctly detect that it wasn't evicted due to the race.
+	 */
+	return !is_master_key_secret_present(&mk->mk_secret);
+}
+EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
diff --git a/src/kernel/linux/v4.19/fs/crypto/keysetup_v1.c b/src/kernel/linux/v4.19/fs/crypto/keysetup_v1.c
new file mode 100644
index 0000000..47591c5
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/keysetup_v1.c
@@ -0,0 +1,335 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Key setup for v1 encryption policies
+ *
+ * Copyright 2015, 2019 Google LLC
+ */
+
+/*
+ * This file implements compatibility functions for the original encryption
+ * policy version ("v1"), including:
+ *
+ * - Deriving per-file keys using the AES-128-ECB based KDF
+ *   (rather than the new method of using HKDF-SHA512)
+ *
+ * - Retrieving fscrypt master keys from process-subscribed keyrings
+ *   (rather than the new method of using a filesystem-level keyring)
+ *
+ * - Handling policies with the DIRECT_KEY flag set using a master key table
+ *   (rather than the new method of implementing DIRECT_KEY with per-mode keys
+ *    managed alongside the master keys in the filesystem-level keyring)
+ */
+
+#include <crypto/algapi.h>
+#include <crypto/skcipher.h>
+#include <keys/user-type.h>
+#include <linux/hashtable.h>
+#include <linux/scatterlist.h>
+
+#include "fscrypt_private.h"
+
+/* Table of keys referenced by DIRECT_KEY policies */
+static DEFINE_HASHTABLE(fscrypt_direct_keys, 6); /* 6 bits = 64 buckets */
+static DEFINE_SPINLOCK(fscrypt_direct_keys_lock);
+
+/*
+ * v1 key derivation function.  This generates the derived key by encrypting the
+ * master key with AES-128-ECB using the nonce as the AES key.  This provides a
+ * unique derived key with sufficient entropy for each inode.  However, it's
+ * nonstandard, non-extensible, doesn't evenly distribute the entropy from the
+ * master key, and is trivially reversible: an attacker who compromises a
+ * derived key can "decrypt" it to get back to the master key, then derive any
+ * other key.  For all new code, use HKDF instead.
+ *
+ * The master key must be at least as long as the derived key.  If the master
+ * key is longer, then only the first 'derived_keysize' bytes are used.
+ */
+static int derive_key_aes(const u8 *master_key,
+			  const u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE],
+			  u8 *derived_key, unsigned int derived_keysize)
+{
+	int res = 0;
+	struct skcipher_request *req = NULL;
+	DECLARE_CRYPTO_WAIT(wait);
+	struct scatterlist src_sg, dst_sg;
+	struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
+
+	if (IS_ERR(tfm)) {
+		res = PTR_ERR(tfm);
+		tfm = NULL;
+		goto out;
+	}
+	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
+	req = skcipher_request_alloc(tfm, GFP_NOFS);
+	if (!req) {
+		res = -ENOMEM;
+		goto out;
+	}
+	skcipher_request_set_callback(req,
+			CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+			crypto_req_done, &wait);
+	res = crypto_skcipher_setkey(tfm, nonce, FS_KEY_DERIVATION_NONCE_SIZE);
+	if (res < 0)
+		goto out;
+
+	sg_init_one(&src_sg, master_key, derived_keysize);
+	sg_init_one(&dst_sg, derived_key, derived_keysize);
+	skcipher_request_set_crypt(req, &src_sg, &dst_sg, derived_keysize,
+				   NULL);
+	res = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
+out:
+	skcipher_request_free(req);
+	crypto_free_skcipher(tfm);
+	return res;
+}
+
+/*
+ * Search the current task's subscribed keyrings for a "logon" key with
+ * description prefix:descriptor, and if found acquire a read lock on it and
+ * return a pointer to its validated payload in *payload_ret.
+ */
+static struct key *
+find_and_lock_process_key(const char *prefix,
+			  const u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE],
+			  unsigned int min_keysize,
+			  const struct fscrypt_key **payload_ret)
+{
+	char *description;
+	struct key *key;
+	const struct user_key_payload *ukp;
+	const struct fscrypt_key *payload;
+
+	description = kasprintf(GFP_NOFS, "%s%*phN", prefix,
+				FSCRYPT_KEY_DESCRIPTOR_SIZE, descriptor);
+	if (!description)
+		return ERR_PTR(-ENOMEM);
+
+	key = request_key(&key_type_logon, description, NULL);
+	kfree(description);
+	if (IS_ERR(key))
+		return key;
+
+	down_read(&key->sem);
+	ukp = user_key_payload_locked(key);
+
+	if (!ukp) /* was the key revoked before we acquired its semaphore? */
+		goto invalid;
+
+	payload = (const struct fscrypt_key *)ukp->data;
+
+	if (ukp->datalen != sizeof(struct fscrypt_key) ||
+	    payload->size < 1 || payload->size > FSCRYPT_MAX_KEY_SIZE) {
+		fscrypt_warn(NULL,
+			     "key with description '%s' has invalid payload",
+			     key->description);
+		goto invalid;
+	}
+
+	if (payload->size < min_keysize) {
+		fscrypt_warn(NULL,
+			     "key with description '%s' is too short (got %u bytes, need %u+ bytes)",
+			     key->description, payload->size, min_keysize);
+		goto invalid;
+	}
+
+	*payload_ret = payload;
+	return key;
+
+invalid:
+	up_read(&key->sem);
+	key_put(key);
+	return ERR_PTR(-ENOKEY);
+}
+
+/* Master key referenced by DIRECT_KEY policy */
+struct fscrypt_direct_key {
+	struct hlist_node		dk_node;
+	refcount_t			dk_refcount;
+	const struct fscrypt_mode	*dk_mode;
+	struct fscrypt_prepared_key	dk_key;
+	u8				dk_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+	u8				dk_raw[FSCRYPT_MAX_KEY_SIZE];
+};
+
+static void free_direct_key(struct fscrypt_direct_key *dk)
+{
+	if (dk) {
+		fscrypt_destroy_prepared_key(&dk->dk_key);
+		kzfree(dk);
+	}
+}
+
+void fscrypt_put_direct_key(struct fscrypt_direct_key *dk)
+{
+	if (!refcount_dec_and_lock(&dk->dk_refcount, &fscrypt_direct_keys_lock))
+		return;
+	hash_del(&dk->dk_node);
+	spin_unlock(&fscrypt_direct_keys_lock);
+
+	free_direct_key(dk);
+}
+
+/*
+ * Find/insert the given key into the fscrypt_direct_keys table.  If found, it
+ * is returned with elevated refcount, and 'to_insert' is freed if non-NULL.  If
+ * not found, 'to_insert' is inserted and returned if it's non-NULL; otherwise
+ * NULL is returned.
+ */
+static struct fscrypt_direct_key *
+find_or_insert_direct_key(struct fscrypt_direct_key *to_insert,
+			  const u8 *raw_key, const struct fscrypt_info *ci)
+{
+	unsigned long hash_key;
+	struct fscrypt_direct_key *dk;
+
+	/*
+	 * Careful: to avoid potentially leaking secret key bytes via timing
+	 * information, we must key the hash table by descriptor rather than by
+	 * raw key, and use crypto_memneq() when comparing raw keys.
+	 */
+
+	BUILD_BUG_ON(sizeof(hash_key) > FSCRYPT_KEY_DESCRIPTOR_SIZE);
+	memcpy(&hash_key, ci->ci_policy.v1.master_key_descriptor,
+	       sizeof(hash_key));
+
+	spin_lock(&fscrypt_direct_keys_lock);
+	hash_for_each_possible(fscrypt_direct_keys, dk, dk_node, hash_key) {
+		if (memcmp(ci->ci_policy.v1.master_key_descriptor,
+			   dk->dk_descriptor, FSCRYPT_KEY_DESCRIPTOR_SIZE) != 0)
+			continue;
+		if (ci->ci_mode != dk->dk_mode)
+			continue;
+		if (!fscrypt_is_key_prepared(&dk->dk_key, ci))
+			continue;
+		if (crypto_memneq(raw_key, dk->dk_raw, ci->ci_mode->keysize))
+			continue;
+		/* using existing tfm with same (descriptor, mode, raw_key) */
+		refcount_inc(&dk->dk_refcount);
+		spin_unlock(&fscrypt_direct_keys_lock);
+		free_direct_key(to_insert);
+		return dk;
+	}
+	if (to_insert)
+		hash_add(fscrypt_direct_keys, &to_insert->dk_node, hash_key);
+	spin_unlock(&fscrypt_direct_keys_lock);
+	return to_insert;
+}
+
+/* Prepare to encrypt directly using the master key in the given mode */
+static struct fscrypt_direct_key *
+fscrypt_get_direct_key(const struct fscrypt_info *ci, const u8 *raw_key)
+{
+	struct fscrypt_direct_key *dk;
+	int err;
+
+	/* Is there already a tfm for this key? */
+	dk = find_or_insert_direct_key(NULL, raw_key, ci);
+	if (dk)
+		return dk;
+
+	/* Nope, allocate one. */
+	dk = kzalloc(sizeof(*dk), GFP_NOFS);
+	if (!dk)
+		return ERR_PTR(-ENOMEM);
+	refcount_set(&dk->dk_refcount, 1);
+	dk->dk_mode = ci->ci_mode;
+	err = fscrypt_prepare_key(&dk->dk_key, raw_key, ci->ci_mode->keysize,
+				  ci);
+	if (err)
+		goto err_free_dk;
+	memcpy(dk->dk_descriptor, ci->ci_policy.v1.master_key_descriptor,
+	       FSCRYPT_KEY_DESCRIPTOR_SIZE);
+	memcpy(dk->dk_raw, raw_key, ci->ci_mode->keysize);
+
+	return find_or_insert_direct_key(dk, raw_key, ci);
+
+err_free_dk:
+	free_direct_key(dk);
+	return ERR_PTR(err);
+}
+
+/* v1 policy, DIRECT_KEY: use the master key directly */
+static int setup_v1_file_key_direct(struct fscrypt_info *ci,
+				    const u8 *raw_master_key)
+{
+	const struct fscrypt_mode *mode = ci->ci_mode;
+	struct fscrypt_direct_key *dk;
+
+	if (!fscrypt_mode_supports_direct_key(mode)) {
+		fscrypt_warn(ci->ci_inode,
+			     "Direct key mode not allowed with %s",
+			     mode->friendly_name);
+		return -EINVAL;
+	}
+
+	if (ci->ci_policy.v1.contents_encryption_mode !=
+	    ci->ci_policy.v1.filenames_encryption_mode) {
+		fscrypt_warn(ci->ci_inode,
+			     "Direct key mode not allowed with different contents and filenames modes");
+		return -EINVAL;
+	}
+
+	dk = fscrypt_get_direct_key(ci, raw_master_key);
+	if (IS_ERR(dk))
+		return PTR_ERR(dk);
+	ci->ci_direct_key = dk;
+	ci->ci_key = dk->dk_key;
+	return 0;
+}
+
+/* v1 policy, !DIRECT_KEY: derive the file's encryption key */
+static int setup_v1_file_key_derived(struct fscrypt_info *ci,
+				     const u8 *raw_master_key)
+{
+	u8 *derived_key;
+	int err;
+
+	/*
+	 * This cannot be a stack buffer because it will be passed to the
+	 * scatterlist crypto API during derive_key_aes().
+	 */
+	derived_key = kmalloc(ci->ci_mode->keysize, GFP_NOFS);
+	if (!derived_key)
+		return -ENOMEM;
+
+	err = derive_key_aes(raw_master_key, ci->ci_nonce,
+			     derived_key, ci->ci_mode->keysize);
+	if (err)
+		goto out;
+
+	err = fscrypt_set_derived_key(ci, derived_key);
+out:
+	kzfree(derived_key);
+	return err;
+}
+
+int fscrypt_setup_v1_file_key(struct fscrypt_info *ci, const u8 *raw_master_key)
+{
+	if (ci->ci_policy.v1.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY)
+		return setup_v1_file_key_direct(ci, raw_master_key);
+	else
+		return setup_v1_file_key_derived(ci, raw_master_key);
+}
+
+int fscrypt_setup_v1_file_key_via_subscribed_keyrings(struct fscrypt_info *ci)
+{
+	struct key *key;
+	const struct fscrypt_key *payload;
+	int err;
+
+	key = find_and_lock_process_key(FSCRYPT_KEY_DESC_PREFIX,
+					ci->ci_policy.v1.master_key_descriptor,
+					ci->ci_mode->keysize, &payload);
+	if (key == ERR_PTR(-ENOKEY) && ci->ci_inode->i_sb->s_cop->key_prefix) {
+		key = find_and_lock_process_key(ci->ci_inode->i_sb->s_cop->key_prefix,
+						ci->ci_policy.v1.master_key_descriptor,
+						ci->ci_mode->keysize, &payload);
+	}
+	if (IS_ERR(key))
+		return PTR_ERR(key);
+
+	err = fscrypt_setup_v1_file_key(ci, payload->raw);
+	up_read(&key->sem);
+	key_put(key);
+	return err;
+}
diff --git a/src/kernel/linux/v4.19/fs/crypto/policy.c b/src/kernel/linux/v4.19/fs/crypto/policy.c
new file mode 100644
index 0000000..96f5280
--- /dev/null
+++ b/src/kernel/linux/v4.19/fs/crypto/policy.c
@@ -0,0 +1,532 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Encryption policy functions for per-file encryption support.
+ *
+ * Copyright (C) 2015, Google, Inc.
+ * Copyright (C) 2015, Motorola Mobility.
+ *
+ * Originally written by Michael Halcrow, 2015.
+ * Modified by Jaegeuk Kim, 2015.
+ * Modified by Eric Biggers, 2019 for v2 policy support.
+ */
+
+#include <linux/random.h>
+#include <linux/string.h>
+#include <linux/mount.h>
+#include "fscrypt_private.h"
+
+/**
+ * fscrypt_policies_equal - check whether two encryption policies are the same
+ *
+ * Return: %true if equal, else %false
+ */
+bool fscrypt_policies_equal(const union fscrypt_policy *policy1,
+			    const union fscrypt_policy *policy2)
+{
+	if (policy1->version != policy2->version)
+		return false;
+
+	return !memcmp(policy1, policy2, fscrypt_policy_size(policy1));
+}
+
+static bool supported_iv_ino_lblk_64_policy(
+					const struct fscrypt_policy_v2 *policy,
+					const struct inode *inode)
+{
+	struct super_block *sb = inode->i_sb;
+	int ino_bits = 64, lblk_bits = 64;
+
+	if (policy->flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
+		fscrypt_warn(inode,
+			     "The DIRECT_KEY and IV_INO_LBLK_64 flags are mutually exclusive");
+		return false;
+	}
+	/*
+	 * It's unsafe to include inode numbers in the IVs if the filesystem can
+	 * potentially renumber inodes, e.g. via filesystem shrinking.
+	 */
+	if (!sb->s_cop->has_stable_inodes ||
+	    !sb->s_cop->has_stable_inodes(sb)) {
+		fscrypt_warn(inode,
+			     "Can't use IV_INO_LBLK_64 policy on filesystem '%s' because it doesn't have stable inode numbers",
+			     sb->s_id);
+		return false;
+	}
+	if (sb->s_cop->get_ino_and_lblk_bits)
+		sb->s_cop->get_ino_and_lblk_bits(sb, &ino_bits, &lblk_bits);
+	if (ino_bits > 32 || lblk_bits > 32) {
+		fscrypt_warn(inode,
+			     "Can't use IV_INO_LBLK_64 policy on filesystem '%s' because it doesn't use 32-bit inode and block numbers",
+			     sb->s_id);
+		return false;
+	}
+	return true;
+}
+
+/**
+ * fscrypt_supported_policy - check whether an encryption policy is supported
+ *
+ * Given an encryption policy, check whether all its encryption modes and other
+ * settings are supported by this kernel.  (But we don't currently don't check
+ * for crypto API support here, so attempting to use an algorithm not configured
+ * into the crypto API will still fail later.)
+ *
+ * Return: %true if supported, else %false
+ */
+bool fscrypt_supported_policy(const union fscrypt_policy *policy_u,
+			      const struct inode *inode)
+{
+	switch (policy_u->version) {
+	case FSCRYPT_POLICY_V1: {
+		const struct fscrypt_policy_v1 *policy = &policy_u->v1;
+
+		if (!fscrypt_valid_enc_modes(policy->contents_encryption_mode,
+					     policy->filenames_encryption_mode)) {
+			fscrypt_warn(inode,
+				     "Unsupported encryption modes (contents %d, filenames %d)",
+				     policy->contents_encryption_mode,
+				     policy->filenames_encryption_mode);
+			return false;
+		}
+
+		if (policy->flags & ~(FSCRYPT_POLICY_FLAGS_PAD_MASK |
+				      FSCRYPT_POLICY_FLAG_DIRECT_KEY)) {
+			fscrypt_warn(inode,
+				     "Unsupported encryption flags (0x%02x)",
+				     policy->flags);
+			return false;
+		}
+
+		return true;
+	}
+	case FSCRYPT_POLICY_V2: {
+		const struct fscrypt_policy_v2 *policy = &policy_u->v2;
+
+		if (!fscrypt_valid_enc_modes(policy->contents_encryption_mode,
+					     policy->filenames_encryption_mode)) {
+			fscrypt_warn(inode,
+				     "Unsupported encryption modes (contents %d, filenames %d)",
+				     policy->contents_encryption_mode,
+				     policy->filenames_encryption_mode);
+			return false;
+		}
+
+		if (policy->flags & ~FSCRYPT_POLICY_FLAGS_VALID) {
+			fscrypt_warn(inode,
+				     "Unsupported encryption flags (0x%02x)",
+				     policy->flags);
+			return false;
+		}
+
+		if ((policy->flags & FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) &&
+		    !supported_iv_ino_lblk_64_policy(policy, inode))
+			return false;
+
+		if (memchr_inv(policy->__reserved, 0,
+			       sizeof(policy->__reserved))) {
+			fscrypt_warn(inode,
+				     "Reserved bits set in encryption policy");
+			return false;
+		}
+
+		return true;
+	}
+	}
+	return false;
+}
+
+/**
+ * fscrypt_new_context_from_policy - create a new fscrypt_context from a policy
+ *
+ * Create an fscrypt_context for an inode that is being assigned the given
+ * encryption policy.  A new nonce is randomly generated.
+ *
+ * Return: the size of the new context in bytes.
+ */
+static int fscrypt_new_context_from_policy(union fscrypt_context *ctx_u,
+					   const union fscrypt_policy *policy_u)
+{
+	memset(ctx_u, 0, sizeof(*ctx_u));
+
+	switch (policy_u->version) {
+	case FSCRYPT_POLICY_V1: {
+		const struct fscrypt_policy_v1 *policy = &policy_u->v1;
+		struct fscrypt_context_v1 *ctx = &ctx_u->v1;
+
+		ctx->version = FSCRYPT_CONTEXT_V1;
+		ctx->contents_encryption_mode =
+			policy->contents_encryption_mode;
+		ctx->filenames_encryption_mode =
+			policy->filenames_encryption_mode;
+		ctx->flags = policy->flags;
+		memcpy(ctx->master_key_descriptor,
+		       policy->master_key_descriptor,
+		       sizeof(ctx->master_key_descriptor));
+		get_random_bytes(ctx->nonce, sizeof(ctx->nonce));
+		return sizeof(*ctx);
+	}
+	case FSCRYPT_POLICY_V2: {
+		const struct fscrypt_policy_v2 *policy = &policy_u->v2;
+		struct fscrypt_context_v2 *ctx = &ctx_u->v2;
+
+		ctx->version = FSCRYPT_CONTEXT_V2;
+		ctx->contents_encryption_mode =
+			policy->contents_encryption_mode;
+		ctx->filenames_encryption_mode =
+			policy->filenames_encryption_mode;
+		ctx->flags = policy->flags;
+		memcpy(ctx->master_key_identifier,
+		       policy->master_key_identifier,
+		       sizeof(ctx->master_key_identifier));
+		get_random_bytes(ctx->nonce, sizeof(ctx->nonce));
+		return sizeof(*ctx);
+	}
+	}
+	BUG();
+}
+
+/**
+ * fscrypt_policy_from_context - convert an fscrypt_context to an fscrypt_policy
+ *
+ * Given an fscrypt_context, build the corresponding fscrypt_policy.
+ *
+ * Return: 0 on success, or -EINVAL if the fscrypt_context has an unrecognized
+ * version number or size.
+ *
+ * This does *not* validate the settings within the policy itself, e.g. the
+ * modes, flags, and reserved bits.  Use fscrypt_supported_policy() for that.
+ */
+int fscrypt_policy_from_context(union fscrypt_policy *policy_u,
+				const union fscrypt_context *ctx_u,
+				int ctx_size)
+{
+	memset(policy_u, 0, sizeof(*policy_u));
+
+	if (ctx_size <= 0 || ctx_size != fscrypt_context_size(ctx_u))
+		return -EINVAL;
+
+	switch (ctx_u->version) {
+	case FSCRYPT_CONTEXT_V1: {
+		const struct fscrypt_context_v1 *ctx = &ctx_u->v1;
+		struct fscrypt_policy_v1 *policy = &policy_u->v1;
+
+		policy->version = FSCRYPT_POLICY_V1;
+		policy->contents_encryption_mode =
+			ctx->contents_encryption_mode;
+		policy->filenames_encryption_mode =
+			ctx->filenames_encryption_mode;
+		policy->flags = ctx->flags;
+		memcpy(policy->master_key_descriptor,
+		       ctx->master_key_descriptor,
+		       sizeof(policy->master_key_descriptor));
+		return 0;
+	}
+	case FSCRYPT_CONTEXT_V2: {
+		const struct fscrypt_context_v2 *ctx = &ctx_u->v2;
+		struct fscrypt_policy_v2 *policy = &policy_u->v2;
+
+		policy->version = FSCRYPT_POLICY_V2;
+		policy->contents_encryption_mode =
+			ctx->contents_encryption_mode;
+		policy->filenames_encryption_mode =
+			ctx->filenames_encryption_mode;
+		policy->flags = ctx->flags;
+		memcpy(policy->__reserved, ctx->__reserved,
+		       sizeof(policy->__reserved));
+		memcpy(policy->master_key_identifier,
+		       ctx->master_key_identifier,
+		       sizeof(policy->master_key_identifier));
+		return 0;
+	}
+	}
+	/* unreachable */
+	return -EINVAL;
+}
+
+/* Retrieve an inode's encryption policy */
+static int fscrypt_get_policy(struct inode *inode, union fscrypt_policy *policy)
+{
+	const struct fscrypt_info *ci;
+	union fscrypt_context ctx;
+	int ret;
+
+	ci = READ_ONCE(inode->i_crypt_info);
+	if (ci) {
+		/* key available, use the cached policy */
+		*policy = ci->ci_policy;
+		return 0;
+	}
+
+	if (!IS_ENCRYPTED(inode))
+		return -ENODATA;
+
+	ret = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
+	if (ret < 0)
+		return (ret == -ERANGE) ? -EINVAL : ret;
+
+	return fscrypt_policy_from_context(policy, &ctx, ret);
+}
+
+static int set_encryption_policy(struct inode *inode,
+				 const union fscrypt_policy *policy)
+{
+	union fscrypt_context ctx;
+	int ctxsize;
+	int err;
+
+	if (!fscrypt_supported_policy(policy, inode))
+		return -EINVAL;
+
+	switch (policy->version) {
+	case FSCRYPT_POLICY_V1:
+		/*
+		 * The original encryption policy version provided no way of
+		 * verifying that the correct master key was supplied, which was
+		 * insecure in scenarios where multiple users have access to the
+		 * same encrypted files (even just read-only access).  The new
+		 * encryption policy version fixes this and also implies use of
+		 * an improved key derivation function and allows non-root users
+		 * to securely remove keys.  So as long as compatibility with
+		 * old kernels isn't required, it is recommended to use the new
+		 * policy version for all new encrypted directories.
+		 */
+		pr_warn_once("%s (pid %d) is setting deprecated v1 encryption policy; recommend upgrading to v2.\n",
+			     current->comm, current->pid);
+		break;
+	case FSCRYPT_POLICY_V2:
+		err = fscrypt_verify_key_added(inode->i_sb,
+					       policy->v2.master_key_identifier);
+		if (err)
+			return err;
+		break;
+	default:
+		WARN_ON(1);
+		return -EINVAL;
+	}
+
+	ctxsize = fscrypt_new_context_from_policy(&ctx, policy);
+
+	return inode->i_sb->s_cop->set_context(inode, &ctx, ctxsize, NULL);
+}
+
+int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg)
+{
+	union fscrypt_policy policy;
+	union fscrypt_policy existing_policy;
+	struct inode *inode = file_inode(filp);
+	u8 version;
+	int size;
+	int ret;
+
+	if (get_user(policy.version, (const u8 __user *)arg))
+		return -EFAULT;
+
+	size = fscrypt_policy_size(&policy);
+	if (size <= 0)
+		return -EINVAL;
+
+	/*
+	 * We should just copy the remaining 'size - 1' bytes here, but a
+	 * bizarre bug in gcc 7 and earlier (fixed by gcc r255731) causes gcc to
+	 * think that size can be 0 here (despite the check above!) *and* that
+	 * it's a compile-time constant.  Thus it would think copy_from_user()
+	 * is passed compile-time constant ULONG_MAX, causing the compile-time
+	 * buffer overflow check to fail, breaking the build. This only occurred
+	 * when building an i386 kernel with -Os and branch profiling enabled.
+	 *
+	 * Work around it by just copying the first byte again...
+	 */
+	version = policy.version;
+	if (copy_from_user(&policy, arg, size))
+		return -EFAULT;
+	policy.version = version;
+
+	if (!inode_owner_or_capable(inode))
+		return -EACCES;
+
+	ret = mnt_want_write_file(filp);
+	if (ret)
+		return ret;
+
+	inode_lock(inode);
+
+	ret = fscrypt_get_policy(inode, &existing_policy);
+	if (ret == -ENODATA) {
+		if (!S_ISDIR(inode->i_mode))
+			ret = -ENOTDIR;
+		else if (IS_DEADDIR(inode))
+			ret = -ENOENT;
+		else if (!inode->i_sb->s_cop->empty_dir(inode))
+			ret = -ENOTEMPTY;
+		else
+			ret = set_encryption_policy(inode, &policy);
+	} else if (ret == -EINVAL ||
+		   (ret == 0 && !fscrypt_policies_equal(&policy,
+							&existing_policy))) {
+		/* The file already uses a different encryption policy. */
+		ret = -EEXIST;
+	}
+
+	inode_unlock(inode);
+
+	mnt_drop_write_file(filp);
+	return ret;
+}
+EXPORT_SYMBOL(fscrypt_ioctl_set_policy);
+
+/* Original ioctl version; can only get the original policy version */
+int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
+{
+	union fscrypt_policy policy;
+	int err;
+
+	err = fscrypt_get_policy(file_inode(filp), &policy);
+	if (err)
+		return err;
+
+	if (policy.version != FSCRYPT_POLICY_V1)
+		return -EINVAL;
+
+	if (copy_to_user(arg, &policy, sizeof(policy.v1)))
+		return -EFAULT;
+	return 0;
+}
+EXPORT_SYMBOL(fscrypt_ioctl_get_policy);
+
+/* Extended ioctl version; can get policies of any version */
+int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *uarg)
+{
+	struct fscrypt_get_policy_ex_arg arg;
+	union fscrypt_policy *policy = (union fscrypt_policy *)&arg.policy;
+	size_t policy_size;
+	int err;
+
+	/* arg is policy_size, then policy */
+	BUILD_BUG_ON(offsetof(typeof(arg), policy_size) != 0);
+	BUILD_BUG_ON(offsetofend(typeof(arg), policy_size) !=
+		     offsetof(typeof(arg), policy));
+	BUILD_BUG_ON(sizeof(arg.policy) != sizeof(*policy));
+
+	err = fscrypt_get_policy(file_inode(filp), policy);
+	if (err)
+		return err;
+	policy_size = fscrypt_policy_size(policy);
+
+	if (copy_from_user(&arg, uarg, sizeof(arg.policy_size)))
+		return -EFAULT;
+
+	if (policy_size > arg.policy_size)
+		return -EOVERFLOW;
+	arg.policy_size = policy_size;
+
+	if (copy_to_user(uarg, &arg, sizeof(arg.policy_size) + policy_size))
+		return -EFAULT;
+	return 0;
+}
+EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_policy_ex);
+
+/**
+ * fscrypt_has_permitted_context() - is a file's encryption policy permitted
+ *				     within its directory?
+ *
+ * @parent: inode for parent directory
+ * @child: inode for file being looked up, opened, or linked into @parent
+ *
+ * Filesystems must call this before permitting access to an inode in a
+ * situation where the parent directory is encrypted (either before allowing
+ * ->lookup() to succeed, or for a regular file before allowing it to be opened)
+ * and before any operation that involves linking an inode into an encrypted
+ * directory, including link, rename, and cross rename.  It enforces the
+ * constraint that within a given encrypted directory tree, all files use the
+ * same encryption policy.  The pre-access check is needed to detect potentially
+ * malicious offline violations of this constraint, while the link and rename
+ * checks are needed to prevent online violations of this constraint.
+ *
+ * Return: 1 if permitted, 0 if forbidden.
+ */
+int fscrypt_has_permitted_context(struct inode *parent, struct inode *child)
+{
+	union fscrypt_policy parent_policy, child_policy;
+	int err;
+
+	/* No restrictions on file types which are never encrypted */
+	if (!S_ISREG(child->i_mode) && !S_ISDIR(child->i_mode) &&
+	    !S_ISLNK(child->i_mode))
+		return 1;
+
+	/* No restrictions if the parent directory is unencrypted */
+	if (!IS_ENCRYPTED(parent))
+		return 1;
+
+	/* Encrypted directories must not contain unencrypted files */
+	if (!IS_ENCRYPTED(child))
+		return 0;
+
+	/*
+	 * Both parent and child are encrypted, so verify they use the same
+	 * encryption policy.  Compare the fscrypt_info structs if the keys are
+	 * available, otherwise retrieve and compare the fscrypt_contexts.
+	 *
+	 * Note that the fscrypt_context retrieval will be required frequently
+	 * when accessing an encrypted directory tree without the key.
+	 * Performance-wise this is not a big deal because we already don't
+	 * really optimize for file access without the key (to the extent that
+	 * such access is even possible), given that any attempted access
+	 * already causes a fscrypt_context retrieval and keyring search.
+	 *
+	 * In any case, if an unexpected error occurs, fall back to "forbidden".
+	 */
+
+	err = fscrypt_get_encryption_info(parent);
+	if (err)
+		return 0;
+	err = fscrypt_get_encryption_info(child);
+	if (err)
+		return 0;
+
+	err = fscrypt_get_policy(parent, &parent_policy);
+	if (err)
+		return 0;
+
+	err = fscrypt_get_policy(child, &child_policy);
+	if (err)
+		return 0;
+
+	return fscrypt_policies_equal(&parent_policy, &child_policy);
+}
+EXPORT_SYMBOL(fscrypt_has_permitted_context);
+
+/**
+ * fscrypt_inherit_context() - Sets a child context from its parent
+ * @parent: Parent inode from which the context is inherited.
+ * @child:  Child inode that inherits the context from @parent.
+ * @fs_data:  private data given by FS.
+ * @preload:  preload child i_crypt_info if true
+ *
+ * Return: 0 on success, -errno on failure
+ */
+int fscrypt_inherit_context(struct inode *parent, struct inode *child,
+						void *fs_data, bool preload)
+{
+	union fscrypt_context ctx;
+	int ctxsize;
+	struct fscrypt_info *ci;
+	int res;
+
+	res = fscrypt_get_encryption_info(parent);
+	if (res < 0)
+		return res;
+
+	ci = READ_ONCE(parent->i_crypt_info);
+	if (ci == NULL)
+		return -ENOKEY;
+
+	ctxsize = fscrypt_new_context_from_policy(&ctx, &ci->ci_policy);
+
+	BUILD_BUG_ON(sizeof(ctx) != FSCRYPT_SET_CONTEXT_MAX_SIZE);
+	res = parent->i_sb->s_cop->set_context(child, &ctx, ctxsize, fs_data);
+	if (res)
+		return res;
+	return preload ? fscrypt_get_encryption_info(child): 0;
+}
+EXPORT_SYMBOL(fscrypt_inherit_context);