|  | /* | 
|  | *  linux/arch/arm/mm/fault.c | 
|  | * | 
|  | *  Copyright (C) 1995  Linus Torvalds | 
|  | *  Modifications for ARM processor (c) 1995-2004 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  | #include <linux/extable.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/sched/signal.h> | 
|  | #include <linux/sched/debug.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/perf_event.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/system_misc.h> | 
|  | #include <asm/system_info.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include "fault.h" | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | #ifdef CONFIG_KPROBES | 
|  | static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (!user_mode(regs)) { | 
|  | /* kprobe_running() needs smp_processor_id() */ | 
|  | preempt_disable(); | 
|  | if (kprobe_running() && kprobe_fault_handler(regs, fsr)) | 
|  | ret = 1; | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #else | 
|  | static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is useful to dump out the page tables associated with | 
|  | * 'addr' in mm 'mm'. | 
|  | */ | 
|  | void show_pte(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  |  | 
|  | if (!mm) | 
|  | mm = &init_mm; | 
|  |  | 
|  | pr_alert("pgd = %p\n", mm->pgd); | 
|  | pgd = pgd_offset(mm, addr); | 
|  | pr_alert("[%08lx] *pgd=%08llx", | 
|  | addr, (long long)pgd_val(*pgd)); | 
|  |  | 
|  | do { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  |  | 
|  | if (pgd_none(*pgd)) | 
|  | break; | 
|  |  | 
|  | if (pgd_bad(*pgd)) { | 
|  | pr_cont("(bad)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | if (PTRS_PER_PUD != 1) | 
|  | pr_cont(", *pud=%08llx", (long long)pud_val(*pud)); | 
|  |  | 
|  | if (pud_none(*pud)) | 
|  | break; | 
|  |  | 
|  | if (pud_bad(*pud)) { | 
|  | pr_cont("(bad)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | if (PTRS_PER_PMD != 1) | 
|  | pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd)); | 
|  |  | 
|  | if (pmd_none(*pmd)) | 
|  | break; | 
|  |  | 
|  | if (pmd_bad(*pmd)) { | 
|  | pr_cont("(bad)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* We must not map this if we have highmem enabled */ | 
|  | if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT))) | 
|  | break; | 
|  |  | 
|  | pte = pte_offset_map(pmd, addr); | 
|  | pr_cont(", *pte=%08llx", (long long)pte_val(*pte)); | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | pr_cont(", *ppte=%08llx", | 
|  | (long long)pte_val(pte[PTE_HWTABLE_PTRS])); | 
|  | #endif | 
|  | pte_unmap(pte); | 
|  | } while(0); | 
|  |  | 
|  | pr_cont("\n"); | 
|  | } | 
|  | #else					/* CONFIG_MMU */ | 
|  | void show_pte(struct mm_struct *mm, unsigned long addr) | 
|  | { } | 
|  | #endif					/* CONFIG_MMU */ | 
|  |  | 
|  | /* | 
|  | * Oops.  The kernel tried to access some page that wasn't present. | 
|  | */ | 
|  | static void | 
|  | __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * Are we prepared to handle this kernel fault? | 
|  | */ | 
|  | if (fixup_exception(regs)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * No handler, we'll have to terminate things with extreme prejudice. | 
|  | */ | 
|  | bust_spinlocks(1); | 
|  | pr_alert("Unable to handle kernel %s at virtual address %08lx\n", | 
|  | (addr < PAGE_SIZE) ? "NULL pointer dereference" : | 
|  | "paging request", addr); | 
|  |  | 
|  | show_pte(mm, addr); | 
|  | die("Oops", regs, fsr); | 
|  | bust_spinlocks(0); | 
|  | do_exit(SIGKILL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | * User mode accesses just cause a SIGSEGV | 
|  | */ | 
|  | static void | 
|  | __do_user_fault(struct task_struct *tsk, unsigned long addr, | 
|  | unsigned int fsr, unsigned int sig, int code, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct siginfo si; | 
|  |  | 
|  | if (addr > TASK_SIZE) | 
|  | harden_branch_predictor(); | 
|  |  | 
|  | clear_siginfo(&si); | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_USER | 
|  | if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) || | 
|  | ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) { | 
|  | printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n", | 
|  | tsk->comm, sig, addr, fsr); | 
|  | show_pte(tsk->mm, addr); | 
|  | show_regs(regs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | tsk->thread.address = addr; | 
|  | tsk->thread.error_code = fsr; | 
|  | tsk->thread.trap_no = 14; | 
|  | si.si_signo = sig; | 
|  | si.si_errno = 0; | 
|  | si.si_code = code; | 
|  | si.si_addr = (void __user *)addr; | 
|  | force_sig_info(sig, &si, tsk); | 
|  | } | 
|  |  | 
|  | void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct mm_struct *mm = tsk->active_mm; | 
|  |  | 
|  | /* | 
|  | * If we are in kernel mode at this point, we | 
|  | * have no context to handle this fault with. | 
|  | */ | 
|  | if (user_mode(regs)) | 
|  | __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs); | 
|  | else | 
|  | __do_kernel_fault(mm, addr, fsr, regs); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | #define VM_FAULT_BADMAP		0x010000 | 
|  | #define VM_FAULT_BADACCESS	0x020000 | 
|  |  | 
|  | /* | 
|  | * Check that the permissions on the VMA allow for the fault which occurred. | 
|  | * If we encountered a write fault, we must have write permission, otherwise | 
|  | * we allow any permission. | 
|  | */ | 
|  | static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma) | 
|  | { | 
|  | unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; | 
|  |  | 
|  | if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) | 
|  | mask = VM_WRITE; | 
|  | if (fsr & FSR_LNX_PF) | 
|  | mask = VM_EXEC; | 
|  |  | 
|  | return vma->vm_flags & mask ? false : true; | 
|  | } | 
|  |  | 
|  | static vm_fault_t __kprobes | 
|  | __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr, | 
|  | unsigned int flags, struct task_struct *tsk) | 
|  | { | 
|  | struct vm_area_struct *vma; | 
|  | vm_fault_t fault; | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  | fault = VM_FAULT_BADMAP; | 
|  | if (unlikely(!vma)) | 
|  | goto out; | 
|  | if (unlikely(vma->vm_start > addr)) | 
|  | goto check_stack; | 
|  |  | 
|  | /* | 
|  | * Ok, we have a good vm_area for this | 
|  | * memory access, so we can handle it. | 
|  | */ | 
|  | good_area: | 
|  | if (access_error(fsr, vma)) { | 
|  | fault = VM_FAULT_BADACCESS; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | return handle_mm_fault(vma, addr & PAGE_MASK, flags); | 
|  |  | 
|  | check_stack: | 
|  | /* Don't allow expansion below FIRST_USER_ADDRESS */ | 
|  | if (vma->vm_flags & VM_GROWSDOWN && | 
|  | addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr)) | 
|  | goto good_area; | 
|  | out: | 
|  | return fault; | 
|  | } | 
|  |  | 
|  | static int __kprobes | 
|  | do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct *mm; | 
|  | int sig, code; | 
|  | vm_fault_t fault; | 
|  | unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
|  |  | 
|  | if (notify_page_fault(regs, fsr)) | 
|  | return 0; | 
|  |  | 
|  | tsk = current; | 
|  | mm  = tsk->mm; | 
|  |  | 
|  | /* Enable interrupts if they were enabled in the parent context. */ | 
|  | if (interrupts_enabled(regs)) | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* | 
|  | * If we're in an interrupt or have no user | 
|  | * context, we must not take the fault.. | 
|  | */ | 
|  | if (faulthandler_disabled() || !mm) | 
|  | goto no_context; | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | flags |= FAULT_FLAG_USER; | 
|  | if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  |  | 
|  | /* | 
|  | * As per x86, we may deadlock here.  However, since the kernel only | 
|  | * validly references user space from well defined areas of the code, | 
|  | * we can bug out early if this is from code which shouldn't. | 
|  | */ | 
|  | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc)) | 
|  | goto no_context; | 
|  | retry: | 
|  | down_read(&mm->mmap_sem); | 
|  | } else { | 
|  | /* | 
|  | * The above down_read_trylock() might have succeeded in | 
|  | * which case, we'll have missed the might_sleep() from | 
|  | * down_read() | 
|  | */ | 
|  | might_sleep(); | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | if (!user_mode(regs) && | 
|  | !search_exception_tables(regs->ARM_pc)) | 
|  | goto no_context; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | fault = __do_page_fault(mm, addr, fsr, flags, tsk); | 
|  |  | 
|  | /* If we need to retry but a fatal signal is pending, handle the | 
|  | * signal first. We do not need to release the mmap_sem because | 
|  | * it would already be released in __lock_page_or_retry in | 
|  | * mm/filemap.c. */ | 
|  | if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) { | 
|  | if (!user_mode(regs)) | 
|  | goto no_context; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Major/minor page fault accounting is only done on the | 
|  | * initial attempt. If we go through a retry, it is extremely | 
|  | * likely that the page will be found in page cache at that point. | 
|  | */ | 
|  |  | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); | 
|  | if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) { | 
|  | if (fault & VM_FAULT_MAJOR) { | 
|  | tsk->maj_flt++; | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, | 
|  | regs, addr); | 
|  | } else { | 
|  | tsk->min_flt++; | 
|  | perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, | 
|  | regs, addr); | 
|  | } | 
|  | if (fault & VM_FAULT_RETRY) { | 
|  | /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk | 
|  | * of starvation. */ | 
|  | flags &= ~FAULT_FLAG_ALLOW_RETRY; | 
|  | flags |= FAULT_FLAG_TRIED; | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | /* | 
|  | * Handle the "normal" case first - VM_FAULT_MAJOR | 
|  | */ | 
|  | if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS)))) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If we are in kernel mode at this point, we | 
|  | * have no context to handle this fault with. | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | goto no_context; | 
|  |  | 
|  | if (fault & VM_FAULT_OOM) { | 
|  | /* | 
|  | * We ran out of memory, call the OOM killer, and return to | 
|  | * userspace (which will retry the fault, or kill us if we | 
|  | * got oom-killed) | 
|  | */ | 
|  | pagefault_out_of_memory(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (fault & VM_FAULT_SIGBUS) { | 
|  | /* | 
|  | * We had some memory, but were unable to | 
|  | * successfully fix up this page fault. | 
|  | */ | 
|  | sig = SIGBUS; | 
|  | code = BUS_ADRERR; | 
|  | } else { | 
|  | /* | 
|  | * Something tried to access memory that | 
|  | * isn't in our memory map.. | 
|  | */ | 
|  | sig = SIGSEGV; | 
|  | code = fault == VM_FAULT_BADACCESS ? | 
|  | SEGV_ACCERR : SEGV_MAPERR; | 
|  | } | 
|  |  | 
|  | __do_user_fault(tsk, addr, fsr, sig, code, regs); | 
|  | return 0; | 
|  |  | 
|  | no_context: | 
|  | __do_kernel_fault(mm, addr, fsr, regs); | 
|  | return 0; | 
|  | } | 
|  | #else					/* CONFIG_MMU */ | 
|  | static int | 
|  | do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif					/* CONFIG_MMU */ | 
|  |  | 
|  | /* | 
|  | * First Level Translation Fault Handler | 
|  | * | 
|  | * We enter here because the first level page table doesn't contain | 
|  | * a valid entry for the address. | 
|  | * | 
|  | * If the address is in kernel space (>= TASK_SIZE), then we are | 
|  | * probably faulting in the vmalloc() area. | 
|  | * | 
|  | * If the init_task's first level page tables contains the relevant | 
|  | * entry, we copy the it to this task.  If not, we send the process | 
|  | * a signal, fixup the exception, or oops the kernel. | 
|  | * | 
|  | * NOTE! We MUST NOT take any locks for this case. We may be in an | 
|  | * interrupt or a critical region, and should only copy the information | 
|  | * from the master page table, nothing more. | 
|  | */ | 
|  | #ifdef CONFIG_MMU | 
|  | static int __kprobes | 
|  | do_translation_fault(unsigned long addr, unsigned int fsr, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | unsigned int index; | 
|  | pgd_t *pgd, *pgd_k; | 
|  | pud_t *pud, *pud_k; | 
|  | pmd_t *pmd, *pmd_k; | 
|  |  | 
|  | if (addr < TASK_SIZE) | 
|  | return do_page_fault(addr, fsr, regs); | 
|  |  | 
|  | if (user_mode(regs)) | 
|  | goto bad_area; | 
|  |  | 
|  | index = pgd_index(addr); | 
|  |  | 
|  | pgd = cpu_get_pgd() + index; | 
|  | pgd_k = init_mm.pgd + index; | 
|  |  | 
|  | if (pgd_none(*pgd_k)) | 
|  | goto bad_area; | 
|  | if (!pgd_present(*pgd)) | 
|  | set_pgd(pgd, *pgd_k); | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | pud_k = pud_offset(pgd_k, addr); | 
|  |  | 
|  | if (pud_none(*pud_k)) | 
|  | goto bad_area; | 
|  | if (!pud_present(*pud)) | 
|  | set_pud(pud, *pud_k); | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | pmd_k = pmd_offset(pud_k, addr); | 
|  |  | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | /* | 
|  | * Only one hardware entry per PMD with LPAE. | 
|  | */ | 
|  | index = 0; | 
|  | #else | 
|  | /* | 
|  | * On ARM one Linux PGD entry contains two hardware entries (see page | 
|  | * tables layout in pgtable.h). We normally guarantee that we always | 
|  | * fill both L1 entries. But create_mapping() doesn't follow the rule. | 
|  | * It can create inidividual L1 entries, so here we have to call | 
|  | * pmd_none() check for the entry really corresponded to address, not | 
|  | * for the first of pair. | 
|  | */ | 
|  | index = (addr >> SECTION_SHIFT) & 1; | 
|  | #endif | 
|  | if (pmd_none(pmd_k[index])) | 
|  | goto bad_area; | 
|  |  | 
|  | copy_pmd(pmd, pmd_k); | 
|  | return 0; | 
|  |  | 
|  | bad_area: | 
|  | do_bad_area(addr, fsr, regs); | 
|  | return 0; | 
|  | } | 
|  | #else					/* CONFIG_MMU */ | 
|  | static int | 
|  | do_translation_fault(unsigned long addr, unsigned int fsr, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif					/* CONFIG_MMU */ | 
|  |  | 
|  | /* | 
|  | * Some section permission faults need to be handled gracefully. | 
|  | * They can happen due to a __{get,put}_user during an oops. | 
|  | */ | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | static int | 
|  | do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | do_bad_area(addr, fsr, regs); | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_ARM_LPAE */ | 
|  |  | 
|  | /* | 
|  | * This abort handler always returns "fault". | 
|  | */ | 
|  | static int | 
|  | do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | struct fsr_info { | 
|  | int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs); | 
|  | int	sig; | 
|  | int	code; | 
|  | const char *name; | 
|  | }; | 
|  |  | 
|  | /* FSR definition */ | 
|  | #ifdef CONFIG_ARM_LPAE | 
|  | #include "fsr-3level.c" | 
|  | #else | 
|  | #include "fsr-2level.c" | 
|  | #endif | 
|  |  | 
|  | void __init | 
|  | hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), | 
|  | int sig, int code, const char *name) | 
|  | { | 
|  | if (nr < 0 || nr >= ARRAY_SIZE(fsr_info)) | 
|  | BUG(); | 
|  |  | 
|  | fsr_info[nr].fn   = fn; | 
|  | fsr_info[nr].sig  = sig; | 
|  | fsr_info[nr].code = code; | 
|  | fsr_info[nr].name = name; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispatch a data abort to the relevant handler. | 
|  | */ | 
|  | asmlinkage void | 
|  | do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs) | 
|  | { | 
|  | const struct fsr_info *inf = fsr_info + fsr_fs(fsr); | 
|  | struct siginfo info; | 
|  |  | 
|  | if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs)) | 
|  | return; | 
|  |  | 
|  | pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n", | 
|  | inf->name, fsr, addr); | 
|  | show_pte(current->mm, addr); | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = inf->sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = inf->code; | 
|  | info.si_addr  = (void __user *)addr; | 
|  | arm_notify_die("", regs, &info, fsr, 0); | 
|  | } | 
|  |  | 
|  | void __init | 
|  | hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *), | 
|  | int sig, int code, const char *name) | 
|  | { | 
|  | if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info)) | 
|  | BUG(); | 
|  |  | 
|  | ifsr_info[nr].fn   = fn; | 
|  | ifsr_info[nr].sig  = sig; | 
|  | ifsr_info[nr].code = code; | 
|  | ifsr_info[nr].name = name; | 
|  | } | 
|  |  | 
|  | asmlinkage void | 
|  | do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs) | 
|  | { | 
|  | const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr); | 
|  | struct siginfo info; | 
|  |  | 
|  | if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs)) | 
|  | return; | 
|  |  | 
|  | pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n", | 
|  | inf->name, ifsr, addr); | 
|  |  | 
|  | clear_siginfo(&info); | 
|  | info.si_signo = inf->sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code  = inf->code; | 
|  | info.si_addr  = (void __user *)addr; | 
|  | arm_notify_die("", regs, &info, ifsr, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Abort handler to be used only during first unmasking of asynchronous aborts | 
|  | * on the boot CPU. This makes sure that the machine will not die if the | 
|  | * firmware/bootloader left an imprecise abort pending for us to trip over. | 
|  | */ | 
|  | static int __init early_abort_handler(unsigned long addr, unsigned int fsr, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during " | 
|  | "first unmask, this is most likely caused by a " | 
|  | "firmware/bootloader bug.\n", fsr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __init early_abt_enable(void) | 
|  | { | 
|  | fsr_info[FSR_FS_AEA].fn = early_abort_handler; | 
|  | local_abt_enable(); | 
|  | fsr_info[FSR_FS_AEA].fn = do_bad; | 
|  | } | 
|  |  | 
|  | #ifndef CONFIG_ARM_LPAE | 
|  | static int __init exceptions_init(void) | 
|  | { | 
|  | if (cpu_architecture() >= CPU_ARCH_ARMv6) { | 
|  | hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR, | 
|  | "I-cache maintenance fault"); | 
|  | } | 
|  |  | 
|  | if (cpu_architecture() >= CPU_ARCH_ARMv7) { | 
|  | /* | 
|  | * TODO: Access flag faults introduced in ARMv6K. | 
|  | * Runtime check for 'K' extension is needed | 
|  | */ | 
|  | hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR, | 
|  | "section access flag fault"); | 
|  | hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR, | 
|  | "section access flag fault"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | arch_initcall(exceptions_init); | 
|  | #endif |