|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | // Copyright (C) 2005-2017 Andes Technology Corporation | 
|  |  | 
|  | #include <linux/extable.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | extern void die(const char *str, struct pt_regs *regs, long err); | 
|  |  | 
|  | /* | 
|  | * This is useful to dump out the page tables associated with | 
|  | * 'addr' in mm 'mm'. | 
|  | */ | 
|  | void show_pte(struct mm_struct *mm, unsigned long addr) | 
|  | { | 
|  | pgd_t *pgd; | 
|  | if (!mm) | 
|  | mm = &init_mm; | 
|  |  | 
|  | pr_alert("pgd = %p\n", mm->pgd); | 
|  | pgd = pgd_offset(mm, addr); | 
|  | pr_alert("[%08lx] *pgd=%08lx", addr, pgd_val(*pgd)); | 
|  |  | 
|  | do { | 
|  | pmd_t *pmd; | 
|  |  | 
|  | if (pgd_none(*pgd)) | 
|  | break; | 
|  |  | 
|  | if (pgd_bad(*pgd)) { | 
|  | pr_alert("(bad)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | pmd = pmd_offset(pgd, addr); | 
|  | #if PTRS_PER_PMD != 1 | 
|  | pr_alert(", *pmd=%08lx", pmd_val(*pmd)); | 
|  | #endif | 
|  |  | 
|  | if (pmd_none(*pmd)) | 
|  | break; | 
|  |  | 
|  | if (pmd_bad(*pmd)) { | 
|  | pr_alert("(bad)"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (IS_ENABLED(CONFIG_HIGHMEM)) | 
|  | { | 
|  | pte_t *pte; | 
|  | /* We must not map this if we have highmem enabled */ | 
|  | pte = pte_offset_map(pmd, addr); | 
|  | pr_alert(", *pte=%08lx", pte_val(*pte)); | 
|  | pte_unmap(pte); | 
|  | } | 
|  | } while (0); | 
|  |  | 
|  | pr_alert("\n"); | 
|  | } | 
|  |  | 
|  | void do_page_fault(unsigned long entry, unsigned long addr, | 
|  | unsigned int error_code, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | int si_code; | 
|  | vm_fault_t fault; | 
|  | unsigned int mask = VM_READ | VM_WRITE | VM_EXEC; | 
|  | unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; | 
|  |  | 
|  | error_code = error_code & (ITYPE_mskINST | ITYPE_mskETYPE); | 
|  | tsk = current; | 
|  | mm = tsk->mm; | 
|  | si_code = SEGV_MAPERR; | 
|  | /* | 
|  | * We fault-in kernel-space virtual memory on-demand. The | 
|  | * 'reference' page table is init_mm.pgd. | 
|  | * | 
|  | * NOTE! We MUST NOT take any locks for this case. We may | 
|  | * be in an interrupt or a critical region, and should | 
|  | * only copy the information from the master page table, | 
|  | * nothing more. | 
|  | */ | 
|  | if (addr >= TASK_SIZE) { | 
|  | if (user_mode(regs)) | 
|  | goto bad_area_nosemaphore; | 
|  |  | 
|  | if (addr >= TASK_SIZE && addr < VMALLOC_END | 
|  | && (entry == ENTRY_PTE_NOT_PRESENT)) | 
|  | goto vmalloc_fault; | 
|  | else | 
|  | goto no_context; | 
|  | } | 
|  |  | 
|  | /* Send a signal to the task for handling the unalignment access. */ | 
|  | if (entry == ENTRY_GENERAL_EXCPETION | 
|  | && error_code == ETYPE_ALIGNMENT_CHECK) { | 
|  | if (user_mode(regs)) | 
|  | goto bad_area_nosemaphore; | 
|  | else | 
|  | goto no_context; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're in an interrupt or have no user | 
|  | * context, we must not take the fault.. | 
|  | */ | 
|  | if (unlikely(faulthandler_disabled() || !mm)) | 
|  | goto no_context; | 
|  |  | 
|  | /* | 
|  | * As per x86, we may deadlock here. However, since the kernel only | 
|  | * validly references user space from well defined areas of the code, | 
|  | * we can bug out early if this is from code which shouldn't. | 
|  | */ | 
|  | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | 
|  | if (!user_mode(regs) && | 
|  | !search_exception_tables(instruction_pointer(regs))) | 
|  | goto no_context; | 
|  | retry: | 
|  | down_read(&mm->mmap_sem); | 
|  | } else { | 
|  | /* | 
|  | * The above down_read_trylock() might have succeeded in which | 
|  | * case, we'll have missed the might_sleep() from down_read(). | 
|  | */ | 
|  | might_sleep(); | 
|  | if (IS_ENABLED(CONFIG_DEBUG_VM)) { | 
|  | if (!user_mode(regs) && | 
|  | !search_exception_tables(instruction_pointer(regs))) | 
|  | goto no_context; | 
|  | } | 
|  | } | 
|  |  | 
|  | vma = find_vma(mm, addr); | 
|  |  | 
|  | if (unlikely(!vma)) | 
|  | goto bad_area; | 
|  |  | 
|  | if (vma->vm_start <= addr) | 
|  | goto good_area; | 
|  |  | 
|  | if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) | 
|  | goto bad_area; | 
|  |  | 
|  | if (unlikely(expand_stack(vma, addr))) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * Ok, we have a good vm_area for this memory access, so | 
|  | * we can handle it.. | 
|  | */ | 
|  |  | 
|  | good_area: | 
|  | si_code = SEGV_ACCERR; | 
|  |  | 
|  | /* first do some preliminary protection checks */ | 
|  | if (entry == ENTRY_PTE_NOT_PRESENT) { | 
|  | if (error_code & ITYPE_mskINST) | 
|  | mask = VM_EXEC; | 
|  | else { | 
|  | mask = VM_READ | VM_WRITE; | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  | } | 
|  | } else if (entry == ENTRY_TLB_MISC) { | 
|  | switch (error_code & ITYPE_mskETYPE) { | 
|  | case RD_PROT: | 
|  | mask = VM_READ; | 
|  | break; | 
|  | case WRT_PROT: | 
|  | mask = VM_WRITE; | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  | break; | 
|  | case NOEXEC: | 
|  | mask = VM_EXEC; | 
|  | break; | 
|  | case PAGE_MODIFY: | 
|  | mask = VM_WRITE; | 
|  | flags |= FAULT_FLAG_WRITE; | 
|  | break; | 
|  | case ACC_BIT: | 
|  | BUG(); | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  | if (!(vma->vm_flags & mask)) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, | 
|  | * make sure we exit gracefully rather than endlessly redo | 
|  | * the fault. | 
|  | */ | 
|  |  | 
|  | fault = handle_mm_fault(vma, addr, flags); | 
|  |  | 
|  | /* | 
|  | * If we need to retry but a fatal signal is pending, handle the | 
|  | * signal first. We do not need to release the mmap_sem because it | 
|  | * would already be released in __lock_page_or_retry in mm/filemap.c. | 
|  | */ | 
|  | if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) { | 
|  | if (!user_mode(regs)) | 
|  | goto no_context; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (unlikely(fault & VM_FAULT_ERROR)) { | 
|  | if (fault & VM_FAULT_OOM) | 
|  | goto out_of_memory; | 
|  | else if (fault & VM_FAULT_SIGBUS) | 
|  | goto do_sigbus; | 
|  | else | 
|  | goto bad_area; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Major/minor page fault accounting is only done on the initial | 
|  | * attempt. If we go through a retry, it is extremely likely that the | 
|  | * page will be found in page cache at that point. | 
|  | */ | 
|  | if (flags & FAULT_FLAG_ALLOW_RETRY) { | 
|  | if (fault & VM_FAULT_MAJOR) | 
|  | tsk->maj_flt++; | 
|  | else | 
|  | tsk->min_flt++; | 
|  | if (fault & VM_FAULT_RETRY) { | 
|  | flags &= ~FAULT_FLAG_ALLOW_RETRY; | 
|  | flags |= FAULT_FLAG_TRIED; | 
|  |  | 
|  | /* No need to up_read(&mm->mmap_sem) as we would | 
|  | * have already released it in __lock_page_or_retry | 
|  | * in mm/filemap.c. | 
|  | */ | 
|  | goto retry; | 
|  | } | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | * Fix it, but check if it's kernel or user first.. | 
|  | */ | 
|  | bad_area: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | bad_area_nosemaphore: | 
|  |  | 
|  | /* User mode accesses just cause a SIGSEGV */ | 
|  |  | 
|  | if (user_mode(regs)) { | 
|  | tsk->thread.address = addr; | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = entry; | 
|  | force_sig_fault(SIGSEGV, si_code, (void __user *)addr, tsk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | no_context: | 
|  |  | 
|  | /* Are we prepared to handle this kernel fault? | 
|  | * | 
|  | * (The kernel has valid exception-points in the source | 
|  | *  when it acesses user-memory. When it fails in one | 
|  | *  of those points, we find it in a table and do a jump | 
|  | *  to some fixup code that loads an appropriate error | 
|  | *  code) | 
|  | */ | 
|  |  | 
|  | { | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | if ((entry = | 
|  | search_exception_tables(instruction_pointer(regs))) != | 
|  | NULL) { | 
|  | /* Adjust the instruction pointer in the stackframe */ | 
|  | instruction_pointer(regs) = entry->fixup; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Oops. The kernel tried to access some bad page. We'll have to | 
|  | * terminate things with extreme prejudice. | 
|  | */ | 
|  |  | 
|  | bust_spinlocks(1); | 
|  | pr_alert("Unable to handle kernel %s at virtual address %08lx\n", | 
|  | (addr < PAGE_SIZE) ? "NULL pointer dereference" : | 
|  | "paging request", addr); | 
|  |  | 
|  | show_pte(mm, addr); | 
|  | die("Oops", regs, error_code); | 
|  | bust_spinlocks(0); | 
|  | do_exit(SIGKILL); | 
|  |  | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We ran out of memory, or some other thing happened to us that made | 
|  | * us unable to handle the page fault gracefully. | 
|  | */ | 
|  |  | 
|  | out_of_memory: | 
|  | up_read(&mm->mmap_sem); | 
|  | if (!user_mode(regs)) | 
|  | goto no_context; | 
|  | pagefault_out_of_memory(); | 
|  | return; | 
|  |  | 
|  | do_sigbus: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | /* Kernel mode? Handle exceptions or die */ | 
|  | if (!user_mode(regs)) | 
|  | goto no_context; | 
|  |  | 
|  | /* | 
|  | * Send a sigbus | 
|  | */ | 
|  | tsk->thread.address = addr; | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = entry; | 
|  | force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr, tsk); | 
|  |  | 
|  | return; | 
|  |  | 
|  | vmalloc_fault: | 
|  | { | 
|  | /* | 
|  | * Synchronize this task's top level page-table | 
|  | * with the 'reference' page table. | 
|  | * | 
|  | * Use current_pgd instead of tsk->active_mm->pgd | 
|  | * since the latter might be unavailable if this | 
|  | * code is executed in a misfortunately run irq | 
|  | * (like inside schedule() between switch_mm and | 
|  | *  switch_to...). | 
|  | */ | 
|  |  | 
|  | unsigned int index = pgd_index(addr); | 
|  | pgd_t *pgd, *pgd_k; | 
|  | pud_t *pud, *pud_k; | 
|  | pmd_t *pmd, *pmd_k; | 
|  | pte_t *pte_k; | 
|  |  | 
|  | pgd = (pgd_t *) __va(__nds32__mfsr(NDS32_SR_L1_PPTB)) + index; | 
|  | pgd_k = init_mm.pgd + index; | 
|  |  | 
|  | if (!pgd_present(*pgd_k)) | 
|  | goto no_context; | 
|  |  | 
|  | pud = pud_offset(pgd, addr); | 
|  | pud_k = pud_offset(pgd_k, addr); | 
|  | if (!pud_present(*pud_k)) | 
|  | goto no_context; | 
|  |  | 
|  | pmd = pmd_offset(pud, addr); | 
|  | pmd_k = pmd_offset(pud_k, addr); | 
|  | if (!pmd_present(*pmd_k)) | 
|  | goto no_context; | 
|  |  | 
|  | if (!pmd_present(*pmd)) | 
|  | set_pmd(pmd, *pmd_k); | 
|  | else | 
|  | BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k)); | 
|  |  | 
|  | /* | 
|  | * Since the vmalloc area is global, we don't | 
|  | * need to copy individual PTE's, it is enough to | 
|  | * copy the pgd pointer into the pte page of the | 
|  | * root task. If that is there, we'll find our pte if | 
|  | * it exists. | 
|  | */ | 
|  |  | 
|  | /* Make sure the actual PTE exists as well to | 
|  | * catch kernel vmalloc-area accesses to non-mapped | 
|  | * addres. If we don't do this, this will just | 
|  | * silently loop forever. | 
|  | */ | 
|  |  | 
|  | pte_k = pte_offset_kernel(pmd_k, addr); | 
|  | if (!pte_present(*pte_k)) | 
|  | goto no_context; | 
|  |  | 
|  | return; | 
|  | } | 
|  | } |