| #include <linux/kernel.h> | 
 | #include <linux/gcd.h> | 
 | #include <linux/export.h> | 
 |  | 
 | /* | 
 |  * This implements the binary GCD algorithm. (Often attributed to Stein, | 
 |  * but as Knuth has noted, appears in a first-century Chinese math text.) | 
 |  * | 
 |  * This is faster than the division-based algorithm even on x86, which | 
 |  * has decent hardware division. | 
 |  */ | 
 |  | 
 | #if !defined(CONFIG_CPU_NO_EFFICIENT_FFS) && !defined(CPU_NO_EFFICIENT_FFS) | 
 |  | 
 | /* If __ffs is available, the even/odd algorithm benchmarks slower. */ | 
 |  | 
 | /** | 
 |  * gcd - calculate and return the greatest common divisor of 2 unsigned longs | 
 |  * @a: first value | 
 |  * @b: second value | 
 |  */ | 
 | unsigned long gcd(unsigned long a, unsigned long b) | 
 | { | 
 | 	unsigned long r = a | b; | 
 |  | 
 | 	if (!a || !b) | 
 | 		return r; | 
 |  | 
 | 	b >>= __ffs(b); | 
 | 	if (b == 1) | 
 | 		return r & -r; | 
 |  | 
 | 	for (;;) { | 
 | 		a >>= __ffs(a); | 
 | 		if (a == 1) | 
 | 			return r & -r; | 
 | 		if (a == b) | 
 | 			return a << __ffs(r); | 
 |  | 
 | 		if (a < b) | 
 | 			swap(a, b); | 
 | 		a -= b; | 
 | 	} | 
 | } | 
 |  | 
 | #else | 
 |  | 
 | /* If normalization is done by loops, the even/odd algorithm is a win. */ | 
 | unsigned long gcd(unsigned long a, unsigned long b) | 
 | { | 
 | 	unsigned long r = a | b; | 
 |  | 
 | 	if (!a || !b) | 
 | 		return r; | 
 |  | 
 | 	/* Isolate lsbit of r */ | 
 | 	r &= -r; | 
 |  | 
 | 	while (!(b & r)) | 
 | 		b >>= 1; | 
 | 	if (b == r) | 
 | 		return r; | 
 |  | 
 | 	for (;;) { | 
 | 		while (!(a & r)) | 
 | 			a >>= 1; | 
 | 		if (a == r) | 
 | 			return r; | 
 | 		if (a == b) | 
 | 			return a; | 
 |  | 
 | 		if (a < b) | 
 | 			swap(a, b); | 
 | 		a -= b; | 
 | 		a >>= 1; | 
 | 		if (a & r) | 
 | 			a += b; | 
 | 		a >>= 1; | 
 | 	} | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | EXPORT_SYMBOL_GPL(gcd); |