|  | /* | 
|  | * Key Wrapping: RFC3394 / NIST SP800-38F | 
|  | * | 
|  | * Copyright (C) 2015, Stephan Mueller <smueller@chronox.de> | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, and the entire permission notice in its entirety, | 
|  | *    including the disclaimer of warranties. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * 3. The name of the author may not be used to endorse or promote | 
|  | *    products derived from this software without specific prior | 
|  | *    written permission. | 
|  | * | 
|  | * ALTERNATIVELY, this product may be distributed under the terms of | 
|  | * the GNU General Public License, in which case the provisions of the GPL2 | 
|  | * are required INSTEAD OF the above restrictions.  (This clause is | 
|  | * necessary due to a potential bad interaction between the GPL and | 
|  | * the restrictions contained in a BSD-style copyright.) | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED | 
|  | * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES | 
|  | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF | 
|  | * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE | 
|  | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR | 
|  | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT | 
|  | * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR | 
|  | * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF | 
|  | * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | 
|  | * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH | 
|  | * DAMAGE. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Note for using key wrapping: | 
|  | * | 
|  | *	* The result of the encryption operation is the ciphertext starting | 
|  | *	  with the 2nd semiblock. The first semiblock is provided as the IV. | 
|  | *	  The IV used to start the encryption operation is the default IV. | 
|  | * | 
|  | *	* The input for the decryption is the first semiblock handed in as an | 
|  | *	  IV. The ciphertext is the data starting with the 2nd semiblock. The | 
|  | *	  return code of the decryption operation will be EBADMSG in case an | 
|  | *	  integrity error occurs. | 
|  | * | 
|  | * To obtain the full result of an encryption as expected by SP800-38F, the | 
|  | * caller must allocate a buffer of plaintext + 8 bytes: | 
|  | * | 
|  | *	unsigned int datalen = ptlen + crypto_skcipher_ivsize(tfm); | 
|  | *	u8 data[datalen]; | 
|  | *	u8 *iv = data; | 
|  | *	u8 *pt = data + crypto_skcipher_ivsize(tfm); | 
|  | *		<ensure that pt contains the plaintext of size ptlen> | 
|  | *	sg_init_one(&sg, ptdata, ptlen); | 
|  | *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); | 
|  | * | 
|  | *	==> After encryption, data now contains full KW result as per SP800-38F. | 
|  | * | 
|  | * In case of decryption, ciphertext now already has the expected length | 
|  | * and must be segmented appropriately: | 
|  | * | 
|  | *	unsigned int datalen = CTLEN; | 
|  | *	u8 data[datalen]; | 
|  | *		<ensure that data contains full ciphertext> | 
|  | *	u8 *iv = data; | 
|  | *	u8 *ct = data + crypto_skcipher_ivsize(tfm); | 
|  | *	unsigned int ctlen = datalen - crypto_skcipher_ivsize(tfm); | 
|  | *	sg_init_one(&sg, ctdata, ctlen); | 
|  | *	skcipher_request_set_crypt(req, &sg, &sg, ptlen, iv); | 
|  | * | 
|  | *	==> After decryption (which hopefully does not return EBADMSG), the ct | 
|  | *	pointer now points to the plaintext of size ctlen. | 
|  | * | 
|  | * Note 2: KWP is not implemented as this would defy in-place operation. | 
|  | *	   If somebody wants to wrap non-aligned data, he should simply pad | 
|  | *	   the input with zeros to fill it up to the 8 byte boundary. | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/scatterlist.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  | #include <crypto/internal/skcipher.h> | 
|  |  | 
|  | struct crypto_kw_ctx { | 
|  | struct crypto_cipher *child; | 
|  | }; | 
|  |  | 
|  | struct crypto_kw_block { | 
|  | #define SEMIBSIZE 8 | 
|  | __be64 A; | 
|  | __be64 R; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Fast forward the SGL to the "end" length minus SEMIBSIZE. | 
|  | * The start in the SGL defined by the fast-forward is returned with | 
|  | * the walk variable | 
|  | */ | 
|  | static void crypto_kw_scatterlist_ff(struct scatter_walk *walk, | 
|  | struct scatterlist *sg, | 
|  | unsigned int end) | 
|  | { | 
|  | unsigned int skip = 0; | 
|  |  | 
|  | /* The caller should only operate on full SEMIBLOCKs. */ | 
|  | BUG_ON(end < SEMIBSIZE); | 
|  |  | 
|  | skip = end - SEMIBSIZE; | 
|  | while (sg) { | 
|  | if (sg->length > skip) { | 
|  | scatterwalk_start(walk, sg); | 
|  | scatterwalk_advance(walk, skip); | 
|  | break; | 
|  | } else | 
|  | skip -= sg->length; | 
|  |  | 
|  | sg = sg_next(sg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int crypto_kw_decrypt(struct blkcipher_desc *desc, | 
|  | struct scatterlist *dst, struct scatterlist *src, | 
|  | unsigned int nbytes) | 
|  | { | 
|  | struct crypto_blkcipher *tfm = desc->tfm; | 
|  | struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); | 
|  | struct crypto_cipher *child = ctx->child; | 
|  | struct crypto_kw_block block; | 
|  | struct scatterlist *lsrc, *ldst; | 
|  | u64 t = 6 * ((nbytes) >> 3); | 
|  | unsigned int i; | 
|  | int ret = 0; | 
|  |  | 
|  | /* | 
|  | * Require at least 2 semiblocks (note, the 3rd semiblock that is | 
|  | * required by SP800-38F is the IV. | 
|  | */ | 
|  | if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* Place the IV into block A */ | 
|  | memcpy(&block.A, desc->info, SEMIBSIZE); | 
|  |  | 
|  | /* | 
|  | * src scatterlist is read-only. dst scatterlist is r/w. During the | 
|  | * first loop, lsrc points to src and ldst to dst. For any | 
|  | * subsequent round, the code operates on dst only. | 
|  | */ | 
|  | lsrc = src; | 
|  | ldst = dst; | 
|  |  | 
|  | for (i = 0; i < 6; i++) { | 
|  | struct scatter_walk src_walk, dst_walk; | 
|  | unsigned int tmp_nbytes = nbytes; | 
|  |  | 
|  | while (tmp_nbytes) { | 
|  | /* move pointer by tmp_nbytes in the SGL */ | 
|  | crypto_kw_scatterlist_ff(&src_walk, lsrc, tmp_nbytes); | 
|  | /* get the source block */ | 
|  | scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE, | 
|  | false); | 
|  |  | 
|  | /* perform KW operation: modify IV with counter */ | 
|  | block.A ^= cpu_to_be64(t); | 
|  | t--; | 
|  | /* perform KW operation: decrypt block */ | 
|  | crypto_cipher_decrypt_one(child, (u8*)&block, | 
|  | (u8*)&block); | 
|  |  | 
|  | /* move pointer by tmp_nbytes in the SGL */ | 
|  | crypto_kw_scatterlist_ff(&dst_walk, ldst, tmp_nbytes); | 
|  | /* Copy block->R into place */ | 
|  | scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE, | 
|  | true); | 
|  |  | 
|  | tmp_nbytes -= SEMIBSIZE; | 
|  | } | 
|  |  | 
|  | /* we now start to operate on the dst SGL only */ | 
|  | lsrc = dst; | 
|  | ldst = dst; | 
|  | } | 
|  |  | 
|  | /* Perform authentication check */ | 
|  | if (block.A != cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL)) | 
|  | ret = -EBADMSG; | 
|  |  | 
|  | memzero_explicit(&block, sizeof(struct crypto_kw_block)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int crypto_kw_encrypt(struct blkcipher_desc *desc, | 
|  | struct scatterlist *dst, struct scatterlist *src, | 
|  | unsigned int nbytes) | 
|  | { | 
|  | struct crypto_blkcipher *tfm = desc->tfm; | 
|  | struct crypto_kw_ctx *ctx = crypto_blkcipher_ctx(tfm); | 
|  | struct crypto_cipher *child = ctx->child; | 
|  | struct crypto_kw_block block; | 
|  | struct scatterlist *lsrc, *ldst; | 
|  | u64 t = 1; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Require at least 2 semiblocks (note, the 3rd semiblock that is | 
|  | * required by SP800-38F is the IV that occupies the first semiblock. | 
|  | * This means that the dst memory must be one semiblock larger than src. | 
|  | * Also ensure that the given data is aligned to semiblock. | 
|  | */ | 
|  | if (nbytes < (2 * SEMIBSIZE) || nbytes % SEMIBSIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Place the predefined IV into block A -- for encrypt, the caller | 
|  | * does not need to provide an IV, but he needs to fetch the final IV. | 
|  | */ | 
|  | block.A = cpu_to_be64(0xa6a6a6a6a6a6a6a6ULL); | 
|  |  | 
|  | /* | 
|  | * src scatterlist is read-only. dst scatterlist is r/w. During the | 
|  | * first loop, lsrc points to src and ldst to dst. For any | 
|  | * subsequent round, the code operates on dst only. | 
|  | */ | 
|  | lsrc = src; | 
|  | ldst = dst; | 
|  |  | 
|  | for (i = 0; i < 6; i++) { | 
|  | struct scatter_walk src_walk, dst_walk; | 
|  | unsigned int tmp_nbytes = nbytes; | 
|  |  | 
|  | scatterwalk_start(&src_walk, lsrc); | 
|  | scatterwalk_start(&dst_walk, ldst); | 
|  |  | 
|  | while (tmp_nbytes) { | 
|  | /* get the source block */ | 
|  | scatterwalk_copychunks(&block.R, &src_walk, SEMIBSIZE, | 
|  | false); | 
|  |  | 
|  | /* perform KW operation: encrypt block */ | 
|  | crypto_cipher_encrypt_one(child, (u8 *)&block, | 
|  | (u8 *)&block); | 
|  | /* perform KW operation: modify IV with counter */ | 
|  | block.A ^= cpu_to_be64(t); | 
|  | t++; | 
|  |  | 
|  | /* Copy block->R into place */ | 
|  | scatterwalk_copychunks(&block.R, &dst_walk, SEMIBSIZE, | 
|  | true); | 
|  |  | 
|  | tmp_nbytes -= SEMIBSIZE; | 
|  | } | 
|  |  | 
|  | /* we now start to operate on the dst SGL only */ | 
|  | lsrc = dst; | 
|  | ldst = dst; | 
|  | } | 
|  |  | 
|  | /* establish the IV for the caller to pick up */ | 
|  | memcpy(desc->info, &block.A, SEMIBSIZE); | 
|  |  | 
|  | memzero_explicit(&block, sizeof(struct crypto_kw_block)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int crypto_kw_setkey(struct crypto_tfm *parent, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(parent); | 
|  | struct crypto_cipher *child = ctx->child; | 
|  | int err; | 
|  |  | 
|  | crypto_cipher_clear_flags(child, CRYPTO_TFM_REQ_MASK); | 
|  | crypto_cipher_set_flags(child, crypto_tfm_get_flags(parent) & | 
|  | CRYPTO_TFM_REQ_MASK); | 
|  | err = crypto_cipher_setkey(child, key, keylen); | 
|  | crypto_tfm_set_flags(parent, crypto_cipher_get_flags(child) & | 
|  | CRYPTO_TFM_RES_MASK); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int crypto_kw_init_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_instance *inst = crypto_tfm_alg_instance(tfm); | 
|  | struct crypto_spawn *spawn = crypto_instance_ctx(inst); | 
|  | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | struct crypto_cipher *cipher; | 
|  |  | 
|  | cipher = crypto_spawn_cipher(spawn); | 
|  | if (IS_ERR(cipher)) | 
|  | return PTR_ERR(cipher); | 
|  |  | 
|  | ctx->child = cipher; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void crypto_kw_exit_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypto_kw_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  |  | 
|  | crypto_free_cipher(ctx->child); | 
|  | } | 
|  |  | 
|  | static struct crypto_instance *crypto_kw_alloc(struct rtattr **tb) | 
|  | { | 
|  | struct crypto_instance *inst = NULL; | 
|  | struct crypto_alg *alg = NULL; | 
|  | int err; | 
|  |  | 
|  | err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_BLKCIPHER); | 
|  | if (err) | 
|  | return ERR_PTR(err); | 
|  |  | 
|  | alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER, | 
|  | CRYPTO_ALG_TYPE_MASK); | 
|  | if (IS_ERR(alg)) | 
|  | return ERR_CAST(alg); | 
|  |  | 
|  | inst = ERR_PTR(-EINVAL); | 
|  | /* Section 5.1 requirement for KW */ | 
|  | if (alg->cra_blocksize != sizeof(struct crypto_kw_block)) | 
|  | goto err; | 
|  |  | 
|  | inst = crypto_alloc_instance("kw", alg); | 
|  | if (IS_ERR(inst)) | 
|  | goto err; | 
|  |  | 
|  | inst->alg.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER; | 
|  | inst->alg.cra_priority = alg->cra_priority; | 
|  | inst->alg.cra_blocksize = SEMIBSIZE; | 
|  | inst->alg.cra_alignmask = 0; | 
|  | inst->alg.cra_type = &crypto_blkcipher_type; | 
|  | inst->alg.cra_blkcipher.ivsize = SEMIBSIZE; | 
|  | inst->alg.cra_blkcipher.min_keysize = alg->cra_cipher.cia_min_keysize; | 
|  | inst->alg.cra_blkcipher.max_keysize = alg->cra_cipher.cia_max_keysize; | 
|  |  | 
|  | inst->alg.cra_ctxsize = sizeof(struct crypto_kw_ctx); | 
|  |  | 
|  | inst->alg.cra_init = crypto_kw_init_tfm; | 
|  | inst->alg.cra_exit = crypto_kw_exit_tfm; | 
|  |  | 
|  | inst->alg.cra_blkcipher.setkey = crypto_kw_setkey; | 
|  | inst->alg.cra_blkcipher.encrypt = crypto_kw_encrypt; | 
|  | inst->alg.cra_blkcipher.decrypt = crypto_kw_decrypt; | 
|  |  | 
|  | err: | 
|  | crypto_mod_put(alg); | 
|  | return inst; | 
|  | } | 
|  |  | 
|  | static void crypto_kw_free(struct crypto_instance *inst) | 
|  | { | 
|  | crypto_drop_spawn(crypto_instance_ctx(inst)); | 
|  | kfree(inst); | 
|  | } | 
|  |  | 
|  | static struct crypto_template crypto_kw_tmpl = { | 
|  | .name = "kw", | 
|  | .alloc = crypto_kw_alloc, | 
|  | .free = crypto_kw_free, | 
|  | .module = THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init crypto_kw_init(void) | 
|  | { | 
|  | return crypto_register_template(&crypto_kw_tmpl); | 
|  | } | 
|  |  | 
|  | static void __exit crypto_kw_exit(void) | 
|  | { | 
|  | crypto_unregister_template(&crypto_kw_tmpl); | 
|  | } | 
|  |  | 
|  | module_init(crypto_kw_init); | 
|  | module_exit(crypto_kw_exit); | 
|  |  | 
|  | MODULE_LICENSE("Dual BSD/GPL"); | 
|  | MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>"); | 
|  | MODULE_DESCRIPTION("Key Wrapping (RFC3394 / NIST SP800-38F)"); | 
|  | MODULE_ALIAS_CRYPTO("kw"); |