|  | // SPDX-License-Identifier: GPL-2.0 | 
|  | #include <linux/types.h> | 
|  | #include <linux/i8253.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/irq.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/clockchips.h> | 
|  |  | 
|  | #include <asm/sni.h> | 
|  | #include <asm/time.h> | 
|  |  | 
|  | #define SNI_CLOCK_TICK_RATE	3686400 | 
|  | #define SNI_COUNTER2_DIV	64 | 
|  | #define SNI_COUNTER0_DIV	((SNI_CLOCK_TICK_RATE / SNI_COUNTER2_DIV) / HZ) | 
|  |  | 
|  | static int a20r_set_periodic(struct clock_event_device *evt) | 
|  | { | 
|  | *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0x34; | 
|  | wmb(); | 
|  | *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV; | 
|  | wmb(); | 
|  | *(volatile u8 *)(A20R_PT_CLOCK_BASE + 0) = SNI_COUNTER0_DIV >> 8; | 
|  | wmb(); | 
|  |  | 
|  | *(volatile u8 *)(A20R_PT_CLOCK_BASE + 12) = 0xb4; | 
|  | wmb(); | 
|  | *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV; | 
|  | wmb(); | 
|  | *(volatile u8 *)(A20R_PT_CLOCK_BASE + 8) = SNI_COUNTER2_DIV >> 8; | 
|  | wmb(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct clock_event_device a20r_clockevent_device = { | 
|  | .name			= "a20r-timer", | 
|  | .features		= CLOCK_EVT_FEAT_PERIODIC, | 
|  |  | 
|  | /* .mult, .shift, .max_delta_ns and .min_delta_ns left uninitialized */ | 
|  |  | 
|  | .rating			= 300, | 
|  | .irq			= SNI_A20R_IRQ_TIMER, | 
|  | .set_state_periodic	= a20r_set_periodic, | 
|  | }; | 
|  |  | 
|  | static irqreturn_t a20r_interrupt(int irq, void *dev_id) | 
|  | { | 
|  | struct clock_event_device *cd = dev_id; | 
|  |  | 
|  | *(volatile u8 *)A20R_PT_TIM0_ACK = 0; | 
|  | wmb(); | 
|  |  | 
|  | cd->event_handler(cd); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static struct irqaction a20r_irqaction = { | 
|  | .handler	= a20r_interrupt, | 
|  | .flags		= IRQF_PERCPU | IRQF_TIMER, | 
|  | .name		= "a20r-timer", | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * a20r platform uses 2 counters to divide the input frequency. | 
|  | * Counter 2 output is connected to Counter 0 & 1 input. | 
|  | */ | 
|  | static void __init sni_a20r_timer_setup(void) | 
|  | { | 
|  | struct clock_event_device *cd = &a20r_clockevent_device; | 
|  | struct irqaction *action = &a20r_irqaction; | 
|  | unsigned int cpu = smp_processor_id(); | 
|  |  | 
|  | cd->cpumask		= cpumask_of(cpu); | 
|  | clockevents_register_device(cd); | 
|  | action->dev_id = cd; | 
|  | setup_irq(SNI_A20R_IRQ_TIMER, &a20r_irqaction); | 
|  | } | 
|  |  | 
|  | #define SNI_8254_TICK_RATE	  1193182UL | 
|  |  | 
|  | #define SNI_8254_TCSAMP_COUNTER	  ((SNI_8254_TICK_RATE / HZ) + 255) | 
|  |  | 
|  | static __init unsigned long dosample(void) | 
|  | { | 
|  | u32 ct0, ct1; | 
|  | volatile u8 msb; | 
|  |  | 
|  | /* Start the counter. */ | 
|  | outb_p(0x34, 0x43); | 
|  | outb_p(SNI_8254_TCSAMP_COUNTER & 0xff, 0x40); | 
|  | outb(SNI_8254_TCSAMP_COUNTER >> 8, 0x40); | 
|  |  | 
|  | /* Get initial counter invariant */ | 
|  | ct0 = read_c0_count(); | 
|  |  | 
|  | /* Latch and spin until top byte of counter0 is zero */ | 
|  | do { | 
|  | outb(0x00, 0x43); | 
|  | (void) inb(0x40); | 
|  | msb = inb(0x40); | 
|  | ct1 = read_c0_count(); | 
|  | } while (msb); | 
|  |  | 
|  | /* Stop the counter. */ | 
|  | outb(0x38, 0x43); | 
|  | /* | 
|  | * Return the difference, this is how far the r4k counter increments | 
|  | * for every 1/HZ seconds. We round off the nearest 1 MHz of master | 
|  | * clock (= 1000000 / HZ / 2). | 
|  | */ | 
|  | /*return (ct1 - ct0 + (500000/HZ/2)) / (500000/HZ) * (500000/HZ);*/ | 
|  | return (ct1 - ct0) / (500000/HZ) * (500000/HZ); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here we need to calibrate the cycle counter to at least be close. | 
|  | */ | 
|  | void __init plat_time_init(void) | 
|  | { | 
|  | unsigned long r4k_ticks[3]; | 
|  | unsigned long r4k_tick; | 
|  |  | 
|  | /* | 
|  | * Figure out the r4k offset, the algorithm is very simple and works in | 
|  | * _all_ cases as long as the 8254 counter register itself works ok (as | 
|  | * an interrupt driving timer it does not because of bug, this is why | 
|  | * we are using the onchip r4k counter/compare register to serve this | 
|  | * purpose, but for r4k_offset calculation it will work ok for us). | 
|  | * There are other very complicated ways of performing this calculation | 
|  | * but this one works just fine so I am not going to futz around. ;-) | 
|  | */ | 
|  | printk(KERN_INFO "Calibrating system timer... "); | 
|  | dosample();	/* Prime cache. */ | 
|  | dosample();	/* Prime cache. */ | 
|  | /* Zero is NOT an option. */ | 
|  | do { | 
|  | r4k_ticks[0] = dosample(); | 
|  | } while (!r4k_ticks[0]); | 
|  | do { | 
|  | r4k_ticks[1] = dosample(); | 
|  | } while (!r4k_ticks[1]); | 
|  |  | 
|  | if (r4k_ticks[0] != r4k_ticks[1]) { | 
|  | printk("warning: timer counts differ, retrying... "); | 
|  | r4k_ticks[2] = dosample(); | 
|  | if (r4k_ticks[2] == r4k_ticks[0] | 
|  | || r4k_ticks[2] == r4k_ticks[1]) | 
|  | r4k_tick = r4k_ticks[2]; | 
|  | else { | 
|  | printk("disagreement, using average... "); | 
|  | r4k_tick = (r4k_ticks[0] + r4k_ticks[1] | 
|  | + r4k_ticks[2]) / 3; | 
|  | } | 
|  | } else | 
|  | r4k_tick = r4k_ticks[0]; | 
|  |  | 
|  | printk("%d [%d.%04d MHz CPU]\n", (int) r4k_tick, | 
|  | (int) (r4k_tick / (500000 / HZ)), | 
|  | (int) (r4k_tick % (500000 / HZ))); | 
|  |  | 
|  | mips_hpt_frequency = r4k_tick * HZ; | 
|  |  | 
|  | switch (sni_brd_type) { | 
|  | case SNI_BRD_10: | 
|  | case SNI_BRD_10NEW: | 
|  | case SNI_BRD_TOWER_OASIC: | 
|  | case SNI_BRD_MINITOWER: | 
|  | sni_a20r_timer_setup(); | 
|  | break; | 
|  | } | 
|  | setup_pit_timer(); | 
|  | } |