|  | /* | 
|  | * pSeries NUMA support | 
|  | * | 
|  | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  | #define pr_fmt(fmt) "numa: " fmt | 
|  |  | 
|  | #include <linux/threads.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/export.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/of.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/node.h> | 
|  | #include <linux/stop_machine.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/cputhreads.h> | 
|  | #include <asm/sparsemem.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/cputhreads.h> | 
|  | #include <asm/topology.h> | 
|  | #include <asm/firmware.h> | 
|  | #include <asm/paca.h> | 
|  | #include <asm/hvcall.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/vdso.h> | 
|  | #include <asm/drmem.h> | 
|  |  | 
|  | static int numa_enabled = 1; | 
|  |  | 
|  | static char *cmdline __initdata; | 
|  |  | 
|  | static int numa_debug; | 
|  | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | 
|  |  | 
|  | int numa_cpu_lookup_table[NR_CPUS]; | 
|  | cpumask_var_t node_to_cpumask_map[MAX_NUMNODES]; | 
|  | struct pglist_data *node_data[MAX_NUMNODES]; | 
|  |  | 
|  | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
|  | EXPORT_SYMBOL(node_to_cpumask_map); | 
|  | EXPORT_SYMBOL(node_data); | 
|  |  | 
|  | static int min_common_depth; | 
|  | static int n_mem_addr_cells, n_mem_size_cells; | 
|  | static int form1_affinity; | 
|  |  | 
|  | #define MAX_DISTANCE_REF_POINTS 4 | 
|  | static int distance_ref_points_depth; | 
|  | static const __be32 *distance_ref_points; | 
|  | static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS]; | 
|  |  | 
|  | /* | 
|  | * Allocate node_to_cpumask_map based on number of available nodes | 
|  | * Requires node_possible_map to be valid. | 
|  | * | 
|  | * Note: cpumask_of_node() is not valid until after this is done. | 
|  | */ | 
|  | static void __init setup_node_to_cpumask_map(void) | 
|  | { | 
|  | unsigned int node; | 
|  |  | 
|  | /* setup nr_node_ids if not done yet */ | 
|  | if (nr_node_ids == MAX_NUMNODES) | 
|  | setup_nr_node_ids(); | 
|  |  | 
|  | /* allocate the map */ | 
|  | for_each_node(node) | 
|  | alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]); | 
|  |  | 
|  | /* cpumask_of_node() will now work */ | 
|  | dbg("Node to cpumask map for %d nodes\n", nr_node_ids); | 
|  | } | 
|  |  | 
|  | static int __init fake_numa_create_new_node(unsigned long end_pfn, | 
|  | unsigned int *nid) | 
|  | { | 
|  | unsigned long long mem; | 
|  | char *p = cmdline; | 
|  | static unsigned int fake_nid; | 
|  | static unsigned long long curr_boundary; | 
|  |  | 
|  | /* | 
|  | * Modify node id, iff we started creating NUMA nodes | 
|  | * We want to continue from where we left of the last time | 
|  | */ | 
|  | if (fake_nid) | 
|  | *nid = fake_nid; | 
|  | /* | 
|  | * In case there are no more arguments to parse, the | 
|  | * node_id should be the same as the last fake node id | 
|  | * (we've handled this above). | 
|  | */ | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | mem = memparse(p, &p); | 
|  | if (!mem) | 
|  | return 0; | 
|  |  | 
|  | if (mem < curr_boundary) | 
|  | return 0; | 
|  |  | 
|  | curr_boundary = mem; | 
|  |  | 
|  | if ((end_pfn << PAGE_SHIFT) > mem) { | 
|  | /* | 
|  | * Skip commas and spaces | 
|  | */ | 
|  | while (*p == ',' || *p == ' ' || *p == '\t') | 
|  | p++; | 
|  |  | 
|  | cmdline = p; | 
|  | fake_nid++; | 
|  | *nid = fake_nid; | 
|  | dbg("created new fake_node with id %d\n", fake_nid); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void reset_numa_cpu_lookup_table(void) | 
|  | { | 
|  | unsigned int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | numa_cpu_lookup_table[cpu] = -1; | 
|  | } | 
|  |  | 
|  | static void map_cpu_to_node(int cpu, int node) | 
|  | { | 
|  | update_numa_cpu_lookup_table(cpu, node); | 
|  |  | 
|  | dbg("adding cpu %d to node %d\n", cpu, node); | 
|  |  | 
|  | if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node]))) | 
|  | cpumask_set_cpu(cpu, node_to_cpumask_map[node]); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR) | 
|  | static void unmap_cpu_from_node(unsigned long cpu) | 
|  | { | 
|  | int node = numa_cpu_lookup_table[cpu]; | 
|  |  | 
|  | dbg("removing cpu %lu from node %d\n", cpu, node); | 
|  |  | 
|  | if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) { | 
|  | cpumask_clear_cpu(cpu, node_to_cpumask_map[node]); | 
|  | } else { | 
|  | printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | 
|  | cpu, node); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */ | 
|  |  | 
|  | /* must hold reference to node during call */ | 
|  | static const __be32 *of_get_associativity(struct device_node *dev) | 
|  | { | 
|  | return of_get_property(dev, "ibm,associativity", NULL); | 
|  | } | 
|  |  | 
|  | int __node_distance(int a, int b) | 
|  | { | 
|  | int i; | 
|  | int distance = LOCAL_DISTANCE; | 
|  |  | 
|  | if (!form1_affinity) | 
|  | return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE); | 
|  |  | 
|  | for (i = 0; i < distance_ref_points_depth; i++) { | 
|  | if (distance_lookup_table[a][i] == distance_lookup_table[b][i]) | 
|  | break; | 
|  |  | 
|  | /* Double the distance for each NUMA level */ | 
|  | distance *= 2; | 
|  | } | 
|  |  | 
|  | return distance; | 
|  | } | 
|  | EXPORT_SYMBOL(__node_distance); | 
|  |  | 
|  | static void initialize_distance_lookup_table(int nid, | 
|  | const __be32 *associativity) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (!form1_affinity) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < distance_ref_points_depth; i++) { | 
|  | const __be32 *entry; | 
|  |  | 
|  | entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1]; | 
|  | distance_lookup_table[nid][i] = of_read_number(entry, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa | 
|  | * info is found. | 
|  | */ | 
|  | static int associativity_to_nid(const __be32 *associativity) | 
|  | { | 
|  | int nid = -1; | 
|  |  | 
|  | if (min_common_depth == -1) | 
|  | goto out; | 
|  |  | 
|  | if (of_read_number(associativity, 1) >= min_common_depth) | 
|  | nid = of_read_number(&associativity[min_common_depth], 1); | 
|  |  | 
|  | /* POWER4 LPAR uses 0xffff as invalid node */ | 
|  | if (nid == 0xffff || nid >= MAX_NUMNODES) | 
|  | nid = -1; | 
|  |  | 
|  | if (nid > 0 && | 
|  | of_read_number(associativity, 1) >= distance_ref_points_depth) { | 
|  | /* | 
|  | * Skip the length field and send start of associativity array | 
|  | */ | 
|  | initialize_distance_lookup_table(nid, associativity + 1); | 
|  | } | 
|  |  | 
|  | out: | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* Returns the nid associated with the given device tree node, | 
|  | * or -1 if not found. | 
|  | */ | 
|  | static int of_node_to_nid_single(struct device_node *device) | 
|  | { | 
|  | int nid = -1; | 
|  | const __be32 *tmp; | 
|  |  | 
|  | tmp = of_get_associativity(device); | 
|  | if (tmp) | 
|  | nid = associativity_to_nid(tmp); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* Walk the device tree upwards, looking for an associativity id */ | 
|  | int of_node_to_nid(struct device_node *device) | 
|  | { | 
|  | int nid = -1; | 
|  |  | 
|  | of_node_get(device); | 
|  | while (device) { | 
|  | nid = of_node_to_nid_single(device); | 
|  | if (nid != -1) | 
|  | break; | 
|  |  | 
|  | device = of_get_next_parent(device); | 
|  | } | 
|  | of_node_put(device); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  | EXPORT_SYMBOL(of_node_to_nid); | 
|  |  | 
|  | static int __init find_min_common_depth(void) | 
|  | { | 
|  | int depth; | 
|  | struct device_node *root; | 
|  |  | 
|  | if (firmware_has_feature(FW_FEATURE_OPAL)) | 
|  | root = of_find_node_by_path("/ibm,opal"); | 
|  | else | 
|  | root = of_find_node_by_path("/rtas"); | 
|  | if (!root) | 
|  | root = of_find_node_by_path("/"); | 
|  |  | 
|  | /* | 
|  | * This property is a set of 32-bit integers, each representing | 
|  | * an index into the ibm,associativity nodes. | 
|  | * | 
|  | * With form 0 affinity the first integer is for an SMP configuration | 
|  | * (should be all 0's) and the second is for a normal NUMA | 
|  | * configuration. We have only one level of NUMA. | 
|  | * | 
|  | * With form 1 affinity the first integer is the most significant | 
|  | * NUMA boundary and the following are progressively less significant | 
|  | * boundaries. There can be more than one level of NUMA. | 
|  | */ | 
|  | distance_ref_points = of_get_property(root, | 
|  | "ibm,associativity-reference-points", | 
|  | &distance_ref_points_depth); | 
|  |  | 
|  | if (!distance_ref_points) { | 
|  | dbg("NUMA: ibm,associativity-reference-points not found.\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | distance_ref_points_depth /= sizeof(int); | 
|  |  | 
|  | if (firmware_has_feature(FW_FEATURE_OPAL) || | 
|  | firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) { | 
|  | dbg("Using form 1 affinity\n"); | 
|  | form1_affinity = 1; | 
|  | } | 
|  |  | 
|  | if (form1_affinity) { | 
|  | depth = of_read_number(distance_ref_points, 1); | 
|  | } else { | 
|  | if (distance_ref_points_depth < 2) { | 
|  | printk(KERN_WARNING "NUMA: " | 
|  | "short ibm,associativity-reference-points\n"); | 
|  | goto err; | 
|  | } | 
|  |  | 
|  | depth = of_read_number(&distance_ref_points[1], 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Warn and cap if the hardware supports more than | 
|  | * MAX_DISTANCE_REF_POINTS domains. | 
|  | */ | 
|  | if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) { | 
|  | printk(KERN_WARNING "NUMA: distance array capped at " | 
|  | "%d entries\n", MAX_DISTANCE_REF_POINTS); | 
|  | distance_ref_points_depth = MAX_DISTANCE_REF_POINTS; | 
|  | } | 
|  |  | 
|  | of_node_put(root); | 
|  | return depth; | 
|  |  | 
|  | err: | 
|  | of_node_put(root); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) | 
|  | { | 
|  | struct device_node *memory = NULL; | 
|  |  | 
|  | memory = of_find_node_by_type(memory, "memory"); | 
|  | if (!memory) | 
|  | panic("numa.c: No memory nodes found!"); | 
|  |  | 
|  | *n_addr_cells = of_n_addr_cells(memory); | 
|  | *n_size_cells = of_n_size_cells(memory); | 
|  | of_node_put(memory); | 
|  | } | 
|  |  | 
|  | static unsigned long read_n_cells(int n, const __be32 **buf) | 
|  | { | 
|  | unsigned long result = 0; | 
|  |  | 
|  | while (n--) { | 
|  | result = (result << 32) | of_read_number(*buf, 1); | 
|  | (*buf)++; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | struct assoc_arrays { | 
|  | u32	n_arrays; | 
|  | u32	array_sz; | 
|  | const __be32 *arrays; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Retrieve and validate the list of associativity arrays for drconf | 
|  | * memory from the ibm,associativity-lookup-arrays property of the | 
|  | * device tree.. | 
|  | * | 
|  | * The layout of the ibm,associativity-lookup-arrays property is a number N | 
|  | * indicating the number of associativity arrays, followed by a number M | 
|  | * indicating the size of each associativity array, followed by a list | 
|  | * of N associativity arrays. | 
|  | */ | 
|  | static int of_get_assoc_arrays(struct assoc_arrays *aa) | 
|  | { | 
|  | struct device_node *memory; | 
|  | const __be32 *prop; | 
|  | u32 len; | 
|  |  | 
|  | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | if (!memory) | 
|  | return -1; | 
|  |  | 
|  | prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); | 
|  | if (!prop || len < 2 * sizeof(unsigned int)) { | 
|  | of_node_put(memory); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | aa->n_arrays = of_read_number(prop++, 1); | 
|  | aa->array_sz = of_read_number(prop++, 1); | 
|  |  | 
|  | of_node_put(memory); | 
|  |  | 
|  | /* Now that we know the number of arrays and size of each array, | 
|  | * revalidate the size of the property read in. | 
|  | */ | 
|  | if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) | 
|  | return -1; | 
|  |  | 
|  | aa->arrays = prop; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is like of_node_to_nid_single() for memory represented in the | 
|  | * ibm,dynamic-reconfiguration-memory node. | 
|  | */ | 
|  | static int of_drconf_to_nid_single(struct drmem_lmb *lmb) | 
|  | { | 
|  | struct assoc_arrays aa = { .arrays = NULL }; | 
|  | int default_nid = 0; | 
|  | int nid = default_nid; | 
|  | int rc, index; | 
|  |  | 
|  | rc = of_get_assoc_arrays(&aa); | 
|  | if (rc) | 
|  | return default_nid; | 
|  |  | 
|  | if (min_common_depth > 0 && min_common_depth <= aa.array_sz && | 
|  | !(lmb->flags & DRCONF_MEM_AI_INVALID) && | 
|  | lmb->aa_index < aa.n_arrays) { | 
|  | index = lmb->aa_index * aa.array_sz + min_common_depth - 1; | 
|  | nid = of_read_number(&aa.arrays[index], 1); | 
|  |  | 
|  | if (nid == 0xffff || nid >= MAX_NUMNODES) | 
|  | nid = default_nid; | 
|  |  | 
|  | if (nid > 0) { | 
|  | index = lmb->aa_index * aa.array_sz; | 
|  | initialize_distance_lookup_table(nid, | 
|  | &aa.arrays[index]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out to which domain a cpu belongs and stick it there. | 
|  | * Return the id of the domain used. | 
|  | */ | 
|  | static int numa_setup_cpu(unsigned long lcpu) | 
|  | { | 
|  | int nid = -1; | 
|  | struct device_node *cpu; | 
|  |  | 
|  | /* | 
|  | * If a valid cpu-to-node mapping is already available, use it | 
|  | * directly instead of querying the firmware, since it represents | 
|  | * the most recent mapping notified to us by the platform (eg: VPHN). | 
|  | */ | 
|  | if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) { | 
|  | map_cpu_to_node(lcpu, nid); | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | cpu = of_get_cpu_node(lcpu, NULL); | 
|  |  | 
|  | if (!cpu) { | 
|  | WARN_ON(1); | 
|  | if (cpu_present(lcpu)) | 
|  | goto out_present; | 
|  | else | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nid = of_node_to_nid_single(cpu); | 
|  |  | 
|  | out_present: | 
|  | if (nid < 0 || !node_possible(nid)) | 
|  | nid = first_online_node; | 
|  |  | 
|  | map_cpu_to_node(lcpu, nid); | 
|  | of_node_put(cpu); | 
|  | out: | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static void verify_cpu_node_mapping(int cpu, int node) | 
|  | { | 
|  | int base, sibling, i; | 
|  |  | 
|  | /* Verify that all the threads in the core belong to the same node */ | 
|  | base = cpu_first_thread_sibling(cpu); | 
|  |  | 
|  | for (i = 0; i < threads_per_core; i++) { | 
|  | sibling = base + i; | 
|  |  | 
|  | if (sibling == cpu || cpu_is_offline(sibling)) | 
|  | continue; | 
|  |  | 
|  | if (cpu_to_node(sibling) != node) { | 
|  | WARN(1, "CPU thread siblings %d and %d don't belong" | 
|  | " to the same node!\n", cpu, sibling); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Must run before sched domains notifier. */ | 
|  | static int ppc_numa_cpu_prepare(unsigned int cpu) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | nid = numa_setup_cpu(cpu); | 
|  | verify_cpu_node_mapping(cpu, nid); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int ppc_numa_cpu_dead(unsigned int cpu) | 
|  | { | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | unmap_cpu_from_node(cpu); | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check and possibly modify a memory region to enforce the memory limit. | 
|  | * | 
|  | * Returns the size the region should have to enforce the memory limit. | 
|  | * This will either be the original value of size, a truncated value, | 
|  | * or zero. If the returned value of size is 0 the region should be | 
|  | * discarded as it lies wholly above the memory limit. | 
|  | */ | 
|  | static unsigned long __init numa_enforce_memory_limit(unsigned long start, | 
|  | unsigned long size) | 
|  | { | 
|  | /* | 
|  | * We use memblock_end_of_DRAM() in here instead of memory_limit because | 
|  | * we've already adjusted it for the limit and it takes care of | 
|  | * having memory holes below the limit.  Also, in the case of | 
|  | * iommu_is_off, memory_limit is not set but is implicitly enforced. | 
|  | */ | 
|  |  | 
|  | if (start + size <= memblock_end_of_DRAM()) | 
|  | return size; | 
|  |  | 
|  | if (start >= memblock_end_of_DRAM()) | 
|  | return 0; | 
|  |  | 
|  | return memblock_end_of_DRAM() - start; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads the counter for a given entry in | 
|  | * linux,drconf-usable-memory property | 
|  | */ | 
|  | static inline int __init read_usm_ranges(const __be32 **usm) | 
|  | { | 
|  | /* | 
|  | * For each lmb in ibm,dynamic-memory a corresponding | 
|  | * entry in linux,drconf-usable-memory property contains | 
|  | * a counter followed by that many (base, size) duple. | 
|  | * read the counter from linux,drconf-usable-memory | 
|  | */ | 
|  | return read_n_cells(n_mem_size_cells, usm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Extract NUMA information from the ibm,dynamic-reconfiguration-memory | 
|  | * node.  This assumes n_mem_{addr,size}_cells have been set. | 
|  | */ | 
|  | static void __init numa_setup_drmem_lmb(struct drmem_lmb *lmb, | 
|  | const __be32 **usm) | 
|  | { | 
|  | unsigned int ranges, is_kexec_kdump = 0; | 
|  | unsigned long base, size, sz; | 
|  | int nid; | 
|  |  | 
|  | /* | 
|  | * Skip this block if the reserved bit is set in flags (0x80) | 
|  | * or if the block is not assigned to this partition (0x8) | 
|  | */ | 
|  | if ((lmb->flags & DRCONF_MEM_RESERVED) | 
|  | || !(lmb->flags & DRCONF_MEM_ASSIGNED)) | 
|  | return; | 
|  |  | 
|  | if (*usm) | 
|  | is_kexec_kdump = 1; | 
|  |  | 
|  | base = lmb->base_addr; | 
|  | size = drmem_lmb_size(); | 
|  | ranges = 1; | 
|  |  | 
|  | if (is_kexec_kdump) { | 
|  | ranges = read_usm_ranges(usm); | 
|  | if (!ranges) /* there are no (base, size) duple */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | do { | 
|  | if (is_kexec_kdump) { | 
|  | base = read_n_cells(n_mem_addr_cells, usm); | 
|  | size = read_n_cells(n_mem_size_cells, usm); | 
|  | } | 
|  |  | 
|  | nid = of_drconf_to_nid_single(lmb); | 
|  | fake_numa_create_new_node(((base + size) >> PAGE_SHIFT), | 
|  | &nid); | 
|  | node_set_online(nid); | 
|  | sz = numa_enforce_memory_limit(base, size); | 
|  | if (sz) | 
|  | memblock_set_node(base, sz, &memblock.memory, nid); | 
|  | } while (--ranges); | 
|  | } | 
|  |  | 
|  | static int __init parse_numa_properties(void) | 
|  | { | 
|  | struct device_node *memory; | 
|  | int default_nid = 0; | 
|  | unsigned long i; | 
|  |  | 
|  | if (numa_enabled == 0) { | 
|  | printk(KERN_WARNING "NUMA disabled by user\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | min_common_depth = find_min_common_depth(); | 
|  |  | 
|  | if (min_common_depth < 0) | 
|  | return min_common_depth; | 
|  |  | 
|  | dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | 
|  |  | 
|  | /* | 
|  | * Even though we connect cpus to numa domains later in SMP | 
|  | * init, we need to know the node ids now. This is because | 
|  | * each node to be onlined must have NODE_DATA etc backing it. | 
|  | */ | 
|  | for_each_present_cpu(i) { | 
|  | struct device_node *cpu; | 
|  | int nid; | 
|  |  | 
|  | cpu = of_get_cpu_node(i, NULL); | 
|  | BUG_ON(!cpu); | 
|  | nid = of_node_to_nid_single(cpu); | 
|  | of_node_put(cpu); | 
|  |  | 
|  | /* | 
|  | * Don't fall back to default_nid yet -- we will plug | 
|  | * cpus into nodes once the memory scan has discovered | 
|  | * the topology. | 
|  | */ | 
|  | if (nid < 0) | 
|  | continue; | 
|  | node_set_online(nid); | 
|  | } | 
|  |  | 
|  | get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); | 
|  |  | 
|  | for_each_node_by_type(memory, "memory") { | 
|  | unsigned long start; | 
|  | unsigned long size; | 
|  | int nid; | 
|  | int ranges; | 
|  | const __be32 *memcell_buf; | 
|  | unsigned int len; | 
|  |  | 
|  | memcell_buf = of_get_property(memory, | 
|  | "linux,usable-memory", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | memcell_buf = of_get_property(memory, "reg", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | continue; | 
|  |  | 
|  | /* ranges in cell */ | 
|  | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
|  | new_range: | 
|  | /* these are order-sensitive, and modify the buffer pointer */ | 
|  | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
|  | size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
|  |  | 
|  | /* | 
|  | * Assumption: either all memory nodes or none will | 
|  | * have associativity properties.  If none, then | 
|  | * everything goes to default_nid. | 
|  | */ | 
|  | nid = of_node_to_nid_single(memory); | 
|  | if (nid < 0) | 
|  | nid = default_nid; | 
|  |  | 
|  | fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); | 
|  | node_set_online(nid); | 
|  |  | 
|  | size = numa_enforce_memory_limit(start, size); | 
|  | if (size) | 
|  | memblock_set_node(start, size, &memblock.memory, nid); | 
|  |  | 
|  | if (--ranges) | 
|  | goto new_range; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now do the same thing for each MEMBLOCK listed in the | 
|  | * ibm,dynamic-memory property in the | 
|  | * ibm,dynamic-reconfiguration-memory node. | 
|  | */ | 
|  | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | if (memory) { | 
|  | walk_drmem_lmbs(memory, numa_setup_drmem_lmb); | 
|  | of_node_put(memory); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init setup_nonnuma(void) | 
|  | { | 
|  | unsigned long top_of_ram = memblock_end_of_DRAM(); | 
|  | unsigned long total_ram = memblock_phys_mem_size(); | 
|  | unsigned long start_pfn, end_pfn; | 
|  | unsigned int nid = 0; | 
|  | struct memblock_region *reg; | 
|  |  | 
|  | printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
|  | top_of_ram, total_ram); | 
|  | printk(KERN_DEBUG "Memory hole size: %ldMB\n", | 
|  | (top_of_ram - total_ram) >> 20); | 
|  |  | 
|  | for_each_memblock(memory, reg) { | 
|  | start_pfn = memblock_region_memory_base_pfn(reg); | 
|  | end_pfn = memblock_region_memory_end_pfn(reg); | 
|  |  | 
|  | fake_numa_create_new_node(end_pfn, &nid); | 
|  | memblock_set_node(PFN_PHYS(start_pfn), | 
|  | PFN_PHYS(end_pfn - start_pfn), | 
|  | &memblock.memory, nid); | 
|  | node_set_online(nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init dump_numa_cpu_topology(void) | 
|  | { | 
|  | unsigned int node; | 
|  | unsigned int cpu, count; | 
|  |  | 
|  | if (min_common_depth == -1 || !numa_enabled) | 
|  | return; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | pr_info("Node %d CPUs:", node); | 
|  |  | 
|  | count = 0; | 
|  | /* | 
|  | * If we used a CPU iterator here we would miss printing | 
|  | * the holes in the cpumap. | 
|  | */ | 
|  | for (cpu = 0; cpu < nr_cpu_ids; cpu++) { | 
|  | if (cpumask_test_cpu(cpu, | 
|  | node_to_cpumask_map[node])) { | 
|  | if (count == 0) | 
|  | pr_cont(" %u", cpu); | 
|  | ++count; | 
|  | } else { | 
|  | if (count > 1) | 
|  | pr_cont("-%u", cpu - 1); | 
|  | count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (count > 1) | 
|  | pr_cont("-%u", nr_cpu_ids - 1); | 
|  | pr_cont("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Initialize NODE_DATA for a node on the local memory */ | 
|  | static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn) | 
|  | { | 
|  | u64 spanned_pages = end_pfn - start_pfn; | 
|  | const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES); | 
|  | u64 nd_pa; | 
|  | void *nd; | 
|  | int tnid; | 
|  |  | 
|  | nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid); | 
|  | nd = __va(nd_pa); | 
|  |  | 
|  | /* report and initialize */ | 
|  | pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n", | 
|  | nd_pa, nd_pa + nd_size - 1); | 
|  | tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT); | 
|  | if (tnid != nid) | 
|  | pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid); | 
|  |  | 
|  | node_data[nid] = nd; | 
|  | memset(NODE_DATA(nid), 0, sizeof(pg_data_t)); | 
|  | NODE_DATA(nid)->node_id = nid; | 
|  | NODE_DATA(nid)->node_start_pfn = start_pfn; | 
|  | NODE_DATA(nid)->node_spanned_pages = spanned_pages; | 
|  | } | 
|  |  | 
|  | static void __init find_possible_nodes(void) | 
|  | { | 
|  | struct device_node *rtas; | 
|  | u32 numnodes, i; | 
|  |  | 
|  | if (min_common_depth <= 0) | 
|  | return; | 
|  |  | 
|  | rtas = of_find_node_by_path("/rtas"); | 
|  | if (!rtas) | 
|  | return; | 
|  |  | 
|  | if (of_property_read_u32_index(rtas, | 
|  | "ibm,max-associativity-domains", | 
|  | min_common_depth, &numnodes)) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < numnodes; i++) { | 
|  | if (!node_possible(i)) | 
|  | node_set(i, node_possible_map); | 
|  | } | 
|  |  | 
|  | out: | 
|  | of_node_put(rtas); | 
|  | } | 
|  |  | 
|  | void __init mem_topology_setup(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | if (parse_numa_properties()) | 
|  | setup_nonnuma(); | 
|  |  | 
|  | /* | 
|  | * Modify the set of possible NUMA nodes to reflect information | 
|  | * available about the set of online nodes, and the set of nodes | 
|  | * that we expect to make use of for this platform's affinity | 
|  | * calculations. | 
|  | */ | 
|  | nodes_and(node_possible_map, node_possible_map, node_online_map); | 
|  |  | 
|  | find_possible_nodes(); | 
|  |  | 
|  | setup_node_to_cpumask_map(); | 
|  |  | 
|  | reset_numa_cpu_lookup_table(); | 
|  |  | 
|  | for_each_present_cpu(cpu) | 
|  | numa_setup_cpu(cpu); | 
|  | } | 
|  |  | 
|  | void __init initmem_init(void) | 
|  | { | 
|  | int nid; | 
|  |  | 
|  | max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT; | 
|  | max_pfn = max_low_pfn; | 
|  |  | 
|  | memblock_dump_all(); | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | unsigned long start_pfn, end_pfn; | 
|  |  | 
|  | get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
|  | setup_node_data(nid, start_pfn, end_pfn); | 
|  | sparse_memory_present_with_active_regions(nid); | 
|  | } | 
|  |  | 
|  | sparse_init(); | 
|  |  | 
|  | /* | 
|  | * We need the numa_cpu_lookup_table to be accurate for all CPUs, | 
|  | * even before we online them, so that we can use cpu_to_{node,mem} | 
|  | * early in boot, cf. smp_prepare_cpus(). | 
|  | * _nocalls() + manual invocation is used because cpuhp is not yet | 
|  | * initialized for the boot CPU. | 
|  | */ | 
|  | cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare", | 
|  | ppc_numa_cpu_prepare, ppc_numa_cpu_dead); | 
|  | } | 
|  |  | 
|  | static int __init early_numa(char *p) | 
|  | { | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | if (strstr(p, "off")) | 
|  | numa_enabled = 0; | 
|  |  | 
|  | if (strstr(p, "debug")) | 
|  | numa_debug = 1; | 
|  |  | 
|  | p = strstr(p, "fake="); | 
|  | if (p) | 
|  | cmdline = p + strlen("fake="); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("numa", early_numa); | 
|  |  | 
|  | static bool topology_updates_enabled = true; | 
|  |  | 
|  | static int __init early_topology_updates(char *p) | 
|  | { | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | if (!strcmp(p, "off")) { | 
|  | pr_info("Disabling topology updates\n"); | 
|  | topology_updates_enabled = false; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("topology_updates", early_topology_updates); | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Find the node associated with a hot added memory section for | 
|  | * memory represented in the device tree by the property | 
|  | * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory. | 
|  | */ | 
|  | static int hot_add_drconf_scn_to_nid(unsigned long scn_addr) | 
|  | { | 
|  | struct drmem_lmb *lmb; | 
|  | unsigned long lmb_size; | 
|  | int nid = -1; | 
|  |  | 
|  | lmb_size = drmem_lmb_size(); | 
|  |  | 
|  | for_each_drmem_lmb(lmb) { | 
|  | /* skip this block if it is reserved or not assigned to | 
|  | * this partition */ | 
|  | if ((lmb->flags & DRCONF_MEM_RESERVED) | 
|  | || !(lmb->flags & DRCONF_MEM_ASSIGNED)) | 
|  | continue; | 
|  |  | 
|  | if ((scn_addr < lmb->base_addr) | 
|  | || (scn_addr >= (lmb->base_addr + lmb_size))) | 
|  | continue; | 
|  |  | 
|  | nid = of_drconf_to_nid_single(lmb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the node associated with a hot added memory section for memory | 
|  | * represented in the device tree as a node (i.e. memory@XXXX) for | 
|  | * each memblock. | 
|  | */ | 
|  | static int hot_add_node_scn_to_nid(unsigned long scn_addr) | 
|  | { | 
|  | struct device_node *memory; | 
|  | int nid = -1; | 
|  |  | 
|  | for_each_node_by_type(memory, "memory") { | 
|  | unsigned long start, size; | 
|  | int ranges; | 
|  | const __be32 *memcell_buf; | 
|  | unsigned int len; | 
|  |  | 
|  | memcell_buf = of_get_property(memory, "reg", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | continue; | 
|  |  | 
|  | /* ranges in cell */ | 
|  | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
|  |  | 
|  | while (ranges--) { | 
|  | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
|  | size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
|  |  | 
|  | if ((scn_addr < start) || (scn_addr >= (start + size))) | 
|  | continue; | 
|  |  | 
|  | nid = of_node_to_nid_single(memory); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (nid >= 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | of_node_put(memory); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the node associated with a hot added memory section.  Section | 
|  | * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that | 
|  | * sections are fully contained within a single MEMBLOCK. | 
|  | */ | 
|  | int hot_add_scn_to_nid(unsigned long scn_addr) | 
|  | { | 
|  | struct device_node *memory = NULL; | 
|  | int nid; | 
|  |  | 
|  | if (!numa_enabled || (min_common_depth < 0)) | 
|  | return first_online_node; | 
|  |  | 
|  | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | if (memory) { | 
|  | nid = hot_add_drconf_scn_to_nid(scn_addr); | 
|  | of_node_put(memory); | 
|  | } else { | 
|  | nid = hot_add_node_scn_to_nid(scn_addr); | 
|  | } | 
|  |  | 
|  | if (nid < 0 || !node_possible(nid)) | 
|  | nid = first_online_node; | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static u64 hot_add_drconf_memory_max(void) | 
|  | { | 
|  | struct device_node *memory = NULL; | 
|  | struct device_node *dn = NULL; | 
|  | const __be64 *lrdr = NULL; | 
|  |  | 
|  | dn = of_find_node_by_path("/rtas"); | 
|  | if (dn) { | 
|  | lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL); | 
|  | of_node_put(dn); | 
|  | if (lrdr) | 
|  | return be64_to_cpup(lrdr); | 
|  | } | 
|  |  | 
|  | memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
|  | if (memory) { | 
|  | of_node_put(memory); | 
|  | return drmem_lmb_memory_max(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * memory_hotplug_max - return max address of memory that may be added | 
|  | * | 
|  | * This is currently only used on systems that support drconfig memory | 
|  | * hotplug. | 
|  | */ | 
|  | u64 memory_hotplug_max(void) | 
|  | { | 
|  | return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM()); | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ | 
|  |  | 
|  | /* Virtual Processor Home Node (VPHN) support */ | 
|  | #ifdef CONFIG_PPC_SPLPAR | 
|  |  | 
|  | #include "vphn.h" | 
|  |  | 
|  | struct topology_update_data { | 
|  | struct topology_update_data *next; | 
|  | unsigned int cpu; | 
|  | int old_nid; | 
|  | int new_nid; | 
|  | }; | 
|  |  | 
|  | #define TOPOLOGY_DEF_TIMER_SECS	60 | 
|  |  | 
|  | static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS]; | 
|  | static cpumask_t cpu_associativity_changes_mask; | 
|  | static int vphn_enabled; | 
|  | static int prrn_enabled; | 
|  | static void reset_topology_timer(void); | 
|  | static int topology_timer_secs = 1; | 
|  | static int topology_inited; | 
|  |  | 
|  | /* | 
|  | * Change polling interval for associativity changes. | 
|  | */ | 
|  | int timed_topology_update(int nsecs) | 
|  | { | 
|  | if (vphn_enabled) { | 
|  | if (nsecs > 0) | 
|  | topology_timer_secs = nsecs; | 
|  | else | 
|  | topology_timer_secs = TOPOLOGY_DEF_TIMER_SECS; | 
|  |  | 
|  | reset_topology_timer(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store the current values of the associativity change counters in the | 
|  | * hypervisor. | 
|  | */ | 
|  | static void setup_cpu_associativity_change_counters(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | /* The VPHN feature supports a maximum of 8 reference points */ | 
|  | BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8); | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | int i; | 
|  | u8 *counts = vphn_cpu_change_counts[cpu]; | 
|  | volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts; | 
|  |  | 
|  | for (i = 0; i < distance_ref_points_depth; i++) | 
|  | counts[i] = hypervisor_counts[i]; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The hypervisor maintains a set of 8 associativity change counters in | 
|  | * the VPA of each cpu that correspond to the associativity levels in the | 
|  | * ibm,associativity-reference-points property. When an associativity | 
|  | * level changes, the corresponding counter is incremented. | 
|  | * | 
|  | * Set a bit in cpu_associativity_changes_mask for each cpu whose home | 
|  | * node associativity levels have changed. | 
|  | * | 
|  | * Returns the number of cpus with unhandled associativity changes. | 
|  | */ | 
|  | static int update_cpu_associativity_changes_mask(void) | 
|  | { | 
|  | int cpu; | 
|  | cpumask_t *changes = &cpu_associativity_changes_mask; | 
|  |  | 
|  | for_each_possible_cpu(cpu) { | 
|  | int i, changed = 0; | 
|  | u8 *counts = vphn_cpu_change_counts[cpu]; | 
|  | volatile u8 *hypervisor_counts = lppaca_of(cpu).vphn_assoc_counts; | 
|  |  | 
|  | for (i = 0; i < distance_ref_points_depth; i++) { | 
|  | if (hypervisor_counts[i] != counts[i]) { | 
|  | counts[i] = hypervisor_counts[i]; | 
|  | changed = 1; | 
|  | } | 
|  | } | 
|  | if (changed) { | 
|  | cpumask_or(changes, changes, cpu_sibling_mask(cpu)); | 
|  | cpu = cpu_last_thread_sibling(cpu); | 
|  | } | 
|  | } | 
|  |  | 
|  | return cpumask_weight(changes); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieve the new associativity information for a virtual processor's | 
|  | * home node. | 
|  | */ | 
|  | static long hcall_vphn(unsigned long cpu, __be32 *associativity) | 
|  | { | 
|  | long rc; | 
|  | long retbuf[PLPAR_HCALL9_BUFSIZE] = {0}; | 
|  | u64 flags = 1; | 
|  | int hwcpu = get_hard_smp_processor_id(cpu); | 
|  |  | 
|  | rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu); | 
|  | vphn_unpack_associativity(retbuf, associativity); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static long vphn_get_associativity(unsigned long cpu, | 
|  | __be32 *associativity) | 
|  | { | 
|  | long rc; | 
|  |  | 
|  | rc = hcall_vphn(cpu, associativity); | 
|  |  | 
|  | switch (rc) { | 
|  | case H_FUNCTION: | 
|  | printk_once(KERN_INFO | 
|  | "VPHN is not supported. Disabling polling...\n"); | 
|  | stop_topology_update(); | 
|  | break; | 
|  | case H_HARDWARE: | 
|  | printk(KERN_ERR | 
|  | "hcall_vphn() experienced a hardware fault " | 
|  | "preventing VPHN. Disabling polling...\n"); | 
|  | stop_topology_update(); | 
|  | break; | 
|  | case H_SUCCESS: | 
|  | dbg("VPHN hcall succeeded. Reset polling...\n"); | 
|  | timed_topology_update(0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int find_and_online_cpu_nid(int cpu) | 
|  | { | 
|  | __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0}; | 
|  | int new_nid; | 
|  |  | 
|  | /* Use associativity from first thread for all siblings */ | 
|  | if (vphn_get_associativity(cpu, associativity)) | 
|  | return cpu_to_node(cpu); | 
|  |  | 
|  | new_nid = associativity_to_nid(associativity); | 
|  | if (new_nid < 0 || !node_possible(new_nid)) | 
|  | new_nid = first_online_node; | 
|  |  | 
|  | if (NODE_DATA(new_nid) == NULL) { | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Need to ensure that NODE_DATA is initialized for a node from | 
|  | * available memory (see memblock_alloc_try_nid). If unable to | 
|  | * init the node, then default to nearest node that has memory | 
|  | * installed. Skip onlining a node if the subsystems are not | 
|  | * yet initialized. | 
|  | */ | 
|  | if (!topology_inited || try_online_node(new_nid)) | 
|  | new_nid = first_online_node; | 
|  | #else | 
|  | /* | 
|  | * Default to using the nearest node that has memory installed. | 
|  | * Otherwise, it would be necessary to patch the kernel MM code | 
|  | * to deal with more memoryless-node error conditions. | 
|  | */ | 
|  | new_nid = first_online_node; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__, | 
|  | cpu, new_nid); | 
|  | return new_nid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the CPU maps and sysfs entries for a single CPU when its NUMA | 
|  | * characteristics change. This function doesn't perform any locking and is | 
|  | * only safe to call from stop_machine(). | 
|  | */ | 
|  | static int update_cpu_topology(void *data) | 
|  | { | 
|  | struct topology_update_data *update; | 
|  | unsigned long cpu; | 
|  |  | 
|  | if (!data) | 
|  | return -EINVAL; | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | for (update = data; update; update = update->next) { | 
|  | int new_nid = update->new_nid; | 
|  | if (cpu != update->cpu) | 
|  | continue; | 
|  |  | 
|  | unmap_cpu_from_node(cpu); | 
|  | map_cpu_to_node(cpu, new_nid); | 
|  | set_cpu_numa_node(cpu, new_nid); | 
|  | set_cpu_numa_mem(cpu, local_memory_node(new_nid)); | 
|  | vdso_getcpu_init(); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int update_lookup_table(void *data) | 
|  | { | 
|  | struct topology_update_data *update; | 
|  |  | 
|  | if (!data) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Upon topology update, the numa-cpu lookup table needs to be updated | 
|  | * for all threads in the core, including offline CPUs, to ensure that | 
|  | * future hotplug operations respect the cpu-to-node associativity | 
|  | * properly. | 
|  | */ | 
|  | for (update = data; update; update = update->next) { | 
|  | int nid, base, j; | 
|  |  | 
|  | nid = update->new_nid; | 
|  | base = cpu_first_thread_sibling(update->cpu); | 
|  |  | 
|  | for (j = 0; j < threads_per_core; j++) { | 
|  | update_numa_cpu_lookup_table(base + j, nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update the node maps and sysfs entries for each cpu whose home node | 
|  | * has changed. Returns 1 when the topology has changed, and 0 otherwise. | 
|  | * | 
|  | * cpus_locked says whether we already hold cpu_hotplug_lock. | 
|  | */ | 
|  | int numa_update_cpu_topology(bool cpus_locked) | 
|  | { | 
|  | unsigned int cpu, sibling, changed = 0; | 
|  | struct topology_update_data *updates, *ud; | 
|  | cpumask_t updated_cpus; | 
|  | struct device *dev; | 
|  | int weight, new_nid, i = 0; | 
|  |  | 
|  | if (!prrn_enabled && !vphn_enabled && topology_inited) | 
|  | return 0; | 
|  |  | 
|  | weight = cpumask_weight(&cpu_associativity_changes_mask); | 
|  | if (!weight) | 
|  | return 0; | 
|  |  | 
|  | updates = kcalloc(weight, sizeof(*updates), GFP_KERNEL); | 
|  | if (!updates) | 
|  | return 0; | 
|  |  | 
|  | cpumask_clear(&updated_cpus); | 
|  |  | 
|  | for_each_cpu(cpu, &cpu_associativity_changes_mask) { | 
|  | /* | 
|  | * If siblings aren't flagged for changes, updates list | 
|  | * will be too short. Skip on this update and set for next | 
|  | * update. | 
|  | */ | 
|  | if (!cpumask_subset(cpu_sibling_mask(cpu), | 
|  | &cpu_associativity_changes_mask)) { | 
|  | pr_info("Sibling bits not set for associativity " | 
|  | "change, cpu%d\n", cpu); | 
|  | cpumask_or(&cpu_associativity_changes_mask, | 
|  | &cpu_associativity_changes_mask, | 
|  | cpu_sibling_mask(cpu)); | 
|  | cpu = cpu_last_thread_sibling(cpu); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | new_nid = find_and_online_cpu_nid(cpu); | 
|  |  | 
|  | if (new_nid == numa_cpu_lookup_table[cpu]) { | 
|  | cpumask_andnot(&cpu_associativity_changes_mask, | 
|  | &cpu_associativity_changes_mask, | 
|  | cpu_sibling_mask(cpu)); | 
|  | dbg("Assoc chg gives same node %d for cpu%d\n", | 
|  | new_nid, cpu); | 
|  | cpu = cpu_last_thread_sibling(cpu); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for_each_cpu(sibling, cpu_sibling_mask(cpu)) { | 
|  | ud = &updates[i++]; | 
|  | ud->next = &updates[i]; | 
|  | ud->cpu = sibling; | 
|  | ud->new_nid = new_nid; | 
|  | ud->old_nid = numa_cpu_lookup_table[sibling]; | 
|  | cpumask_set_cpu(sibling, &updated_cpus); | 
|  | } | 
|  | cpu = cpu_last_thread_sibling(cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prevent processing of 'updates' from overflowing array | 
|  | * where last entry filled in a 'next' pointer. | 
|  | */ | 
|  | if (i) | 
|  | updates[i-1].next = NULL; | 
|  |  | 
|  | pr_debug("Topology update for the following CPUs:\n"); | 
|  | if (cpumask_weight(&updated_cpus)) { | 
|  | for (ud = &updates[0]; ud; ud = ud->next) { | 
|  | pr_debug("cpu %d moving from node %d " | 
|  | "to %d\n", ud->cpu, | 
|  | ud->old_nid, ud->new_nid); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In cases where we have nothing to update (because the updates list | 
|  | * is too short or because the new topology is same as the old one), | 
|  | * skip invoking update_cpu_topology() via stop-machine(). This is | 
|  | * necessary (and not just a fast-path optimization) since stop-machine | 
|  | * can end up electing a random CPU to run update_cpu_topology(), and | 
|  | * thus trick us into setting up incorrect cpu-node mappings (since | 
|  | * 'updates' is kzalloc()'ed). | 
|  | * | 
|  | * And for the similar reason, we will skip all the following updating. | 
|  | */ | 
|  | if (!cpumask_weight(&updated_cpus)) | 
|  | goto out; | 
|  |  | 
|  | if (cpus_locked) | 
|  | stop_machine_cpuslocked(update_cpu_topology, &updates[0], | 
|  | &updated_cpus); | 
|  | else | 
|  | stop_machine(update_cpu_topology, &updates[0], &updated_cpus); | 
|  |  | 
|  | /* | 
|  | * Update the numa-cpu lookup table with the new mappings, even for | 
|  | * offline CPUs. It is best to perform this update from the stop- | 
|  | * machine context. | 
|  | */ | 
|  | if (cpus_locked) | 
|  | stop_machine_cpuslocked(update_lookup_table, &updates[0], | 
|  | cpumask_of(raw_smp_processor_id())); | 
|  | else | 
|  | stop_machine(update_lookup_table, &updates[0], | 
|  | cpumask_of(raw_smp_processor_id())); | 
|  |  | 
|  | for (ud = &updates[0]; ud; ud = ud->next) { | 
|  | unregister_cpu_under_node(ud->cpu, ud->old_nid); | 
|  | register_cpu_under_node(ud->cpu, ud->new_nid); | 
|  |  | 
|  | dev = get_cpu_device(ud->cpu); | 
|  | if (dev) | 
|  | kobject_uevent(&dev->kobj, KOBJ_CHANGE); | 
|  | cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask); | 
|  | changed = 1; | 
|  | } | 
|  |  | 
|  | out: | 
|  | kfree(updates); | 
|  | return changed; | 
|  | } | 
|  |  | 
|  | int arch_update_cpu_topology(void) | 
|  | { | 
|  | return numa_update_cpu_topology(true); | 
|  | } | 
|  |  | 
|  | static void topology_work_fn(struct work_struct *work) | 
|  | { | 
|  | rebuild_sched_domains(); | 
|  | } | 
|  | static DECLARE_WORK(topology_work, topology_work_fn); | 
|  |  | 
|  | static void topology_schedule_update(void) | 
|  | { | 
|  | schedule_work(&topology_work); | 
|  | } | 
|  |  | 
|  | static void topology_timer_fn(struct timer_list *unused) | 
|  | { | 
|  | if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask)) | 
|  | topology_schedule_update(); | 
|  | else if (vphn_enabled) { | 
|  | if (update_cpu_associativity_changes_mask() > 0) | 
|  | topology_schedule_update(); | 
|  | reset_topology_timer(); | 
|  | } | 
|  | } | 
|  | static struct timer_list topology_timer; | 
|  |  | 
|  | static void reset_topology_timer(void) | 
|  | { | 
|  | if (vphn_enabled) | 
|  | mod_timer(&topology_timer, jiffies + topology_timer_secs * HZ); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static int dt_update_callback(struct notifier_block *nb, | 
|  | unsigned long action, void *data) | 
|  | { | 
|  | struct of_reconfig_data *update = data; | 
|  | int rc = NOTIFY_DONE; | 
|  |  | 
|  | switch (action) { | 
|  | case OF_RECONFIG_UPDATE_PROPERTY: | 
|  | if (!of_prop_cmp(update->dn->type, "cpu") && | 
|  | !of_prop_cmp(update->prop->name, "ibm,associativity")) { | 
|  | u32 core_id; | 
|  | of_property_read_u32(update->dn, "reg", &core_id); | 
|  | rc = dlpar_cpu_readd(core_id); | 
|  | rc = NOTIFY_OK; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static struct notifier_block dt_update_nb = { | 
|  | .notifier_call = dt_update_callback, | 
|  | }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Start polling for associativity changes. | 
|  | */ | 
|  | int start_topology_update(void) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (!topology_updates_enabled) | 
|  | return 0; | 
|  |  | 
|  | if (firmware_has_feature(FW_FEATURE_PRRN)) { | 
|  | if (!prrn_enabled) { | 
|  | prrn_enabled = 1; | 
|  | #ifdef CONFIG_SMP | 
|  | rc = of_reconfig_notifier_register(&dt_update_nb); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | if (firmware_has_feature(FW_FEATURE_VPHN) && | 
|  | lppaca_shared_proc(get_lppaca())) { | 
|  | if (!vphn_enabled) { | 
|  | vphn_enabled = 1; | 
|  | setup_cpu_associativity_change_counters(); | 
|  | timer_setup(&topology_timer, topology_timer_fn, | 
|  | TIMER_DEFERRABLE); | 
|  | reset_topology_timer(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disable polling for VPHN associativity changes. | 
|  | */ | 
|  | int stop_topology_update(void) | 
|  | { | 
|  | int rc = 0; | 
|  |  | 
|  | if (!topology_updates_enabled) | 
|  | return 0; | 
|  |  | 
|  | if (prrn_enabled) { | 
|  | prrn_enabled = 0; | 
|  | #ifdef CONFIG_SMP | 
|  | rc = of_reconfig_notifier_unregister(&dt_update_nb); | 
|  | #endif | 
|  | } | 
|  | if (vphn_enabled) { | 
|  | vphn_enabled = 0; | 
|  | rc = del_timer_sync(&topology_timer); | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | int prrn_is_enabled(void) | 
|  | { | 
|  | return prrn_enabled; | 
|  | } | 
|  |  | 
|  | void __init shared_proc_topology_init(void) | 
|  | { | 
|  | if (lppaca_shared_proc(get_lppaca())) { | 
|  | bitmap_fill(cpumask_bits(&cpu_associativity_changes_mask), | 
|  | nr_cpumask_bits); | 
|  | numa_update_cpu_topology(false); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int topology_read(struct seq_file *file, void *v) | 
|  | { | 
|  | if (vphn_enabled || prrn_enabled) | 
|  | seq_puts(file, "on\n"); | 
|  | else | 
|  | seq_puts(file, "off\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int topology_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return single_open(file, topology_read, NULL); | 
|  | } | 
|  |  | 
|  | static ssize_t topology_write(struct file *file, const char __user *buf, | 
|  | size_t count, loff_t *off) | 
|  | { | 
|  | char kbuf[4]; /* "on" or "off" plus null. */ | 
|  | int read_len; | 
|  |  | 
|  | read_len = count < 3 ? count : 3; | 
|  | if (copy_from_user(kbuf, buf, read_len)) | 
|  | return -EINVAL; | 
|  |  | 
|  | kbuf[read_len] = '\0'; | 
|  |  | 
|  | if (!strncmp(kbuf, "on", 2)) { | 
|  | topology_updates_enabled = true; | 
|  | start_topology_update(); | 
|  | } else if (!strncmp(kbuf, "off", 3)) { | 
|  | stop_topology_update(); | 
|  | topology_updates_enabled = false; | 
|  | } else | 
|  | return -EINVAL; | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static const struct file_operations topology_ops = { | 
|  | .read = seq_read, | 
|  | .write = topology_write, | 
|  | .open = topology_open, | 
|  | .release = single_release | 
|  | }; | 
|  |  | 
|  | static int topology_update_init(void) | 
|  | { | 
|  | start_topology_update(); | 
|  |  | 
|  | if (vphn_enabled) | 
|  | topology_schedule_update(); | 
|  |  | 
|  | if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | topology_inited = 1; | 
|  | return 0; | 
|  | } | 
|  | device_initcall(topology_update_init); | 
|  | #endif /* CONFIG_PPC_SPLPAR */ |